
Int J Comput Vis (2012) 98:217–241
DOI 10.1007/s11263-011-0505-4

Scale Invariant Feature Transform on the Sphere:
Theory and Applications

Javier Cruz-Mota · Iva Bogdanova · Benoît Paquier ·

Michel Bierlaire · Jean-Philippe Thiran

Received: 29 April 2009 / Accepted: 21 October 2011 / Published online: 10 November 2011
© Springer Science+Business Media, LLC 2011

Abstract A SIFT algorithm in spherical coordinates for
omnidirectional images is proposed. This algorithm can
generate two types of local descriptors, Local Spherical De-
scriptors and Local Planar Descriptors. With the first ones,
point matching between two omnidirectional images can be
performed, and with the second ones, the same matching
process can be done but between omnidirectional and planar
images. Furthermore, a planar to spherical mapping is intro-
duced and an algorithm for its estimation is given. This map-
ping allows to extract objects from an omnidirectional im-
age given their SIFT descriptors in a planar image. Several
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experiments, confirming the promising and accurate perfor-
mance of the system, are conducted.
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1 Introduction

Omnidirectional vision has become an important topic in
computer vision. One of its main benefits is that one omni-
directional camera can cover 360° around it. As with con-
ventional (planar) images, image matching is a main as-
pect of many computer vision problems involving omnidi-
rectional images, although it has not been widely studied
for this kind of cameras yet. Usually, techniques designed
for planar images are applied on omnidirectional images.
For example on panoramic images, i.e. omnidirectional im-
ages mapped on a cylinder (Yuen and MacDonald 2005;
Bur et al. 2006), but this is not geometrically correct. Even if
locally those algorithms are still valid, as soon as bigger re-
gions of the image are considered, it is not the case anymore
due to the deformation that the omnidirectional sensor in-
troduces. Moreover, not only do omnidirectional and planar
images coexist, but they are often used jointly, for instance in
hybrid camera networks. This is a source of new problems,
since not only matching between omnidirectional images is
needed, but also between omnidirectional and planar ones.

A common way of tackling the matching problem be-
tween two given images is by using interest points. These
are points in an image that fulfil some “interest” criterion.
This criterion is usually defined in such a way that the ob-
tained points have a well-defined position, contain as much
local information on the surroundings as possible and are
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robust against changes in the image, such as noise, perspec-
tive transformations, illumination changes, etc. The location
of these points is often used for extraction of local image
descriptors. This is a transformation of the local image data
into an element of the transformed space, usually a vector,
where some characteristics are coded, as for example the
shape, the orientation, the colour, the texture, etc. They can
be used afterwards, for instance, in matching or image reg-
istration.

1.1 State-of-the-Art

Interest points are widely used nowadays by computer vi-
sion algorithms. As commented before, two main aspects
make these points useful:

– robustness against image changes and,
– richness of local information in terms of local image

structure.

A wide variety of interest points has been defined to
best combine these two aspects, like for example Harris-
Stephens corners (Harris and Stephens 1988), SUSAN
corners (Smith and Brady 1997), salient regions (Kadir
and Brady 2001), Maximally Stable Extremal Regions
(MSER) (Matas et al. 2002) or extrema of the Difference-
of-Gaussians (DoG) (Lowe 2004). An excellent survey on
this kind of points can be found in Tuytelaars and Mikolaj-
czyk (2007). Due to their stability, these key-points are often
used for the computation of local descriptors, which are used
afterwards for several tasks, such as tracking, object detec-
tion or region matching. A wide variety of local descriptors
has also been proposed in the literature (Zabih and Woodfill
1994; Van Gool et al. 1996; Baumberg 2000; Lowe 2004;
Mikolajczyk and Schmid 2005). An exhaustive compari-
son of local descriptors has been given in Mikolajczyk and
Schmid (2005).

Scale Invariant Feature Transform (SIFT), introduced in
Lowe (2004), is a well-known algorithm that successfully
combines both notions. For interest points, it considers ex-
trema of the Difference-of-Gaussians, and for local descrip-
tors, a histogram of orientations. The SIFT algorithm detects
points in a scale-invariant way, as extrema in the response of
the convolution of the image with a DoG function

ψ(x, y,σ ) = g(x, y, kσ ) − g(x, y, σ ), (1)

where g(x, y, σ ) denotes a two-dimensional Gaussian ker-
nel with standard deviation σ . This is based on the work
of Lindeberg (1998), and the convolution of an image with
ψ(x, y,σ ) can be computed as the difference of consecu-
tive images in the scale-space representation of the image,
choosing properly the value of k. The scale-space represen-
tation L(x, y, t) : R2 × R+ → R of an image I (x, y) can be
equivalently defined in two different ways. The first one is

the evolution over time of the heat distribution I (x, y) in an
infinite homogeneous medium:

∂tL(x, y, t) =
1

2
∇2L(x, y, t), (2)

where the initial condition is L(x, y,0) = I (x, y). The sec-
ond one is the successive convolution of the image with a
Gaussian kernel, g(x, y, σ ), of standard deviation σ =

√
t :

L(x, y,σ ) = g(x, y, σ ) ∗ I (x, y). (3)

This scale-space representation of an image is efficiently
computed directly using the definition of the convolution,
thanks to the separability of the Gaussian filter. The local
data around each interest point is then used to compute SIFT
descriptors. These local descriptors are invariant to rotation
and scale changes. They consist of a three-dimensional his-
togram: two spatial dimensions and one dimension for orien-
tations. The size of this region depends on the scale at which
the point has been detected. Thanks to its simplicity, good
results in terms of repeatability and accuracy on match-
ing, it has been used to treat applications requiring track-
ing or matching of regions (Sirmacek and Unsalan 2009;
Brox et al. 2010).

Several variants of the SIFT algorithm have appeared,
trying to improve the interest point extraction or the local
descriptor. Among those trying to improve the interest point
extraction, the most remarkable representative is probably
the Speed-Up Robust Features (SURF) algorithm (Bay et
al. 2008). For those trying to improve the local descriptor, a
good representative is the Gradient Location and Orientation
Histogram (GLOH) introduced in Mikolajczyk and Schmid
(2005).

All these algorithms and techniques have been devel-
oped to work with regular (planar) images or videos. Over
the last years, though, omnidirectional imaging has become
an important topic, due to both the availability of simple
sensors (e.g. parabolic mirrors mounted on regular cam-
eras) and the great advantages it provides (e.g. a 360 de-
grees view in one single image). This kind of sensors has a
lot of applications, such as video surveillance (Boult et al.
2001) or object tracking (Chen et al. 2008), and their use
has become very common in robot navigation (Menegatti et
al. 2006) and in autonomous vehicles (Ehlgen et al. 2008;
Scaramuzza and Siegwart 2008). Interest points and local
descriptors-based techniques, such as SIFT, have been ap-
plied to omnidirectional images due to their good perfor-
mance in planar images (Goedeme et al. 2005; Tamimi et al.
2006; Valgren and Lilienthal 2007; Scaramuzza and Sieg-
wart 2008). Recently, several efforts have been made to de-
velop algorithms specifically designed to treat these omnidi-
rectional images (Bogdanova et al. 2007; Hadj-Abdelkader
et al. 2008). An important aid in this sense were the results of
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Fig. 1 Example of mapping a parabolic omnidirectional image on the sphere. The unwrapped spherical image (c) is often used for visualisation
purposes

Geyer and Daniilidis (2001), where the authors showed that
the most common catadioptric omnidirectional images (el-
liptic, parabolic and hyperbolic) can be bijectively mapped
on the surface of a sphere. In particular, for the case of
parabolic images, a parabolic projection is equivalent to the
composition of normalisation to the unit sphere followed by
stereographic projection (see Fig. 1 for an example). Con-
sequently, a whole family of omnidirectional images can
be processed by algorithms treating spherical images. The
mapping from the captured image to the sphere is the only
adaptation needed for each element of the family. Based on
this result, Hansen et al. (2007a, 2007b) developed a SIFT-
like algorithm on the sphere to match points between wide-
angle images. In this algorithm, the point extraction is com-
puted on the back-projection of the spherical scale-space to
the wide-angle image plane, and the descriptor is computed
using a fixed size patch of 41 × 41 pixels around each ex-
tracted point at the corresponding scale. Also, in Mauthner
et al. (2006) an interest region matching in omnidirectional
images, which uses virtual camera planes, has been devel-
oped.

