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ABSTRACT Machine learning based methods for blind deblurring are efficient to handle real-world
blurred images, whose blur may be caused by various combined distortions. However, existing multi-level
architectures fail to fit images of various scenarios. In this paper, we propose a scale-iterative upscaling
network (SIUN) that restores sharp images in an iterative manner. It is not only able to preserve the
advantages of weights sharing across scales but also more flexible when training and predicting with
different iterations to fit different images. Specifically, we bring in the super-resolution structure instead
of the upsampling layer between two consecutive scales to restore a detailed image. Besides, we explore
different curriculum learning strategies for both training and prediction of the network and introduce a widely
applicable strategy to make SIUN compatible with different scenarios, including text and face. Experimental
results on both benchmark datasets and real blurred images show that our method can produce better results
than state-of-the-art methods. Code is available at https://github.com/minyuanye/SIUN.

INDEX TERMS Blind deblurring, curriculum learning, scale-iterative, upscaling network.

I. INTRODUCTION

Image deblurring, aiming to recover a sharp image from
its blurred source, has long been a challenging and funda-
mental problem in computer vision and image processing.
Single image deblurring is highly ill-posed. Existing deblur-
ring methods on this issue can be classified into two major
categories: traditional iterative optimization algorithms and
learning-based methods.
Traditional methods simplify this problem by applying

various constraints to characterize the image blur (e.g.
uniform/non-uniform/depth-aware) and imposing different
image priors [1]–[6] to regularize the solution space, which
highly relies on the assumption model. However, in most
real scenarios (e.g. nature/text/face), image blurs are caused
by various distortions which are far more complex than the
assumption model.
To pattern complicated natural blurs, learning-based meth-

ods are introduced. They are first proposed for non-blind
deconvolution: Schuler et al. [7] follow a traditional two-
step procedure but learn the second step on a large dataset
of natural images through a neural network; Zhang et al. [8]
train a fully convolutional network to deconvolve the blurred
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images iteratively in a multi-stage framework; Xu et al. [9]
develop a deep convolutional neural network with two sub-
modules. However, the above methods are still under the
traditional framework.

With more advanced and complicated network models
brought in, the end-to-end deep learning methods are pro-
posed for blind deblurring. Nah et al. [10] propose an adver-
sarial network for deblurring with a multi-scale generator.
The finer scale image deblurring is aided by coarser scale fea-
tures so that the latent image is obtained step by step from the
1/2k (k = 2) scale to the original scale. However, using the
coarse-to-fine mechanism directly via a scale-cascaded struc-
ture leads to excessive network size and depth. To improve it,
Tao et al. [11] propose a scale-recurrent network (SRN) with
long-short term memory (LSTM) for the network to share
weights across scales, which significantly reduces the param-
eters of the network. As the multi-scale and scale-recurrent
models cost expensive runtime, Zhang et al. [12] propose a
deep multi-patch hierarchical network (DMPHN) which uses
a multi-patch hierarchy as input and refines the whole image
by the consecutive upper levels. All these state-of-the-art
methods adopt the multi-scale framework with fixed levels,
for both training and prediction. Therefore, their proposals
show some inadequacies when applied to various real-world
blurred images.
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FIGURE 1. One real example. (a) Result of Nah et al. [10]. (b) Result of
Tao et al. [11]. (c) Result of Zhang et al. [12]. (d) Our result.

In this paper, we propose a scale-iterative upscaling net-
work (SIUN). It starts from a down-sampled scale and
works in an iterative way. For each iteration, the output is
up-scaled until a full resolution image gets restored. There
are several advantages of this new framework: (1) Like
scale-recurrent structure, it has far fewer trainable parame-
ters through weights sharing than scale-cascaded structure;
(2) Compared with previous fixed-level architecture, it is
more flexible when training and predicting with variable
iterations to fit different images; (3) Instead of the upsampling
layer used in [10] and [11], it adapts residual dense network
(RDN) [13], a super-resolution architecture for upscaling so
that more details of the image can be restored; (4) It is
more compatible with diverse scenarios of real-world images,
including text and face, with the curriculum learning strategy
designed for both training and prediction. A visual example
compared with [10]–[12] is shown in Fig. 1. Our major
contributions are as follows:

1) We propose a novel scale-iterative architecture for
image deblurring. Compared with previous fixed-level
architectures, our network is more flexible by applying
different iterations for training and prediction, with
shared weights across scales.

