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Abstract We study a scale-invariant extension of the stan-

dard model which can simultaneously explain dark matter

and the hierarchy problem. In our set-up, we introduce a

scalar and a spinor as two-component dark matter in addi-

tion to a scalon field as a mediator. An interesting point about

our model is that due to scale-invariant conditions, compared

to other two-component dark matter models, it has fewer

independent parameters. Possible astrophysical and labora-

tory signatures of a two-component dark matter candidate

are explored and it is shown that the highest contribution

of observed relic density of dark matter can be determined

by spinor dark matter. The detectability of these dark mat-

ter particles is studied and direct and invisible Higgs decay

experiments are used to rule out part of the parameter space

of the model. In addition, the dark matter self-interactions are

considered and it is shown that their contributions saturate

this constraint in the resonant regions.

1 Introduction

The standard model (SM) has been established by the discov-

ery of the Higgs boson and it can explain almost all of experi-

mental results obtained until now. However, there are a num-

ber of unanswered issues, either theoretical or experimental,

such as the hierarchy problem, active neutrino masses, the

dark matter (DM) relic abundance, the baryon asymmetry of

the Universe, inflation in the early Universe, and dark energy.

The existence of DM is inferred from crucial evidence

such as galactic rotation curves, gravitational lensing, obser-

vations of merging galaxies, cosmic microwave background

(CMB) measurements, the large scale structure of the Uni-

verse and collisions of bullet clusters. As mentioned, there

is still lack of experimental or observational evidence to pre-

cisely distinguish the correct particle physics model for DM

physics.
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To explain these issues a number of the SM extensions,

such as supersymmetric standard model, technicolor and

extra dimension theories, have been proposed. Despite the

broad searches as regards beyond SM physics at LHC, null

results for beyond SM theories [1–6] show that we have

enough motivation to think about alternative theories.

In almost all extended models, there are some additional

particles, which usually have heavier masses than the elec-

troweak (EW) scale. It is well known that the hierarchy prob-

lem arises from the fact that the negative Higgs mass term

in the Lagrangian of the SM causes a quadratical divergent

term proportional to the energy scale cut-off �2 after includ-

ing the quantum corrections. As an idea avoiding the hierar-

chy problem, classically scale-invariant extensions provide

an attractive framework [7–9]. In this picture, it is supposed

that the tree-level Higgs mass is zero and at the quantum

level the Higgs scalar gains a small mass from the radiative

corrections. In fact, the Higgs mass term is the only term that

breaks the classical scale invariance in the SM. Note that

classical scale invariance by itself does not explain the hier-

archy problem; however, it can be regarded as a procedure for

model building, which limits the space of Lagrangians to con-

tain only operators with dimensionless coupling constants.

The hierarchy problem then reveals itself as the absence of

couplings between the Higgs and other energy scales that

are dynamically generated in the UV cut-off scale [10,11].

Therefore, by regarding this condition, one can practically

remove the hierarchy problem.

In recent years, a lot of classically scale-invariant models

have been studied for the solution of the hierarchy problem

and the DM problem [12–20]. On the other hand, in order to

resolve the small-scale problems (through self-interaction)

and at the same time explain the potential indirect signals,

one needs very different DM masses. Therefore, to inter-

pret both observations, a multi-component DM seems to be a

natural possibility. Furthermore, multi-component DM mod-

els, besides the standard annihilations and coannihilations,

allow one to have conversion, semi-annihilation, and decay
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processes which make the dark sector (thermal) dynamics

much more interesting. Therefore, the dynamics of multi-

component DM is much richer than simple WIMP, and it

arouses curiosity by itself. In this paper, we study scalar–

spinor two-component DM, in order to have one candidate

for each bosonic and fermionic particles. The possibility of

other two-component models without scale invariance has

been extensively considered in the literature [21–34]. Also

the two-component DM has been studied in the context of

scalar WIMP-like candidates [35]. Our goal in this paper is

to address the DM relic density and the hierarchy problem

by an extension of the scale-invariant standard model (SISM)

which contains a scalar and a spinor DM candidate.

The structure of this paper is as follows: in Sect. 2, we

introduce the scale-invariant SM with two-component scalar

and fermionic DM scenarios. In Sect. 3, we study perturba-

tivity constraints on two-component scale-invariant DM. In

Sect. 4, we study freeze-out solutions to the relic density con-

straint. In Sect. 5, we will study phenomenological aspects

such as direct detection, indirect detection, self-interaction

and invisible Higgs decay searches on parameter space of

our model. The results are summarized in Sect. 6. The decay

rate and cross section formulas for the self-interaction of the

two components of DM are summarized in the appendix.

2 The model

In the SISM, before electroweak symmetry breaking all

fields in the scale-invariant sector of potential are massless.

At the quantum level these fields gain mass from radiative

Coleman–Weinberg symmetry breaking [9].

In this paper, we consider a scale-invariant extension of

the SM where the Higgs mass term is absent, and the only

term remaining in the Higgs potential will be λH (H† H)2. In

order to have a scale-invariant version of the SM possessing

a Higgs doublet and other SM particles with their physical

masses, at least two more scalars (singlet) must be added to

the theory. This arises from the fact that in the absence of

scalar DM, the square scalon mass is completely fixed and

would be negative [8]. In order to satisfy this condition, we

add three new fields, two scalars and one spinor, in our model.

All fields are singlets under an SM gauge transformation and

they are massless before spontaneous symmetry breaking.

Two of these new fields, the scalar S and the spinor χ , are

assumed to be odd under a Z2 symmetry. This discrete sym-

metry guarantees the stability of the lightest odd particles.

