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ABSTRACT Regression loss function in object detection model plays a important factor during training
procedure. The IoU based loss functions, such as CIOU loss, achieve remarkable performance, but still have
some inherent shortages that may cause slow convergence speed. The paper proposes a Scale-Sensitive
IOU(SIOU) loss for the object detection in multi-scale targets, especially the remote sensing images to
solve the problem where the gradients of current loss functions tend to be smooth and cannot distinguish
some special bounding boxes during training procedure in multi-scale object detection, which may cause
unreasonable loss value calculation and impact the convergence speed. A new geometric factor affecting
the loss value calculation, namely area difference, is introduced to extend the existing three factors in CIOU
loss; By introducing an area regulatory factor γ to the loss function, it could adjust the loss values of the
bounding boxes and distinguish different boxes quantitatively. Furthermore, we also apply our SIOU loss
to the oriented bounding box detection and get better optimization. Through extensive experiments, the
detection accuracies of YOLOv4, Faster R-CNN and SSD with SIOU loss improve much more than the
previous loss functions on two horizontal bounding box datasets, i.e, NWPU VHR-10 and DIOR, and on
the oriented bounding box dataset, DOTA, which are all remote sensing datasets. Therefore, the proposed
loss function has the state-of-the-art performance on multi-scale object detection.

INDEX TERMS scale sensitivity, regression loss function, area difference, object detection

I. INTRODUCTION

R
EGRESSION loss function is a significant factor that
affects the object detection performance, the ℓn norm is

first used to calculate regression loss of which Smooth L1-
norm [14] is an improvement.

The IoU based loss loss functions are also the widely used
regression loss functions in many object detection models,
of which the first proposed is IOU loss [15] and it performs
better than the former in many datasets. Nevertheless, IOU
loss has some inherent disadvantages especially when the
bounding box do not overlap with the ground truth box, that
is, IoU values is 0, and the Generalized IOU (GIOU) loss
[16] improves the IOU loss. Distance IOU(DIOU) loss and
Complete IOU(CIOU) loss [17] are proposed, arguing that
the former two loss functions still have some lacks in theory.
In CIOU loss, it summarizes three geometric factors that
affect the regression loss value calculation, namely overlap

area, center point distance and aspect ratio. DIOU loss and
CIOU loss further accelerate the optimization speed of the
bounding box and the precision of the model. Furthermore,
Efficient IOU loss [18] combines the theory of Focus Loss
[19] and add hard example mining mechanism into CIOU
loss, which improves the performance of the later one.

CIOU loss takes into account three geometric factors when
calculating the regression loss. But in multi-scale detection,
the areas of ground truth boxes in the same image change
greatly, thus, there are more non-negligible cases as shown in
Figure. 1. As for the same ground truth box, there are many
cases where the two different bounding boxes of different
areas meeting the same conditions as follows:

• The IoU values between the two bounding boxes and
the same ground truth box equal with each other, that is,
IoU1 ≈ IoU2.

• The ratios between diagonal length of the union box L
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FIGURE 1. The special relations between the bounding box and the ground

truth box. The two loss values equal with each other. The Blue box is the

ground truth box, the Red box is the bounding box, the Grey box is the union

box of them and the Light Orange shadow refers to the area difference.

and the center point distance d equal with each other,
that is, d1/L1 ≈ d2/L2.

• The aspect ratios of the two bounding boxes equal with
each other, that is, w1/h1 ≈ w2/h2.

Generally believing that the difference between the two val-
ues is approximately equal when it is less than 1e-3. If the
bounding boxes meet the cases as mentioned above, then, it
is impossible for the current CIOU loss to differentiate them.
This problem is particularly prominent when the ground
truth box areas vary greatly in one image. At the same time
it is sensible to mark these bounding boxes with different
loss values. At present, the several mainstream regression
loss functions just take into account three geometric factors
,i.e, overlap area, center point distance and aspect ratio to
calculate the regression loss. But, through the above analysis,
it can be found that not all bounding boxes could be exactly
differentiated if just using these three factors. Last but not
the least, if the area of the bounding box is much bigger
than the ground truth target, the gradients at these points of
the loss function become smooth, which may slow down the
optimization(in Section IV-B).

To end these problems, our paper proposes the Scale-
Sensitive IOU(SIOU) loss, taking into account another ge-
ometric factor, namely, area difference, when calculating the
regression loss function, as shown in Figure 1. We add an
area adjustment factor γ to the CIOU loss to keep the loss
values of the bounding boxes of different area different and
also raise the gradient around the maximum and minimum
loss points, thus, the loss function could differentiate all these
bounding boxes theoretically and speed up the optimization
procedure.