1.2 Motivation: Why SIFT in Spherical Coordinates?

The intuitive approach for defining and performing a SIFT
on omnidirectional images is to first map it on a panoramic
image (i.e. in cylindrical coordinates) and then to apply the
conventional SIFT algorithm. In fact, using the same rea-
soning, the classical SIFT has been applied to unwrapped
omnidirectional images (Goedeme et al. 2005; Tamimi et al.
2006; Valgren and Lilienthal 2007; Scaramuzza and Sieg-
wart 2008). The difficulties in this case come when there is
information in the extremities of the omnidirectional image.
Such images are obtained by spherical omnidirectional sen-
sors.

On the one hand, the images obtained by omnidirectional
sensors suffer under significant deformations. Specific map-
pings, like panoramic or log-polar, attempt to reduce some-
how the distortions but do not succeed completely. A natural
choice of a non-deformed domain for the full sphere of view,
where there are no limitations on the zenithal range, is the
sphere S2 ∈ R3. This is the natural domain of definition of
the plenoptic function and the processing of the visual infor-
mation on the sphere correctly handles the information with-
out introducing any distortion (Tosic and Frossard 2009).
On the other hand, the scale-invariant feature transform is
based on distinctive invariant features from images for fur-
ther matching. The features are invariant to image scale and
rotation.

Considering the spherical geometry, which is the natu-
ral manifold for any omnidirectional image, we need to first
recall the basic affine spherical transformations. In general,
two types of transformations on the sphere are distinguished:
motions (displacements) and dilations (scalings). Concern-
ing the motions, there are three possible rotations. In partic-
ular, these are rotations by angles ϕ ∈ [0,2π),ψ ∈ [0,2π)

and θ ∈ [0,π]. In other words, rotations by ϕ are those
around the x0-axis; rotations by θ are those around x2-axis,
and rotations by ψ , are rotations of the point on the sphere
around itself (see Fig. 2). The dilations affect the angle θ .
Then, through the plenoptic function, we can relate transla-
tions and rotations of an object in the 3D space to rotations
on the sphere, when the distance between the object and the
origin of the sphere remains constant; or to rotations and di-
lations on the sphere, when this distance varies. From here,
it is obvious that the notions of rotation and dilation on the
plane cannot be directly applied to the sphere, since for in-
stance changes on the angle θ introduce a deformation on
the observed object that does not correspond to any affine
transformation on the 3D space. This implies, in particular,
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Fig. 2 Rotations on the sphere

that the deformations suffered by an observed object depend
on the position of this object on the omnidirectional image.
That is why we cannot apply the standard SIFT paradigm
to a complex data that is defined in spherical coordinates
(as for instance, the omnidirectional image after it has been
mapped onto the sphere).

Finally, from here it is clear that applying the standard
SIFT on unwrapped omnidirectional image is locally valid,
i.e. for big radius of curvature and, consequently, at small
scales. Therefore, what concerns the omnidirectional im-
ages, we argue that SIFT must take place in spherical geom-
etry. Having a SIFT algorithm that operates directly on the
sphere is equivalent to preserving the spherical affine trans-
formations and only in this conditions the transformations
are geometrically correct.

1.3 Contributions

The paper has two main contributions, it proposes both a
SIFT algorithm in spherical coordinates and a new approach
to match points between two spherical images or between
spherical and planar images.

First, we propose an interest point extractor on the sphere
based on the spherical scale-space representation and the
SIFT algorithm. This algorithm processes omnidirectional
images mapped on the sphere (see Fig. 1b). The creation
procedure of the spherical scale-space is speeded up by suc-
cessive downsampling of the input image for each octave.
This down-sampling generates an aliasing effect when the
Spherical Fourier transform is applied at the corresponding
level. For this reason, an anti-aliasing criterion is defined to
decide whether an image is down-sampled or not.

Our second main contribution concerns the matching
setup. In this paper we propose two types of descriptors. The
first is used for matching between two spherical images, the
second for matching a spherical and a planar image. Both

descriptors can be very useful when working, for example,
with hybrid camera networks. In such a case, these descrip-
tors can easily help registering data from all the components
of the network.

Finally, we introduce a mapping between planar and
spherical images. This mapping sends the contour or re-
gions of an object in a planar image to a spherical one and
vice versa. The parameters of this mapping are estimated by
means of the obtained matched points, cleaning false detec-
tions with the Random Sample Consensus (RANSAC) al-
gorithm (Fischler and Bolles 1981). The inputs of the esti-
mation process are respectively the matched points from the
omnidirectional and the planar images.

Several experiments are performed on real omnidirec-
tional images to test the proposed algorithms. The code de-
veloped for these tests has been implemented in Matlab®

and source code and images are freely available1 under the
GPL license. The source code requires the installation of
the “Yet Another Wavelet Toolbox” (YAWTb)2 for Mat-
Lab. This library provides an efficient way of computing the
spherical harmonic transformations as well as a nice visuali-
sation interface. Finally, for the RANSAC routines, we used
the RANSAC Toolbox.3

This paper is organised as follows. In Sect. 2, the mathe-
matical aspects of the interest point extraction on the sphere
are exposed. In Sect. 3, the proposed algorithm is described
in detail, as well as the two proposed descriptors. Then, in
Sect. 4, a “planar to spherical” mapping is defined and a
method for its estimation is given. In Sect. 5, several ex-
perimental results are presented. Finally, in Sect. 6, some
conclusions and potential lines for future research are given.

2 Spherical Scale-Space

2.1 Spherical Geometry

The 2-sphere (S2 ∈ R3) is a compact manifold of constant
positive curvature. In spherical coordinates, each point on
the sphere is a three-dimensional vector

ω = (x0, x1, x2) ≡ (r cos θ, r sin θ sinϕ, r sin θ cosϕ),

with r ∈ (0,∞), θ ∈ [0,π] and ϕ ∈ (0,2π] as illustrated in
Fig. 3a. Figure 3b also illustrates the so called stereographic
projection from the South Pole, a projection that maps any
point of the sphere onto a point of the tangent plane at the
North Pole. If we take the sphere S2 as the Riemannian

1http://transp-or2.epfl.ch/pagesPerso/javierFiles/software.php.
2http://rhea.tele.ucl.ac.be/yawtb.
3http://vision.ece.ucsb.edu/~zuliani/Code/Packages/RANSAC/.

http://transp-or2.epfl.ch/pagesPerso/javierFiles/software.php
http://rhea.tele.ucl.ac.be/yawtb
http://vision.ece.ucsb.edu/~zuliani/Code/Packages/RANSAC/
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Fig. 3 Spherical geometry

sphere (r = 1) and the tangent plane as the complex plane
C2, then the stereographic projection is a bijection given by

	(ω) = 2 tan
θ

2
(cosϕ, sinϕ), (4)

where ω ≡ (θ,ϕ), θ ∈ [0,π], ϕ ∈ [0,2π).