The other scalar field, φ, and all SM particles are even under

Z2. Therefore under Z2 symmetry new fields transform as

follows:

φ → φ, S → −S, χ → −χ. (1)

The scalar part of the Lagrangian including the new fields

is

Lscalar =
1

2
∂μφ ∂μφ +

1

2
∂μS ∂μS + DμH† DμH − V (H, φ, S),

(2)

where the most general scale-invariant potential V (H, φ, S)

which is renormalizable and invariant under gauge and Z2

symmetry is

V (H, φ, S) =
1

6
λH (H† H)2 +

1

4!
λφφ4 +

1

4!
λs S4

+ λφH φ2 H† H + λs H S2 H† H + λφsφ
2S2

(3)

where H , φ and S are the doublet Higgs, the scalon and DM

scalars, respectively.

The scale-invariant terms including the new spinor field

and its allowed interaction are given by

Lspinor = χ(iγ μ∂μ − g φ)χ. (4)

Since there are no allowed interaction terms in the

Lagrangian including both odd fields, the heavier odd parti-

cle also turns out to be stable. Therefore, the model has an

accidental symmetry that stabilizes the heavier odd particles

and it contains two DM candidates.

In unitary gauge, H = 1√
2
( 0

h ), the potential (3) becomes

V (h, φ, S) =
1

4!
λH h4 +

1

4!
λφφ4 +

1

4!
λs S4

+
1

2
λφH φ2h2 +

1

2
λs H S2h2 + λφsφ

2S2. (5)

The minimum of potential (5) corresponds to the field vac-

uum expectation values. The necessary conditions for a local

minimum of V (h, φ, S) are

∂V

∂h
= 0 ⇒

1

3!
λH h3 + λφH φ2h + λs H S2h = 0,

∂V

∂φ
= 0 ⇒

1

3!
λφφ3 + λφH φh2 + 2λφs S2φ = 0,

∂V

∂S
= 0 ⇒

1

3!
λs S3 + λs H Sh2 + 2λφsφ

2S = 0. (6)

Equation (6) should hold for the field vacuum expecta-

tion values. Note that we require the non-vanishing vacuum

expectation values for the fields h and φ so the scalar field

S remains stable because of the Z2 symmetry and thereby it

can play the role of the DM. Therefore, we put S = 0 in Eq.

(6):
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1

3!
λH h3 + λφH φ2h = 0

1

3!
λφφ3 + λφH φh2 = 0. (7)

We are looking for a non-trivial solution of (7) corresponding

to the non-vanishing vacuum expectation values for h and φ.

For non-zero h and φ, Eq. (7) leads to
⎛

⎜

⎝

1

3!
λH λφH

λφH

1

3!
λφ

⎞

⎟

⎠

(

h2

φ2

)

= 0 ⇒

∣

∣

∣

∣

∣

∣

∣

1

3!
λH λφH

λφH

1

3!
λφ

∣

∣

∣

∣

∣

∣

∣

= 0,

(8)

or simply

λH λφ = (3! λφH )2. (9)

Note that according to condition (8), the minimum of the

potential term V (h, φ, S) corresponding to the vacuum

expectation values of the fields is zero.

The field H breaks the electroweak symmetry with vac-

uum expectation value 〈H〉 = 1√
2
( 0

ν1
), where ν1 =

246 GeV. Thus the Higgs field after spontaneous symmetry

breaking is given by

H =
1

√
2

(

0

ν1 + h1

)

. (10)

As mentioned, the field φ also acquires a vacuum expectation

value,

φ = ν2 + h2. (11)

Notice that h1 and h2 mix with each other and can be

rewritten by the mass eigenstates H1 and H2 as

(

H1

H2

)

=
(

cosα − sinα

sinα cosα

) (

h1

h2

)

, (12)

where α is the mixing angle. We identify H1 with the SM-like

Higgs observed at the LHC with a mass of about 125 GeV.

After the symmetry breaking, we have the following con-

straints:

ν2 =
Mχ

g
,

sinα =
ν1
ν2

√

1 + ( ν1
ν2

)2
,

MH2 = 0,

λH =
3M2

H1

ν2
1

cos2α,

λφ =
3M2

H1

ν2
2

sin2α,

λφH = −
M2

H1

2ν1ν2
sinα cosα,

λs H =
M2

s − 2λφsν
2
2

ν2
1

, (13)

where Ms and Mχ are the masses of scalar and spinor DM

after symmetry breaking, respectively. The H2 field (scalon)

is massless at tree level, and it can be shown that by consid-

ering this issue the elastic scattering cross section of DM off

nuclei becomes drastically large and the model is immedi-

ately excluded by direct detection experiments. However, at

one-loop level the scalon gains mass and the direct detection

cross section should be computed with the one-loop mass.

The one-loop correction gives a mass to the massless eigen-

state H2[8,35]:

M2
H2

= −
λφH

16π2 M2
H1

(M4
H1

+M4
s +6M4

W +3M4
Z −4M4

χ −12M4
t ).

(14)

Notice that in the absence of scalar and fermionic DM, the

scalon mass was completely fixed by the Higgs particle, the

Z gauge boson and the top quark masses. For this reason,

adding the scalar field is inevitable. Moreover, in the absence

of additional scalar DM, the square scalon mass could be

negative. Since M2
H2

> 0 and λφH < 0, Eq. (14) leads to the

following constraint on Ms :

Ms > f (Mχ ) (15)

where

f (Mχ ) = 4

√

4M4
χ − (M4

H1
+ 6M4

W + 3M4
Z − 12M4

t ),

(16)

and f (0) = 310.7 GeV, which is the minimum of Ms .

Throughout this paper, we satisfy this condition.