To thoroughly verify the superior of the proposed method,
the paper chooses the most advanced detector of one-stage
and two-stage, YOLOv4, SSD and Faster R-CNN to launch
comparison experiments, modify the loss functions of them
and puts the SIOU loss on them. Selects two mainstream
aerial remote sensing datasets, DIOR [20] and NWPU VHR-
10 [21], of which the target area scales vary greatly, as the

training and testing sets. Meanwhile, we also use SIOU loss
to do the oriented bounding box object detection, we replace
the ArIoU loss in DRBox [38] with our SIOU loss during
training, and the detection accuracy also improves a lot.

The main contributions of our paper are as follows:

1) Propose the Scale-Sensitive(SIOU) loss to improve the
CIOU loss, which could differentiate all the bounding
boxes in theory and speed up the optimization proce-
dure.

2) Introduce another geometric factor namely area differ-
ence when calculating the regression loss values and
make the calculation more reasonable.

3) Improve the detection accuracy of multi-scale object
detection in both traditional bounding box and the
oriented bounding box, which illustrate a broad appli-
cability.

II. RELATED WORKS

A. OBJECT DETECTION

Object detection plays an importance role in many subject
field. It could be classified into two-stage and one-stage
detections. Two stage detection models, like R-CNN series
[1]–[4] and FPN [5] achieve great performance in many
datasets. One-stage detection models, like SSD [11], YOLO
series [6]–[9], are the most classic models. RefineDet [12]
and Retina Net [19] are also widely used. Guo et al [22] used
a center-point rectangle loss function(CR loss) in Faster R-
CNN to detect the droppers in high-speed railway. It takes
the center points of bounding box and ground truth box
as the vertex of the rectangle. The rectangle penalty term
could quickly move the bounding box close to the ground
truth box. But, it is similar to DIOU loss and it is a bit
more complex to calculate center-point rectangle than the
center point distance. Chen et al [23] combined the GIOU
loss and soft-NMS in Faster R-CNN to detect the ships of
SAR images. To deal with the imbalance issues in training
procedure, Focus loss [19] firstly took hard negative min-
ing mechanism into one-stage detection model; Libra R-
CNN [24] proposed a balanced L1 loss to solve the im-
balance issues in three aspects; Dynamic R-CNN [33] uses
a changeable β values of Smooth L1 loss to dynamically
focus on hard samples; DR loss [25] introduced distribution
ranking mechanism to choose the hard candidates; Others
like RefineDet++ [34], Guided Anchoring [26] and FCOS
model [30] are also some effective methods. In order to save
the human labor for dataset annotation, Li et al. [35] pro-
posed a weakly supervised deep learning (WSDL) method
for remote sensing object detection without costly bounding
box annotation. It used class-specific activation maps(CAM)
segmentation and a multi-scale scene-sliding-voting strategy
to detect the multi-scale targets; To mitigate the impact of
error labels in remote sensing scene classification, RSSC-
ETDL [36] proposed an error-tolerant method and used the
adaptive multi-feature collaborative representation classifier
to correct the error labels.
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B. REGRESSION LOSS FUNCTION

ℓn norm like Smooth ℓ1 loss [14], mean average error (MAE)
are widely used in many deep learning models. They are
easy to calculate the loss values. But they also have some
inherent lacks, for example, they cannot combine the pa-
rameters of the bounding box together, thus it may not get
a better optimization result in theory. The IoU series loss
functions, like IOU loss [15], GIOU loss [16], DIOU loss
[17] and CIOU loss are also some very popular regression
loss functions. Many SOTA models( [23], AS-YOLO [27],
[28]) use these loss functions for detection tasks; IOU loss
takes the Intersection over Union between the bounding box
and ground truth box as the loss function; GIOU loss adds
another area item on the basis of IOU loss. The following
DIOU and CIOU loss add extra center point distance and
aspect ratio items to make the loss calculation more proper
and speed the optimization procedure; Others like Efficient
IOU [18] and LIOU [29] point out the convergence speed
issue of CIOU loss, and use different method to improve
the CIOU loss. Wang et al. [37] revised the αν item of
CIOU loss in YOLOv4 model, changing the arctan(hgt/wgt)-

arctan(h/w) into arctan(h/hgt)+arctan(w/wgt) to avoid the
degradation of CIOU loss when the aspect ratios are the
same.

III. PROPOSED METHOD

This section systematically expounds the differences of sev-
eral existing loss functions, quantitatively compare their
characteristics and introduce our SIOU loss.