2) We propose an upscaling network that adapts super-
resolution structure instead of the upsampling layer
used in previous works so that the essential features
of the down-sampled deblurring image can be pre-
served while upscaling between iterations to restore
more detailed images.

3) In both training and prediction, an appropriate incre-
ment of iterations can decrease recovery difficulty by
reducing blur magnitude between consecutive itera-
tions. We explore different curriculum-based strate-
gies for training and prediction, then adopt the best
3-iterations strategy for training and the widely appli-
cable 4-iterations strategy for prediction. Experimental
results show that a well-designed curriculum learning

strategy can bring with a faster convergence and is
more efficient to deal with images of various scenarios,
including text and face.

II. RELATED WORK

A. ITERATIVE & MULTI-LEVEL APPROACH FOR

IMAGE DEBLURRING

Iterative approach is widely used in traditional methods.
Fergus et al. [1] and Shan et al. [2] introduce a coarse-
to-fine strategy and the typical MAP (Maximum a Posteri-
ori) framework in traditional deblurring. With their pioneer
works, almost all the traditional energy-optimization-based
methods [3]–[6], [14]–[17] deal with dynamic deblurring
iteratively, which proves to be efficient: optimizing from a
down-sampled scale, upscaling gradually between iterations
until reaching the original scale. Early learning-based meth-
ods use neural networks in the deblurring process, such as
blur kernel prediction [18]–[20] and non-blind deconvolut-
ion [7]–[9], or just as an image prior [21], [22].
However, these methods are still under the traditional
iterative-optimization framework, which highly relies on the
assumption model.

More recent learning-based works restore sharp images
in an end-to-end manner, where the multi-level approach is
very efficient. Hradiš et al. [23] propose a CNN focused
on the restoration of text documents and Kupyn et al. [24]
train a generative adversarial network (GAN) for image
deblurring. Their results are suboptimal due to flat archi-
tectures. Nah et al. [10] propose a deep CNN based on
multi-scale architecture (as shown in Fig. 2(a)) for dynamic
scene deblurring. However, using coarse-to-fine mechanism
directly via scale-cascaded structure leads to excessive net-
work size and depth. Thus, Tao et al. [11] improve this
architecture by sharing weights across scales with a long
short-term memory (LSTM)-based scale-recurrent network
(Fig. 2(b)). As the multi-scale and scale-recurrent models
cost expensive runtime, Zhang et al. [12] propose a real-
time model named deep hierarchical multi-patch network
(DMPHN) (Fig. 2(c)). These methods all use multi-level
architecture and start deblurring from a tiny scale. However,
the multi-level architecture is not flexible enough as their
levels are not configurable after the networks designed, thus
cannot be applied to images of various scenes or different blur
magnitudes. To solve this issue, we propose a scale-iterative
upscaling architecture (Fig. 2(d)) that combines multi-level
with iterative approach.

B. IMAGE STRUCTURES & DETAILS RESTORATION

1) ENCODER-DECODER NETWORK

The encoder-decoder architecture is a neural network design
pattern. It is prevalent in neural machine translation and
sequence-to-sequence prediction [25]. Recently, it also shows
success in various computer vision tasks [26]–[29]. As its
name suggests, it is partitioned into two symmetric parts:
the encoder and the decoder. In an image-to-image task,
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FIGURE 2. Networks architecture comparison. (a) Scale-cascaded architecture of Nah et al. [10]. (b) Scale-recurrent architecture of Tao et al. [11].
(c) Hierarchical multi-patch architecture of Zhang et al. [12]. (d) Scale-iterative architecture of our network.

