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ABSTRACT

The development of NWP models with grid spacing down to �1 km should produce more realistic

forecasts of convective storms. However, greater realism does not necessarily mean more accurate precipi-

tation forecasts. The rapid growth of errors on small scales in conjunction with preexisting errors on larger

scales may limit the usefulness of such models. The purpose of this paper is to examine whether improved

model resolution alone is able to produce more skillful precipitation forecasts on useful scales, and how the

skill varies with spatial scale. A verification method will be described in which skill is determined from a

comparison of rainfall forecasts with radar using fractional coverage over different sized areas. The Met

Office Unified Model was run with grid spacings of 12, 4, and 1 km for 10 days in which convection occurred

during the summers of 2003 and 2004. All forecasts were run from 12-km initial states for a clean com-

parison. The results show that the 1-km model was the most skillful over all but the smallest scales

(approximately �10–15 km). A measure of acceptable skill was defined; this was attained by the 1-km

model at scales around 40–70 km, some 10–20 km less than that of the 12-km model. The biggest improve-

ment occurred for heavier, more localized rain, despite it being more difficult to predict. The 4-km model

did not improve much on the 12-km model because of the difficulties of representing convection at that

resolution, which was accentuated by the spinup from 12-km fields.

1. Introduction

The resolution of operational numerical weather pre-

diction (NWP) models is continually being increased

with the expectation that this will lead to improved

predictions of local weather, especially precipitation.

Limited area models (LAMs) with a grid spacing of less

than 5 km are now common and �1 km will be consid-

ered typical within a decade. Much of the convection

that was once parameterized in coarser-resolution mod-

els will become explicitly resolved. It is hoped that this

transition toward explicit representation of convection,

along with the other higher-resolution benefits (e.g.,

more detailed orography), will result in more accurate

precipitation forecasts. Several studies have already

shown that models with a grid spacing of 1–4 km in

which convection is explicitly resolved are capable of

producing more realistic simulations of larger convec-

tive entities, such as severe thunderstorms, mesoscale

convective systems, and squall lines (Weismann et al.

1997; Romero et al. 2001; Speer and Leslie 2002; Done

et al. 2004).

However, greater realism does not necessarily mean

more accurate forecasts. Done et al. (2004) found that,

although the systems were better represented, point-

specific forecasts were not necessarily improved. Mass

et al. (2002) state that “decreasing grid spacing in me-

soscale models to less than 10–15 km generally im-

proves the realism of the results but does not necessar-

ily significantly improve the objectively scored accuracy

of the forecasts.” The problem we may have to face is

an inherent reduction in predictability at the new re-

solved scales as the grid spacing is reduced and convec-

tion is resolved. Lorenz (1969) argued that the ability to

resolve smaller scales would result in forecast errors

growing more rapidly. Zhang et al. (2003) performed an

experiment in which grid-scale noise was added to a

3.3-km model simulation and found that errors initially

grew rapidly at small scales in regions where convection

was present, which eventually infected larger scales

throughout the domain. Walser et al. (2004) also found
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that in convective situations forecast uncertainty in-

creased with decreasing scale and was significant at

scales up to 100 km. Findings such as these suggest that

we should be very careful about the interpretation of

precipitation forecasts from “storm resolving” NWP

models. It is important to avoid taking literally deter-

ministic information on scales that are expected to be

unpredictable for the forecast lead time, and for that

reason a probabilistic approach is more desirable for

both the presentation and verification of output on

those scales.

Probabilities are usually obtained from an ensemble

of forecasts (Richardson 2000; Mylne 2002), but for the

next few years within an operational context, this would

be prohibitively expensive and scientifically difficult if

convection is to be represented explicitly. An alterna-

tive is to apply suitable postprocessing to a determin-

istic forecast. Theis et al. (2005) describe a “nearest

neighbors” method in which the probability of rain at

each grid square was obtained by examining the values

of the nearby surrounding grid squares (in space and

time). This idea has also been used to produce rainfall

products from the Nimrod nowcasting system (Golding

1998) at the Met Office and in postprocessing the Rapid

Update Cycle (RUC) model (S. S. Weygandt and N. L.

Benjamin 2005, personal communication). Theis et al.

showed that their derived probabilities were more skill-

ful than the raw deterministic output. However, they

also noted that the verification results were sensitive to

the size of the neighborhood, and that the optimal size

is unknown. The highest scores were obtained from the

largest neighborhood they tried. The difficulty is that

the use of increasingly larger neighborhoods will even-

tually result in so much smoothing that the purpose of

having a high-resolution forecast is lost. Techniques are

required that can evaluate scales at which forecasts be-

come sufficiently skillful and identify the scales over

which increased resolution is beneficial (if any). Tradi-

tional grid-point-by-grid-point verification methods are

inappropriate when the small scales are unpredictable

because the structure on those scales can be regarded as

noise, and this increases the measured error; yet, a fore-

cast with little skill on small scales may still be useful

over a larger area (e.g., a river catchment).

New methods for verifying quantitative precipitation

forecasts (QPFs) have been developed in recent years.

One approach is to classify features as objects and in-

vestigate how predicted objects differ from those ob-

served. Techniques have been described by Ebert and

McBride (2000), Done et al. (2004), and Davis et al.

(2006). The advantage of the object-based approach is

that, in addition to giving a measure of forecast skill, it

can provide insight into the ability of a model to rep-

resent particular features; this is information that is in-

valuable for identifying shortcomings in NWP models.

The drawback is that forecasts have to be sufficiently

skillful in the first place to allow for a clear association

of objects. An alternative approach is to evaluate fore-

cast skill over different spatial scales. Briggs and Levine

(1997) used a wavelet decomposition of the forecast

and observed fields to obtain a multiscale verification

of 500-mb geopotential height fields. Precipitation fore-

casts were evaluated on different spatial scales by

Zepeda-Arce et al. (2000), who used the threat score

and depth–area–duration curves after averaging over

different sized areas to obtain the spatial scales. Casati

et al. (2004) presented a technique in which they ap-

plied Haar wavelet decomposition to separate forecast

errors into different spatial scales, and used the mean

square error (MSE) to obtain a display of forecast error

as a function of precipitation intensity and spatial scale.