A. SCALE-SENSITIVE IOU LOSS

The first regression loss function is ℓn-norm loss, in which
Smooth L1-norm is often used for regression loss calculation,
and its formula is as follows:

L(x) =

{

0.5|x|
2

, if |x|< 1
|x| −0.5 , otherwise

(1)

where |x| means difference value between the bounding box
parameters (x, y, w, h) and ground truth box parameters (xgt,
ygt, wgt, hgt). ℓn-norm loss is an effective loss function in
optimization, and different n values has different characteris-
tics, used in different deep learning tasks.

The following loss functions are based on IoU . These
functions have a common equation as shown below:

L(B,Bgt) = 1−
|B ∩Bgt|

|B ∪Bgt|
+ ℜ(B,Bgt) (2)

where

IoU =
|B ∩Bgt|

|B ∪Bgt|
(3)

B means the bounding box parameters while Bgt means
those of every target box corresponding. For different IoU
based loss function, the formula of ℜ(B,Bgt) is variable.

As for GIOU loss:

ℜ(B,Bgt) =
|C −B ∪Bgt|

|C|
(4)

where C means the smallest box covering B and Bgt at the
same time.

As for DIOU loss:

ℜ(B,Bgt) =
ρ2(B,Bgt)

c2
=

|Center(B)− Center(Bgt)|
2

W 2 +H2

(5)
Center(·) means the center point of the box, W, H means the
width and height of the box C, and c2 is the diagonal length
of it.

As for CIOU loss:

ℜ(B,Bgt) =
ρ2(B,Bgt)

c2
+ α ∗ ν (6)

where:

ν =
4

π2
(arctan

wgt

hgt
− arctan

w

h
)2 (7)

α =
ν

(1− IoU + ν)
(8)

According to the mainstream view, calculating the regres-
sion loss mainly takes into account three geometric factors,
that is, the overlap area, center point distance and aspect
ratios between the bounding box and the target box. Among
these loss functions, the IOU loss considers the overlap area
of the two, while GIOU loss solves this problem from the
complementary area; DIOU loss takes into account the center
point distance and the CIOU loss adds the aspect ratio into
consideration. In this way, the model with CIOU loss has a
faster converging speed and a higher detection precision than
that with many other loss functions based on bounding box
regression in theory.

But when the areas of ground truth boxes in one image
vary greatly, there will be some special cases between bound-
ing boxes and ground truth boxes as shown in Figure 2,
in which each pair of bounding boxes meet the following
conditions:

•

|B ∩Bgt|

|B ∪Bgt|
≈

|B′ ∩Bgt|

|B′ ∪Bgt|

•

ρ2(B,Bgt)

c2
≈

ρ2(B′, Bgt)

c′2

•

arctan
w

h
≈ arctan

w′

h′

In one hand, as for the two bounding boxes in Figure 2 (a), the
IoU=0.75, the area difference between the the left bounding
box and the target box is 0.25Sgt, while that between the
right bounding box and the target box is 0.33Sgt, then, we
do not think there are too much difference between the two
bounding boxes in scales. But it is obvious that the right
one has more information of the target, so it is reasonable
to believe it is better than the left one. On the other hand, as
for the two bounding boxes in Figure 2 (b), the IoU=0.45,
the area difference between the the left bounding box and the
target box is 0.55Sgt, while that between the right bounding
box and the target box is 1.2Sgt, thus, the area of the right
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FIGURE 2. The losses of the two bounding boxes are the same when calculated by the previous loss functions in the three cases above, so they can not be

differentiated by the previous loss functions. However the SIOU loss can make it. The Green boxes are the ground truth boxes(GT), while the Red boxes are the

bounding boxes(BB).

bounding box is much larger than that of the left one, and it
is not sure whether the right one contains only one target or
much useless even interference information. So it is believe
logically and intuitively that the left bounding box is more
proper although its area is small than the target box and does
not contain all the information of the target. However, the
regression loss values of the bounding boxes calculated by
the existing loss functions are the same in the above three
cases, so it is theoretically impossible to distinguish them.
In this way, the area difference between the bounding box
and the target will become an important factor affecting the
calculation of the regression loss.