2.2 Fourier transform on the sphere

Let us consider two functions f,h ∈ L2(S2) defined on the
2-sphere S2 ∈ R3. Then, the convolution on the sphere reads

(f ∗ h)(ω) =
∫

r∈SO(3)

f (rη)h(r−1ω)dr, (5)

where ω ≡ (θ,ϕ) ∈ S2, θ ∈ [0,π], ϕ ∈ [0,2π) (see Fig. 3a)
and η is the north pole. Equation (5) is hard to compute, but
as it was demonstrated by Driscoll and Healy (1994), the
convolution of two spherical functions f,h ∈ L2(S2) can be

calculated more efficiently as the point-wise product of their
spherical Fourier transforms:

(̂f ∗ h)(l,m) = 2π

√
4π

2l + 1
f̂ (l,m)̂h(l,0), (6)

where (̂·) is the spherical Fourier transform of the function.
The spherical Fourier transform of a function f ∈ L2(S2)

is the set of coefficients of the expansion of this function
in terms of spherical harmonics Ym

l , i.e. the coefficients
f̂ (l,m) of the expression

f (θ,ϕ) =
∑

l≥0

∑

|m|≤l

f̂ (l,m)Ym
l (θ,ϕ), (7)

where the function f (θ,ϕ) and the spherical harmonics
Ym

l (θ,ϕ) are expressed in spherical coordinates for the unit
sphere (0 ≤ θ ≤ π , 0 < ϕ ≤ 2π , ρ = 1, see Fig. 3a). The
spherical harmonics can be factorized as

Ym
l (θ,ϕ) = kl,mP m

l (cos θ)eimϕ, (8)

where P m
l is an associated Legendre polynomial and kl,m is

a normalisation constant that is

kl,m =

√
2l + 1

4π

(l − m)!
(l + m)!

(9)

in case of orthonormal spherical harmonics (see Barut and
Ra̧czka 1986 for further details).

Then, the spherical Fourier transform of a function f ∈
L2(S2) is calculated as the projection of this function on the
orthonormal basis of the spherical harmonics

f̂ (l,m) = 〈f,Ym
l 〉 (10)

= kl,m

∫

S2
dμ(ω)Ym

l (ω)f (ω),

= kl,m

∫ 2π

0

∫ π

0
Ym

l (θ,ϕ)f (θ,ϕ) sin θdθdϕ (11)

where dμ(ω) = sin θdθdϕ is SO(3) invariant measure
on S2. Using (8) and (10), it is easy to see that the spher-
ical Fourier transform is a regular Fourier transform in ϕ

followed by a projection on the associated Legendre poly-
nomial.

2.3 Spherical DoG as a Scale-Space

At this point, the only missing element to build the spherical
scale-space representation of a spherical image is the func-
tion that plays the role of the Gaussian kernel in the planar
case. Let us note that we need to pass through the spher-
ical Fourier domain because convolution on the sphere in
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spatial domain (3D) is hard (almost impossible) to compute.
See (5) and (6) in Sect. 2.2 for details. This is not the case of
the scale-space representation of a planar image, given the
separability of the Gaussian filter and the simplicity of the
planar (2D) convolution.

In Bulow (2004), the author derives this function as a
Green function of the heat equation (2) over S2, obtaining

gS2
(θ,ϕ,σ ) =

∑

l∈N

√
2l + 1

4π
Yl0(θ,ϕ)e

−l(l+1)σ2

2 , (12)

ĝS2
(l,m,σ ) =

√
2l + 1

4π
e

−l(l+1)σ2

2 , (13)

where gS2
denotes the spherical Gaussian function. There-

fore, using (6), the spherical Fourier transform of the scale-
space representation of an omnidirectional image mapped
on the sphere, I (θ,ϕ), is

L̂S2
(l,m,σ ) = Î (l,m)e

−l(l+1)σ2

2 (14)

for the set of considered scales (different values of σ ), and
its inverse spherical Fourier transform,

LS2
(θ,ϕ,σ ) = I (θ,ϕ) ∗ gS2

(θ,ϕ,σ ), (15)

is the spherical scale-space representation of this image. Fi-
nally, the spherical DoG is computed as

ψS2
(θ,ϕ,σ ) = LS2

(θ,ϕ, kσ ) − LS2
(θ,ϕ,σ ). (16)

Using these expressions, the algorithm for the extraction
of interest points will be presented in the next section.

3 SIFT on the Sphere

Let us define the SIFT algorithm in spherical coordinates.
In this algorithm, the extraction of interest points and the
local descriptor calculations are performed on the surface
of the unit sphere. Here, we propose two types of descrip-
tors: Local Spherical Descriptors (LSD) and Local Planar
Descriptors (LPD). The first one is computed directly on the
sphere and is intended to be matched with LSD of points
extracted from different omnidirectional images. The sec-
ond one is generated using a local planar approximation of
the region around the extracted interest point, and can be
matched with regular SIFT descriptors of points extracted
from planar images. For the matching procedure we follow
the method proposed in Lowe (2004). It consists of pairing
the nearest points in terms of the distance between their de-
scriptors, if and only if the ratio between this distance and
the second smallest distance is lower than a fixed threshold
d ∈ [0,1].

Algorithm 1 Spherical SIFT algorithm

1: I (θ,ϕ) ←− omnidirectional input image mapped on S2

2: Compute spherical scale-space representation of
I (θ,ϕ)

3: Compute spherical DoG
4: E ←− Local extrema of spherical DoG
5: for each Ei ∈ E do

6: Compute LSD and/or LPD of Ei

7: end for

The workflow of the spherical SIFT algorithm is sum-
marised in Algorithm 1. Each one of the steps is described
in details in the following sections. Throughout this paper, a
spherical image will be considered defined in a (θ,ϕ)-grid
where columns are points of constant longitude, ϕ ∈ [0,2π),
and rows are points of constant latitude, θ ∈ [0,π].

3.1 Spherical Scale-space and Difference-of-Gaussians

The spherical scale-space representation of a spherical im-
age I (θ,ϕ) (ρ is fixed to 1) is computed using (15) itera-
tively, i.e.

LS2
(θ,ϕ,σi) = LS2

(θ,ϕ,σi−1) ∗ gS2
(θ,ϕ, k̃iσ0), (17)

where σ0 is the initial scale and k̃i is chosen in such a way
that two neighbouring scales in the spherical scale-space
representation are separated by a constant multiplicative fac-
tor k = 21/S (in order to have a constant number S of im-
ages per octave). Therefore, σi = kσi−1 = kiσ0 and using
the semi-group property of the spherical scale-space repre-
sentation, we have that (kiσ0)

2 + (k̃iσ0)
2 = (ki+1σ)2, and

so k̃i = ki
√

k2 − 1. These expressions are also valid in the
planar case.

The spherical scale-space representation process is speed-
ed up by downsampling the image by two, instead of
increasing the scale σ , each time a complete octave of
ψS2

(θ,ϕ,σ ) is obtained. This is the common practice in the
planar case too, but in the spherical case there is a peculiar-
ity. In order to obtain LS2

(θ,ϕ,σ ), a spherical Fourier trans-
form is computed and, therefore, aliasing has to be taken into
account. This process of downsampling by 2 the images is
especially sensitive to aliasing, since the bandwidth of the
spherical Fourier transform is also divided by 2. For this
reason, after the computation of each octave, the following
condition is tested:

e
−nH(nH+1)(σ0/k)2

8 ≤ e−1, (18)

where nH is the new height of the image after reducing its
size. This condition assures that the exponential part of (13)
remains small for the biggest value of l. If (18) is not ful-
filled, instead of reducing the image size for the next octave,
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Fig. 4 Example of the effect of
the anti-aliasing strategy for the
ψS2

computation of the image
in Fig. 1b. The image size is
1024 × 1024 and the spherical
scale-space was generated using
σ0 = 1.6π/1024,
σN = 0.5π/1024 and S = 3

σ is increased and the image size is reduced after the con-
volution. Aliasing effects can still appear if they are present
in the first computed spherical Fourier transform, or if σ in-
creases considerably ((18) not fulfilled even for the current
H before downsampling). An example of the effect of ap-
plying this anti-aliasing criterion before downsampling an
intermediate image in the computation of ψS2

, is shown in
Fig. 4.