Bousquet et al. (2006) have also used Haar wavelet

decomposition to identify the scales at which a 10-km

model fails to represent the spatial variability of rain-

fall. Another approach has been demonstrated by

Marzban and Sangathe (2006, 2008) who used a cluster

analysis method to verify precipitation fields. The novel

aspect of this approach is that an object-based method-

ology has been used to provide the means for examin-

ing forecast error on different scales.

A new scale-selective method for evaluating precipi-

tation forecasts will be introduced here that allows us to

determine the scales at which forecasts become skillful.

It uses the concept of nearest neighbors as the means of

selecting the scales of interest, and, like the method

developed by Casati et al. (2004), it is applied to thresh-

olds. The result is a measure of forecast skill against

spatial scale for each selected threshold. A valuable

spin-off from the process is that there is a direct rela-

tionship between the results obtained from the verifi-

cation and the nearest-neighbors approach for proba-

bilistic postprocessing of rainfall output.

The aims of the paper are twofold: the first is to

present the verification method, and the second is to

report on the impact of resolution on short-range fore-

cast skill over scales of interest when simulations of

convective events were run at 12, 4, and 1 km. In section

2 we explain the verification method, in section 3 we

describe the model setup, in section 4 we present the

results from the model verification, and in section 5 we

discuss the implications of the results. Finally, in section

6 we draw conclusions.

2. The verification method

The purpose of this verification method is to obtain a

measure of how forecast skill varies with spatial scale in
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a way that can be intuitively understood by users and is

also directly applicable for postprocessing. Radar data

processed from the Met Office Nimrod system (Gol-

ding 1998; Harrison et al. 2000) are used for comparison

with precipitation forecasts because of their spatial cov-

erage. Radar error will be discussed later. The verifica-

tion method will now be described.

a. Convert to binary fields

All of the model and radar data (either precipitation

accumulation or rates) are projected on to the same

verification grid. Suitable thresholds (q) are chosen

(e.g., q � 0.5, 1, 2, and 4 mm) and used to convert the

radar-observed (Or) and forecast-model (Mr) rainfall

fields into binary fields Io and IM. All grid squares ex-

ceeding the threshold have a value of 1 and all others a

value of 0,

Io � �1 Or � q

0 Or � q
and IM � �1 Mr � q

0 Mr � q
. �1�

An example of this conversion into a binary field for

an accumulation threshold of 4 mm is shown in Figs.

1a,b. Percentile rather than accumulation thresholds

are also used for conversion into a binary field. For

example, the 95th percentile threshold selects the high-

est 5% of observed and forecast accumulations (over all

grid squares) for comparison. The purpose of doing this

is to remove the impact of any bias in rainfall amounts

when we wish to focus on the spatial accuracy of the

forecasts.

FIG. 1. (a) Nimrod composite radar rainfall accumulation from 1600 to 2200 UTC 27 Apr

2004, (b) binary image of accumulations exceeding 4 mm, and fractions computed from the

4-mm binary image using neighborhood lengths of (c) 55 and (d) 105 km. The bar charts in

(b)–(d) plot the variance of the fraction fields against neighborhood size, normalized against

the binary field (b), to show how sharpness is reduced with neighborhood length (km). The

shaded bars match the pictures.
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b. Generate fractions

The process for generating the fractions is essentially

the same as the nearest-neighbors method used by

Theis et al. (2005) to obtain probabilities. For every grid

point in the binary fields obtained from Eq. (1) we

compute the fraction of surrounding points within a

given square of length n that have a value of 1 (i.e., have

exceeded the threshold). This is described by Eqs. (2)

and (3) below, in which O(n)(i, j) is the resultant field of

observed fractions for a square of length n obtained

from the binary field Io and M(n)(i, j) is the resultant

field of model forecast fractions obtained from the bi-

nary field IM. These quantities assess the spatial density

in the binary fields,

O�n��i, j� �
1

n2 �
k�1

n

�
l�1

n

IO�i � k � 1 �
�n � 1�

2
, j � l � 1 �

�n � 1�

2 �, �2�

M�n��i, j� �
1

n2 �
k�1

n

�
l�1

n

IM�i � k � 1 �
�n � 1�

2
, j � l � 1 �

�n � 1�

2 �. �3�

Here i goes from 1 to Nx, where Nx is the number of

columns in the domain and j goes from 1 to Ny, where

Ny is the number of rows. Fractions are generated for

different spatial scales by changing the value of n, which

can be any odd value up to 2N � 1, where N is the

number of points along the longest side of the domain.

A square of length 2N � 1 is the smallest that can

encompass all points in the domain for squares cen-

tered at any point in the domain. Figure 2 provides a

visual interpretation. The pictures are schematic repre-

sentations of radar and forecast binary fields on the

same grid. At the central grid square the binary forecast

is wrong; the radar field has a value of 1, and the fore-

cast field has a value of 0. However, when fractions are

computed over the 5 	 5 (n � 5) neighborhood, the

radar and forecast fractions are both 6/25 (six shaded

grid squares in each). In this example the forecast is

deemed correct over the area of that n � 5 neighbor-

hood.

Figures 1c,d show fractions generated for a real case.

As the size of the neighborhood is increased, the sharp-

ness (see Potts 2003) is reduced (bar charts in Fig. 1),

and the fractions obtained from the larger neighbor-

hood in Fig. 1d give a smoother picture than in that in

Fig. 1c. Over the largest neighborhood required, length

� 2N � 1, the same fraction would be obtained at every

grid square; then, there is no sharpness. Points outside

the domain are assigned a value of zero.

By using squares, we have applied the convolution

kernel for a mean filter to the binary field, which is

something used often in image processing. Equation (2)

can be rewritten as

O�n��i, j� � �
k�1

n

�
l�1

n

IO�i � k � 1 �
�n � 1�

2
, j � l � 1 �

�n � 1�

2 �K�n��k, l�, �4�

where K(n)(k, l) is the n 	 n kernel for a (square) mean

filter. It might be preferable to use a different kernel,

such as a circular mean filter or a Gaussian kernel.