To solve the above problems, this paper proposes SIOU
loss as follows:

SIOU loss = (γ + 1)(1− IoU) + ρ2(B,Bgt)
c2

+ α ∗ ν

= 1− IoU + ρ2(B,Bgt)
c2

+ α ∗ ν + γ ∗ (1− IoU)

= CIOU loss+ γ ∗ (1− IoU)
(9)

γ =

{

[tanh(k ∗AD − 2.3) + tanh(2.3)]/2 , IoU > 0
0 , IoU = 0

(10)

k =

{

k0 , AD ≥ 0
−2k0 , AD < 0

(11)

According to formula (10), SIOU loss adds a new item,
γ, to CIOU loss and proposes another geometric factor, i.e.,
area difference(AD), while the CIOU loss just takes three
factors into consideration. As shown in formula (12), area
difference is different with IoU especially when the area

differences between bounding box and ground truth box are
with different signs.

AD = (s− sgt)/sgt

= s/sgt − 1

=

{

IoU − 1, s <sgt
1/IoU − 1, s >sgt

(12)

For two bounding boxes in the cases mentioned above, even
if the IoU values equal with each other, the area differences
are not the same.

What it differs from CIOU loss is that the former adds a
scale regulating term, γ*(1-IoU). Since the purpose of SIOU
loss is to adjust for differences in the calculation of loss
values caused by changes in area difference, its expression
form must be area dependent.

Therefore, in order to make the expression form simple and
clear and convenient to calculate, the parameter γ is directly
used as a regulation coefficient and multiplied by the (1-IoU)
term when constructing the SIOU function. In this way, the
physical meaning of the original expression is retained, and
the role of proper fine-tuning can be really played.

B. METHOD ANALYSIS

The function of γ is to adjust the loss value of bounding
boxes in different area scales, so it must be sensitive to the
area variation. When the area increases from Sgt to 2Sgt,
the difference between the areas of the bounding box and
the ground truth box is not large, and the γ curve should
increase slowly. When the area increases from 2Sgt to 4Sgt,
the difference between the two areas is large, and the γ
curve should increase rapidly to adjust the influence of the
area. When the area continues to increase, the curve should
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(a) (b) (c)

FIGURE 3. γ curve. From (a) to (c) is the procedure of choosing the γ curve. (a) and (b) are the comparison graph of different expressions which are all based on

the tanh function. And (c) is the final function curve, which is a piecewise function.

flatten again to avoid the problem of explosion of loss value.
Secondly, as a regulating parameter, γ should be valued at [0,
1], so as not to affect the value of the original loss function.

Based on this, the hyperbolic tangent function tanh(x)
function is adopted as the basic function, as shown in Fig-
ure 3 (a). However, only the middle part meets the require-
ments, so we need to carry out appropriate transformation of
this function to extract the middle part.

tanh(x) =
ex − e−x

ex + e−x
(13)

tanh ′(x) = 1− tanh2(x) (14)

According to the above formula, tanh(2.3)=0.98 approx-
imately close to 1 in the range of [0, 1], tanh’(2.3)=0.04,
at which point, its gradient is relatively gentle, while the
gradient at the largest point is tanh’(0)=1 ≫ 0.04, so it is
also close to zero compared to the largest point. In this way
shift the tanh(x) by 2.3 to the right, and by 2.3 to the up, and
then in the first quadrant of the axis, it’s going to be pretty
good. Meanwhile, near the origin, the curve gradient is about
zero, the curve tends to be smooth, and the values on both
sides will not have a large mutation, which is conducive to
the iterative optimization of parameters.

For the negative half of the X-axis, it can be obtained
by flipping it symmetrically along the Y-axis directly. But
if just flipping it, it can’t really tell the difference between
the positive area difference and the negative area difference.
In order to adjust the loss value problem of large-scale
regression box and balance the relationship between the loss
value of small-scale and large-scale regression box, We add
two different coefficients k to the tanh(x) function in the case
of (x <0) and (x >0) to balance the loss values under these
two opposite cases. In formula (10) and (12). IoU=1-AD,
γ=F(k’·AD) when s<sgt; IoU=1/(AD+1), γ=F(k·AD) when
s>sgt. Now, if we make the IoU and γ keep the same with
themselves under two the cases, through calculation, we find
when s/sgt=k’/k0, the above two variables are the same with
themselves under the two cases, that is to say, if s/sgt=k’/k0,
then, the loss values of the pair bounding boxes are the same.