According to (13), the model introduces only five free

parameters, λs , λφs , Ms , Mχ , g. In addition, the quartic

coupling λs is irrelevant to the DM relic density. Therefore,

the remaining free parameters are

λφs , Ms , Mχ , g. (17)

It is remarkable that our model, in comparison with other

two-component DM models, has a much lower number of

independent parameters and behaves like a single-component

model. For this reason, it would be difficult to satisfy all the-

oretical and phenomenological constraints simultaneously.
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This is the point that we encounter in the next sections. In

the following, we examine perturbativity constraints on these

four parameters.

3 Theoretical constraints

In this section, we discuss various constraints on the param-

eters of our model from theoretical considerations. These are

furnished in the following. Perturbativity constraints on the

parameters of the Lagrangian are

− 4π < λH , λφ , λs , λφH , λs H , g < 4π (18)

− 8π < λφs < 8π. (19)

Considering the constraints (13) we have

0 <
3M2

H1

ν2
1

cos2α < 4π, (20)

0 <
3M2

H1

ν2
2

sin2α < 4π, (21)

0 <
M2

H1

2ν1ν2
sinα cosα < 4π, (22)

− 4π <
M2

s − 2λφsν
2
2

ν2
1

< 4π, (23)

0 < g < 4π. (24)

One can easily show that Eq. (20) and Eq. (22) are established

automatically. The constraint (21) leads to

0 < sin α < max(sinα) (25)

where max(sinα) =
√√

A2 + 2A − A with A = 2πν2
1

3M2
H1

(max(sinα) = 0.972). The above equation, 0 < sin α <

0.972, is not a strong constraint on sin α. However, it leads

to a constraint on Mχ :

Mχ >

√

1 − [max(sinα)]2

max(sinα)
g, ν1 = (59.38 GeV) g. (26)

Regarding Eq. (23)

2λφsν
2
2 − 4πν2

1 < M2
s < 2λφsν

2
2 + 4πν2

1 , (27)

and according to (15) we have

f 2(Mχ ) < M2
s < 2λφsν

2
2 + 4πν2

1 ⇒
(

f 2(Mχ )

2

)2

< (λφsν
2
2 + 2πν2

1 )2. (28)

Considering f 4(Mχ ) = 4M4
χ + f 4(0) and ν2 = Mχ

g
, Eq. (28)

leads to

aM4
χ − bM2

χ − c < 0, (29)

where a = 1− λ2
φs

g4 , b = 4πλφsν
2
1

g2 , and c = 4π2ν4
1 − f 4(0)

4
> 0.

For λφs > 0 (b > 0), there are two possibilities: first a < 0,

so Eq. (29) is trivial, and second a > 0, providing a constraint

on Mχ :

Mχ <

√

b +
√

b2 + 4ac

2a
. (30)

Finally, we choose the following domains for the param-

eter space (17):

0 < g < 4π, (31)

0 < λφs < 8π, (32)

(59.38 GeV) g < Mχ <

√

b +
√

b2 + 4|a|c
2|a|

, (33)

√

max( f 2(Mχ ) , 2λφsν
2
2 − 4πν2

1 )<Ms<

√

2λφsν
2
2 + 4πν2

1 .

(34)

4 Relic abundance

The evolution of the number density of DM particles with

time is governed by the Boltzmann equation. In this section,

we compute the relic density for both DM candidates scalar

and fermion in our model, at the present epoch. In general,

the coupled Boltzmann equations for two-component DM

S and χ should be solved in order to compute the number

density. The coupled Boltzmann equations for scalar S and

fermion χ are given by

dnχ

dt
+ 3Hnχ = −

∑

j=p,H1,H2

〈σχχ→ j jυ〉(n2
χ − n2

χ,eq)

−〈σχχ→SSυ〉
(

n2
χ − n2

χ,eq

n2
S

n2
S,eq

)

, (35)

dnS

dt
+ 3HnS = −

∑

j=p,H1,H2

〈σSS→ j jυ〉(n2
S − n2

S,eq)

−〈σSS→χχυ〉
(

n2
S − n2

S,eq

n2
χ

n2
χ,eq

)

, (36)

where p denotes any SM particles. In 〈σab→cdυ〉 all annihi-

lations are taken into account except 〈σSχ→Sχυ〉, which does

not affect the number density. By using x = m/T , where T is

the photon temperature, as the independent variable instead
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of time and Ṫ = −H T , one can rewrite the Boltzmann equa-

tions in terms of the yield quantity, Y = n/s:

dYχ

dx
= −

√

45

π
Mpl g

1/2
∗

m

x2

⎡

⎣

∑

j=p,H1,H2

〈σχχ→ j jv〉(Y 2
χ − Y 2

χ,eq )

+〈σχχ→SSv〉
(

Y 2
χ − Y 2

χ,eq

Y 2
S

Y 2
S,eq

)

⎤

⎦ , (37)

dYS

dx
= −

√

45

π
Mpl g

1/2
∗

m

x2

⎡

⎣

∑

j=p,H1,H2

〈σSS→ j j v〉(Y 2
S − Y 2

S,eq )

+〈σSS→χχv〉
(

Y 2
S − Y 2

S,eq

Y 2
χ

Y 2
χ,eq

)

⎤

⎦ , (38)

where Mpl is the Planck mass and g
1/2
∗ is the effective num-

bers parameter. As seen in the above equations, there are new

terms in the Boltzmann equations, which describe the conver-

sion of two DM particles into each other, 〈SS ↔ χχ〉. These

two cross sections are also described by the same matrix ele-

ment. Therefore, we expect that 〈σχχ→SSv〉 and 〈σSS→χχv〉
are not independent and their relation is

Y 2
χ,eq〈σχχ→SSv〉 = Y 2

S,eq〈σSS→χχv〉. (39)

The interactions between the two DM components take

place by exchanging two scalar mass eigenstates H1 and H2

where the coupling of χ to H1 is suppressed by sin α. There-

fore, it usually is the H2-mediated diagram that gives the

dominant contribution. However, if one DM particle is heav-

ier than the other one, (16), the conversion of the heavier

particle into the lighter one is relevant, SS → χχ . Thus,

the contribution of χ to the relic density is dominant and

the only option for annihilation of χ is via H1-mediated and

H2-mediated diagrams into SM particles.