However, we do not believe it would alter the key re-

sults enough to warrant the additional complexity, be-

cause an important priority is to keep the method as

simple as possible.

c. Compute fractions skill scores

The MSE for the observed and forecast fractions

from a neighborhood of length n is given by

MSE�n� �
1

NxNy
�
i�1

Nx

�
j�1

Ny


O�n�i,j � M�n�i, j�
2. �5�

FIG. 2. Schematic example of radar and forecast fractions (see

text).
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The MSE is not in itself very useful because it is highly

dependent on the frequency of the event itself. A MSE

skill score has been computed relative to a low-skill

reference forecast (Murphy and Epstein 1989). This is

defined as the fractions skill score (FSS),

FSS�n� �
MSE�n� � MSE�n�ref

MSE�n�perfect � MSE�n�ref

� 1 �
MSE�n�

MSE�n�ref

,

�6�

where MSE(n)perfect � 0 is the MSE of a perfect fore-

cast for neighborhood length n. The reference used

(MSEref) for each neighborhood length (n) is given by,

MSE�n�ref �
1

NxNy
��

i�1

Nx

�
j�1

Ny

O�n�i, j
2 � �

i�1

Nx

�
j�1

Ny

M�n�i, j
2 �.

�7�

It can be thought of as the largest possible MSE that

can be obtained from the forecast and observed frac-

tions. The relationship between the FSS and the more

conventional reference forecasts (e.g., random fore-

cast) is introduced in section 2d.

Figure 3 shows the way the FSS typically varies with

neighborhood length n, given a sufficiently large

sample. It has a range from 0 to 1. A forecast with

perfect skill has a score of 1; a score of 0 means zero

skill. Skill is lowest at the grid scale, that is, when the

neighborhood is only one grid point and the fractions

are binary ones or zeros. As the size of the neighbor-

hood is increased, skill increases until it reaches an as-

ymptote at n � 2N � 1. If there is no bias (an equal

number of observed and forecast pixels exceeding the

threshold) the asymptotic fractions skill score (AFSS)

(FSS at n � 2N � 1) has a value of 1, indicating perfect

skill over the whole domain. If there is a bias, then the

observed frequency fo (fraction of observed points ex-

ceeding the threshold over the domain) is not equal to

the model-forecast frequency fM, and from Eqs. (5), (6),

and (7) it can be shown that

AFSS � 1 �
� fo � fM�2

f o
2 � f M

2
�

2 fo fM

f o
2 � f M

2
. �8�

This descriptor of the bias is useful because it relates

the bias to the spatial accuracy of a forecast and is

linked to the conventional frequency bias ( fo /fM), with

the advantage of being less sensitive to biases from

small frequencies (AFSS � 0.8 is a factor of 2, AFSS �

0.5 is a factor of 4, and AFSS � 0.2 is a factor of 10

frequency bias).

The practical benefit of plotting the FSS against spa-

tial scale is also demonstrated by Fig. 3. Skill increases

with spatial scale until there comes a point at which

some desired level of skill has been reached (see, e.g.,

scalemin below). This is the smallest scale at which out-

put from the forecast system should be presented, al-

though this scale should always exceed five grid lengths

(Lean and Clark 2003; Skamarock 2004; Bousquet et al.

2006). At larger scales, skill increases further, but the

information content of the forecasts is limited by the

additional smoothing. The largest scale over which out-

put should be presented becomes a compromise be-

tween user requirements, cost effectiveness, and fore-

cast skill; it may be considered a waste of resources to

run a 1-km model for forecasting on scales as large as

FIG. 3. Schematic graph of skill against spatial scale (see text).
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100 km, but it may be perhaps useful for flood predic-

tion on a scale of 50 km.

d. An idealized example

Figure 4a shows an idealized situation in which a

band of rain, one grid square wide, is predicted with

different displacement errors. The structure, alignment,

and coverage of the “observed” and “forecast” rain-

bands are identical; only the distance between them

varies. FSS is plotted against neighborhood size in Fig.

4b for forecast displacements of 1, 3, 11, and 21 grid

squares. When the length of the sampling square is less

than or equal to the displacement error, there is no skill

and the FSS � 0. For spatial scales (sampling squares)

longer than the displacement error the FSS increases

with spatial scale, eventually reaching a value of 1 (be-

cause there is no bias in this experiment). The smaller

the forecast error, the more rapidly the skill increases

with scale.

The curves intercept two horizontal dashed lines.

The first (labeled “random”) denotes the FSS that

would be obtained from a random forecast with the

same fractional coverage over the domain as that of

the rainband (i.e., equal to the base rate, fo). It is given

by FSSrandom � fo. In this example the rainband co-

vered 1% of the domain, so a random forecast has

FSSrandom � 0.01. The other dashed line (labeled “uni-

form”) represents the FSS that would be obtained at the

grid scale (n � 1) from a forecast with a fraction/

probability equal to fo at every point. It is given by

FSSuniform � 0.5 � fo/2 (i.e., halfway between ran-

dom forecast skill and perfect skill); so, in this example

FSSuniform � 0.505. Whereas the random forecast has

low skill unless the base rate is large, the uniform fore-

cast is always reasonably skillful, but has zero sharp-

ness. The FSS curve reaches FSSuniform at a scale

termed scalemin. If the domain is large, fo → 0 and

FSSuniform → 0.5; then, for a displacement distance D,

scalemin � 2D. This is shown visually by the sampling

squares A and B in Fig. 4. scalemin represents the small-

est scale over which the forecast output contains useful

information (unless specific user requirements dictate

otherwise). It is also possible to compute categori-

cal scores for this idealized situation. When FSS �

FSSuniform (at scalemin) the hit rate becomes 0.5 and the

critical success index (CSI) is 0.33. Here FSSuniform is

considered to be a suitable value for the “target skill” in

Fig. 3.