The input images are supposed to have a nominal stan-
dard deviation σN of half pixel, which in our case means
σN = 0.5π/H , where H is the height of the spherical
image. To obtain the first image of the spherical scale
space, LS2

(θ,ϕ,σ0/k), the input image is convolved with
a spherical Gaussian filter with standard deviation σ =√

(σ0/k)2 − σ 2
N . The computation of ψS2

is shown in Algo-
rithm 2. Note that the size of the input image can be doubled
before starting the process. Then, σN = π/H and the first
loop starts at o = −1.

3.2 Extrema Extraction

Interest points are local extrema of ψS2
(θ,ϕ,σ ) (16). A lo-

cal extreme is a point on the spherical grid whose value is
bigger (smaller) than its 8 neighbours, bigger (smaller) than
its 9 neighbours in the scale above and bigger (smaller) than
its 9 neighbours in the scale below. Note that, contrary to
a planar image, an image on the sphere has no borders and
then, points located at the last column (highest values of ϕ)
are neighbours with points located at the first column (low-
est values of ϕ) and vice versa. These simple comparisons
give the extrema candidates, but principal curvature and con-
trast conditions are imposed on these points afterwards, in
order to keep only the most stable ones.

For each detected local extreme of ψS2
(θ,ϕ,σ ), ωi ≡

(θi, ϕi, σi), a quadratic function is fitted by using a Taylor

Algorithm 2 Spherical scale-space and Difference-of-
Gaussians computation

1: S ←− number of stages per octave
2: O ←− number of octaves
3: n ←− 0
4: for o = 0 to O do

5: Compute LS2
(θ,ϕ,2oσ0/k)

6: for s = 0 to S + 1 do

7: Compute LS2
(θ,ϕ,2oksσ0)

8: Compute ψS2
(θ,ϕ,2oks−1σ0)

9: end for

10: if Equation (18) is satisfied then

11: Down-sample by 2 the starting image of the current
loop and use it for the next one

12: else

13: n ←− n + 1
14: Double the σ ’s of the current loop and use them in

the next loop
15: Each LS2

(θ,ϕ,σ ) in the next loop has to be down-
sampled by 2n

16: end if

17: end for

expansion of (16):

ψS2
(θ,ϕ,σ )

≃ ψS2
(θi, ϕi, σi)

∂ψS2

∂�

∣∣∣∣
⊤

ωi

δωi
+

1

2
δ⊤
ωi

∂2ψS2

∂�2

∣∣∣∣
ωi

δωi
, (19)

where � ≡ (θ,ϕ,σ ) and δωi
= (θ − θi, ϕ − ϕi, σ − σi)

⊤.
The derivatives are calculated as the central finite differences
approximation of the derivatives of the image in that point,
i.e. for a function f : Rn −→ Rm the central finite differ-
ence approximation of the derivative with respect to the j th
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variable, xj is

∂f

∂xj
= fxj (x

1, x2, . . . , xj , . . . , xn)

=
f (. . . , xj + �xj , . . . ) − f (. . . , xj − �xj , . . . )

2�xj

.

(20)

From now on, the notation fx will be used to express the
derivative (or the finite differences approximation) of f with
respect to x.

Taking the derivative of (19) with respect to δωi
, the offset

δ̃ωi
to the extreme of the fitted function is obtained

δ̃ωi
= −

(
∂2ψS2

∂�2

)−1
∂ψS2

∂�
. (21)

If any of the components of vector δ̃ωi
is bigger than half

the separation between two points in this dimension, the
point ωi is moved to its neighbour in this dimension and
the process repeated. To avoid loops, the maximum num-
ber of iterations in the implemented version has been fixed
to 5. For the tests presented in this paper, the movement in
the σ dimension has not been taken into account, which is a
common strategy in implementations of SIFT. This is due to
the fact that a displacement in the σ direction changes com-
pletely the conditions where the quadratic function is fitted.
At the end of this iterative process, a point ω̃i is obtained.

Once ω̃i has been obtained, the contrast at this point is
computed, and if the condition

|ψS2
(ω̃i)| >

0.02

ks2◦ (22)

is not satisfied, then ω̃i is discarded. The threshold value
in (22) has been defined empirically.

Finally, the ratio r of principal curvatures is obtained at
ω̃i and the point is kept if and only if r < 10 (same value
than in Lowe 2004). Principal curvatures of a surface at a
given point p are the maximum and minimum curvatures
of the resulting curves when intersecting the surface with
all the planes containing the normal vector to the surface
at p. This test eliminates points situated along edges, where
one principal curvature is high but the other is low, which
produces unstable points. In other words, if a point does not
satisfy the following condition

trace(H S2
)2

det (H S2
)

<
(r + 1)2

r
, (23)

where

H S2 =
(

ψS2

θθ ψS2

θϕ

ψS2

θϕ ψS2

ϕϕ

)
, (24)

Algorithm 3 Algorithm for the extraction of “good” local
extrema

1: E ←− ∅ the set of local extrema
2: for o = 0 (or o = −1) to O do

3: for s = 0 to S − 1 do

4: for each point ωi ≡ (θi, ϕi, σi) of
ψS2

(θ,ϕ,2oksσ0) do

5: if ωi is a local extreme then

6: Compute ω̃i

7: if (22) and (23) are satisfied at ω̃i then

8: E ←− {E, ω̃i}
9: end if

10: end if

11: end for

12: end for

13: end for

then it is discarded. Note also that as we are working on the
unit sphere in spherical coordinates, derivatives with respect
to ϕ have a 1/ sin θ coefficient. The full extrema extraction
procedure is detailed in Algorithm 3.

3.3 Local Spherical Descriptor (LSD)

In order to match points extracted from different omnidirec-
tional images and obtained with the proposed algorithm, a
Local Spherical Descriptor (LSD) is computed at each point.
This descriptor is obtained using the spherical scale-space
representation of the image (see Sects. 2 and 3.1) and con-
sists of a set of histograms of orientations in a region around
the given point. The size of this region depends on the scale
(σ ) at which the point has been detected. Orientations are
computed with respect to a principal orientation of the point,
which makes the descriptor invariant to rotations around the
axis that links the point with the centre of the sphere. The
complete procedure is detailed below.

First, the orientation of a point in the spherical scale
space representation has to be defined. Let us have a point
(θ,ϕ) ∈ S2 at scale σ . Its orientation is defined as the angle
of the gradient of LS2

in that point, with the 0 degrees point-
ing to the south pole and the 90 degrees to bigger values
of ϕ. These gradients are obtained using the central finite
differences approximation of the derivatives as

α(θ,ϕ,σ ) = arctan

(
LS2

ϕ (θ,ϕ,σ )

LS2

θ (θ,ϕ,σ )

)
. (25)

Then, for each considered extreme of the ψS2
, (25) is

used to compute the orientations of surrounding points on
the spherical grid in a 3σ × 3σ squared window centred at
the extreme (where σ is the scale at which each extreme was
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located). To define this window, the distance between two
points on the unit sphere, p1 ≡ (θ1, ϕ1) and p2 ≡ (θ2, ϕ2),
needs to be calculated. It can be obtained using the Vin-
centy’s formula (Vincenty 1975):

d(p1,p2) = arctan

(√
A2 + B2

C

)
, (26)

where

A = sin θ1 sin�ϕ, (27)

B = sin θ2 cos θ1 − cos θ2 sin θ1 cos�ϕ, (28)

C = cos θ2 cos θ1 + sin θ2 sin θ1 cos�ϕ, (29)

�ϕ = ϕ1 − ϕ2. (30)

For each window, a histogram of orientations is com-
puted using the orientations of points of the spherical grid
that are inside. The orientation value at each point defines
the bin, and the value added to this corresponding bin is the
norm of the gradient at that point,

m(θ,ϕ,σ ) =
√

LS2
ϕ (θ,ϕ,σ )2 + LS2

θ (θ,ϕ,σ )2, (31)

weighted by a Gaussian centred on the extreme and of stan-
dard deviation 1.5σ . For this histogram, 36 orientations
are considered. Finally, once the histogram has been com-
puted, the principal orientation is calculated as the axis of a
parabola fitted around its maximum. If there are bins greater
than 0.8 times the biggest one, they are also considered. This
results in multiple principal orientations for the same point.