To solve numerically the two coupled Boltzmann dif-

ferential equations, we have implemented the model into

micrOMEGAs [36] (via LanHEP [37]). Since we have two

stable DM particles, the DM constraint in this model reads

DM h2 = Sh2 + χ h2 = 0.1199 ± 0.0027, (40)

according to the data by the Planck collaboration [38].

Another related quantity is the fraction of the DM density

that is due to S and χ , denoted by ξS and ξχ , respectively. So

ξχ =
χ

DM

, ξS =
S

DM

, with ξχ + ξS = 1. (41)

Figures 1, 2, 3, and 4 depict the relic density of fermionic

and scalar DM as a function of the DM mass. According

to these plots, the highest contribution of DM relic density

DM comes from fermionic DM, i.e., χ . Since in our model
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Fig. 1 Relic density as a function of fermionic DM mass for different

values of the coupling g
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Fig. 2 Relic density as a function of fermionic DM mass for different

values of the scalar mass Ms
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Fig. 3 The relic density as a function of the scalar DM mass for dif-

ferent values of coupling λφs

scalar DM is always heavier than fermionic DM, in addition

to annihilation to SM particles, it could also annihilate to
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Fig. 4 Relic density as a function of the scalar DM mass for different

values of the fermionic mass Mχ

fermionic DM particles. Therefore, its relic density is smaller

than the fermionic relic density.

Figure 1 shows the two DM relic densities as a function

of Mχ for different values of g. For any given value of g

the fermionic relic density χ features a double reduction

at the H1 and H2 resonances (respectively, at Mχ = MH1
2

=
62.5 GeV and at Mχ = MH2

2
). There is another reduction

due to the opening of the χχ → H2 H2 annihilation channel.

Note that, according to Eq. (14), MH2 itself depends on g,

Ms and Mχ , so it is not an independent parameter. Therefore,

in our relic density plots, it varies with g and DM masses.

In Fig. 1, scalar relic density S does not vary dramatically

with Mχ or g. Note that λs H is a determinative parameter in

scalar DM annihilation to SM particles. On the other hand,

annihilation of scalar DM to SM particles is more favorable

than its annihilation to fermionic DM, because most SM par-

ticles are lighter than fermionic DM. Therefore, S mostly

depends on λs H , rather than λφs . According to Eqs. (13) λs H

is given by

λs H =
M2

s

ν2
1

−
2λφs M2

χ

g2ν2
1

, (42)

and for the given parameters in Fig. 1, λs H is mostly deter-

mined by the first term of Eq. (42). Thus, it does not vary

much with Mχ or g.

In Fig. 2 DM relic densities are plotted versus Mχ for

different values of Ms . Similarly, for the given values of Ms

the fermionic relic density again features a double reduction

at the H2 and H1 resonances (respectively, at Mχ = MH2
2

and Mχ = MH1
2

= 62.5 GeV). Obviously, in this plot MH2

at the first resonance is lighter than MH1 = 125 GeV. For

the scalar relic density, according to Eq. (42), a larger Ms

leads to a larger λs H and therefore the DM–SM interaction

gets stronger, which leads to a smaller scalar relic density.

Furthermore, now for Ms = 500 GeV, the second term of Eq.

(42) can compete with the first term, and with the growth of

Mχ , λs H will decrease. Due to this reduction, the scalar DM–

SM interaction becomes weaker and therefore S increases

with Mχ . For larger Ms (for example Ms = 700 GeV again

the first term of Eq. (42) dominates and S increases less

with Mχ .

Figures 3 and 4 depict relic densities versus Ms . In Fig. 3,

for Mχ = 50 GeV there is a single reduction in fermionic

relic density around Ms = 700 GeV. This reduction corre-

sponds to MH2 = 2Mχ = 100 GeV which is a resonance

case. According to Eq. (42), λs H increases with Ms and the

scalar DM–SM interaction becomes stronger. Therefore, S

decreases with Ms . In addition, for the given parameters,

since the first term of Eq. (42) dominates, λs H , and therefore

S , is nearly independent of λφs . In this figure, only for small

Ms a little dependency of S to λφs can be realized.

Finally, in Fig. 4 we display the fermionic relic density as a

function of Ms for different values of Mχ . Therefore, we have

different resonance cases, corresponding to MH2 = 2Mχ for

each value of Mχ . For the given parameters, the scalar relic

density is not sensitive to different values of Mχ , because

as mentioned before S is mostly determined by λs H , and,

again according to Eq. (42), the second term can be neglected

in comparison with the first term. Thus, for the given values

of Fig. 4, only the first term, which is independent of Mχ ,

affects the scalar DM relic density so that on growing Ms ,

λs H increases and consequently S decreases.

In our model, the total DM relic density does not depend on

λφs . This parameter can only affect S , which has a small

contribution in DM = S + χ . Therefore, DM only

depends on g, Ms , and Mχ .

5 Phenomenological aspects

5.1 Direct detection

In this section, we investigate constraints on the parame-

ter space of our model which are imposed by the search for

scattering of DM–nuclei. Since no such collision events have

been observed yet by different DM direct detection experi-

ments, these experiments provide an exclusion limit on the

DM–nucleon scattering cross section. The strongest bounds

on the DM–nucleon cross section have been obtained by the

XENON1T [39] and LUX [40] experiments:

XENON1T : σSI ≤ 4.1 × 10−47 cm2,

LUX : σSI ≤ 2.2 × 10−46 cm2.