3. The NWP model and experimental setup

The Met Office’s Unified Model (UM) solves non-

hydrostatic, deep-atmosphere dynamics using a semi-

FIG. 4. Idealized situation in which forecasts of a band of rain 1 pixel wide are misplaced by

varying distances. The dark gray band represents the observed rainfall. The light gray bands

represent forecast bands shifted by 3 and 11 pixels. The curves on the right show the variation

of FSS with neighborhood length for forecast bands misplaced by 1, 3, 11, and 21 pixels. The

horizontal dashed lines are FSSuniform and FSSrandom; A and B show where the 3 and 11 pixel

separation curves cross FSSuniform. The dashed squares show the neighborhood sizes for A and B.
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implicit, semi-Lagrangian numerical scheme (Cullen et

al. 1997; Davies et al. 2005). The model includes a com-

prehensive set of parameterizations, including surface

exchange (Essery et al. 2001), boundary layer (Lock et

al. 2000), mixed phase cloud microphysics (Wilson and

Ballard 1999), and convection (Gregory and Rowntree

1990). The model runs on a rotated latitude–longitude

horizontal grid with Arakawa C staggering and a ter-

rain-following hybrid-height vertical coordinate with

Charney–Philips staggering. Soil moisture fields are

generated offline from observations using the UM sur-

face exchange scheme (Smith et al. 2006).

For the trials reported here, the 4-km model was

one-way nested inside the 12-km model and the 1-km

model was one-way-nested inside the 4-km model

(Fig. 5). The differences in configuration between the

models are summarized in Table 1. It was considered

reasonable to run the model without a convection pa-

rameterization scheme at 1 km. It is less clear whether

this is sensible at 4 km. Convection schemes are not

designed for this resolution, but without one it is not

possible to represent smaller showers. The approach

adopted here was to use the Gregory and Rowntree

scheme, but limit its activity by restricting the cloud-

base mass flux (Roberts 2003). Sensitivity experiments

have shown that this approach usually gives more real-

istic simulations than either including the unrestricted

scheme or switching it off altogether, but the underly-

ing problem remains.

The operational 12-km model is run without any

horizontal diffusion but does apply diffusion locally

where there are high vertical velocities in order to sup-

press gridpoint storms. At 4 and 1 km, diffusion is �4 in

the horizontal with a fixed diffusivity designed to damp

two grid-length waves with an e-folding time of eight

time steps; this is derived on the basis of the maximum

shear that should be permitted to occur. Results have

been compared with different options (�2 and different

diffusivities), and the current choice produces the most

acceptable power spectra in winds. The 12-km model

assumes that rain falls straight out of the model without

being advected by the winds. It is likely to be a poor

approximation on horizontal scales of less than 10 km,

and for this reason prognostic rain was included in the

4- and 1-km model runs.

To obtain aggregated statistics, 10 days with convec-

tive activity were chosen from the summers of 2003 and

2004 (Table 2). For each convective day, four forecasts

at each resolution were run at 3-h intervals. The 12-km

forecasts were run for 7 h and used three-dimensional

variational data assimilation (3DVAR) (Lorenc et al.

2000) for most observation types, in addition to the

Moisture Observation Preprocessing System (MOPS)

(Macpherson et al. 1996) and latent heat nudging

(LHN) (Jones and Macpherson 1997). The 4- and 1-km

FIG. 5. The domains used for the 12-, 4-, and 1-km models.

TABLE 1. Model configurations.

12 km 4 km 1 km

Time step 5 min 100 s 30 s

Vertical levels 38 38 76

Domain 146 	 182 points 190 	 190 points 300 	 300 points

Horizontal diffusion None Eight time steps �4 Eight time steps �4

Prognostic rain No Yes Yes

Convection scheme Standard mass flux Restricted mass flux None

Assimilation 3DVAR, MOPS,

and LHN

Initialize from 12 km

T � 1 h

Initialize from 12 km

T � 1 h
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models were initialized from the 12-km model at T � 1

and run for 6 h. The 4- and 1-km models were initialized

with interpolated 12-km data in order to keep the com-

parison clean. It is understood that this reduces the ex-

pected benefits of running the model at finer resolution.

4. Verification results

First, results from the forecasts of two individual

cases will be shown to allow a comparison of FSS curves

with a visual interpretation of forecast skill. Then, ag-

gregated results will be shown to provide some insights

into model skill and behavior. The forecast and radar

data have been projected onto a 5-km verification grid

over an area covering most of the 1-km domain (ex-

cluding the 10 km around the edge).

a. Visual comparison for two cases

Often, it is difficult to make a reliable subjective

evaluation of forecast skill because rainfall patterns are

complex. However, on the occasion when a visual as-

sessment was more clear cut, the FSS curves were found

to be in good agreement with the perceived skill. Two

examples are shown to demonstrate this. The first is

FIG. 6. Rainfall accumulations over the period 1600–2200 UTC 27 Apr 2004 (case 5) from

(a) radar, (b) the 12-km model forecast from 1500 UTC, (c) the 4-km model forecast from

1600 UTC, and (d) the 1-km model forecast from 1600 UTC. White dashed lines enclose the

top 5% of accumulations (
95th percentile).

TABLE 2. Summary of cases.

Case

no. Date Model runs Description

1 13 May 2003 6, 9, 12, 15 Organized thunderstorms

2 25 May 2003 6, 9, 12, 15 Scattered showers

3 1 Jul 2003 6, 9, 12, 15 Organized showers

4 28 Aug 2003 6, 9, 12, 15 Bands of convective rain

5 27 Apr 2004 9, 12, 15, 18 Localized thunderstorms

6 8 Jul 2004 3, 6, 9, 12 Bands of convective rain

7 10 Jul 2004 3, 6, 9, 12 Scattered showers

8 20 Jul 2004 6, 9, 12, 15 Scattered showers

9 3 Aug 2004 6, 9, 12, 15 Organized thunderstorms

10 20 Aug 2004 3, 6, 9, 12 Organized showers
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from case 5, in which all of the forecasts predicted rain

in the wrong place (Fig. 6), and includes the worst in-

dividual forecast in the trial. The second is from case 9,

in which all of the forecasts compared well with the

radar (Fig. 7). Skill curves for each of these forecasts

are shown in Fig. 8. Here we have used a 95th percen-

tile threshold (see section 2a) rather than an accumu-

lation threshold to focus on the spatial accuracy of the

forecasts.