In this way, when we construct the formula of SIOU loss,
we make this assumption that when the areas of the pair
bounding boxes are 1/2 and 2 times of the ground truth box,
we think the regression loss values of the pair bounding boxes
are equal, thus k’=2k0. The γ is to balance the loss values
of the pair bounding boxes in the two different cases, When
(x >0), we choose k0 from 0.5 to 2 in arithmetic sequence
with increment of 0.25, and k’=-2k0, when x <0. Then use
these serial SIOU loss with different k0 values to launch
the simulation experiments. After constant adjustment and
comparison, we choose the k0 values with the best simulation
result. The final decision was made that when x >0, k=1.25,
and when x <0, k=2.5. Combine the curves in the positive
and negative field of the X-axis together to form the part of
the curve marked in red in Figure 3 (b). Figure 3 (c) is the
γ curve when the area of the ground truth box is 400. When
the area of the bounding box are 200 and 800, that is, 1/2
and 2 times the area of the target box, the γ values are equal.
When the area continues to increase, the γ value increases
rapidly. When the area increases to 4 times the area of the
target box, the growth rate of the γ value slows down and
approaches to 1. It can be seen from the image that the state
of γ curve change can basically meet the preset requirements
of the problem.

C. FUNCTIONS OF SIOU LOSS

The SIOU loss function is compared with the other four IoU-
based loss functions:

1) γ in SIOU loss, is related to the area difference. SIOU
loss can well solve the overlap area, center point dis-
tance and the aspect ratio in the regression loss. At the
same time, it introduces and solves the problem of area
difference, thus makes it more reasonable to calculate
the regression loss and differentiate all the bounding
boxes in the optimization process, thus making the
optimization result more accurate for the multi-scale
target boxes in a comprehensive way.

2) When the bounding box and the target box perfectly
match, LIOU=LGIOU=LDIOU= LCIOU=LSIOU=0.
When bounding box does not overlap with ground
truth box, γ = 0, and SIOU loss changes into CIOU
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loss, because when the two boxes do not overlap, the
area scale difference problem is meaningless and what
plays a leading role in the optimization process is
|Center(B)− Center(Bgt)|, therefore, the influence
of γ on the loss value should be reduced.

3) For the item γ, we know it also ranges in [0, 1], This
is the same as the variation range of α ∗ ν in CIOU
loss, but the have different influence stages. For SIOU
loss, when the regression loss is large at the beginning
of training, it has a main impact. When the loss value
decreases, it means that the bounding box and the
ground truth box are similar with each other, then, the
γ item becomes small, and the α∗ν item starts to play a
main role and to adjust the aspect ratio of the bounding
box.

4) From the definition of SIOU, it can be concluded
that the loss function has a good optimization effect
in the object detection under variable scales, and its
optimization effect is similar to that of CIOU in theory
when the target scale is similar and single in an image.

IV. SIMULATION ANALYSIS

In this section, we used simulate experiments to analyze
bounding box regression procedure of five IoU based loss
functions, i.e., IOU loss, GIOU loss, DIOU loss, CIOU loss
and SIOU loss. The algorithm is designed to simulate the
optimization process of the bounding box regression, the
loss values of the bounding boxes and the target boxes are
calculated to visually compare the converging speed of each
loss function in the optimization process and quantitatively
compare the qualities of the final optimization results. Mean-
while use 3D graphs to compare the values and their gradients
of the loss functions at different points.

A. SIMULATION EXPERIMENT

This simulation experiment refers to Zheng et al [17]. The
algorithm in detail is shown in Algorithm 1. Some parameters
were changed in this experiment considering that this exper-
iment is to simulate the optimization of regression box under
multiple scales. As shown in Figure 3, the areas of anchor
boxes vary dramatically, the largest area of anchor box is set
as 4, while the smallest area is set as 1/4, by which method the
optimization ability of SIOU loss can be tested. In Figure 4
(a), there randomly scattered 1,000 points on a circular area
with a radius of 3 and a center of (10, 10). The point (10,10)
contains three ground truth boxes with an area of 1 and aspect
ratios of 1/2, 1, 2. Each scattered point contains 5×6 anchor
boxes with areas of 1/4, 1/2, 1, 2, 3, 4 and aspect ratios of
1/3, 1/2, 1, 2, 3 respectively. Therefore, there are a total of
90,000=3×5×6×1,000 regression boxes per iteration.

