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The effect of rotation is considered to become important when the Rossby number is sufficiently

small, as is the case in many geophysical and astrophysical flows. Here we present direct numerical

simulations to study the effect of rotation in flows with moderate Rossby numbers �down to Ro

�0.03� but at Reynolds numbers large enough to observe the beginning of a turbulent scaling at

scales smaller than the energy injection scale. We use coherent forcing at intermediate scales,

leaving enough room in the spectral space for an inverse cascade of energy to also develop. We

analyze the spectral behavior of the simulations, the shell-to-shell energy transfer, scaling laws and

intermittency, as well as the geometry and the anisotropy of the structures in the flow. At late times,

the direct transfer of energy at small scales is mediated by interactions with the largest scale in the

system, the energy containing eddies with k��1, where � refers to wavevectors perpendicular the

axis of rotation. The transfer between modes with wavevector parallel to the rotation is strongly

quenched. The inverse cascade of energy at scales larger than the energy injection scale is nonlocal,

and energy is transferred directly from small scales to the largest available scale. We observe both

a direct and inverse cascade of energy at high rotation rate, indicative that these cascades can take

place simultaneously. Also, as time evolves and the energy piles up at the large scales, the

intermittency of the direct cascade of energy is preserved while corrections due to intermittency are

found to be the same �within error bars� as in homogeneous nonrotating turbulence. © 2009

American Institute of Physics. �DOI: 10.1063/1.3064122�

I. INTRODUCTION

Strong rotation is present in many geophysical and as-

trophysical flows. Its effect is considered to become impor-

tant when the Rossby number �the ratio of the convective to

the Coriolis acceleration, or the ratio of the rotation period to

the eddy turn-over time� is sufficiently small. The large

scales of atmospheric and oceanic flows, for example, are

affected by the rotation of the Earth. The Rossby number for

midlatitude synoptic scales in the atmosphere is Ro�0.1.
1

In

the Sun, the typical Rossby number in the convective zone is

Ro�0.1–1 �Ref. 2�. Furthermore, the Reynolds number �Re,

the ratio of the convective to the viscous acceleration� in

these systems is also very large, and the flows are in a tur-

bulent state.

Many studies have considered the effect of rotation in a

turbulent flow, as a first step to gain better understanding of

the fluid dynamics of geophysical systems, for which, e.g.,

stratification also plays an important role. For rapid rotation

�very small Rossby numbers�, significant progress has been

made by applying resonant wave theory,
3,4

two-point spectral

closures,
5,6

and weak turbulence theory.
7

In these ap-

proaches, the flow is considered as a superposition of inertial

waves with a short period, and the evolution of the system

for long times is derived considering the effect of resonant

triad interactions.

Recently, resonant wave theory has been shown to cor-

respond to an asymptotic limit for a general class of geo-

physical flows with wave dynamics.
8,9

Also, the connection

between resonant wave theory and two-point closures based

on helical modes
4,5

was shown in Ref. 10. This approach

sheds light on the mechanism that drives the flow to be

quasi-two dimensional �quasi-2D� at large scales:
4,5

energy

in three-dimensional modes is transferred by a subset of the

resonant interactions to modes with smaller vertical wave-

number. It also explains successfully the observed enhanced

transfer of energy from the small to the large scales.
11

However, it is well known that wave theory is only valid

when the wave period �the rotation period here� is much

shorter than the eddy turn-over time at all scales. For large

Reynolds numbers, small scales are excited with a character-

istic timescale proportional to the eddy turn-over time that

decreases as the scales become smaller. Therefore the ap-

proximations made in such theories can break down at suf-

ficiently small scales, provided that the Reynolds number is

large enough for these scales to be excited. How the results

of resonant wave theory extend to the case of only moderate

Rossby numbers but very large Reynolds numbers is still

unclear. Two-point spectral closures
5,6

can be used to match

the two regimes using the same theoretical tool �see, e.g.,

Ref. 10�. This shows that the energy transfer is anisotropic

even at moderate Rossby numbers because of linear phase

mixing, and that resonant triads are selected in the limit of

small Rossby number �see also Refs. 12 and 13�.
Another approach for understanding rotating flows at
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large Reynolds numbers is to develop phenomenological

models based on scaling arguments and self-similarity. Initial

phenomenological investigations considered isotropic energy

spectra E�k� �Refs. 14 and 15� that suggested the power law

behavior E�k��k−2 provided that the examined wavenum-

bers were smaller than a critical wave number k����3
/�,

where � is the energy dissipation rate. For larger wavenum-

bers, the energy spectrum transitioned to the isotropic Kol-

mogorov energy spectrum E�k��k−5/3. Anisotropy was taken

into account in phenomenological models in Ref. 16, where

it was recognized that a considerable amount of the energy

will be confined in “quasi-2D” modes. An anisotropic energy

spectrum E�k��k
�

−2 �where k� denotes the wavevectors per-

pendicular to �� with a non-self-similar behavior along the

axis parallel to the rotation has been suggested in
17

on the

basis of numerical results.

In numerical simulations, the study of rotating turbulent

flows is constrained by the computational cost of properly

resolving the inertial waves and the resonant triadic interac-

tions, together with the cost of resolving the small-scale fluc-

tuations when the Reynolds number is large. Inverse cas-

cades were shown to develop and anisotropies to appear in

low resolution �323 and 643 grid points� simulations,
18–20

ei-

ther solving the equations of motion directly or using a sub-

grid model. Small aspect ratio boxes were considered in

Refs. 21 and 22 allowing for an increase in resolution. Simu-

lations at higher resolution were done later in Ref. 23 study-

ing, in particular, the behavior of the shell-to-shell energy

transfer. Recently, simulations with large Reynolds number

and small Rossby number were performed using 1283 grids

and eighth-order hyperviscosity,
24

thus confirming the domi-

nant role of resonant triads for rapid rotation at large Re,

although the results also suggest that resonant wave theory

can be valid only for a finite interval of time; this has been

argued by a number of authors in the general context of wave

turbulence because of the nonuniformity in scale of the

method, as already discussed earlier. Also note that all these

simulations give different results for the scaling of the energy

spectrum at scales larger than the forcing scale; it was shown

in Ref. 11, using a truncated model that this can be the result

of how all the relevant time scales are resolved. A synthesis

of dynamical and anisotropic aspects of rotating turbulence,

with discussion of numerical and physical experiments and

models, can be found in Ref. 25.