Starting with case 5 (Fig. 6), it is clear that none of

the forecasts were able to predict the area of rain in the

correct place. Figure 8a supports this view by showing

that at scales up to 40 km, the 12-km forecast was less

skillful than a random forecast, and the 4- and 1-km

forecasts were worse than random at scales up to �85

km. The 4- and 1-km forecasts look very similar, and

this is reflected in their almost identical FSS curves.

Both forecasts achieved FSSuniform at a scale of around

180 km. This is consistent with an observed misplace-

ment of the rain area. The visual impression given by

the 12-km forecast is that it was somewhat more skillful

than the others because it predicted some rain farther

east. The FSS curve is in agreement with this perception

of improved skill. It is more skillful at all scales, with

FSSuniform achieved at a scale of 160 km.

Turning to case 9 (Fig. 7), all of the models predicted

the broad distribution of the rainfall very well, although

the 12-km forecast was unable to reproduce the highest

totals. Figure 8b shows that the 12- and 4-km models

had similar skill over all scales, but at the smaller scales

(�60 km) the 1-km forecast was the most skillful. This

reflects the visual impression that the 1-km forecast was

locally more accurate in the London, United Kingdom,

area, where much of the heaviest rain fell. The 1-km

FSS exceeded FSSuniform at a scale of �15 km, com-

pared with �40 km for the 12- and 4-km forecasts. Note

FIG. 7. Rainfall accumulations over the period 1300–1900 UTC 3 Aug 2004 (case 9) from (a)

radar, (b) the 12-km model forecast from 1200 UTC, (c) the 4-km model forecast from 1300

UTC, and (d) the 1-km model forecast from 1300 UTC. White dashed lines enclose the top 5%

of accumulations (
95th percentile). The cross marks the location of the highest observed

accumulations.
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that the use of a percentile threshold has removed the

impact of the underprediction in the 12-km forecast.

The use of a high accumulation threshold (e.g., 16 mm)

would lead to a low FSS for the 12-km model at all

scales. Both examples have shown that the verification

results are in agreement with the visual interpretation

for both the gross spatial errors and those that are more

subtle on smaller scales.

b. Aggregated results from 40 forecasts

Results will be presented both for aggregations of 4-h

accumulations from the last 4 h of each forecast (hours

3–7; to avoid the initial spinup period of the 4- and 1-km

forecasts), and for aggregations of hourly accumula-

tions from the entire 6 h of each forecast.

1) ERROR BARS

The error bars in Figs. 9 and 10 (and Fig. 14, below)

represent the effect of uncertainty in radar from

(among several contributors) (i) spurious rainfall re-

sulting from anomalous propagation (anaprop) or

ground clutter, (ii) inadequacies in the conversion from

reflectivity to rain rate, and (iii) rain drift below the

radar beam. Most of the anaprop and ground clutter is

automatically removed during the Nimrod quality con-

trol process (Harrison et al. 2000), but some is missed.

Other quality control procedures within the Nimrod

system are also described in Harrison et al. (2000). To

understand how these errors may affect the results,

three types of modification were made to the radar

fields: 1) A random increment of up to a factor of 2 was

added to every nonzero grid-square accumulation to

represent errors in rain rate, 2) a small area of high

accumulations (5 	 5 grid squares) was added to rep-

resent anaprop, and 3) every grid square was shifted

two grid squares to account for spatial misplacement.

The error bars were obtained by measuring the largest

FSS deviations at each scale that resulted from the

modifications to the radar fields.

2) AGGREGATED ACCUMULATIONS OVER THE

FINAL 4 H (HOURS 3–7)

FSS curves for accumulation thresholds of 0.2, 1.0,

4.0, and 16.0 mm are displayed in Fig. 9. For the low

thresholds of 0.2 and 1.0 mm, both the 1- and 12-km

models were significantly more skillful over all scales

than the 4-km model. For a 1.0-mm threshold,

FSSuniform was reached at scales of 17 (12-km forecasts),

36 (4-km forecasts), and 14 (1-km forecasts) km. The

4-km model was poorer because it tended to underpre-

dict light rain (discussed later). For the higher thresh-

olds of 4.0 and 16.0 mm, the 4- and 1-km models have

comparable skill, but the 12-km model is considerably

worse, especially for the 16.0-mm threshold, for which

FSSuniform is not reached at any scale. The FSS of only

0.05 at scales 
 100 km is the result of the bias resulting

from an underprediction of locally heavy rain. In cir-

cumstances such as this where the model grossly under-

predicts, it is very difficult to extract meaningful infor-

mation on the spatial accuracy of the model. To focus

FIG. 8. Graphs of FSS against neighborhood length for 12-, 4-, and 1-km model forecasts using a 95th percentile

threshold for (a) 27 Apr 2004 (case 5) and (b) 3 Aug 2004 (case 9).
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on the spatial accuracy, we have used percentile thresh-

olds.

FSS curves using percentile thresholds are shown in

Fig. 10. The 75th percentile locates widespread rainfall

accumulations that occupy a quarter of the domain.

Increasingly higher percentiles sample less extensive

rain areas. The 99th percentile threshold picks out lo-

calized features in the rainfall pattern that occupy only

1% of the domain. Two patterns are evident. First, the

more localized rainfall features are more difficult to

predict accurately for any given spatial scale or model

resolution. Second, the 1-km model is the most skillful

over all of the thresholds, and the gain is greatest for

more localized rainfall. For the 95% (75%) threshold,

FSSuniform is reached at a scale of 65 km (27 km) with

the 1-km model compared with 84 km (33 km) with the

12-km model. The greater improvement in skill at 1 km

for the more localized rainfall is not surprising, because

it is more likely to respond to improvements in the

representation of orography and local dynamics, as well

as the transition to explicit convection; whereas the dis-

tribution of more widespread rainfall (an envelope of

convective activity) is dependant on the larger-scale

mesoscale forcing, which should vary less between reso-

lutions, especially when the initial conditions are iden-

tical. In contrast to the trend in FSS seen in Fig. 9 (using

accumulation thresholds), the 4- and 12-km models

have similar skill over all scales for all of the percentile

FIG. 9. Graphs of aggregated FSS against neighborhood length for rainfall accumulations over the last 4 h of the

12-, 4-, and 1-km model forecasts using accumulation thresholds of (a) 0.2, (b) 1.0, (c) 4.0, and (d) 16.0 mm. The

error bars in each panel apply to all curves.
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thresholds, indicating that the differences found in Fig.