FIGURE 3. Details of our proposed scale-iterative upscaling network (SIUN) architecture.

the encoder maps an input image to a feature space, sub-
sequently the decoder takes this feature map as an input
and maps it to an output image. Ronneberger et al. [30]
add skip connections between corresponding feature maps
in encoder and decoder to improve its regression ability,
which is called U-Net. The encoder-decoder networks per-
form well for image deblurring: Kupyn et al. [24] present
an encoder-decoder network as the generator based on condi-
tional GAN and Tao et al. [11] use the U-Net structure with
ResBlocks [10] in a scale-recurrent way. Similarly, we adopt
the encoder-decoder network for image structures restoration.

2) SUPER-RESOLUTION (SR) NETWORK
It is well known that deblurring at a down-sampled scale is
much easier as the blur magnitude decrease. However, image
details are also lost during downsampling. When it comes to
upscaling, previous works [10], [11] use a simple upsampling
layer, which is not enough to preserve and recover details
information. To solve this problem, we use the structure of
SR to replace the upsampling layer, aiming to reconstruct
a high-resolution (HR) image from its low-resolution (LR)
counterpart so that the high frequency information can bewell
mapped to the next scale level. In this paper, we select to use
RDN for details restoration, as it makes full use of both global
and local hierarchical features.

C. CURRICULUM LEARNING

Curriculum learning means learning by gradually increasing
the difficulty of the tasks. Elman [31] and Bengio et al. [32]
have shown the positive effects of curriculum learning
for network performance in several tasks. More recent
researches [33], [34] show that its effectiveness is highly sen-
sitive with respect to the modality of progression through the
tasks. Different from [10]–[12], which directly reconstruct
latent images through the multi-level network, our SIUN
reconstructs latent images starting from down-sampled scale
and restore the images to its original size through several iter-
ations gradually. Thus, a well-designed curriculum learning
strategy is of a good help to our network. We study differ-
ent strategies with various iterations for both training and
prediction when designing SIUN, and finally adopt the most
suitable curriculum strategy to fit diverse scenes of blurred
images. The curriculum containing easy-to-hard decisions
can be settled for one query to gradually restore the corrupted
blurry image.

III. NETWORK ARCHITECTURE

Fig. 3 gives the architecture of our proposed scale-iterative
upscaling network (SIUN). The SIUN has mainly two lev-
els. The first (upper) level is constructed by using a modi-
fied RDN, combined with a U-Net (U-Net1). The first level
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performs a typical deblurring operation at a relatively smaller
image scale. Then the output of the first level is up-scaled
before fed to the second (lower) level. In such a design,
the image scale obtains a double in size while at the same
time the details of the deblurring results retain preserved.
We use another U-Net (U-Net2) to construct the second level.
Although the operating scale in the second level is larger
with a higher blur magnitude, with the aid of the first level,
the augment of its complexity is not salutatory but gradual.
With these two levels working together, a sharp image can be
obtained.
By iteratively repeating the above processing, the produced

sharp image has its size kept on being up-scaled until reaching
full resolution. This full resolution image is taken as the
final output. There are two indispensable parts to enforce our
curriculum learning strategy: (1) upscaling network (to learn
a series of tasks with gradually increasing difficulty as the
blur magnitude decrease when downsampling) and (2) scale-
iterative structure (to achieve iterative process).