In this paper, we study the effect of rotation in a turbu-

lent flow using high resolution direct numerical simulations

with up to 5123 grid points. Simulations at this resolution

were also performed recently in Ref. 17 with an injection of

energy at the largest scale available; the focus was solely on

the scaling of small-scale fluctuations, showing depletion of

the energy cascade and reduced intermittency. Our main ob-

jective, on the other hand, is to study the statistical properties

of the fluctuations in flows with moderate Rossby numbers

�down to Ro�0.03� but at Reynolds numbers large enough

to observe the beginning of a turbulent scaling at scales

larger and smaller than the energy injection scale.

To this end, we use coherent forcing at intermediate

scales, leaving enough room in the spectral space for an in-

verse cascade of energy to develop when the Rossby number

is small enough. We also use the largest value of the Rey-

nolds number allowed by our grid to observe a direct transfer

of energy at small scales. After describing the simulations,

we study the spectral behavior of the energy in the runs, the

shell-to-shell energy transfer, scaling laws and intermittency,

the geometry of the structures, and finally the degree of an-

isotropy of the resulting flow.

II. NUMERICAL SIMULATIONS

We solve numerically the equations for an incompress-

ible rotating fluid with constant mass density,

�u

�t
+ � � u + 2� � u = − �P + ��2u + F �1�

and

� · u = 0, �2�

where u is the velocity field, �=��u is the vorticity, P is

the total pressure �modified by the centrifugal term� divided

by the mass density, and � is the kinematic viscosity. Here, F

is an external force that drives the turbulence, and we chose

the rotation axis to be in the z direction: �=�ẑ, with � the

rotation frequency.

The mechanical forcing F is given by the Taylor–Green

�TG� flow
26

F = F0�sin�k0x�cos�k0y�cos�k0z�x̂

− cos�k0x�sin�k0y�cos�k0z�ŷ� , �3�

where F0 is the forcing amplitude. The forcing injects energy

directly only into the x and y components of the velocity, but

with a three-dimensional dependence. However, in the ab-

sence of rotation ��=0�, the resulting flow is fully three

dimensional even in the absence of instabilities �turbulence�
because pressure gradients excite the z component of the

velocity.
26,27

The TG flow has a small spectral anisotropy

with slightly more energy in the z direction �see Sec. VI for

more details�, an effect that is the opposite of the tendency

toward two dimensionalization due to rotation when � is

nonzero. The flow has no net helicity, although locally re-

gions with strong positive and negative helicity develop. It is

also worth noting that this forcing injects zero energy in the

kz=0 mode, whose amplification observed in the strongly

rotating cases �see below� is thus only due to a cascade

process.

The TG flow is important in hydrodynamics for the in-

sights it provides. It was originally motivated as an initial

condition which, though highly symmetric, would lead to the

rapid development of small spatial scales,
26

and as a result

proposed as a paradigm of the direct cascade of energy in

turbulence. It also mimics the von Kármán flows between

two counter-rotating disks used in several turbulence experi-

ments, including experiments of rotating turbulence
28

and

recent experiments to reproduce generation of magnetic

fields by dynamo action.
29

Two sets of runs were done at resolutions of 2563 �set A�
and 5123 grid points �set B�. The parameters for all the runs

are listed in Table I. With TG forcing, the spherical shell in

Fourier space where energy is injected has wavenumber kF
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=�3k0, or equivalently, at a scale LF=2� /kF. For the runs in

set A, kF�3.5, and for the runs in set B, kF�6.9; as a result,

there is more room in spectral space for an inverse cascade to

take place in the B runs; the B runs also have a slightly

higher Reynolds number.

All the runs in set A were started from a fluid at rest. At

t=0, the rotation and the external forcing were switched on,

until reaching a turbulent steady state, or until an inverse

cascade was well developed in the case of large rotation

rates. The runs in set B were done as follows. Run B1 was

started from a fluid at rest and after turning on the rotation

and external forcing, the run was continued to reach a turbu-

lent steady state. Runs B2 and B3 were started from a snap-

shot of the velocity field from the steady state of run B1, and

both runs were continued until a new steady state was

reached, or an inverse cascade developed. This latter method

proved useful in saving computing time, as no differences

were observed when comparing the late time evolution of the

runs in the two sets. However, both methods were used in

order to measure the extent of the transient regime in each

case �see Sec. III�, and make sure the energy transfer and

other relevant quantities were measured in the developed tur-

bulent regime. To this end, all simulations were extended for

very long times. Note that times in Table I and in the figures

are expressed in units of the turn-over time at the forcing

scale. Finally, in all simulations, a dissipative range was

properly resolved, and the time step was much smaller than

all the relevant timescales.

We define the integral and Taylor scales of the flow re-

spectively as

L = 2�
�E�k�k−1dk

�E�k�dk
�4�

and

� = 2�	 �E�k�dk

�E�k�k2dk

1/2

, �5�

where E�k� is the energy spectrum. Since for large � an

inverse cascade develops, these two scales are useful to de-

scribe the evolution of characteristic scales in the flow with

time. However, to avoid a time dependence of the Reynolds

and Rossby numbers �time dependent Rossby numbers based

on inertial range scales are discussed in Secs. V and VI�, we

define for each run the Reynolds number as

Re =
LFU

�
, �6�

and the Rossby number as

Ro =
U

2�LF

. �7�

We also define the Ekman number as

Ek =
Ro

Re
=

�

2�LF
2

. �8�

Note that other Rossby, Reynolds, and Ekman numbers can

be defined based on different choices for the characteristic

length scales �e.g., the integral and Taylor scales, or the an-

isotropic integral scales based on the parallel and perpen-

dicular energy spectra discussed in Sec. III�. For simplicity,

in the following when we refer to Reynolds, Rossby, or Ek-

man numbers, the definitions based on the forcing scale LF

are to be assumed except stated otherwise. Rossby numbers

based on small-scale quantities such as the Taylor scale or

the rms vorticity �discussed mostly in Sec. V� are referred to

as micro-Rossby numbers.

Based on these definitions, the turn-over time at the forc-

ing scale is then defined as T=LF /U, where U=��u2� is the

rms velocity measured in the turbulent steady state, or when

the inverse cascade starts. The amplitude of the forcing F0 in

the simulations is increased as � is increased in order to

have U�1 in all the runs.