9 were due to differences in the biases.

The scale at which FSSuniform is reached (scalemin) is

plotted as a function of percentile thresholds to exam-

ine the variation of skill with both resolution and

threshold (Fig. 11). All three model resolutions become

less skillful as the areas of rain being sampled become

more localized. The graph also confirms that, however

widespread or localized the rain, the 1-km model

reaches FSSuniform at smaller scales than the 12- and

4-km models, and that the improvement is greater

when more localized rainfall is sampled (e.g., an im-

provement of 7 km for the 70th percentile compared to

18 km for the 95th percentile).

3) BIAS

It is instructive to investigate how the frequency bias

of the forecast binary fields fM /fo varies with accumu-

lation threshold. This is shown in Fig. 12a and can be

compared with another measure of the bias, the AFSS

(see section 2), which is given by 2fo fm/( f 2
o � f 2

M) for

each threshold (Fig. 12b). Starting with the 12-km

model, Fig. 12a shows an overprediction of the number

of low-accumulation pixels (�5 mm) and an underpre-

diction of the number of high-accumulation pixels. Fig-

ure 12b shows that the 12-km model becomes progres-

sively more biased (lower FSS) as the accumulation

threshold gets larger. The two graphs may appear to be

FIG. 10. Graphs of aggregated FSS against neighborhood length for rainfall accumulations over the last 4 h of the

12-, 4-, and 1-km model forecasts using percentile thresholds of (a) 75%, (b) 90%, (c) 95%, and (d) 99%. The error

bars in each panel apply to all curves.
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somewhat contradictory, but they provide a different

perspective. The frequency bias (Fig. 12) is computed

from all of the binary pixels added together over the

whole trial for each given threshold. It says how much

a model under- or overpredicts, on average, but in-

cludes a cancellation between over- and underpredict-

ing individual forecasts. The AFSS shown is an average

from each of the forecasts. It does not have the problem

of cancellation because it is always positive and there-

fore does not record the sense of the bias.

Returning to the 12-km forecasts, the overprediction

(underprediction) of low (high) thresholds is character-

istic of a model that does not have sufficient resolution

to represent most of the convection explicitly, and in-

stead has to rely on a convection parameterization

scheme. The decrease of AFSS with threshold (Fig.

12b) indicates that the individual forecast biases in-

crease with threshold. The low scores for high thresh-

olds are the combined result of two modes of behavior

in the 12-km model. Most of the convection is param-

eterized and large rainfall totals are underpredicted.

However, on a few occasions the 12-km model attempts

to resolve the more intense storms, but inadequate

convective parameterization leads to intense dynamical

ascent, resulting in excessive resolved rain at small

scales.

In contrast to the 12-km model, the 4-km model un-

derpredicts (overpredicts) the low (high) thresholds.

This behavior is characteristic of a model that tries to

represent the convection explicitly, but still lacks suffi-

cient resolution. In general, it does not generate enough

small showers, but delays initiation and then generates

larger, more intense, and well-separated storms. Petch

(2006) describes similar behavior when clouds are un-

derresolved in a cloud-resolving model (CRM). The

AFSS curve decreases with increasing threshold, and

then reaches a minimum for accumulations of 6–10 mm.

At these thresholds, the worst individual forecast biases

FIG. 11. Graph of aggregated scalemin (see text) against

percentile threshold for the 12-, 4-, and 1-km model forecasts.

FIG. 12. (a) Graph of the ratio of model frequency fM to observed frequency fo (the base rate) against rainfall

accumulation threshold for each model resolution for hours 4–7. Above (below) the 1:1 ratio line fM 
 fo ( fo 
 fM).

(b) A graph of FSSasymptote (see text) against rainfall accumulation threshold for each model resolution.
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occurred, but not all forecasts overpredicted; at higher

thresholds the 4-km model overpredicted most of the

time.

The 1-km model overpredicts the amount of rain for

all thresholds; otherwise, the curves in both graphs ex-

hibit similar behavior to that of the 4-km model, includ-

ing the minimum in asymptotic FSS at 6–10 mm. The

main difference between the two is that the bias indi-

cated by both measures is larger in the 1-km model for

most of the thresholds (
2 mm). A large part of this is

because of a faster spinup at 1 km.

The spinup period for the 4- and 1-km models can be

seen in the domain average rain rates (Fig. 13). They

both start with very little rain, and then as convection

develops rain rates increase; this happens more quickly

in the 1-km model. Later, when the early buildup of

instability is released, both models are characterized by

an “overshoot,” because too much convective rain is

produced.

4) HOURLY ACCUMULATIONS

The variation in FSS with time is shown in Fig. 14 for

a neighborhood length (spatial scale) of 55 km. This

scale was chosen because it is far enough away from the

grid scale of the models, yet small enough to be of

interest for forecast applications. Figures 14a,b,c show

results using accumulation thresholds of 0.2, 1.0, and 4.0

mm, respectively. For very small accumulations (0.2

mm), the 12-km model maintains skill at a scale of 55

km throughout the 6-h period, whereas skill decreases

for moderate accumulations (1.0 mm) and decreases

rapidly for high accumulations (4.0 mm). Much of the

reduction in skill for high accumulations in the 12-km

model comes from a worsening of the underprediction

of heavy rain with time. This is thought to be due to 1)

a premature decay of parameterized rain because of the

inability of a convection scheme to organize convec-

tion, and 2) the reduction of any “resolved” convection

that was introduced by the data assimilation. The 4- and

1-km models are initially less skillful than the 12-km

model, because they have not had time to spin up from

the 12-km initial state. However, as the forecasts

progress, the 1-km model initiates convection and be-

comes more skillful than the 12-km model after 1–2 h.