Then, LSD are computed taking their corresponding prin-
cipal orientations as reference. This descriptor is a three-
dimensional histogram of orientations (two spatial dimen-
sions and one dimension for orientations) where all the ori-
entations are considered with respect to the principal one.
The produced histogram has 42 ×8 bins (42 bins for the spa-
tial dimension and 8 bins for the orientations) and is com-
puted considering the points of the spherical grid contained
in a 6σ × 6σ squared window centred at the extreme and ro-
tated according to the principal orientation. Each bin value
corresponds to the weighted sum of gradient magnitudes of
points at the spatial and orientation defined by the bin. The
weight value is defined by a Gaussian centred on the extreme
and of standard deviation 1.5σ . The rotation of the window
on the surface of the sphere can be computed using the Ro-
drigues’ rotation formula (Rodrigues 1840) for the rotation
of vectors, given by

vRot = v cosα + u × v sinα + u · v(1 − cosα)u, (32)

where the vectors u,v and vRot are considered in Cartesian
coordinates, and the vector vRot is the result of rotating α

degrees the vector v around u.

Algorithm 4 Algorithm for the computation of LSD
1: LSD ←− ∅ the set of Local Spherical Descriptors
2: for each considered extreme of ψS2

, (θi, ϕi, σi) do

3: Select a squared region of size 3σi × 3σi centred at
(θi, ϕi)

4: Compute orientations and gradient norms inside this
region

5: Compute histogram of orientations
6: MAX ←− maximum histogram value
7: for each bin value ≥ 0.8MAX do

8: Fit a parabola around this bin
9: b ←− axis of the parabola

10: Select a squared region of size 6σi ×6σi centred at
(θi, ϕi) and rotated b degrees

11: Compute orientations and gradient norms inside
this region with respect to b

12: LSDi ←− Compute 3-dimensional histogram
13: LSD ←− {LSD,LSDi}
14: end for

15: end for

In order to avoid boundary effects, the values of each gra-
dient sample are distributed by trilinear interpolation into
adjacent histogram bins. The resulting histogram is nor-
malised, each bin thresholded to 0.2 and normalised again,
in order to make it robust to contrast changes. The algorithm
for computing Local Spherical Descriptors is summarised in
Algorithm 4.

3.4 Local Planar Descriptor (LPD)

Local Planar Descriptors (LPD) allow to match points ex-
tracted from a spherical image, using Algorithms 2 and 3,
and SIFT descriptors of points extracted from planar im-
ages. This is of great importance, considering that a preex-
isting database of SIFT descriptors computed on planar im-
ages could be used to detect objects on the omnidirectional
image.

The LPD is a regular SIFT descriptor computed on a pla-
nar approximation of the region around each interest point
ωi ≡ (θi, ϕi, σi). We consider pi ≡ (θi, ϕi) to be the cen-
tre of this planar approximation, which is the stereographic
projection on the tangent plane of the sphere at pi through
its antipodal point. This projection of LS2

(θ,ϕ,σi) around
pi can be seen as a local approximation of L(x, y,σ ).
In other words, for a point pi ≡ (θi, ϕi), extracted from
the spherical image at scale σi , a squared window centred
at ωi on LS2

(θ,ϕ,σi) and of size equal to the minimum
between 12σi and π , is stereographically projected from
(θi + π/2, ϕ + π) to the plane tangent at pi . The projected
points are linearly interpolated in order to obtain a pla-
nar image whose cartesian range is [−2 tan 6σi

2 ,2 tan 6σi

2 ] ×
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Algorithm 5 Algorithm for the computation of LPD
1: LPD ←− ∅ the set of Local Planar Descriptors
2: for each considered extreme of ψS2

, (θi, ϕi, σi) do

3: L(x, y,σ
pl
i ) ←− stereographic projection of

L(θ,ϕ,σi) from (θi + π
2 , ϕi +π) to the tangent plane

at (θi, ϕi)

4: LPDi ←− SIFT descriptor of L(x, y,σ
pl
i ) at (x, y) =

(0,0)

5: LPD ←− {LPD,LPDi}
6: end for

[−2 tan 6σi

2 ,2 tan 6σi

2 ] and with a pixel spacing of 2 tan π
2H

.

H is the height of LS2
(θ,ϕ,σi). The equivalent σi in the

obtained planar image is given below:

σ
pl
i =

tan σi

2

tan π
2H

. (33)

The outline of the Local Planar Descriptors computation
is given in Algorithm 5.

4 Planar to Spherical Mapping

As mentioned before, LPD can be matched with regular pla-
nar SIFT descriptors extracted from planar images. In addi-
tion to this new kind of matching, we propose a method to
estimate the function that transfers points from an object in
a planar image to their corresponding points in a spherical
image. We suppose that the object is rigid and planar, be-
cause only its projection on an image is known. The transfer
function, together with the planar to spherical matching, can
segment objects in omnidirectional images given their seg-
mentation in a planar image or vice versa.

Let us consider two matched points, the first p
pl
i ≡

(x
pl
2i, x

pl
1i) in a planar image and the second pS2

j ≡ (xS2

2j ,

xS2

1j , xS2

0j ) in a spherical image, both in cartesian coordinates.
The idea is to find a linear transformation H that sends
the point in the planar image p

pl
i , to a point qij in three-

dimensional space, with projection to the unit sphere pS2

j

(see Fig. 5). The linearity of H is given by the rigidity as-
sumption. Let us note that only the transformation from p

pl
i

to qij is linear, but not the total mapping from p
pl
i to pS2

j . In
other words, we look for a 3 × 3 matrix H that satisfies

pS2

j =
qij

‖qij‖
=

Hp̃
pl
i

‖Hp̃
pl
i ‖

, (34)

where ‖ · ‖ denotes the 2-norm and p̃pli is an embedding of
p

pl
i in R3 (more details follow). For estimating H , the planar

image is placed tangentially to the sphere where the omni-
directional image is mapped. The central point of the planar

Fig. 5 Graphical sketch of the mapping

image is the contact point with the sphere. In this way, a
point p

pl
i ≡ (x

pl
2i, x

pl
1i) of the planar image is embedded in

R3 as p̃
pl
i ≡ (x

pl
2i, x

pl
1i,1). Then, the fact that pS2

j and Hp̃
pl
i

must be collinear is exploited forcing their vectorial product
to be zero, i.e. pS2

j × Hp̃
pl
i = 0. The latter condition gener-

ates three equations, one for each of the components of the
resulting vector of the cross product:

−xS2

0j x
pl
2ih21 − xS2

0j x
pl
1ih22 − xS2

0j h23

+ xS2

1j x
pl
2ih31 + xS2

1j x
pl
1ih32 + xS2

1j h33 = 0, (35)

xS2

0j x
pl
2ih11 + xS2

0j x
pl
1ih12 + xS2

0j h13

− xS2

2j x
pl
2ih31 − xS2

2j x
pl
1ih32 − xS2

2j h33 = 0, (36)

−xS2

1j x
pl
2ih11 − xS2

1j x
pl
1ih12 − xS2

1j h13

+ xS2

2j x
pl
2ih21 + xS2

2j x
pl
1ih22 + xS2

2j h23 = 0, (37)

where the elements of the matrix H are distributed as

H =

⎛
⎝

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎞
⎠ (38)

Consequently, if (35), (36) and (37) are expressed in
terms of hlm and all the resulting equations for each pair
of matched points are put together, a system of equations of
the form Ah = 0 is obtained, where

h = (h11, h12, h13, h21, h22, h23, h31, h32, h33)
⊤,

A is a 3N ×9 matrix and N is the number of points matched
between the planar and spherical images. If the restriction
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Algorithm 6 Algorithm for the estimation of H

1: LPD ←− set of local planar descriptors of the spherical
image

2: SIFTDesc ←− set of SIFT descriptors of the planar im-
age

3: M ←− matching points between SIFTDesc and LPD
4: H ←− eigenvector with minimum eigenvalue of the

matrix defined using (35), (36) and (37) (use RANSAC
to clean M of false matchings).