III. TIME EVOLUTION AND SPECTRA

Figure 1 shows the time history of the energy in the runs

in set A. Runs A1–A4 show a similar evolution, but runs A5

and A6 evolve differently. As the Rossby number decreases,

a transient develops in which the total energy oscillates with

a frequency that increases with �. Examining the inset, the

period of oscillation of the total energy in that first phase

decreases monotonically from run A3 to run A6; for the dis-

TABLE I. Parameters used in the simulations. N is the linear grid resolution, k0 the wavenumber used in the

forcing, � the kinematic viscosity, � the rotation rate, tmax the maximum number of turn-over times computed;

Re, Ro, and Ek are, respectively, the Reynolds, Rossby, and Ekman numbers. Note that runs A and B1 all start

from a fluid at rest, whereas runs B2 and B3 start from the steady state reached by run B1 �see text�.

Run N k0 � � tmax Re Ro Ek

A1 256 2 2�10−3 0.08 45 900 4.50 5�10−3

A2 256 2 2�10−3 0.40 45 900 0.70 8�10−4

A3 256 2 2�10−3 0.80 45 900 0.35 4�10−4

A4 256 2 2�10−3 1.60 45 900 0.17 2�10−4

A5 256 2 2�10−3 3.20 150 900 0.09 1�10−4

A6 256 2 2�10−3 8.00 185 900 0.03 3�10−5

B1 512 4 8�10−4 0.40 17 1100 1.40 1�10−3

B2 512 4 8�10−4 1.60 25 1100 0.35 3�10−4

B3 512 4 8�10−4 8.00 40 1100 0.07 6�10−5
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sipation �see below� this oscillation is only clearly seen at the

lowest Rossby number in run A6. The transition time be-

tween this transient regime to another regime grows as �

increases, for sufficiently large �. Then, the energy increases

suddenly and a fully turbulent regime finally develops, in-

cluding at the lowest Rossby number. An inverse cascade of

energy is observed in run A6 after t�120. The increase in

the energy observed after this time is also accompanied by a

monotonous increase with time of the flow integral scale L.

Even in the runs in set B that are restarted from a pre-

existing turbulent steady state, long runs are needed to reach

another turbulent state after turning on the rotation. As an

example, in run B3 it takes �20 turn-over times for the

transient to decay and for an inverse cascade of energy to

develop.

The energy dissipation rate 2���
���2dV as a func-

tion of time is shown in Fig. 2 As the Rossby number de-

creases, the peak of the dissipation rate is reached at later

times, and then it saturates. Note that during the early tran-

sient in runs A5 and A6, the dissipation is almost negligible,

while in the saturated state the mean dissipation rate de-

creases slowly with decreasing Rossby number.

The shape of the energy spectrum evolves with time,

specially after the transient as turbulence sets in, and later

again as the spectrum becomes dominated by the contribu-

tion from the largest scales when the Rossby number is small

enough for an inverse cascade to develop. Figure 3 shows the

time evolution of the spectral index � �the exponent in the

region of the spectrum with k	kF that follows a power law

�k�� in run A6. Three curves are shown, which correspond

respectively to the spectral index computed on the isotropic

energy spectrum E�k�, on the perpendicular energy spectrum

E�k�� �where k� denotes the wavevectors perpendicular to

��, and the parallel spectrum E�k�� �where k� denotes the

wavevectors parallel to ��. Here and in the following, the

isotropic energy spectrum E�k� is defined by averaging in

Fourier space over spherical shells, and the reduced energy

spectra E�k�� and E�k�� are defined averaging in Fourier

space respectively over cylinders and over planes; a detailed

definition of these averages can be found in Sec. IV, Eqs.

�10�–�12�.
Before t�80, we cannot recognize a power law in the

energy spectra. After t�80, the spectral indices in E�k� and

E�k�� grow monotonically from a value of 
7 until reaching

a plateau with ��−3 at t�110. The energy spectra E�k�,
E�k��, and E�k�� show wide and steep power law behavior

from t�80 to t�120. During this transient, the energy flux

is almost zero, as can also be expected from the small value

of the energy dissipation in run A6 before t�110 �Fig. 2�.
The end of the transient at t�110 and the plateau in � cor-

respond, respectively, to the increase in the energy and in the

energy dissipation rate showed in Figs. 1 and 2. The spectral

index in E�k�� also has a plateau with ��−4.5. However, as

the inverse cascade sets in and the energy piles up at the

largest available scale in the system, the spectral index

changes again and seem to slowly evolve toward ��−2 in

both E�k� and E�k��. E�k�� evolves toward a steeper spec-

trum with a strong peak at k� =0.

Note that the inverse cascade only starts after �10 turn-

over times after the turbulent state is reached at t�110. This

can be understood as follows. The energy spectrum observed

before t�110 has almost no flux. Nonlinear transfer of en-

ergy is required for the flow to become 2D under the effect

of rotation,
4,6,22

and the nonlinear transfer is negligible until

FIG. 1. Time history of the energy for set A: A1 �solid�, A2 �dashed-dotted�,
A3 �dashed-triple dot�, A4 �long dashed�, A5 �dashed�, and A6 �dotted�;
Rossby numbers range from 4.50 to 0.03. The inset shows a detail of the

evolution at early times: At high rotation rates �runs A5 and A6�, waves

prevail and the energy of the system is lower than when little rotation is

present. Note the transition to a high energy regime at later times as Ro

decreases, because of an inverse energy cascade setting in �run A6 continues

until t�185, while the energy keeps growing steadily�.

FIG. 2. Time history of the energy dissipation rate �labels as in Fig. 1�; the

inset again shows the evolution at early times. Note that after transients with

little dissipation, runs A3 to A6 reach approximately half the level of turbu-

lence activity of the nonrotating flows, as measured by their dissipation rate.

FIG. 3. Spectral index � as a function of time in run A6, in the isotropic

energy spectrum E�k� �solid�, in the E�k�� spectrum �dotted�, and in the

E�k�� spectrum �dashed�. Note that the energy distribution, as measured by

�, is dominated by the perpendicular modes.
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t�110. Then, after a few turn-over times, the flow under-

goes a transition and the inverse cascade sets in.

The long transient is only observed in the runs in set A

since the runs in set B are started from a turbulent steady

state. However, after the transient, the spectral evolution of

the runs in sets A and B is similar. Since runs in set B have

more scale separation for an inverse cascade to develop

when Ro is small enough, we focus now on this set of runs.