The loss functions in the iteration process are the five re-
gression loss functions compared above. The final evaluation
index error E adopts the ℓ1 norm, namely

∣

∣Bt
n,s,i −Bgt

i

∣

∣.
Figure 4 (b) is the simulation results after fixed iteration of
these loss functions. It could be seen from the figure that the
IoU Loss was indeed inferior to the other four loss functions

Algorithm 1 Bounding Box Regression

Input: T =200 means the iterations.N=1000 uniformly s-
cattered points within the circular region with center
(10, 10) and radius 3. S=6×5 including 6 scales and
5aspect ratios of anchor boxes of each scattered point.
Bgt means the target boxes fixed at point (10, 10) with
area 1 and 3aspect ratios. B(n, s, i)

t means the predicted
bounding box of point N=n, S=s to target box i at
iteration T=t. Loss function L(B(n, s, i)

t, Bg
i t) calculate

the loss between the target boxes and the predicted boxes
to optimization

Output: Total regression error E
1: Initialize E = 0
2: Start

3: for t=1 to T do

4: for i=1 to 3 do

5: for n=1 to N do

6: for s=1 to S do

7: η =







0.1 t ≤ 0.8T
0.01 0.8T < t ≤ 0.9T
0.001 t > 0.9T

8: ∇Bt−1
n,s,i = ∂L(Bt−1

n,s,i, B
gt
i )/∂Bt−1

n,s,i

9: Bt
n,s,i = Bt−1

n,s,i+η(2−IoU t−1
n,s,i)∇Bt−1

n,s,i

10: E(t) = E(t) +
∣

∣Bt
n,s,i −Bgt

i

∣

∣

11: end for

12: end for

13: end for

14: end for

15: return E
16: End

in the optimization process. This is caused by the inherent
shortcomings of IOU loss, because when bounding box and
target box do not overlap, IoU =0, resulting in the gradient of
the target function remaining zero, which cannot be further
optimized. Meanwhile, the optimization results of DIOU loss
and CIOU loss were better than that of GIOU loss, which
was consistent with the results of literature Zheng et al. More
importantly, SIOU loss got the best performance among all
these loss functions in speed and result of the optimization.

B. VISUALIZATION OF THE LOSS FUNCTIONS

We drew the visualization simulation graphs to intuitively
compare the difference among these loss functions as shown
in Figure 5. In subfigure (a), set ground truth box with
height of 60, width of 80 and center point(40, 30). Then we
changed bounding boxes with different widths and heights
from 1 to 160 and from 1 to 120 uniformly, thus, get 160 ×
120 =19,200 bounding boxes with uniform scale variation.
We use the above five loss functions to calculate the loss
values between the bounding box and the ground truth box
in Figure 5 (b) ∼ (f).

Particularly, Figure 6 shows the gradient variance of the
CIOU loss and SIOU loss when the width and height of the
bounding box equal.
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(a) (b)

FIGURE 4. (a) is sketch map of the scattered points and boxes. The Black boxes are the ground truth boxes, Red boxes are the anchor boxes. (b) is the simulation

results.

(a) (b) (c)

(d) (e) (f)

FIGURE 5. The visualization of the loss values drawn by the five loss functions: (a) is the schematic diagram of target boxes and bounding boxes, (b)∼(f) are the

visualization graphs of the losses calculated by the five loss functions above.

From the visualization graphs we could intuitively draw
the conclusions as follows:

1) For these five graphs in Figure 5, the area of bounding
box varies in [0, 4Sgt], which has a large area variation
range, When the width of the bounding box is 80 and
the height is 60, that is, they match perfectly, and the
loss value is zero.

2) As for the previous four loss functions,the loss value
rapidly increases when the bounding box area is much
smaller than the ground truth box. Nevertheless, when
it is at the maximum point, 4Sgt, the loss value remains
at the largest values and do not change significantly.
At the same time, the gradients around the largest and
smallest loss values point tend to be flat, which may

slow down optimization procedure.
3) Compared with CIOU loss in Figure 6, when the

bounding box area changes greatly, the value of SIOU
loss also changes rapidly. Influenced by the area adjust-
ment factor γ, the gradient of the SIOU loss is steeper,
too, which could promote the optimization process.

Through simulation comparison and visualization analy-
sis, the superiority of the proposed SIOU loss is verified.

V. EXPERIMENT RESULTS

A. EXPERIMENT DATASET

In this section, several data sets are used for experimental
verification of SIOU loss. We select IOU loss, DIOU loss,
CIOU loss, and another SOTA method—ICIOU loss [37]
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(a) (b)

FIGURE 6. The gradient variance of the CIOU loss(a) and SIOU loss(b) when the width and height of the bounding box equal with each other.

as comparison. The selected datasets are NWPU VHR-10,
DIOR and UCAS-AOD, all of which are mainstream aerial
remote sensing datasets.

DIOR is a remote sensing dataset used for object detection.
The dataset contains 23,463 images and 192,472 objects
including 20 object classes. NWPU VHR-10 is a 10-level
geographic remote sensing dataset for the detection of space
objects, with 650 images containing the targets in 10 cat-
egories and 150 background images. UCAS-AOD includes
1,000 aircraft images and 510 vehicle images, of which the
objects in the dataset are step-by-step uniform and consistent
in scale.