The 4-km model takes longer to spin up; for the 0.2-mm

threshold it takes the entire 6 h to achieve comparable

skill with the 12-km model, for 1.0 mm it takes 2–3 h,

and for 4.0 mm it behaves much like the 1-km model

(taking 1–2 h). Examination of the fields has revealed

that this variation of spinup time with threshold is the

result of the tendency of the 4-km model to initially

produce a small number of intense cells, and therefore

to generate a signal at higher thresholds more rapidly.

Figures 14d,e,f show results using percentile thresh-

olds. All of the models become more skillful as the

percentile threshold becomes lower (i.e., more rain is

sampled). The skill of the 12-km model decreases with

time for all three percentile thresholds, as it did for the

1.0- and 4.0-mm accumulation thresholds. However, the

decline is not as dramatic as that for the 4.0-mm thresh-

old. The removal of the impact of the bias accounts for

some of the slowing of the loss of skill, but it is still

evident that the spatial accuracy of the forecasts has

also diminished with forecast length. At 4 km, the

spinup period that is so evident in the accumulation

thresholds is hardly noticeable in the percentile thresh-

olds. Over the first approximately 2–3 h, the skill does

not change, suggesting that the 4-km model spinup is

characterized by an improvement in the bias as new

cells develop, but there is little change in spatial accu-

racy. Later on there is an improvement in FSS and the

spatial accuracy exceeds or matches that of the 12-km

model over the last 2 or 3 h for all percentile thresholds.

In contrast, the spatial distribution of the rain in the

1-km model improves rapidly over the first hour for the

90th and 75th percentile thresholds. This occurs as the

development of new convective cells shifts some of the

emphasis away from rain that was initially resolved in

the coarser 12-km fields toward new regions of convec-

tive activity. It is not seen for the 98th percentile thresh-

old (more localized rainfall) because, despite new trig-

gering, the very highest accumulations remain largely

within the areas where rain was resolved at 12 km. Over

the final 4 h, the 1-km model is more accurate than the

FIG. 13. Graph of aggregated domain-averaged rainfall rate

against time from radar and the 12-, 4-, and 1-km models, includ-

ing standard errors taken over the 40 forecast periods.
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FIG. 14. Graphs of aggregated FSS against time for hourly accumulations over the period from T � 1 to

T � 7 (relative to the 12-km model analysis time) for the 12-, 4-, and 1-km models, using a neighborhood

square of length 55 km, with (a)–(c) accumulation thresholds of 0.2, 1.0, and 4.0 mm and (d)–(f) percentile

thresholds of 75%, 90%, and 98%, respectively.
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other two resolutions for all of the percentile thresh-

olds.

Neighborhoods bigger and smaller than 55 km have

also been examined, but are not shown. At larger scales

the same differences between the models are evident

for a given threshold, but the overall skill is greater. At

smaller scales (�20 km), the 1-km model is still the

most skillful, but the improvement is less and all of the

models are less skillful. At scales approaching the veri-

fication grid length (5 km), forecast skill is considerably

less in all models and the differences between the mod-

els becomes small.

5) FORECAST SPREAD FOR 4-H ACCUMULATIONS

(HOURS 3–7)

Figures 15 and 16 show the large variability in skill

from forecast to forecast in both the 1- and 12-km mod-

els, which is something that is often overlooked when

evaluating model performance. An examination of the

individual forecast skill is used here to reveal how the

aggregated improvement in skill at 1 km is achieved.

We see that most of the 1-km forecasts exceed the target

skill (FSSuniform) at scales of �50 km, whereas the 12-km

model has a larger proportion of less accurate fore-

casts. Figure 16 shows that the aggregated improve-

ment in FSS from the 1-km model (shown in Fig. 10) is the

result of a shift to a greater concentration of forecasts

with higher skill (scalemin � 50 km). The 1-km model is

more accurate on average, but individual 1-km fore-

casts can still be worse than their 12-km counterparts.

The scale at which FSSuniform is achieved (scalemin)

has been extracted from hourly accumulation FSS

curves for each of the forecasts. If each good forecast

tends to remain good and each poor forecast tends to

remain poor, then the value of scalemin at one hour

should be strongly correlated with scalemin over subse-

quent hours. Figure 17 shows how the correlation co-

FIG. 15. Graph of FSS against neighborhood length for the 90th percentile threshold and 4-h accumulation

period for each of the 12- and 1-km model forecasts.

FIG. 16. (top) The number of 1- and 12-km forecasts that inter-

cept the FSSuniform line in Fig. 15 as a function of horizontal scale

(neighborhood length). Each bar represents the number of inter-

cepts within a 30-km section displaced by 15 km from the next.

(bottom) The differences between the lengths of the correspond-

ing 12- and 1-km bars in the top graph.
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efficient between the scalemins varies with time separa-

tion. Focusing on the 80th percentile threshold, the cor-

relation drops off quickly with time separation for the

12- and 4-km models, but remains high at 1 km (�0.7).

The difference comes from the ability of the 1-km

model to generate realistic showers that retain continu-

ity, whereas the 12-km rainfall is largely generated by a

convection scheme with no memory and the 4-km

model is suffering from delayed initiation through the

spinup period. The 90th percentile threshold shows

similar behavior, but has lower values, which is consis-

tent with more localized rainfall retaining less continu-

ity.

The correlation between the three resolutions for a

range of percentile thresholds is shown in Fig. 18. Not

surprisingly, there is a very high correlation between all

resolutions when widespread rain is being sampled be-

cause all of the models start from the same initial con-

ditions and the preferred regions of convection are

modulated by the same mesoscale dynamics. When

more localized rainfall is sampled the correlation is

smaller because there is more freedom for differences

between the forecasts to emerge. The 4- and 1-km mod-

els are the most similar at these small scales because the

differences between two models that represent convec-

tion explicitly are less than that between the parameter-

ized and explicit realizations. The correlation between

resolutions implies that an improvement in the skill of

the 12-km model should also have a substantial impact

at 4 and 1 km and highlights the importance of getting

the larger scales correct. This is an important factor to

take into account when introducing independent data

assimilation into a 4- or 1-km model.