We show in Fig. 4 the isotropic energy spectrum at late times

in runs B1–B3. While runs B1 and B2 show no growth of

energy at scales larger than the mechanical forcing, except

for some backscattering with an �k2 spectrum, run B3 at late

times is dominated by the energy in the k=1 shell. At scales

smaller than the forcing scale, the spectrum of run B3 is

steeper than that of runs B1 and B2, and compatible with an

�k−2 scaling. The inset in Fig. 4 shows the isotropic energy

flux in the same runs. Note that in run B3, the flux at scales

larger than the forcing scale is negative and approximately

constant, indicating the development of an inverse cascade of

energy for small Ro, although at a lower intensity than the

direct cascade. At smaller scales, the energy flux is positive.

We thus conclude that in rotating flows, both the direct and

inverse energy cascades can cohabit.

The energy spectrum E�k�� is shown in Fig. 5, together

with the energy flux ��k��. The spectrum and flux are simi-

lar to the isotropic ones �indicating that most of the energy is

in these modes�, and ��k�� confirms the development of an

inverse cascade of energy in k� at scales larger than the

forcing scale in run B3, and a direct cascade at smaller scales

with an �k
�

−2 scaling. Figure 6 shows the energy flux ��k��
normalized by the rms velocity in each run. Note that the

increase of the flux observed in the inset of Fig. 5 is only due

to the increase in the energy of the system as the inverse

cascade piles up energy at the largest available scale. As Fig.

6 indicates, the actual transfer of energy is slowed down by

the rotation, and run B3 shows a smaller normalized flux

than the other two runs at scales smaller than the forcing

scale.

On the other hand, there is no clear scaling in the small

scales in E�k��, nor an inverse cascade at large scales �see

Fig. 7�. The E�k�� spectrum in run B3 is steeper than the

E�k�� spectrum, consistent with the results shown in Fig. 3

for run A6 at late times. Slopes �k−5/3 and �k−2 are shown

in Fig. 7 only as a reference.

Before proceeding to the computation of the transfer

function and other high order statistics, it is worth pointing

out that the long transient observed in runs in set A, as well

as a shorter transient observed at early times in the runs in set

B, make computation of long runs crucial for the following

analysis. In run A6, which was started from a fluid initially at

rest, the inverse cascade only starts after t�120. However

even in run B3, which was started from a previous turbulent

steady state, a transient with oscillations in the energy and

the enstrophy is observed at early times, which are damped

only after �10 turn-over times.

IV. ENERGY TRANSFER

In this section we study the scale interactions and energy

transfer in rotating turbulent flows. A study of the energy

transfer in this context, although at lower resolution and ear-

lier times, was done before by Yeung and Zhou.
23

We will

focus on runs B1, B2, and B3 that have enough scale sepa-

FIG. 6. ��k�� / �u2� at late times in runs B1, B2, and B3. Labels are as in

Fig. 4.

FIG. 4. Isotropic energy spectra at late times in runs B1 �solid, t�16�, B2

�dotted, t�24�, and B3 �dashed, t�40� at low Ro. Two slopes are given as

a reference. The inset shows the isotropic energy flux for the same runs.
FIG. 5. E�k�� and ��k�� �inset� at late times in runs B1, B2, and B3. Labels

are as in Fig. 4.
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ration for direct and inverse cascades to develop when Ro is

small enough. Similar results were obtained in the analysis

of the runs in set A.

To investigate the transfer of energy among different

scales we consider the shell filter decomposition of the ve-

locity field,

u�x� = �
K

ũK�x� , �9�

where K denotes a foliation of Fourier space in shells that for

our purposes can be taken as spheres
30–33

uK�x� = �
K��k��K+1

ũkeik·x, �10�

cylinders
34

uK
�

�x� = �
K��k���K+1

ũkeik·x, �11�

or planes
34

uK�
�x� = �

K��k���K+1

ũkeik·x. �12�

Then, we can define the shell-to-shell transfer between these

shells as

T�Q,K� = −� uK�u · ��uQdx3. �13�

This function expresses the transfer rate of energy lying in

the shell Q to energy lying in the shell K. It satisfies the

symmetry property T�Q ,K�=−T�K ,Q�,30
and the numbers

labeling the shells Q and K can correspond to any of the

foliations of Fourier space listed above.
34

In particular, we

will study the cases T�Q ,K�, T�Q� ,K��, and T�Q� ,K��. The

energy fluxes discussed in the previous section can be reob-

tained in terms of the shell-to-shell transfer function as

��k� = − �
K=0

k

�
Q

T�Q,K� , �14�

where again the wavenumbers k, K, and Q can correspond

to different foliations of Fourier space depending on the sub-

index.

Note that for the definition of the shells a linear binning

is used. Alternatively, the shells can be defined by a logarith-

mic binning of spectral space with intervals �
nK0 ,
n+1K0�
for some positive 
	1 and for integer n. However, logarith-

mic binning cannot distinguish transfer between linearly

spaced neighbor shells �from the shell K to the shell K+1�
from the transfer between logarithmic neighbor shells �from

K to 
K�. If the cascade is the result of interactions with the

large-scale flow �e.g., with modes with wavenumber kF as-

sociated to the external forcing�, the energy in a shell K will

be transferred to the shell K+kF. Logarithmic binning does

not distinguish this transfer from the transfer due to local

triadic interactions that transfer the energy from K to 
K. For

this reason we use linear binning, but we note that care needs

to be taken when using the word “scale” that implies in gen-

eral a logarithmic division of the spectral space. The transfer

among logarithmic shells can be reconstructed at any time

later by summing over the linearly spaced shells.

Figure 8 shows the shell-to-shell transfer T�Q ,K� at K

=40 for runs B1, B2, and B3 at late times. The negative peak

to the left indicates energy is transferred from these K-shells

to the shell Q=40, while the positive peak to the right indi-

cates energy goes from the Q=40 shell to those K-shells. In

runs B1 and B2 the shell-to-shell transfer peaks at �Q−K�
�kF. This was observed before in simulations of isotropic

and homogeneous turbulence,
32,33,35,36

and indicates that the

energy transfer is local �the energy goes from a shell Q to a

nearby shell K, although the step in the energy cascade is

independent of that scale and related to the forcing scale�. In

the context of the present study, it is worth mentioning that

this is not a peculiarity of the TG forcing, and this transfer in

nonrotating turbulence has been observed for other forcing

functions, including isotropic delta correlated in time

forcing.
33,36

It is the result of individually strong triadic in-

teraction involving the energy containing scale. As more tri-

ads are summed in order to obtain the shell-to-shell transfer

and the energy flux, the functions become more local; at the

FIG. 7. E�k�� at late times in runs B1, B2, and B3. Labels are as in Fig. 4.