A. UPSCALING NETWORK (UN)

The two-level upscaling network consists of two main parts:
the encoder-decoder network for image-structure restora-
tion and the upscaling structure for image-detail restora-
tion. We use the Encoder ResBlocks (EBlocks) and Decoder
ResBlock (DBlocks) that proposed by [11] to construct our
U-Net, as shown in Fig. 3. U-Net1 has the same architecture
of U-Net2, except that it does not contain OutBlock. This is
because U-Net1 is designed for features transformations and
U-Net2 is for image transformations. They can be expressed
as follows:

F0 = UNet1(F−1)

Li = UNet2([Bi,L
↑

i+1]) (1)

where F−1 is the shallow feature extracted from the first-
level’s input image and F0 is the feature reconstructed by
U-Net1. At the second level, U-Net2 takes the pyramid image
Bi and the up-scaled image Li+1 from the first level as its input
to reconstruct the second level’s output image Li. These two
U-Nets promise the restoration of the image structures.
As for upscaling, [10] and [11] use an upsampling layer

to scale up the image generated by the previous level. Differ-
ently, we apply an RDN-based super-resolution architecture
for a better reserving of the features from previous level. After
reconstructing features F0 by U-Net1, we further extract hier-
archical features with a set of RDBs (residual dense blocks),
then conduct a dense feature fusion to get FDF . The first-level
network can be expressed as follows:

L
↑

i+1 = HRDN ([Bi+1,Li+1]) (2)

where Bi+1 is the pyramid image and Li+1 is the output
image of the previous iteration. Thus, the two-level upscaling
network can be represented as follows:

Li = UN ([[Bi+1,Li+1],Bi])
= UNet2([Bi,HRDN ([Bi+1,Li+1])]) (3)

FIGURE 4. Unfolding our SIUN to express an I iterations deblurring
processing.

where Li is the output image at i-th iteration. The RDN
promises the restoration of the image details. Therefore,
by such a specific design, the whole two-level upscaling net-
work are able to restore both the main structures and details
of the blurred image.

B. SCALE-ITERATIVE STRUCTURE

We use a scale-iterative structure in our proposed SIUN
network. For an I -iterations deblurring processing, as shown
in Fig. 4, the SIUN can be unfolded to a very deep network.
We first generate a set of pyramid blurry images Bi(i = I , I−

1, . . . , 1, 0), with Bi denoting a 1/2i down-sampled image,
and then start the deblurring processing iteratively from the
smallest scale i = I . At the very beginning, we assume
LI = BI as the 0th iteration’s output. In the first iteration,
we use LI together with BI as the first level’s inputs, and use
BI−1 as the second level’s input.

In the second iteration, LI−1 (the first iteration’s output)
and BI−1 are used together as its first level’s inputs, and BI−2
is used as its second level’s input to produce its output LI−2.
By repeating this processing with I iterations, we are able
to get the final output L0 of the original size, and we denote
the final restored image L0 as LI . We use the subscript to
describe the intermediate results of different scales and use
the superscript to denote the final full resolution result. Thus,
for any i-th iteration, the network can be described as follows:

Li=UN ([[Bi+1,Li+1],Bi]), i = I−1, I−2, . . . , 1, 0 (4)

where we assume LI = BI for the first iteration. Such
kind of the scale-iterative structure promises an easy-to-hard
restoration and meanwhile extend the compatibility of our
SIUN.

C. CURRICULUM LEARNING STRATEGY

According to (4), for a blurry image B, we can divide the
deblurring task into I sub-tasks. Each sub-task is targeted to
obtain a sharp image (Li) from the pyramid blurry images
(Bi+1,Bi) and the predicted image of previous sub-task
(Li+1). The difficulty of the sub-tasks increases gradually,
because blur magnitude decreases when the blurry image is
down-sampled.
With regard to training, previous works tend to use the

multi-scale architectures [10], [11] and take the whole deblur-
ring as one single task. They take the output of each level into
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consideration and sum up them with a weight factor:

Loss =

3∑

i=1

wi · fi(B,G)

where wi is weight factors, fi(B,G) is the i-th level loss, B is
the blurry image, and G is the ground truth. Different from
their methods, our scale-iterative architecture takes each sub-
task as an independent component within one unified task.
In our design, the output image Li of i-th iteration is a restored
image at a certain scale, thus our training process can end at
any iteration while still having an effective trained network.
Therefore, each iteration is considered independently in our
loss function. We choose L1 loss to optimize our proposed
network:

Loss =
‖Li − Gi‖

Ni

where Li is the output of the network, Gi is the ground truth,
and Ni is the number of elements in Li to normalize at the i-th
scale.