The spin-independent direct detection cross section of χ is

determined by H1 and H2 exchanged diagrams:
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Fig. 5 The direct detection cross section as a function of mass of a scalar DM. We set Mχ = 200 GeV and g = 0.2. b Fermion DM. We set

Ms = 500 GeV

σχ = ξχ

g3ν1

π Mχ (1 + (ν1g/Mχ )2)
μ2

χ

(

1

m2
H1

−
1

m2
H2

)2

f 2
n

(43)

where ξχ = χ

DM
and μχ is the reduced mass of nucleon

and fermionic DM and the coupling constant fn is given by

nuclear matrix elements and nucleon mass [41]. Similarly,

for the scalar DM candidate the effective spin-independent

direct detection cross section is given by

σS = ξS

μ2
S

4π M4
H1

M4
H2

m2
S

[

M2
s − 2λφs M2

χ/g2

ν1

(

M2
H2

1 + (ν1g/Mχ )2
+

M2
H1

g2ν2
1

g2ν2
1 + M2

χ

)

+
2ν1λφs

1 + (ν1g/Mχ )2
(M2

H1
− M2

H2
)

]2

f 2
n (44)

where ξS = S

DM
and μS are the reduced masses of nucleon

and scalar DM. The parameters λφs and g are independent

and have been defined in the previous section. It is remarkable

that the two terms in Eq. (44) may cancel against each other,

giving a suppressed cross section. In Fig. 5, we display the

direct detection cross section as a function of the mass of

scalar and fermion DM. As seen in Fig. 5a, σS has a minimum

in the value of Ms at which cancellation takes place. For

scalar DM, the direct detection cross section depends on the

scalar DM mass, λφs , g and Mχ . The fermionic DM direct

detection cross section does not depend on λφs . However, as

mentioned in the previous section, m H2 is not an independent

parameter and depends on three independent parameters of

our model, Ms , g and Mχ . Also m H2 may be very small and

so the contribution of its propagator to the direct detection

cross section can be very large. For this reason, a large portion

of parameter space is excluded by this observable. In order

to show the allowed region in parameter space, we display

scatter points in Fig. 6. Figure 6a–c depict the allowed regions

in g,λφs and Ms for scalar DM and Fig. 6d depicts the allowed

regions in g and Mχ for fermionic DM, which are consistent

with experimental measurements of σXenon100 and σLUX.

Notice that in the above analysis we separately suppose

ξS = 1 and ξχ = 1 in Fig. 5a, b. In the next step, we display

a combined analysis, direct detection and relic density in

Fig. 7. In order to study the effect of the direct detection

experiment on the model, the rescaled DM–nucleon cross

section ξχσχ and ξSσS should be considered. Scatter points

in Fig. 7 (left) show the allowed region in parameter space of

the model in the Ms and Mχ plane for different parameters

of the model which are consistent with the observed relic

density by the Planck collaboration [38]. In these figures,

it is supposed that 0.11 < h2 < 0.13 for the allowed

range of relic density and also 0 < λφs < 3, and 0.5 <

g < 1.5. The right figures depict the rescaled DM–nucleon

cross section versus DM mass for different values of the other

model parameters. The solid line determines the upper limit

of the LUX experiments [40] for the direct detection of DM

and the dashed line shows the regions of parameter space

which are expected to be probed by the future direct detection

experiment XENONnT [42].
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Fig. 6 a–c Depict the ranges of parameter space in the g, λφs and Ms

planes for scalar DM and d depicts the allowed regions in g and Mχ for

fermionic DM, which are consistent with experimental measurements

of σXenon1T and σLUX. In a, we set Ms = 500 GeV and Mχ = 200 GeV.

In b, we set Mχ = 200 GeV and g = 0.5. In d, we set Ms = 500 GeV

5.2 Indirect detection

The indirect detection of DM annihilation and decay using

observations of photons, charged cosmic rays, and neutrinos

offers a promising means of identifying the nature of this

part of the Universe. There are currently intensive interna-

tional efforts to detect these astroparticles as signature of DM

particles.

Indirect detection experiments hunt for the self-

annihilation (or decay) products of DM particles in regions

of high DM density (e.g., the center of our galaxy). Two

dark matter particles could annihilate to produce gamma rays

or SM particle–antiparticle pairs. Indirect detection experi-

ments may confirm DM annihilation through an excess of

gamma rays (e.g., the Fermi-LAT experiment [43]), positrons

(e.g., the PAMELA experiment [44]), antiprotons (e.g., the

AMS experiment [45]) or neutrinos (e.g., the IceCube exper-

iment [46]). A major difficulty is that various astrophysical

sources can resemble closely the signal expected from DM.

Therefore, multiple signals are required for a conclusive dis-

covery.

In the freeze-out scenario, the pair annihilation rate of a

thermal relic DM particle is directly linked to today’s relic

abundance. Based on the measured abundance of DM, a par-

ticle which constitutes all of the DM will have a total pair

annihilation cross section of < σv >∼ O(10−26) cm3/s
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Fig. 7 (Left) Scatter points depict the ranges of the parameter space of

the model in Ms and Mχ plane for different parameters of the model,

which are consistent with the observed relic density by the Planck col-

laboration [38]. (Right) Rescaled DM–nucleon cross section as a func-

tion of the DM mass for different values of the other model parameters.

One can also see LUX’ upper bound [40] and the regions of parameter

space which are expected to be probed by the future direct detection

experiment XENONnT [42]

[48]. This value is often used as a benchmark and is referred

to as the thermal relic cross section. Indirect detection exper-

iments which search for gamma rays and cosmic rays have

recently become sensitive to dark matter with this benchmark

cross section for masses up to around the weak scale, O(100

GeV). We have calculated the velocity-averaged annihilation

cross section of DM for 0.11 < h2 < 0.13, 0 < λφs < 3,

and 0.5 < g < 1.5 by using the micrOMEGAs package [36].