In addition, there is a strong peak at k� =0 for run B3, of amplitude E�k�

=0��2, that cannot be seen in the figure due to the logarithmic scaling

used.

FIG. 8. Shell-to-shell transfer function T�Q ,K� at Q=40 for runs B1 �solid�,
B2 �dotted�, and B3 �dashed� at late times.
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Reynolds number studied here, it can be shown that �60%

of the energy flux in the nonrotating case is due to local

interactions.
37

The shell-to-shell transfer in run B3 is markedly differ-

ent and strongly peaks at �Q−K��1. The same effect is ob-

served in T�Q� ,K�� shown in Fig. 9. This indicates that at

late times in run B3, the direct transfer of energy at small

scales is mediated by interactions with the largest scale in the

system, the energy containing eddies with k��1 �see Fig.

5�. As a result, the timescale associated with the direct cas-

cade of energy in k� increases �and its flux reduces, see Fig.

6� since the energy is transferred in smaller steps in Fourier

space than in the case of the B1 and B2 runs.

The shell-to-shell transfer T�Q� ,K�� at Q� =40 for the

same runs is shown in Fig. 10. The dependence with the

Rossby number of this transfer function is less drastic. In all

runs, the transfer function T�Q� ,K�� peaks at �Q� −K���kF.

Although, there is considerable amount of energy in the shell

k� =0, the modes in this shell �that correspond to a pure 2D

flow� do not cascade the energy in the k� axis since they are

unable to stretch eddies in the z-direction. As a result, the

cascade in this direction is only due to modes with k� 	0 and

the modes with k� =kF dominate. Note also that there is a

drop in the amplitude of the transfer in run B3 for all shells

except the ones satisfying �Q� −K��=kF. As a result, for small

Rossby number the transfer of energy between shells with Q�

and K� is quenched except for the direct interactions with the

external forcing. Most of the interactions responsible for the

transfer of energy to small scales between different k� shells

at small Ro are then interactions with the forcing. This is

consistent with previous results showing that rotation

reduces the turbulent energy transfer along the parallel

direction.

Figure 11 shows the transfer functions T�Q� ,K�� and

T�Q� ,K�� in runs B1 and B3 for all values of K and Q up to

40. In all cases, the white �horizontal� and black �vertical�
bands near Q�kF and K�kF indicate a small amount of

energy injected by the external forcing that is directly trans-

ferred to all wavenumbers up to �30. For K and Q larger

than kF, the figures confirm the results of the direct cascade

of energy presented in Figs. 9 and 10: the bright diagonal

bands below the Q=K lines indicate energy is given to those

K shells, and the dark diagonal bands above Q=K indicate

energy is taken from those K shells. As a result, when ob-

served at constant Q in the quadrant K	kF and Q	kF, the

figures again show the transfer of energy toward larger wave-

numbers at scales smaller than the forcing.

For wavevectors perpendicular to �, as the Rossby

number is decreased, the peaks in T�Q� ,K�� �the light and

dark diagonal bands� move closer to the diagonal K�=Q�

�compare Figs. 11�a� and 11�b��, indicating the direct cascade

in the perpendicular direction takes place in smaller k-steps

given by the largest scale of the system. Note also how the

diagonal bands become narrower in Fig. 11�b�, indicating

that, while the shell-to-shell transfer is still local, the triadic

interactions are becoming more nonlocal as � increases.

For all wavenumbers, the energy in the parallel direction

�see T�Q� ,K�� in Figs. 11�c� and 11�d�� is transferred to

smaller scales, and the cascade step does not depend on the

Rossby number �as indicated by the distance between the

maxima of the light and dark diagonal bands�. However, all

transfer except the transfer with �Q� −K��=kF is strongly

quenched in run B3. In other words, the diagonal bands be-

come more localized in Fig. 11�d� �note how the gray bands

surrounding the strong diagonal bands in Fig. 11�c� disap-

pear�, indicating all transfer in the parallel direction in run

B3 is quenched except for the direct interactions with the

external forcing.

The development of a nonlocal �and anisotropic� inverse

transfer can be observed in Fig. 11�b� for K��k f �and for all

values of Q�� or in Q��k f �for all values of K��. The trans-

fer is inverse since below the diagonal Q�=K� regions with

negative �dark gray and black� T�Q� ,K�� can be observed,

while above the diagonal light gray and white regions are

found �note the change in sign above and below the diagonal

when compared with the quadrant with K and Q larger than

kF, where the cascade is direct�. As an illustration of this

inverse cascade, energy is taken from, e.g., K�=20 and

transferred to shells with Q��kF �note the dark gray hori-

zontal band for all values of K� and Q��kF, and the light

gray vertical band for all values of Q� and K��kF�. This

transfer is nonlocal since the inverse transference takes place

between disparate scales.

The nonlocal transfer of energy in rotating turbulence

shares similarities with the inverse cascade of magnetic he-

licity in magnetohydrodynamics �MHD�.38,39
Near the diag-

onal Q�=K� and for K��k f and Q��k f the transfer is

more complex �note how light and dark regions alternate

FIG. 9. Shell-to-shell transfer function T�Q� ,K�� at Q�=40 for runs B1,

B2, and B3. Labels are as in Fig. 8.

FIG. 10. Shell-to-shell transfer function T�Q� ,K�� at Q� =40 for runs B1, B2,

and B3. Labels are as in Fig. 8. Notice these transfers are roughly five times

weaker than in the � case.
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above and below the Q�=K� diagonal�. The inverse transfer

superposes with a �smaller in net amplitude� direct local

transfer �dark spots below and near the diagonal, and light

spots above and near it, for K� and Q� smaller than kF�. This

small direct transfer of energy at large scales is the result of

a reflection of energy at K=1, and was also observed in

studies of the inverse cascade of magnetic helicity in

MHD.
38

The reflection of energy in Fourier space when it

reaches the largest scale in the box suggests that the late time

evolution can be dependent on the boundary conditions, a

property that was already observed in simulations of 2D

turbulence.
40–44

In our case, the simulations do not contain a

large-scale dissipation mechanism �such as a hypoviscosity�,
and therefore energy piles up at the largest available scale

until its growth is stopped by the �small-scale� dissipation.