As for prediction, we can also apply the curriculum strat-
egy although the network does not ‘‘learn’’ when predicting.
The same as what we do in training, we divide the deblur-
ring task into I sub-tasks, start the prediction from the I th

down-sampled scale, conduct the deblurring processing of the
up-scaled image until the original scale image is predicted.
Furthermore, the selection of the number I can be different
for various images. Intuitively, we may use fewer iterations
for an image with mild blur and use more iterations for an
image with severe blur. We study the relationship between
blur magnitude and the number of I for both training and
prediction, to reach a more efficient and balanced curriculum
learning strategy for SIUN. More detailed studies are given
in Section IV-A and IV-B.

IV. EXPERIMENTS

Training, Validation, And Testing Datasets: Nah et al. [10]
propose a new large-scale dataset that provides blurry/sharp
pairs of realistic images, named GOPRO. This dataset is
captured by GOPRO4 Hero Black camera and is com-
posed of 3214 pairs of blurry and sharp images at 1280 ×

720 resolution. Different from early works [18], [19], [35]
convolving sharp images with blur kernels, the blurry
images in GOPRO are generated by averaging consecutive
short-exposure frames to approximate long-exposure blurry
frames. The same as [10]–[12], we use 2,103 pairs for training
(training dataset) and the remaining 1,111 pairs for validation
(validation dataset). Then we apply our trained model on
Köhler dataset [36] (testing dataset), which is widely used
by both traditional methods and learning-based methods, for
further performance evaluation.
Training Details: For training, we first design a curriculum

learning strategy for the purpose to determine the number of I
(total number of iterations). Several pure-iteration strategies
I = 2, I = 3, and I = 4 are conducted to study the
performance influence of using different iterations in running

TABLE 1. Results of the models trained with different curriculum learning
strategies.

our model. We further explore the mixed-iteration strategies
I = 2, 3 (trained for I = 2 and I = 3 alternately between two
epochs) and I = 2, 3, 4. We use Adam [37] optimizer with
β1 = 0.9, β2 = 0.999 and ε = 10−8 for all our experiments.
In each iteration, we randomly crop a 256 × 256 patch from
each original image as the training input with a batch-size
of 16. The models for all the above strategies are trained with
learning rate scheduler of {1e−4, 3e−5} until convergence.
Then the model with the best strategy (detail discussion is
given in Section IV-A) is further trained with learning rate
scheduler of {5e−6, 1e−6}. All these models are implemented
with Keras framework (TensorFlow backend) and trained on
NVIDIA TITAN Xp GPUs.

A. CURRICULUM LEARNING STRATEGY FOR TRAINING

We design five different curriculum learning strategies I = 2,
I = 3, I = 4, I = 2, 3 and I = 2, 3, 4 for the training of
our SIUN, comparing their restoration results on validation
dataset, as shown in Table 1, where we make two main
observations.
First, for pure-iteration strategies, an appropriate increment

of iterations does help the model to obtain better restoration
results (I = 2 vs. I = 3). We believe the reason is that, as the
number of iterations increases, the difficulty of restoration
in each iteration decreases, which makes the deblurring task
easier to learn and helps the model to converge. However,
increasing iteration excessively may lead to a worse perfor-
mance (I = 3 vs. I = 4). It may be due to two reasons:
(1) As iteration number increases, the pyramid images fed to
the model will become too small to carry enough information
and therefore to have little effect on optimizing the model;
(2) More iterations may require a larger model and bigger
patch size for training, and even a larger dataset.
Second, mixed-iteration strategies have obtained worse

performances than pure-iteration ones. We can see that the
performance of strategy I = 2, 3 is worse than those of I = 2
and I = 3. And strategy I = 2, 3, 4 has a similar case. In addi-
tion, the more different iterations got mixed for training,
the worse the performance is (I = 2, 3 vs. I = 2, 3, 4). These
experimental results indicate that changing iteration number
during training can interfere with the model’s convergence.
In other words, a frequent change of the learning difficulty
during training will impede the convergence of the model.
From the above, we can see that using the strategy I =