‖h‖ = 1 is considered, h can be computed as the eigenvec-
tor of matrix A corresponding to the smallest eigenvalue.
This eigenvector is the least squares estimator of the solu-
tion. Note that although each pair of matched points gen-
erates three equations, only two of them are linearly inde-
pendent. This means that at least four non-collinear pairs of
matched points are required for estimating the coefficients
of the matrix H .

The estimation of this matrix results in a mapping h :
R2 −→ S2 that sends points in the planar image to points
in the spherical one as follows:

h(x, y) =

H

⎛
⎝

x2

x1

1

⎞
⎠

∥∥∥∥∥∥
H

⎛
⎝

x2

x1

1

⎞
⎠

∥∥∥∥∥∥

. (39)

Mapping points of the spherical image onto points of
the planar image, can also be done using the transformation
H−1 and normalising the resulting point by its third compo-
nent. In this way, a point of the form (x2, x1,1) is obtained.

The estimation of H using all the matched points would
give bad results due to false matchings. For avoiding this, the
chosen set of matched points for the estimation of H is se-
lected using RANSAC. This procedure also softens the pla-
nar assumption. Indeed, RANSAC will treat non-coplanar
points as outliers, since they will not fit correctly the model
generated by H . The outline of the process for computing
H is specified in Algorithm 6.

5 Experimental Results

In our experimental results we use two types of omnidirec-
tional images: parabolic and spherical. Parabolic omnidirec-
tional images are obtained by a catadioptric omnidirectional
sensor: a parabolic mirror Kaidan EyeSee 360◦4 in combi-
nation with a Nikon D40X camera. In order to apply our al-
gorithm on this kind of images, we first need to map them on

4http://www.kaidan.com.

the sphere. After this mapping, the images cover a band of
about 100 deg on the sphere. Spherical images are obtained
with a Ladybug2 device5 and they cover 75% of the sphere.
It is important to note that the Ladybug2 outputs the images
directly in spherical coordinates and thus no mapping on the
sphere is needed for them. Both types of images have the
same resolution, 1024 × 1024.

In all tests, two interest points p1 and p2 that define two
interest regions in two different images, I1 and I2 respec-
tively, are considered as the same point if after transferring
p2 to I1, the overlap error computed using the intersection
over union criterion (Mikolajczyk et al. 2005) is smaller than
0.5. The size of the interest regions considered to compute
the overlap error is fixed by the scale at which each point is
detected (see Sect. 3.3 for details).

This section is organised as follows. In Sect. 5.1, a com-
parison between standard and spherical SIFT has been done.
An example where standard SIFT applied on omnidirec-
tional images fails is given. In Sect. 5.2, the optimal parame-
ters of the algorithm for omnidirectional images are deduced
from several performed tests, and then some examples are
shown. Finally, in Sect. 5.3, a matching test between an ob-
ject on a planar image and several omnidirectional images
containing the object is performed. In addition, the estima-
tion of the planar to spherical mapping using matchings be-
tween planar and omnidirectional images is illustrated.

5.1 “Planar vs. Spherical” Scale Invariant Feature
Transform

As commented in Sect. 1.2, at small scales and for points
far from the poles, the standard SIFT algorithm can perform
acceptably well. But it is important to be aware of this limi-
tation, since as soon as this two hypothesis are not fulfilled,
the standard SIFT fails and the extra computation cost of
considering the geometry of the sensor needs to be paid.
However, this extra cost will provide us more precision and
invariance to the deformations that the spherical geometry
introduces.

The weaknesses of standard SIFT, when applied to an
omnidirectional image, have two origins. On the one hand,
planar scale-space computation cannot be directly applied
to the sphere. Indeed, the planar scale-space representation
does not handle correctly scales on an omnidirectional im-
age. This makes SIFT fail in feature extraction, especially in
regions close to the poles, where the incorrectness of the
scale-space representation is more obvious. On the other
hand, the descriptors of standard SIFT do not take into ac-
count the deformations introduced by the sensor on the om-
nidirectional image. This makes these descriptors not very
useful for matching, since they are not robust to changes on
the captured objects.

5http://www.ptgrey.com/products/ladybug2/.

http://www.kaidan.com
http://www.ptgrey.com/products/ladybug2/
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For showing these two problems, we will compare the
results on several example images when standard SIFT is
employed (as implemented in Vedaldi and Fulkerson 2008)
and when our scale invariant feature transform on the sphere
is applied. In all the cases, for obtaining comparable results,
both algorithms are run with the same parameters, those pro-
posed by Lowe (2004), S = 3 and σ0 = 1.6. The octave −1
is not computed in any of the cases.

In the first example we illustrate the loss of extracted fea-
tures due to the incorrect use of the planar scale-space com-
putation on omnidirectional images. For showing that, we
have compared the points extracted on a sequence of om-
nidirectional images by standard SIFT and by the proposed
algorithm. These images were obtained in an office while
the sensor points down a table where red objects are placed.
One of these objects is moved throughout the sequence and
thus it is perceived on the South Pole of the sphere, i.e. just
right below the sensor. This object does not have any tex-
ture in order to minimise the number of extracted points due
to noise in the image and internal texture of the object. The
deformation introduced by the fact of moving the object to-
wards a pole is clearly visible in the unwrapped version of
the spherical image, in (θ,ϕ) coordinates (see for instance
top image of Fig. 6). After applying the standard SIFT al-
gorithm, in Fig. 6a, we can observe that in the first image
(bottom), the red object has a point in the centre and points
in the four corners. In the second image, the points in one
of the corners and in the centre have disappeared. Finally,
in the third image, only one point is extracted on the object.
Nevertheless, in Fig. 6b, where the spherical SIFT is applied,
in the first image (bottom), the red object has a point in the
centre and points in three of its corners. In the second im-
age, the object still has a point in the centre as well as in the
three corners. And finally, in the third image, the red object
has lost the point in the centre but still has the points in the
three corners. In other words, the spherical SIFT extracts the
same features on the object independently of its position on
the omnidirectional image, while the standard SIFT fails.

In the second example we illustrate the low usefulness of
standard SIFT descriptors, when computed on omnidirec-
tional images without considering the spherical geometry.
For showing that, we follow the same approach than in the
previous example, but this time with an object with rich tex-
ture information. This guarantees the extraction by the stan-
dard SIFT algorithm of at least some features on the object,
even when it is near the poles. In this case, the sequence
is composed of two images obtained in an office with the
sensor pointing to the ceiling, and the object is a person
that moves slightly while standing close to the omnidirec-
tional camera. Features are extracted in both images and
afterwards descriptors are computed, using standard SIFT
with standard SIFT descriptors and using our proposed scale
invariant feature transform on the sphere with LSD. When

a matching is performed between standard SIFT descrip-
tors, only a few are correctly matched (see Fig. 7b). Almost
all the descriptors placed on a point that has changed its
position between the two images are incorrectly matched.
However, when the scale invariant feature transform on the
sphere with LSD is employed, only a few descriptors are in-
correctly matched (see Fig. 7a). With this example we can
see that, independently of the extraction of feature points,
ignoring the geometric deformation introduced by the omni-
directional sensor entails a poor robustness of the computed
descriptors. Note that in Fig. 7, for ease of visualisation, we
only plot matches between descriptors placed on the body
of the subject, which is the only region of the image that
changes.