V. SCALING LAWS AND INTERMITTENCY

In this section, we consider the anisotropic inertial range

scaling of the runs in Table I as described by the longitudinal

velocity increments in the direction perpendicular to rotation,

�u�x,��� = r̂ · �u�x + �r̂� − u�x�� , �15�

where r̂ is a unit vector perpendicular to �. The longitudinal

structure functions Sp���� �with displacements along ��� can

then be defined as

Sp���� = ��u�x,���p� , �16�

where the brackets denote spatial averaging, and where the

dependence on x goes away because of homogeneity. If the

flow is self-similar, we expect Sp������
�

�p, where �p are the

scaling exponents. In isotropic and homogeneous hydrody-

namic turbulence, the Kármán–Howarth theorem implies

S3�����, and the Kolmogorov energy spectrum follows

from the assumption Sp�����
p/3.

45
In practice, the spontane-

ous development of strong gradients in the small scales of a

turbulent flow gives rise to corrections to this scaling, a phe-

nomenon referred to as intermittency.

From dimensional analysis, if the energy spectrum at

small scales in rotating turbulence is E�k
�

−2, we expect S2

���. Figure 12 shows the second order structure function

for runs B1, B2, and B3 at late times outside the wave re-

FIG. 11. Shell-to-shell energy transfer functions T�Q� ,K�� ��a� and �b�� and T�Q� ,K�� ��c� and �d�� at late times in runs B1 ��a� and �c�� and B3 ��b� and �d��.
Notice the quenching of the transfer in case �d�, except for the interactions with the forcing scale.

FIG. 12. Second order longitudinal structure function S2���� �where ��

denotes increments were taken in the direction perpendicular to �� for runs

B1 �solid�, B2 �dotted�, and B3 �dashed�.
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gime when the turbulence has developed. At small scales for

all runs, S2��
�

2 , consistent with a smooth field in the dissi-

pative range. At large scales, S2 is larger for run B3 than for

runs B1 and B2, a signature of the inverse cascade of energy

and of the development of large-scale structures in the flow.

The scaling of runs B1 and B2 at intermediate scales is com-

patible with the Kolmogorov spectrum, while the scaling in

run B3 is consistent with the �k
�

−2 energy spectrum. Note

that such a scaling can be understood as a slow down in the

energy transfer rate because of interactions between waves

and eddies as often assumed in phenomenological theories

�see, e.g., Refs. 15, 17, and 46�; such a slow down is consis-

tent with the results of the transfer function presented in Sec.

IV. Considering that the energy flux in the inertial range � is

slowed down by waves �see, e.g., Refs. 47 and 48 for the

MHD case�

� � �u
�

�

2 ��/�
�

�

2 , �17�

where ���1 /�, and ��
�

��� /�u�
�

is the turn-over time of

eddies in the plane perpendicular to �; the scaling

�u
�

�

2 � �� �18�

follows.

Figure 13 shows the scaling exponents �p up to order 6

computed in runs B1, B2, and B3. The scaling exponents are

defined as the exponents in

Sp���� � �
�

�p �19�

in the inertial range associated to the direct cascade of energy

�i.e., for ���LF�. Runs B1 and B2 behave as nonrotating

turbulence, with Kolmogorov scaling ��2�2 /3� and inter-

mittency corrections �the prediction �p= p /3 of Kolmogorov,

and the model of intermittency in homogeneous and isotro-

pic turbulence of She and Lévêque
49

are shown in Fig. 13 as

a reference�. However, run B3 has a distinct behavior, with

�2�1. As time evolves in this run, and the energy piles up at

k��1, the second order scaling exponent slowly converges

to this value. Low order moments follow the curve �p= p /2,

but high order moments deviate from the straight line.

Similar results were found in an experimental study of a

turbulent flow between two corotating disks
28 �see Fig. 4.18

in Ref. 25�. The resulting experimental flow shares similari-

ties with the TG flow studied here. In the experiment, a tran-

sition from isotropic and homogeneous turbulence scaling to

a �p= p /2 scaling was observed as measurements were made

closer to the intense large-scale vortex formed in the gap

between the two disks.

The level of intermittency in the flow in all these runs

can be measured in terms of �=2�3−�6. This quantity, to-

gether with the integral scales of the flow �based on the par-

allel and perpendicular energy spectra�, the Taylor scale, and

the micro-Rossby number �based on the Taylor scale of the

flow�,

Ro� =
U

2��
, �20�

are given in Table II for the runs in set B at different times.

The value of the micro-Rossby number plays a central role in

the determination of the velocity derivative skewness and the

inhibition of the energy cascade in rotating turbulence, as

discussed in Ref. 6. In addition, its value is also important in

the development of anisotropies through nonlinear interac-

tions, as is discussed in more detail in Sec. VI.

It can be seen that at late times run B3 evolves toward an

anisotropic state in the large scales, with L� /L� �1.5 �see

Sec. VI for more details�. However, at small scales the flow

seems more isotropic and at late times �t�40� in this run

�� /�� �0.8. The micro-Rossby number in runs B1, B2, and

B3 takes different values, in the range of 0.11–3.7. However,

the value of � is, within error bars, approximately the same

for all the runs. As a result, the intermittency in the direct

FIG. 13. Scaling exponents �p for the steady state of runs B1 �+�, B2 ���,
and for run B3 at different times: t�20 ���, t�25 ���, t�30 ���, and t

�40 ���. The solid line corresponds to the scaling exponents given by the

She–Lévêque model �Ref. 49�, the dashed line is the Kolmogorov prediction

�p= p /3, and the dotted line is �p= p /2. Note that in run B3, as time evolves,

the exponents approach the p /2 scaling �see text�.

TABLE II. Characteristic scales and dimensionless numbers of the runs in set B. t is the time, L� and L� are the

integral scales using respectively the E�k�� and E�k�� spectra, � is the isotropic Taylor scale, Ro� is the

micro-Rossby number based on the Taylor scale, and �=2�3−�6.

Run t L� L� � Ro� �

B1 16 1.5 0.9 0.29 3.70 0.23�0.01

B2 24 1.6 0.9 0.31 0.91 0.24�0.01

B3 20 2.6 1.2 0.50 0.12 0.19�0.02

B3 25 2.4 1.5 0.55 0.11 0.26�0.02

B3 30 2.1 1.7 0.59 0.12 0.26�0.05

B3 40 1.9 2.8 0.53 0.33 0.24�0.02
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cascade of energy in a rotating flow seems to be independent

of the Rossby number Ro and of the micro-Rossby number

Ro� �in the range of Rossby numbers studied�.
Finally, Fig. 14 shows the time evolution of the probabil-

ity density function �pdf� of the longitudinal velocity incre-

ments in run B3. Increments in the direction perpendicular to

� were computed, and the increment was taken equal to

three times the Kolmogorov dissipation scale � in each run.