3 helps to reach the best training performance. Therefore,
we select to use strategy I = 3 to further train our model, by a
learning rate scheduler of {5e−6, 1e−6}, and use the trained
model to study the curriculum strategy for prediction.
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FIGURE 5. Visual comparison on benchmark datasets. From top to bottom are blurry input, deblurring results of Nah et al. [10], Tao et al. [11],
Zhang et al. [12] and our results.

B. CURRICULUM STRATEGY FOR PREDICTION

On predicting a blurred image, by using our model, differ-
ent latent image LI can be obtained with different iteration
number I . Thus, the curriculum strategies also affect the
prediction results. We study the strategies I = 1, I = 2,

I = 3, and I = 4 respectively on validation dataset, with
the results shown in Table 2.
Note that for each blurry image, we can obtain four

full resolution restored images L i, i = 1, 2, 3, 4 with differ-
ent iteration numbers. The ‘‘Best of all’’ is determined by
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TABLE 2. Prediction results by applying different strategies.

TABLE 3. Statistics of blurry images which achieve the best results at
different iterations.

calculating the highest PSNR of these four images. With
different strategies, we can see that as iteration number
increases, the mean PSNR value on the whole dataset also
increases. However, different images may achieve their best
quality with different iteration numbers. We try to find out
the criteria that affects the selection of the iteration number.
Table 3 presents the statistical results of our experiment.
First, we study two parameters in Table 3: ‘‘Numbers’’

and ‘‘Mean PSNR’’. By using strategy I = 1, there are
102 images achieving the best restoration results with mean
PSNR of 29.89. Whereas using strategy I = 4, there are
442 images achieving the best restoration results with mean
PSNR of 24.56. To achieve the best restoration, the required
iteration number increases as the Mean PSNR decreases.
In other words, more iterations are required for severely
blurred images to achieve the best restorations.

Second, we study the parameters ‘‘Max PSNR’’ and ‘‘Min
PSNR’’ in Table 3. We can see that, for all the 4 strategies,
they each has a wide range of PSNR values. It implies that an
image of poor quality may need just one iteration to achieve
the best result, whereas an image of high quality may require
multiple iterations. It shows that, for a specific image, there
does not exist a certain relationship between the quality of the
image and the required iteration numbers.

Finally, from Table 2 and Table 3, we can see that the
4-iterations (I= 4) strategy is the most applicable when using
our iterative model for image deblurring. Note that our model
is trained with 3-iterations (I = 3) strategy. So, benefited
from our scale-iterative architecture, we can flexibly apply
different iteration strategies for training and prediction.

C. COMPARISONS

We compare our method with state-of-the-art works on two
benchmark datasets (GOPRO dataset and Köhler dataset) and
on real blurred images (Lai dataset [38]) as well. For learning-
basedmethods, we choose [10],1 [11],2 and [12]3 for compar-
isons, who have provided their source codes and models. For

1https://github.com/SeungjunNah/DeepDeblur_release
2https://github.com/jiangsutx/SRN-Deblur
3https://github.com/HongguangZhang/DMPHN-cvpr19-master

TABLE 4. Deblurring results on benchmark datasets. Size and Runtime
are expressed in MB and millisecond. The best performance is shown in
red and the second-best is in blue.

traditional methods, we choose [16]4 as a representation for
our additional comparisons on real images, since it performs
the best on real dataset among the state-of-the-art methods
according to [38].

Our model produces a full resolution sharp image for each
number of iteration, labeled as {L i, i = 1, 2, 3, 4}. The image
of the highest PSNR among them is selected and evaluated
as the ‘‘variable-iterations’’ results on benchmark datasets.
In other words, ‘‘variable-iterations’’ has the best restoration
performance for this specific original blurred image. We also
present the result, shown in Table 4, under the most appli-
cable 4-iterations strategy. All the images shown for visual
comparison are generated under this strategy as well.