Sample images of the three datasets are shown in Fig-
ure 7. The three datasets all have the characteristics of low
resolution and relative high density of targets, among which,
NWPU VHR-10 and DIOR datasets have great differences in
the area scale of the targets in one image.

This experiments do not choose MS COCO and PASCAL
VOC datasets because first of all, this study was aimed at
detecting aerial remote sensing targets. Secondly, through
analysis, it was found that target boxes in one image in the
two datasets above do not meet the requirements of target
density and large scale difference, of which the targets tend to
be conventional objects, such as faces, pedestrians, furniture
and animals. The image resolution is high and the features
are obvious. In order to prove the rationality of the datasets
selected in this experiments, we use Coefficient of Vari-
ance(CV) [35] analysis to quantitatively compare the image
differences of the four datasets of DIOR, NWPU VHR-10,
UCAS-AOD and Pascal VOC-07. Coefficient of Variance is
a statistic that reflects the fluctuation of several sets of data.
The formula is as follows:

Vs =
σ

X
(15)

Vs means the sample standard deviation, X means the sample
mean, generally the bigger Vs, the higher the fluctuation of

the samples are. When Vs > 1, generally believe samples
fluctuate greatly, when Vs > 1, believe less fluctuation. The
Coefficient of Variance of the target area scale of each image
in each dataset are calculated separately, and set the average
of the Coefficient of Variance of all images in one dataset as
the overall variance degree of it. As shown in Table 1:

It can be seen that the fluctuation of DIOR and NWPU
VHR-10 is greater than that of PASCAL VOC-07, and the
target scale in UCAS-AOD is the stablest and smallest. Fig-
ure 8 is the statistical histogram of the target scale dispersion
coefficient of each image in the datasets of DIOR, PASCAL
VOC-07 and UCAS-AOD. It can be seen from the figure that
the DIOR dataset contains more images.

B. YOLOV4 ON NWPU VHR-10 AND DIOR

The YOLOV4 model has a high detection accuracy in the
MS COCO dataset and is the most representative model
in the YOLO series. The feature extraction network uses
CSPDarknnet-53; The Necknet adopts SPP module to inte-
grate candidate box feature vectors of different sizes into the
same dimension; The PAN module fuses feature images of
three different scales by up sampling and down sampling.
The Head part use the classification network of Yolov3,
and the prediction results of the three scales were output
simultaneously. In addition to the innovative model structure,
Yolov4 also uses some excellent Bag of Freebie (BOF) and
Bag of Special (BOS) training strategies and techniques,
such as using CIOU loss as its regression loss function; The
feature extraction network uses Mosaic data augmentation to
augment the training data; Cosine annealing scheduler [9]
is used in the learning rate during the training, making the
learning rate update more reasonable. The above features
make YOLOV4 have a high detection accuracy not only for
large scale objects, but also much higher than other models
for small scale objects.

During experiment, YOLOV4 model was first used for
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(a)

(b)

(c)

FIGURE 7. The examples of three different datasets. (a) is NWPU VHR-10 dataset, (b) is DIOR dataset and (c) is UCAS-AOD dataset.

TABLE 1. Mean Coefficient of Variance of Four Datasets.

Dataset DIOR NWPU VHR-10 PASCAL VOC-07 UCAS-AOD

Image num 11,726 500 9,964 510
Target num 70,359 3,243 29,896 4,591

Vs 0.6357 0.6443 0.4418 0.1604

(a) (b) (c)

FIGURE 8. The examples of three different datasets. (a) is NWPU VHR-10 dataset, (b) is DIOR dataset and (c) is UCAS-AOD dataset.

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3119562, IEEE Access

S.D. et al.: Scale-Sensitive IOU Loss: an improved Regression Loss Function in Remote Sensing Object Detection

training and testing on NWPU VR-10. NWPU VR-10 has
a total of 650 images, 500 pieces were randomly selected as
the training set and 150 pieces as the testing set. Set batch
size =8, weight decay=1e-5 during training. The backbone
network adopts the MS COCO pre-trained weights. Use Co-
sine annealing scheduler. Firstly, freeze the feature extraction
network and train for 30 epoches, the initial learning rate is
1e-3, then unfreeze the feature extraction network for another
30 epoches of training, the initial learning rate is 1e-4. This
can speed up the optimization of model parameters. The test
results were evaluated by mean average precision (mAP),
threshold=0.5.