5.2 “Omni vs. Omni” Repeatability and Matching

First of all, in order to test LSD matching, some parameters
of the algorithm need to be fixed, essentially S and σ0. In or-
der to choose the values of S and σ0 that maximise repeata-
bility, repeatability tests have been performed on 28 real om-
nidirectional images. These images were taken in three dif-
ferent days and in two different locations, producing images
under very different conditions. Some examples are shown
in Figs. 8 and 9.

For the purpose of testing, these images have been cor-
rupted with zero mean additive Gaussian noise with standard
deviation 0.05 (pixel values are in the range [0,1]) and ro-
tated on the sphere a random angle ψ around X2 (see Fig. 2).
The rotations of the image on the sphere simulate objects
captured at different points of the omnidirectional image,
and therefore experiencing different deformations, as com-
mented in Sect. 1.2. An example of the hard deformations
that these rotations introduce can be observed in Fig. 14(a)
(right). Then, the repeatability score for a given pair of im-
ages, i and j , is computed as

rij =
nRij

min (ni, nj )
, (40)

where ni and nj are the number of extracted points from
images i and j , respectively, and nRij is the number of re-
peated points, i.e. points defining regions with an overlap
error lower than 0.5 (Mikolajczyk et al. 2005).

The results of repeatability tests are given in Fig. 10. As
expected, the repeatability increases for higher values of σ0.
Although a higher σ0 also means that the extrema of the
DoG at lower scales are lost. Consequently, a compromise
has to be found between the smallest scale of the extrema
detected and the tolerated amount of “noise” (not repeatable
points) between all the extracted points. On the other hand,
higher values of S imply a greater number of stages per oc-
tave, which requires more computation time. Looking at the
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Fig. 6 Comparison between
points extracted by a standard
implementation of SIFT and
those extracted by the proposed
scale invariant feature transform
on the sphere. The black arrow

points to the object that moves
along the sequence

graphics, σ0 = 3.0π/1024 and S = 3 are reasonable values
to choose.

For comparing the performance in omnidirectional im-
ages of the scale invariant feature transform on the sphere
against the standard implementation of SIFT, we have per-
formed a repeatability test comparing both methods. Here
we have corrupted omnidirectional images with zero mean
additive Gaussian noise with standard deviation 0.05 (pixel
values are in the range [0,1]) and then, the obtained images
have been rotated 50 times on the sphere a random angle
ψ around X2, producing a total of 1400 pairs of images. In

Table 1, the mean, maximum and minimum values of re-
peatability for both methods are shown. As you can see, the
results obtained by spherical SIFT are considerably better.
Furthermore, in Fig. 11 we have plotted repeatability val-
ues as a function of rotation angle (plotted values are ob-
tained by grouping values in bands of 10 degrees). It can
be observed that the results obtained with spherical SIFT
are independent of the rotation angle and the obtained val-
ues are always better than those obtained by standard SIFT.
The difference is small for rotation values of 0, 180 and 360
degrees. However, a small rotation of 10 degrees already de-
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Fig. 7 Comparison between matching using standard SIFT and
matching using the scale invariant feature transform on the sphere with
LSD descriptors. Both matching procedures use a matching threshold

of 0.8. Only matchings between points placed on the body of the sub-
ject are plotted, since the body is the only thing that changes between
the two images

creases the repeatability of standard SIFT considerably. Fur-
thermore, if only spherical images are considered (discard-
ing the parabolic ones) i.e. we consider images that contain
information on one of the poles (see Fig. 9). Then, in this
case, the repeatability values for the standard SIFT are al-
ready 6.7, 7.6 and 4.6 percentage points lower than with the

spherical SIFT for 0, 180 and 360 degrees, respectively. This
difference also increases considerably increasing the rotated
angle.

For these chosen values, σ0 = 3.0π/1024 and S = 3, a
matching test has been performed in order to observe the ef-
fect of the threshold d (see Sect. 3). Again, real omnidirec-



Int J Comput Vis (2012) 98:217–241 231

Fig. 8 Some of the real
parabolic omnidirectional
images used in our tests of
repeatability and matching
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Fig. 9 Some of the real
spherical omnidirectional
images used in our tests of
repeatability and matching
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Table 1 Repeatability values of
spherical SIFT and standard
SIFT

Mean repeatability Maximum repeatability Minimum repeatability

Spherical SIFT 82.02% 96.39% 69.19%

Standard SIFT (with octave −1) 38.78% 93.16% 9.90%

Standard SIFT (without octave −1) 45.96% 95.44% 11.64%

Fig. 10 (Color online) Results of the repeatability tests varying S and
σ0 over a set of 28 omnidirectional images. Note that the values of σ0
in the graphs are in terms of relative distance between points of the
spherical grid, i.e. for an image of 1024 × 1024 pixels, σ0 = 2.0 in the
graph means an effective σ0 = 2.0 π

1024 . The boxes in the plot mark the

25th and the 75th percentile, red lines are the median and red stars are
values considered as outliers (values larger than q75 + 1.5(q75 − q25)

or smaller than q25 − 1.5(q75 − q25), where q25 and q75 are the 25th
and 75th percentiles, respectively)

tional images have been artificially rotated on the sphere by
a random angle ψ around X2 and corrupted with zero mean
additive Gaussian noise. In Fig. 12, the results of this test can
be observed. In Fig. 12a the percentage of correct matchings
is computed as the ratio between correct matchings and the
total number of matchings. In Fig. 12b, the percentage of
correct matchings is computed as the ratio between correct
matchings and the total number of repeated points. On the
one hand, for a matching threshold higher than 0.3, more
than 50% of repeated points are correctly matched. On the
other hand, for a matching threshold lower than 0.7 more
than 80% of the matched points are correct.

In Fig. 13, results of repeatability and correct matchings
as a function of pixel noise are given. As expected, the in-
crease of the amount of noise causes a decrease of repeata-
bility (see Fig. 13a), but observing Figs. 13b and 13c, we

can observe the robustness of the matching, since the de-
crease on the percentage of correct matchings is consider-
ably lower.

In Figs. 14 and 15, some examples of LSD matching be-
tween omnidirectional images are shown. In all the compu-
tations, the above mentioned parameters (S = 3 and σ0 =
3.0π/1024) are used, as well as a matching threshold of
d = 0.7. In Fig. 14, we show the matchings between a
parabolic omnidirectional image and the same image ro-
tated on the sphere and corrupted by additive Gaussian noise
with zero mean and standard deviation 0.05. 184 LSD are
correctly matched between the two images, over a total of
207 matched points (88.9%), with 329 extracted points on
the image on the left, and 341 on the image on the right.
In Fig. 15, we show the 49 matched LSD obtained be-
tween two different parabolic images. Among the incorrect
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Fig. 11 Plots of repeatability values, as a function of the randomly ro-
tated angle on the sphere, for the spherical SIFT implementation and a
standard SIFT implementation (Vedaldi and Fulkerson 2008) with and
without the octave −1. The optimal parameters for both algorithms

were used. The tests were performed on 28 real omnidirectional im-
ages that were corrupted with Gaussian noise and randomly rotated 50
times, producing 1400 pairs of images. Solid lines indicate the mean
value and dashed lines the mean +/− standard deviation

Fig. 12 Plots of correct matching tests performed on 28 real omnidirectional images. Correct matchings are plotted as a function of the matching
threshold. Solid lines indicate the mean value and dashed lines the mean +/− standard deviation
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Fig. 13 Plots of repeatability and correct matching tests performed on
28 real omnidirectional images, as a function of the standard deviation
of the Gaussian noise added to the images, for σ0 = 3.0π/1024, S = 3

and a matching threshold fixed to 0.6. Solid lines indicate the mean
value and dashed lines the mean +/− standard deviation

matches observed, most of them are actually locally cor-
rect, since they are the result of matching the real window
with its reflection in the whiteboard, or one of the three
identical markers in the whiteboard with another of them,
etc.

Let us note that we do not need to use any virtual cam-
era plane framework for performing matching, as in Mau-
thner et al. (2006). Instead, we perform the matching di-
rectly in the spherical coordinates, in which the omnidirec-
tional sensor outputs the images (what concerns the Lady-
bug2).