Our result is shown in Fig. 8. As is seen, the results cannot

saturate the particle fluxes detected in the aforementioned
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Fig. 8 Dependence of velocity-averaged annihilation cross section on

DM mass

indirect detection experiments limits. Figure 8 shows that

the annihilation cross section is always less than two orders

of magnitude smaller than the expected thermal cross sec-

tion. For exploring the DM properties in indirect detection

experiments, large annihilation rates are desirable. The DM

annihilation rate will usually be largest if it proceeds via an

s-wave process. Unfortunately, for the fermionic component,

which dominates the relic density, the s-wave annihilation to

SM products is absent. Therefore, the annihilation cross sec-

tion of our model is not large enough to give a signal in indi-

rect detection experiments, as the p-wave term is suppressed

by a factor of the DM velocity squared (with VDM ∼ 10−3

for dark matter particles in the galactic halo). This means

that astroparticle fluxes which are coming from the galactic

center could have other astrophysical origins.

5.3 Self-interaction

The self-interaction of DM can potentially be probed by

studying the offset between the DM halo and the stars of

a galaxy moving through a region of large DM density. The

first evidence for DM self-interactions has been reported [49]

based on observations of four elliptical galaxies in the inner

10 kpc core of the galaxy cluster Abell 3827. An updated

work [50] has considered a set of 12 galaxies and six clusters

in order to cover different scales. Including the core sizes

from dwarf to cluster (varying from 0.5 to 50 kpc), the afore-

mentioned cross section is parametrized as

σ eff
self/mDM ∼ 0.1 − 2 cm2g−1 (45)

where the effective self-interacting cross section is defined

by σ eff
self/mDM = ξ2

χ,S
σself
mDM

and ξχ,S is the fraction of one

of the two DM components. In particle physics units, this

corresponds to σ eff
self/mDM ∼ (0.43 − 8.72) × 103 GeV−3.

In the next step, we consider the DM self-interacting

cross section for scalar S and fermion χ DM. The DM self-

interactions include the processes SS −→ SS, χχ −→ χχ ,

SS −→ χχ , χχ −→ SS and Sχ −→ Sχ . Figure 9 shows

Feynman diagrams for DM self-interactions.

The main contributions to σ/Ms for scalar annihilation

(processes SS −→ SS[51] and SS −→ χχ ) are given in

appendix. For the process SS −→ SS[51], σ/Ms is pro-

portional to 1/M3
s and after imposing the constraint Ms >

310 GeV, we find that this situation does not saturate the

upper bound on the self-interaction cross section. Indeed, to

obtain a reasonably strong scalar DM self-interaction, the

mass of the scalar must be very small, Ms < 1 GeV. Since in

the non-relativistic regime s ∼ 4M2
s , σ(SS → χχ)/Ms will

be larger than σ(SS → SS)/Ms , This feature is depicted

in Fig. 10a. As is seen in this figure, the self-interaction

for scalar DM is very much smaller than the upper bound.

However, it is possible to obtain an upper bound on the self-

interaction cross section for scalar DM if we consider self-

interaction in the vicinity of resonance Ms ≃ MH2/2. Note

that according to Eq. (15), the mass of scalar DM cannot be

Fig. 9 The Feynman diagrams

for scalar and fermion DM

self-interactions
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Fig. 10 a The scalar self-interaction cross section as a function of the scalar DM mass. We set Mχ = 100 GeV and g = 0.5 λφs = 2 and λs = 2.

b The fermionic self-interaction cross section as a function of the fermion DM mass. The input parameters are similar to (a) except Ms = 500 GeV

equal to half of the SM Higgs mass. For the resonance regime

(Ms ≃ MH2/2), the s-channel H2 exchange diagram in Fig. 9

dominates and the scalar DM self-interaction may exceed the

experimental bound. Achieving the observed scalar DM self-

interaction cross section requires that Ms be severely tuned

such that |Ms − MH2/2| < 1 MeV (while Ms > 310 GeV).

However, since the main contribution of the observed relic

density was obtained from fermionic DM, and scalar DM has

a small contribution to the relic density, we expect that this

process is very rare in the center of the Milky Way.

In the following, we consider the self-interaction for the

case of Dirac fermionic DM which includes the processes

χχ −→ χχ and χχ −→ SS. The main Feynman dia-

grams which contribute to the aforementioned process are of

s-channel type for χχ −→ χχ in Fig. 9 and χχ −→ SS.

The cross sections of these processes are presented in the

appendix.

For the process χχ −→ SS in the non-relativistic limit

s < 4M2
s and so this process is forbidden. For the processes

χχ −→ χχ , since in the non-relativistic regime s ≃ 4M2
χ ,

the self-interaction of fermionic DM is much smaller than the

experimental bound (it is shown in Fig. 10b). It also turns out

that to bring about a reasonably strong fermionic DM self-

interaction (similar to scalar DM), we should consider self-

interaction in the near resonance Mχ ≃ MH2/2 or MH1/2.

Notice that for fermionic DM, fine tuning should be stronger

than for scalar DM due to the smaller self-interacting cross

section for fermionic DM.