The velocity increments in each run were normalized by

their corresponding root mean square deviation �. In agree-

ment with the level of intermittency observed in the scaling

exponents, the pdfs show exponential tails indicating a larger

than Gaussian probability of large gradients to occur in the

small scales. The amplitude of the tails of the pdfs as a

function of �u /� does not change significantly with time.

Moreover, the root mean square deviation � of the velocity

increments �u increases with time. So if the pdfs are plotted

versus �u �instead of versus �u /��, the pdfs actually become

wider at later times. This effect can be understood consider-

ing that once the inverse cascade of energy sets in, the total

energy in the flow as a function of time increases.

VI. STRUCTURES AND ANISOTROPY

The intermittency reported in Sec. V in the scaling ex-

ponents and the pdfs of velocity increments indicates that

even after the inverse cascade sets in, the flow develops

strong velocity gradients in the small scales. In this section,

we present visualizations of the flow and consider the struc-

tures that emerge.

Figure 15 shows a three-dimensional rendering of the

vorticity intensity in half of the computational domain �256

�512�512 grid points� at late times. The top view corre-

sponds to the subvolume in the direction of the axis of rota-

tion. Only regions with strong vorticity are shown. Note that

the flow is anisotropic and quasi-2D, as it is clear from the

top view. In the bottom view, the development in the flow of

large-scale columnlike structures can be seen. However, the

columns display small-scale structures with thin vortex fila-

ments. These filaments seem to be ordered according to the

large-scale pattern. The presence of regions with strong vor-

ticity even when the Rossby number is small enough for the

inverse cascade of energy to develop can be expected from

the results shown in Figs. 13 and 14, linked to the intermit-

tency of the flow.

The development of anisotropies in the runs with small

Rossby number is apparent from Fig. 15. Table III gives a list

of different measures of anisotropy commonly used in litera-

ture, for all runs at different times. According to Refs. 6 and

50, anisotropies develop in rotating flows through nonlinear

interactions when the Rossby number Ro�1 and when the

micro-Rossby number Ro�	1. The micro-Rossby number

Ro� is the ratio of rms vorticity to background vorticity �ro-

tation�,

Ro� =
�

2�
, �21�

and scales as Ro� except for prefactors. If the macro-Rossby

number Ro is too large, no inverse cascade is observed in the

simulations. If the micro-Rossby number is too small, non-

linear interactions are completely damped and no transition

develops. It is worth noting that the actual values for the

FIG. 14. pdf of the longitudinal velocity increments ���=3�� for run B3 at

different times: t�20 �solid�, t�25 �dotted�, t�30 �dashed�, and t�40

�dashed-dotted�; � is the Kolmogorov dissipative length and � is the root

mean square deviation of the velocity increments.

FIG. 15. �Color online� Three-dimensional rendering of the vorticity inten-

sity in a subvolume of 256�512�512 grid points for run B2. The top view

shows the subvolume in the direction of the axis of rotation; in the bottom

view, the light gray �red� and dark gray �blue� arrows indicate, respectively,

the x and z axis. Note the large-scale columns made up of smaller-scale

intense vortices typical of three-dimensional turbulence.
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transition to occur can depend on the particular flow studied.

The development of anisotropies in rotating turbulence

has been quantified in Refs. 5, 6, and 20 using the parallel

and perpendicular integral scales. The ratio of these two

length scales is given in Table III. For Ro�0.35, L� /L�

�0.7 �runs A1–A3, B1, and B2�; in the absence of rotation

the flow under TG forcing develops a slightly larger integral

scale in the z direction. However, in runs A4–A6 and B3, the

ratio L� /L� increases and becomes larger than 1 as Ro is

decreased. In runs A6 and B3, this ratio is observed first to

decrease �just before the inverse cascade starts� to finally

increase monotonically, reaching L� /L� �1.9 in run A6 at t

�185.

The integral scale ratio measures anisotropy in the en-

ergy containing scale. To quantify small-scale anisotropy, the

so-called Shebalin angles were introduced in MHD

turbulence,
51,52

tan2��� = 2 lim
�→0

S2����

S2����
= 2

�k
�

k�

2 E�k��

�k�
k�

2E�k��
, �22�

where �� denotes displacements along �. The angle � mea-

sures the spectral anisotropy level, and the case tan2���=2

corresponds to an isotropic flow. It gives only a global mea-

sure of small-scale anisotropy, and is a byproduct of axisym-

metric energy spectra �see Refs. 6, 10, and 53�. Values of

tan2��� for all runs are listed in Table III. Runs A1 and B1

have tan2����1.7, a value close to isotropy and with a small

anisotropy in the z direction. As the Rossby number is de-

creased, this tendency is reverted and tan2��� becomes larger

than 2. For runs A6 and B3 the value of tan2��� is given for

different times. As time evolves in these runs, the anisotropy

is maximum just before the inverse cascade starts, and then

tan2��� decreases slowly to saturate near �3.8.

The spectral anisotropy has also been studied through

the axisymmetric energy spectrum e�k� ,k�� �as well as other

second order quantities; see, e.g., Refs. 5, 6, 54, and 55�. For

a 2D flow,

e�k�,k�� =
E�k��

2�k�

��k�� . �23�

In rotating turbulence, a pure 2D state is never reached;
10

however, a strong anisotropy develops with a steeper spec-

trum in the parallel direction
7,10,53

consistent with an inte-

grable singularity at k� =0. As an indication of this tendency,

in Table III we give the ratio of energy in all modes with

k� =0 to the total energy E�k� =0� /E; in the purely 2D case

this ratio is equal to one. Runs A1 and B1 have small E�k�

=0� /E, and the ratio increases as Ro is decreased, reaching

E�k� =0� /E�0.88 at late times in run A6 �Ro�0.03� and

E�k� =0� /E�0.66 in run B3 �Ro�0.07�.
As the energy, the helicity is conserved in ideal rotating

flows. However, the distribution of helicity seems to be more

isotropic and homogeneous than the other quantities studied.

As an example, the local relative helicity � ·u / �����u�� is

shown in Fig. 16, for the same subvolume as in Fig. 15.