5.3 “Planar vs. Omni” Matching

In this section, LPD are tested for matching between points
extracted from omnidirectional images (using Algorithm 1)
and points extracted from a planar image (using the stan-
dard SIFT algorithm). For these experiments, the SIFT pa-
rameters proposed in Lowe (2004) (S = 3 and σ0 = 1.6) are
used in both the standard SIFT algorithm and the spherical
SIFT algorithm. Note that on the sphere, the equivalent σ

parameter is σ0 = 1.6π/1024. We do not compute octave
−1 for speeding up the computation. On the other hand,
the images we are working with are already at high reso-
lution.

In a first step, a sequence of spherical images is processed
for extracting LPD descriptors. The sequence is shown in
Fig. 16, in its unwrapped version and on the sphere. This
sequence consists of six images where a spherical camera
moves approximately parallel to a poster on a wall. Then, a
planar image of the same poster in the same scene is pro-
cessed in order to extract SIFT descriptors. The result of
matching both descriptors are presented in Fig. 16. There,

the links between matched points are shown only on the un-
wrapped version so that the entire sphere is visible. As it can
be observed, the proposed algorithm presents a good per-
formance as well as a good stability of the matched points.
Some of the incorrect matchings that are present are due to
the fact that other posters in the corridor contain some of
the images of the original poster. Using the planar to spher-
ical mapping, we can compute the repeatability between the
standard SIFT algorithm applied on the planar image and
the spherical SIFT algorithm applied on the sequence of
spherical images. For an overlapping error lower than 0.5,
we obtain an average repeatability of 27.5%, with a max-
imum repeatability of 34.3% and a minimum of 21.2%.
These are good results, since we obtain a good amount of
repeated points even considering two completely different
images (planar and spherical), with two different resolutions
of the poster (in the spherical image, the poster size is 1/4
the size in the planar image) and with some artefacts in the
spherical image due to the stitching performed by the Lady-
bug2 device.

The estimation of the planar to spherical mapping, as in-
troduced in Sect. 4, has also been tested. First, Algorithm 1
is applied to the corresponding omnidirectional images in
order to obtain the set of LPD. Then, the standard SIFT de-
scriptors are computed for the planar images, and both de-
scriptors LPD and SIFT are the input of Algorithm 6. Let us
recall that this algorithm automatically computes the match-
ing and the mapping.

In Fig. 17, results obtained with images containing the
EPFL logo (Figs. 17a and 17b) and a poster (Figs. 17c
and 17d) are shown. It is interesting to note that the obtained
results are satisfactory even with a highly symmetric object,
as is the case of the logo, or an object with parts present in
several places on the omnidirectional image, as is the case of
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Fig. 14 (Color online) Example of LSD matching between spherical
images. The images are shown unwrapped and on the sphere. The val-
ues of the parameters obtained in the previous tests (S = 3 and σ0 =

3.0π/1024) have been used in the computations. The matching thresh-
old has been fixed to 0.7

the poster. Indeed, in these cases a matching can be locally
correct while being incorrect considering the whole object
or image.

Let us note that the planar to spherical mapping can be
computed also for the sequence of images in Fig. 16. Algo-
rithm 6 also succeed on computing the mapping for every
omnidirectional image of the sequence. For this computa-
tion, the RANSAC algorithm chooses 11, 12, 14, 11, 16 and
15 pairs of matched points (inliers) for computing the map-
ping for the omnidirectional image in Figs. 16a, 16b, 16c,
16d, 16e and 16f, respectively.

6 Conclusions

In this paper, we have proposed a SIFT algorithm in spher-
ical coordinates. It is not limited to pure spherical images,
since it can also be applied to a wide variety of omnidirec-
tional images that can be mapped on the sphere. Two types
of point descriptors have been proposed: Local Spherical
Descriptors (LSD) and Local Planar Descriptors (LPD). Us-
ing these descriptors, we have successfully performed point
matchings between omnidirectional images, with LSD, and
between omnidirectional and planar images, with LPD. For
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Fig. 15 Example of LSD matching between spherical images. The images are shown unwrapped and on the sphere. The values of the parameters
obtained in the previous tests (S = 3 and σ0 = 3.0π/1024) have been used in the computations. The matching threshold has been fixed to 0.7

the matchings between omnidirectional images, the param-
eters of the algorithm have been chosen according to the
results obtained on test images varying S and σ0. For the
planar vs omnidirectional case, the same parameter val-
ues as those proposed in Lowe (2004) have been kept. Fi-
nally, point matchings obtained in this last case have been
successfully used to estimate a planar to spherical map-
ping.

The tests of repeatability, matching between omnidirec-
tional images and matching between omnidirectional and
planar images have shown the feasibility of the approach.
Furthermore, this feasibility is sustained by the robust-

ness of the approach with respect to the deformations in-
troduced in the image by the omnidirectional sensor. In-
deed, the repeatability of the extracted features on omni-
directional images has been compared with the repeatabil-
ity obtained using standard SIFT, showing the superiority
of the spherical implementation. As it has been explained
in Sect. 1.2, the deformations experienced by the objects
on a scene depend on their position on the omnidirectional
image. This makes that a simple displacement of an ob-
ject on the 3D space, generating a small rotation on the
sphere of the object on the omnidirectional image, intro-
duces a deformation that standard SIFT is not able to han-
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Fig. 16 Matchings obtained between LPD of a sequence of spheri-
cal images and SIFT descriptors of a planar image. In the sequence
of spherical images (shown unwrapped and on the sphere), the camera

moves approximately parallel to the object present in the planar image.
The matching threshold has been set to 0.6

dle correctly. This can be observed in Fig. 11, where it is
shown that a small rotation of only 10° reduces the repeata-
bility from approximately 85% to 75% in standard SIFT.
This value can drop up to a value of only 20% for po-
sitions separated 90°. When using our scale invariant fea-

ture transform on the sphere, the values of repeatability are
not affected by the deformations introduced by the omni-
directional sensor, remaining around 82% for any value of
the difference on the position of objects between two im-
ages.



Int J Comput Vis (2012) 98:217–241 239

Fig. 17 (Color online) Examples of estimation of the mapping between the boundary of an object in a planar image to this object in an omnidi-
rectional image using Algorithm 6. The green dots in the planar image are the points whose matching has been used for estimating the mapping

Potential applications of the proposed algorithm are
global tracking in hybrid camera networks (together with
the SIFT algorithm for planar images), motion estimation
in omnidirectional images, object detection and extraction

from omnidirectional images and, in general, any problem
requiring a matching between points in omnidirectional im-
ages or between points in omnidirectional and planar im-
ages.
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The main drawback of the proposed algorithm is the com-
putation time. Indeed, for a 1024 × 1024 image, the com-
plete point extraction and LSD computation takes around
33 seconds in a 3.33 GHz processor. If LPD are needed, the
stereographic projection for each extracted point requires
around 0.1 extra seconds. Computation time depends, how-
ever, on the number of stages per octave, the σ0 value and
the number of points extracted. This time could be reduced
by optimising the code, but the bottleneck of the spheri-
cal Fourier transforms will always be present. This, how-
ever, could be minimised by implementing the efficient algo-
rithm for the spherical Fourier transform presented recently
in Tygert (2008).

Many directions for further research can be considered
starting from this work. For example, the use of other lo-
cal descriptors could be tested, in particular the Gradient
Location and Orientation Histogram (GLOH) seems to be
very appropriate for spherical images. Experiments with real
images whose full three-dimensional viewpoint change is
known would also be very useful in order to better estimate
the optimum parameters of the algorithm and test its perfor-
mance. And last but not least, the study of approximations
of the spherical DoG, as it is done in SURF (Bay et al. 2008)
for the planar case, would be very interesting, since it could
lead to a real-time approximation of this algorithm.
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