5. Discussion

a. 1-km performance

The 1-km model was more skillful than the 12-km

model over all but the smallest scales for both 4-h and

FIG. 17. Graphs of how the correlation coefficient for scalemin (see text) varies with the time interval between

hourly accumulations for each model resolution, using percentile thresholds of (a) 80% and (b) 90%. The error

bars were obtained by resampling using random variations within the range of the radar error.

FIG. 18. Graph of how the correlation coefficient for scalemin

(see text) between the different resolutions varies with percentile

threshold, for rainfall accumulations over the final 4 h of the

forecasts. The error bars were obtained by resampling using ran-

dom variations within the range of the radar error and are appli-

cable for all three lines.
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hourly accumulations. If verification had only been per-

formed at the grid scale, the improvement from the

1-km model would not have been detected. Indeed, it

may even have appeared worse, supporting the view

that much of the extra small-scale detail can be re-

garded as noise. The 1 (12)-km models reached the

target level of skill (FSSuniform) at scales of 45–60 km

(50–80 km) for the 90th–95th percentile thresholds

(Fig. 10). In terms of an application, such as flood warn-

ing, useful skill was achieved on the scales of signifi-

cantly smaller river catchments. Furthermore, the

greatest improvement in skill occurred for the higher-

accumulation thresholds, which have the biggest soci-

etal impact. Much of the improvement was due to con-

vection being explicitly represented rather than param-

eterized and due to a more accurate representation of

predictable local effects (e.g., orographic uplift, sea

breezes). The 1-km model is still under development,

and further improvements will be made. Unlike the

12-km model, it has not been tuned for operational

performance. A moist turbulence parameterization for

cloud mixing outside the boundary layer was not in-

cluded at this stage, which may account for much of the

overprediction of rainfall amounts. In addition, the

forecasts were spun up from 12-km fields, which had a

significant impact on the first few hours of the forecasts.

An operational 1-km model is not likely be used in a

nowcasting context unless it is part of a continuous

cycle with data assimilation.

b. 4-km performance

The 4-km model performs poorly compared with the

1-km model, and shows little or no improvement on the

12-km model at any scale apart from the high-

accumulation thresholds. The initiation of explicit con-

vection is delayed, which results in a longer spinup pe-

riod. Once showers are formed they are too large, in-

tense, and well spaced; they then persist for too long.

These characteristics lead to errors in the location and

amount of rainfall, which are signaled in the verifica-

tion scores. It is an inherently difficult resolution to use

for predicting convective rainfall, as noted by Deng and

Stauffer (2006), because convection is neither ad-

equately resolved nor satisfactorily parameterized.

However, a grid spacing of �3–5 km is not a resolution

we can ignore because it is the finest that is currently

affordable for operational forecasting in the United

Kingdom, and in future will be required to provide

boundary information for higher-resolution models.

c. Forecast skill and presentation

The skill of all the models increases with spatial scale,

but the practical benefit reduces as sharpness is lost

(see Fig. 1), which means that there is an optimal range

of scales over which model output should be used. In

addition, there is a variation with threshold—the higher

the accumulation or the smaller the percentile thresh-

old the less accurate the models become, but the

greater the benefit from higher resolution. A measure

of acceptable skill, FSSuniform, has been introduced to

define the smallest scale over which a model might be

considered useful (scalemin). That scale can be used to

define an appropriate smoothing kernel for generating

probabilistic output from deterministic forecasts using a

nearest-neighborhood method. Smaller scales are then

regarded as being unpredictable and are treated as sto-

chastic noise. The drawback with this approach is that it

does not take account of day-to-day variations in skill

between forecasts (Fig. 15), which applies to all resolu-

tions, whatever the average value of scalemin. A single

filtering scale cannot be appropriate for every occasion,

but adjustments to scalemin on a forecast-by-forecast

basis would require a priori information about the ex-

pected accuracy of each forecast. Yet, it appears that

this is possible for short forecasts using the 1-km model.

We have seen from Fig. 17 that scalemin for one hour is

correlated with scalemin in successive hours, provided

that large enough rain areas are sampled; that is, a good

(poor) forecast at one time leads to a good (poor) fore-

cast at later times. Such a relationship opens up the

possibility of real-time predictions of suitable filtering

scales for presenting short-range kilometer-scale NWP

model output.

6. Conclusions

A verification method is presented that is designed to

measure how the skill of precipitation forecasts varies

with spatial scale and determine what scales should be

believed. It has been used to assess the performance of

12-, 4-, and 1-km versions of the UM from a sample of

40 forecast periods. The purpose was to examine the

improvement to forecast skill from increased resolution

alone. Data assimilation is a separate issue for subse-

quent papers.

The results from this trial have shown that the 1-km

model is indeed more skillful than the 12-km model

(after the spinup period) at all scales for which a com-

parison is meaningful (
15 km). The improvement

comes from a more accurate distribution of the rain and

a better prediction of high accumulations, although

there is an overprediction of rainfall amounts. A satis-

factory level of skill (scalemin, defined in section 2d) is

reached at scales around 20%–30% shorter than that

achieved by the 12-km model. The indications are that

a 1-km model is capable of a significant improvement in
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rainfall predictions over scales that are useful for flood

prediction, even if skill close to the grid scale is low.

The 4-km model does not achieve the same level of

performance because of inherent difficulties in repre-

senting convection at that resolution. It is anticipated

that the introduction of data assimilation at a high reso-

lution will improve skill further, particularly over the

first few hours when the spinup from a coarse-resolu-

tion initial state is a problem. The verification approach

described here will provide a tool for assessing how new

developments impact scale-dependent forecast skill and

for defining the scales over which output should be

presented. It may be possible to develop an adaptive

presentation of forecasts in which the scales over which

output is filtered vary over the domain according to the

variation in spatial accuracy of an earlier time. Such a

system may be able to “lock on” to more predictable

features, such as showers tied strongly to orography,

and assign more uncertainty elsewhere. Whether the

improvement in skill brought about by increased reso-

lution is sufficient to warrant the extra cost will ulti-

mately depend on the requirements of a forecast sys-

tem.
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