To continue, we also calculate the DM self-interaction

cross sections for processes Sχ −→ Sχ in non-relativistic

limit. The cross sections is given in appendix. Given the

fact that the main contribution of observed relic density
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Fig. 11 The scalar–fermion self-interaction cross section as a function

of the fermion DM mass. We set Ms = 500 GeV and g = 0.5 λφs =
0.5, λs = 0.5 and different values for the momentum of the initial

fermionic DM. The shadowed panel indicates the allowed range of the

experimental measurements for the DM self-interaction

was obtained from fermionic DM and contribution of the

scalar DM is less than 1 percent of total relic density, occur-

rence of this process is very rare. To estimate the magni-

tude of σSχ−→Sχ in the non-relativistic limit, we suppose

s ≃ (Mχ + Ms)
2 and also consider M = (Ms+Mχ )

2
. Note

that this process does not affect the relic density of DM. In

Fig. 11, we depict the contribution of Sχ −→ Sχ versus M

for several values of initial momentum of fermionic DM. As

is seen, the specified process does not contribute to this cos-

mological constraint. In this estimation, we did not consider

the difference in the fraction of the two DM components.
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Fig. 12 a Br(H1 → Invisible) as a function of fermionic DM mass

for different values of g coupling and Ms = 500 GeV. b Scatter points

depict the ranges of parameter space in the mass of fermionic DM and

g for different values of Ms , which are consistent with the experimental

measurements of Br(H1 → Invisible)

5.4 Invisible Higgs decay

The observed Higgs boson at 125 GeV might decay to a

component of DM which does not interact with the detector.

Therefore it opens a window for exploring possible DM–

Higgs boson coupling. Notice that invisible Higgs boson

decays are only sensitive to the DM coupling in the regions

of parameter space which are kinematically allowed. Here,

we suppose that H1 is the SM Higgs boson; as a result, if

scalon, scalar and fermionic DM are lighter than the SM

Higgs boson, they can contribute to the invisible decay mode

of the Higgs boson with branching ratio

Br(H1 → Invisible)

=
Ŵ(H1 → χχ) + Ŵ(H1 → SS) + Ŵ(H1 → H2H2)

Ŵ(h)SM + Ŵ(H1 → SS) + Ŵ(H1 → χχ) + Ŵ(H1 → H2H2)
,

(46)

where Ŵ(h)SM = 4.15 [MeV] is the total width of the Higgs

boson [52]. The decay rates for H1 → χχ , H1 → SS and

H1 → H2 H2 are presented in the appendix. The branching

ratio of the invisible Higgs mode has been constrained by

various groups using the latest data from LHC [53–55]. The

ATLAS collaboration has reported a search of the SM Higgs

boson decay in its invisible decay mode, obtaining an upper

limit of 75%, at a mass of 125.5 GeV [55]. In the SM, the main

process which contributes to invisible decay of the Higgs

boson is h → Z Z∗ → 4ν, but Br(h → Z Z∗ → 4ν) =
1.2 × 10−3 [56] is below the sensitivity of the ATLAS col-

laboration analysis. According to Eq. (15), Ms > 310 GeV

and so the SM Higgs boson H1 cannot decay to scalar DM.

In Fig. 12a, we display Br(H1 → Invisible) as a function

of the fermionic DM mass for different values of the g cou-

pling. In this figure, we suppose Mχ < MH1/2 and assign

other parameters such that MH2 < MH1/2. By using the

ATLAS upper limit for invisible Higgs decay, we display the

allowed range of parameter space in Fig. 12b in our model.

Note that the main contribution to Br(H1 → Invisible) in

the portion of parameter space which is consistent with the

experimental limits arises from Ŵ(H1 → H2 H2). This fea-

ture is shown in Fig. 13. This figure separately depicts the

contribution of Br(H1 → Invisible) as a function of the

fermionic DM mass for Br(H1 → χχ), Br(H1 → H2 H2)

and Br(H1 → total). Comparing Fig. 13a, b implies for

small values of g, which is consistent with experimental lim-

its, that the main contributions of Br(H1 → Invisible) are

coming from Br(H1 → H2 H2). In our model, MH2 gen-

erally depends on g, Mχ and Ms . Since Ŵ(H1 → H2 H2)

depends on MH2 , in the allowed region of parameter space,

we expect that the branching ratio of the invisible Higgs decay

also depends on Ms . In Fig. 12b, we have shown for larger

values of Ms that the allowed area shrinks in the gs and Mχ

plane.

In Fig. 14, the ranges of parameter space in the mass of

fermionic DM and g coupling, which are consistent with the

observed relic density, are shown. Comparing Figs. 14 and

12b shows that the allowed regions for invisible Higgs decay

and the DM relic density do not overlap with each other.

Since the highest contribution of the DM relic density arises

from fermionic DM, for a small value of the g coupling, the

annihilation of DM to SM particles will be suppressed. This
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Fig. 13 a, b Different contributions of Br(H1 → Invisible) as a function of the fermionic DM mass for g = 0.1 (g=0.0005) and Ms = 500 GeV
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Fig. 14 Scatter points depict the ranges of parameter space in the mass

of fermionic DM and g coupling for different values of Ms , which are

consistent with the observed relic density

means for a portion of the parameter space, which is con-

sistent with invisible Higgs decay, the relic density exceeds

the value of the Planck measurement. Therefore, in order to

evade invisible Higgs constraints, one should assume that the

fermionic DM mass is larger than
MH1

2
.

6 Concluding remarks

Motivated by the DM and hierarchy problems, we presented

a scale-invariant extension of the SM. In order to have a scale-

invariant version of the SM with scalar DM, at least two more

scalars must be added to the theory. Moreover, in the absence

of additional fermionic fields, the model has a small number

of independent parameters, which complicates the options of

satisfying all theoretical and phenomenological constraints.

Given these conditions, we added a scalon field φ, a scalar

field S and a fermionic field χ as two-component DM to SM.

To summarize, the main novelty of this model, with respect

to other two-component DM models, is the much smaller

number of independent parameters due to the scale-invariant

conditions.

In this analysis, the relic density of two-component DM

was computed. We have shown that the highest part of the

contribution of the DM relic density arises from fermionic

DM. We have discussed the allowed regions in parameter

space of our model consistent with the observed relic density.