Unlike in isotropic and homogeneous turbulence, regions of

strong vorticity are not correlated with regions of strong rela-

tive helicity. This is because while in isotropic and homoge-

neous turbulence quenching of nonlinear interactions occurs

through alignment of velocity and vorticity, in rotating tur-

bulence it results from phase-mixing and it is not necessarily

linked to regions of strong helicity. The net helicity over the

entire box averages to zero, and local regions with positive

and negative helicity fluctuations, although ubiquitously

strong, show a more isotropic and homogeneous distribution

than the vorticity and velocity intensities �see, e.g., Fig. 15�.
The study of the reasons for this behavior are left for a future

work.

TABLE III. Different measures of anisotropy in all runs at different times. t is the time, Ro� is the micro-

Rossby number based on the rms vorticity, L� /L� is the ratio of perpendicular to parallel integral scales, tan2 �
is the square tangent of the Shebalin angle, and E�k� =0� /E is the ratio of energy in all modes with k� =0 to the

total energy.

Run t Ro� L� /L� tan2 � E�k� =0� /E

A1 45 65.2 0.7 1.74 0.05

A2 45 12.7 0.7 1.78 0.07

A3 45 5.89 0.7 1.98 0.13

A4 45 3.18 0.6 2.55 0.19

A5 150 1.23 0.5 4.01 0.23

A6 110 0.22 0.4 12.3 0.15

A6 150 0.48 1.5 7.65 0.82

A6 185 1.12 1.9 3.80 0.88

B1 16 22.4 0.6 1.77 0.03

B2 24 5.61 0.6 2.04 0.11

B3 20 0.77 0.5 6.22 0.36

B3 25 0.67 0.6 6.58 0.55

B3 30 0.76 0.8 5.87 0.62

B3 40 1.35 1.5 3.82 0.66
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VII. CONCLUSIONS

In this work, we presented results of the study of the

turbulent scaling laws and energy transfer in direct numerical

simulations of rotating flows in periodic domains. Spatial

resolutions of 2563 �set A� and of 5123 grid points �set B�
were used, while moderate Rossby numbers �down to Ro

�0.03� and large Reynolds numbers �up to Re�1100� were

considered, with enough scale separation to observe both a

direct and an inverse cascade of energy when the rotation

was strong enough. Runs in set A were started from a fluid at

rest, while runs in set B were restarted from a previous state

of homogeneous turbulence. In the former case, for Ro

�0.1, a long transient was found in which the energy dissi-

pation is small, as well as the energy flux to smaller scales.

During this transient, the energy spectrum has a wide but

steep spectrum, and its slope monotonously increases as a

function of time. After turbulence sets in and the inverse

cascade of energy develops, the energy spectrum evolves to-

ward a E�k
�

−2 scaling at scales smaller than the forcing

scale. This late time evolution is observed in both sets of

runs.

At late times, the energy flux in runs A5, A6, and B3

corresponding to strong rotation indicates an inverse cascade

of energy in k� at scales larger than the forcing scale, to-

gether with a direct cascade of energy at smaller scales. The

net flux to small scales decreases as the Rossby number de-

creases, while the amplitude of the flux to large scales in-

creases. No inverse cascade is observed in k�. This is consis-

tent with the explanation of the observed tendency toward

two dimensionalization through resonant interactions
4,5

and

not through an inverse cascade in k�. These cascades were

confirmed by the study of the shell-to-shell energy transfer.

The direct transfer of energy at scales smaller than the forc-

ing is local, although in the runs with small Rossby number

the transfer in k� is significantly slowed down. In this direc-

tion, the energy is transferred between shells K� and Q�

with small steps given by �Q�−K���1. As a result, the di-

rect transfer of energy in k� at small scales is mediated by

interactions with the largest scale in the system, the energy

containing eddies with k��1. The time scale associated to

the direct cascade in k� then increases, and its flux reduces.

In k� the transfer is direct at all scales, and a larger compo-

nent than in the case of nonrotating turbulence is due to

interactions with the forcing scale. These results are in good

agreement with phenomenological derivations of the energy

spectrum in rotating turbulence that assume a slow down in

the energy transfer rate because of interactions between

waves and eddies.
15,17

The nonlocal interactions also lead to

the development of anisotropies in the flow.
4,5

The inverse cascade of energy that develops at scales

larger than the forcing scale, in runs A5, A6, and B3 is non-

local, in the sense that the transfer of energy associated to

this cascade takes place between disparate shells in Fourier

space. At late times, the inverse transfer superposes at the

same scales with a �smaller in amplitude� direct local transfer

of energy. This small direct transfer of energy at large scales

is the result of a reflection at k�=1, when the peak of energy

reaches the largest scale in the box. Consequently, the late

time evolution of simulations of rotating turbulence may de-

pend on the boundary conditions used, a property already

observed in simulations of nonrotating 2D turbulence,
40–44

and on the use or not of a friction or dissipative term at large

scales.

The study of structure functions in the direct cascade

range shows that the second order scaling exponent for in-

crements perpendicular to the rotation in runs with small Ro

is �2�1, in agreement with the evaluation of the energy

spectrum spectral index. Low order moments follow the

curve �p= p /2 but high order moments deviate from this law,

an indication of intermittency. The level of intermittency in

the direct cascade of energy, as measured by the exponent

�=2�3−�6, is the same for runs with and without rotation.

The spontaneous formation of strong gradients in the small

scales is further confirmed by pdfs of the velocity increments

and by visualization of regions of strong vorticity in the flow.

More separation of scales is needed to study the inter-

mittency in the inverse cascade of energy. Because of its

relation to small-scale gradients, intermittency is believed to

FIG. 16. �Color online� Rendering of relative helicity in the same subvol-

ume as in Fig. 15 and with the same viewpoints. Dark gray �blue� corre-

sponds to positive helicity, and light gray �red� to regions with negative

helicity. Only regions with �� ·u� / �����u��	0.95 are shown, i.e., for strong

alignment between the velocity and vorticity, which appears ubiquitous and

not confined to strong vorticity regions as in the nonrotating case.
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be associated only with the forward cascade of energy. The

intermittency phenomenon is not observed in the velocity

field in 2D turbulence for which the conservation of vorticity

leads to an inverse energy cascade to the large scales,
56,57

although intermittency in the vorticity �which cascades di-

rectly to small scales� is observed. It is unclear how the dual

cascade of energy �toward both small and large scales� in

rotating turbulence affects the intermittency in the inverse

cascade range. While intermittency is associated with small-

scale events, in many cases the strong events can affect the

dynamics of the large scales, specially in systems close to

criticality; as an example, intermittency is a possible expla-

nation for the occurrence of extended minima in solar

activity;
58,59

it is also known to affect the transport of mo-

mentum in atmospheric surface layers.
60
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