1) BENCHMARK DATASETS

Table 4 shows our deblurring results on benchmark datasets.
All the images evaluated in our experiment are in RGB
mode unless otherwise stated. Thus, among the three models
(lstm/gray/color) released by Tao et al. [11], we use their
‘‘color’’ model for comparison. Zhang et al. [12] release
models with different hierarchies and we use their best
(1-2-4-8) DMPHN model. The PSNR and SSIM metrics on
GOPRO dataset are calculated by using MATLAB built-
in function ‘‘psnr()’’ and ‘‘ssim()’’ based on the generated
color results (SSIM is calculated in grayscale). The PSNR
and MSSIM metrics on Köhler dataset are calculated by the
executable provided by [36] .5

From Table 4, we can see that on GOPRO dataset, our
model has a comparable result with Tao’s but is better than
Nah’s. As onKöhler dataset, our outcome is better than that of
both. Zhang’s result on GOPRO dataset is the best, however,
his result on Köhler dataset is much worse. We believe the
reason is that his hierarchy approach is highly bounded to a
specific image size of 1280× 720, therefore not that applica-
ble to images with different sizes. It can also explain why his
model can reach 30fps@720p.

When we use another different dataset (Köhler dataset)
for further evaluation, our model shows a much better

4https://eng.ucmerced.edu/people/zhu/CVPR14_text_code_blind.zip
5http://people.kyb.tuebingen.mpg.de/rolfk/BenchmarkECCV2012/

evaluation_code.zip
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FIGURE 6. Deblurring results on real-world blurred images from Lai [38] dataset. From top to bottom are images restored by Pan et al. [16],
Nah et al. [10], Tao et al. [11], Zhang et al. [12] and ours. As space limits, the original blurry images are omitted here. They can be viewed in Lai
dataset with their names, from left to right: boy_statue, pietro, street4 and text1.
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compatibility on different scenarios, which can be further
proved by our experimental results on real blurred images
(referred to our discussion in the next paragraph). In addition,
as our model works in an iterative way, it shares weights
across iterations to keep a small size. Although the most
applicable strategy requires 4 iterations for deblurring an
image, our model has a very close performance with that
of Tao’s in runtime, since it runs fast at small scales. All
these learning-based methods can produce acceptable results
of images’ major structures, while our model can generate
more explicit details and sharper structures. Visual examples
are shown in Fig 5.

2) REAL BLURRED IMAGES

Although GOPRO dataset can simulate real-world blur well,
it is synthesized from high-speed cameras. Köhler dataset is
a real-world database, while it only contains four different
scenes. Thus, we further test our model on the real dataset
collected by Lai et al. [38], which contains 100 real-world
blurred images of different scenes. We compare our method
with that of Pan et al. [16], Nah et al. [10], Tao et al. [11],
and Zhang et al. [12]. The visual comparisons are shown
in Fig. 6, where we can see that our method can produce more
clearly restored images for different scenarios, including face
and text, with less artifact and more details. It surpasses the
state-of-the-art works of both traditional and learning-based
methods and shows wide compatibility to diverse scenes as
well.

V. CONCLUSION

In this paper, we propose a scale-iterative upscaling network
(SIUN) with weights sharing across iterations. In comparison
with previous fixed-level structures for blind deblurring, our
model is more flexible when applying to images of different
sizes and scenarios by using variable iterations. The use of
RDN for upscaling enables our network to restore blurred
images with more sharp details. Also, we investigate the
curriculum-based strategies for both training and prediction,
then present the best strategy for training and the most appli-
cable strategy for prediction, which extend the compatibility
to deal with images of different scenarios, including text and
face. Experimental results show that our method can produce
better results on both benchmark datasets and real-world
blurred images, compared with both traditional and learning-
based methods.
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