We have also taken into account the constraints of indirect

detection and direct detection of DM. In order to constrain

the parameter space of our model, we also checked the limits

from the self-interaction of DM. It is shown that the former

analysis cannot put a constraint on the model in a large por-

tion of parameter space. Only in the vicinity of the resonances

in Ms ≃ MH2/2 for scalar DM and Mχ ≃ MH2/2 or MH1/2

for fermionic DM, the self-interaction scenario constrains the

model.

Finally, we probed the limits from the invisible decay

width of the Higgs. We have found that the viable regions in

parameter space are in agreement with the upper limit on the

invisible Higgs decay branching ratio. We compared the con-

sistent region in parameter space for invisible Higgs decay

with the relic density of the fermionic DM and show that

in order to satisfy invisible Higgs constraints, the fermionic

DM mass should be larger than MH1/2.
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Appendix: DM self-interaction cross sections and decay

rates

In this appendix, we summarize the formulas of the self-

interacting cross sections for two components of DM and

decay rates of two scalars Higgs.

The main contribution to σ/Ms for scalar annihilation

(processes SS −→ SS[51] and SS −→ χχ ) in the non-

relativistic limit are given by

σ(SS → SS)/Ms

=
1

64π M3
s

∣

∣

∣

∣

∣

∣

λs+
2λφs Mχ/g

√

1 + (ν1g/Mχ )2

1

s − M2
H2

+ i MH2ŴH2

−
2λφsν1

√

1 + (ν1g/Mχ )2

1

s − M2
H1

+ i MH1ŴH1

∣

∣

∣

∣

∣

∣

2

, (47)

σ(SS → χχ)/Ms

=
1

32π Ms

(

1 −
4M2

s

s

)−1/2
(

1 −
4M2

χ

s

)3/2

×

∣

∣

∣

∣

∣

2λφs Mχ

1 + (ν1g/Mχ )2

1

s − M2
H2

+ i MH2ŴH2

+
2λφsν

2
1 g2/Mχ

1 + (ν1g/Mχ )2

1

s − M2
H1

+ i MH1ŴH1

∣

∣

∣

∣

∣

2

, (48)

where s is the usual Mandelstam variable and the decay rates

for H2 → χχ and H2 → SS are expressed by

Ŵ(H2 → χχ) =
g2 MH2

2π

(

1 −
4M2

χ

M2
H2

)3/2

, (49)

Ŵ(H2 → SS) =
λ2

φs M2
χ

16πg2 MH2

(

1 −
4M2

S

M2
H2

)1/2

. (50)

In the following, we calculate the self-interaction for the

case of the Dirac fermionic DM which includes the processes

χχ −→ χχ and χχ −→ SS. The cross sections of these

processes are given by

σ(χχ → χχ)/Mχ

=
g2s

16π Mχ

(

1 −
4M2

χ

s

)2
∣

∣

∣

∣

∣

∣

1
√

1 + (ν1g/Mχ )2

×
1

s − M2
H2

+ i MH2ŴH2

−
gν1/Mχ

√

1 + (ν1g/Mχ )2
×

1

s − M2
H1

+ i MH1ŴH1

∣

∣

∣

∣

∣

∣

2

, (51)

σ(χχ → SS)/Mχ

=
λ2

φs g2 Mχ

32π

(

1 −
4M2

s

s

)1/2
(

1 −
4M2

χ

s

)1/2

×

∣

∣

∣

∣

∣

2Mχ/g

1 + (ν1g/Mχ )2

1

s − M2
H2

+ i MH2ŴH2

+
2ν2

1 g/Mχ

1 + (ν1g/Mχ )2

1

s − M2
H1

+ i MH1ŴH1

∣

∣

∣

∣

∣

2

. (52)

We also calculate the DM self-scattering cross sections

for the processes Sχ −→ Sχ in the non-relativistic limit.

The cross sections can be written as

σ(Sχ → Sχ)/M ≃
λ2

φs M4
χ

8πp2(Mχ + Ms)3

×
[(

1

(m2
H2

)
−

1

(4p2 + m2
H2

)

)

(

2Mχ/g

1 + (ν1g/Mχ )2

)2

+
(

1

(m2
H1

)
−

1

(4p2 + m2
H1

)

)(

2ν2
1 g/Mχ

1 + (ν1g/Mχ )2

)2
⎤

⎦

×

⎡

⎣(
E2

p + m2
χ

√

E2
p − m2

χ

√

E2
k − m2

χ

⎤

⎦ , (53)

where p, E p and Ek are the momentum of the initial

fermionic DM, the energy of the initial fermionic DM and

the energy of the final fermionic DM, respectively.

We also calculate the following formulas for the decay

rates of H1 → χχ , H1 → SS and H1 → H2 H2:

Ŵ(H1 → χχ) =
MH1a2

H1χχ

2π

(

1 −
4M2

χ

M2
H1

)3/2

, (54)

Ŵ(H1 → SS) =
a2

H1SS

16π MH1

(

1 −
4M2

s

M2
H1

)1/2

, (55)

Ŵ(H1 → H2 H2) =
a2

H1 H2 H2

16π MH1

(

1 −
4M2

H2

M2
H1

)1/2

, (56)
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where

aH1χχ =
g2ν1

√

(g2ν2
1 + M2

χ )

,

aH1SS =
2ν1λφs

(1 + (ν1g/Mχ )2)1/2
+

(M2
s − 2λφs M2

χ/g2)

ν1

√

1 + (ν1g/Mχ )2
,

aH1H2 H2 =
M2

H1

2(1 + (ν1g/Mχ )2)5/2

[

ν4
1

(

g

Mχ

)5

−
g

Mχ

]

.
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