Secondly, the model is used for training and testing on the
DIOR dataset. The DIOR dataset contains 23,643 images.
60% of them are randomly selected as the training and
validation set, and the remaining 40% as the testing set.
Since there are 20 categories and more than 10K images in
DIOR training dataset, the training epoch of the two stages
before and after unfreezing is set to be 60 respectively. The
initial learning rate and other parameters were consistent
with the previous experiment. The regression loss function
of the original algorithm is CIOU Loss, and the loss function
algorithm needs to be manually modified during the exper-
iment. Therefore, different algorithms are used to conduct
five experiments for each dataset. We selected and plotted
the dynamic curves of training losses and validation losses
of four different loss functions in the training process on
the DIOR Dataset, As is shown in Figure 9, it can be seen
from the curve that the training loss of SIOU Loss decreases
slightly faster in the first 20 training epochs, which may
indicate that SIOU Loss plays a regulating role in the initial
stage of training, because in the initial stage of training, there
is a great difference in the regression box, and the scale
adjustment item can help the Loss value to decrease rapidly..

The detection accuracy results of the models are shown in
Table 2. Compared with IOU loss baseline, DIOU loss,CIOU
loss and ICIOU loss are indeed improved, which indicates
their theoretical superiority and high detection accuracy no
matter in remote sensing datasets or in conventional large-
scale target detection datasets such as MSCOCO tested in
its original article. Meanwhile, SIOU loss has the highest
detection accuracy among the other four loss functions. The
detection accuracy of SIOU loss in NWPU VHR-10 reaches
88.46%, which is 1.9% higher than that of baseline. The
detection accuracy on DIOR reaches 81.46%, which was
1.66% higher than that of baseline, indicating that the loss
function proposed in this paper can indeed help to improve
the accuracy of object detection.

At the same time, several images from IOU, CIOU and
SIOU loss trained models in the DIOR dataset were select-
ed for comparison, as shown in Figure 10. The objects in
DIOR dataset image are numerous and dense, with large
scale changes. It can be seen intuitively from the figure
that the selection of the predicted boxes are more moderate
and reasonable in the detection of SIOU under the variable
scales, which includes all the information of the object as

much as possible while reducing the inclusion of background
information.

TABLE 2. Detection Results of YOLOv4 with Different Loss Functions on

NWPU VHR-10 and DIOR.

Loss function / Dataset NWPU VHR-10 DIOR

IOU loss 86.81 80.31
DIOU loss 87.06 80.67

Relative improve % 0.29% 0.45%
CIOU loss 87.34 81.27

Relative improve % 0.61% 1.20%
ICIOU loss 87.77 81.32

Relative improve % 1.11% 1.26%
SIOU loss 88.46 81.64

Relative improve % 1.90% 1.66%

C. FASTER R-CNN ON NWPU VHR-10 AND DIOR

Faster R-CNN detection model is a classic two-stage de-
tection model, which is gradually improved on the basis
of R-CNN [1], SPP-net [2] and Fast R-CNN [3], and has
good detection accuracy in many datasets. Faster R-CNN
model is divided into four parts: Backbone, region proposal
network(RPN), region of interest(ROI) and Classifier. Back-
bone can choose VGG network [13], ResNet series network
[10] and so on, while the backbone network selected in this
experiment is ResNet-50. RPN is similar to the Selective
Search algorithm [31] to generate regional candidate boxes.
ROI pooling is similar to the SPP module in YOLOV4, which
is responsible for revising candidate boxes of different sizes
into fixed lengths. The regression loss function of Faster R-
CNN in the original paper adopts Smooth L1 function, which
is an end-to-end two-stage target detection model, so the
detection speed is faster and the detection accuracy is higher.

This experiment was also carried out first on NWPU VHR-
10 and then on DIOR. The configuration of the dataset is con-
sistent with the experiment in the previous section. During
the training process, the pre-training weight of ResNet-50 in
MS COCO is loaded on the Backbone.

Freeze the backbone training for the first 30 epoches,
then unfreeze it training for another 30 epoches, the initial
learning rate was 1e-4 and 1e-5 before and after unfreezing
respectively. The learning rate descended to 0.95 after each
epoch, weight decay=1e-5, batch size =8 during NWPU
VHR-10 training. When training on DIOR, the learning rate
of the two stages before and after the unfreezing is 60, the
other parameters remained unchanged.

The detection accuracy of model after training is shown in
Table 3. For Faster R-CNN, the detection accuracy of SIOU
loss is also higher than that of the first three loss functions
while the ICIOU loss has a similar performance with SIOU
loss. It is noteworthy that the accuracy of the model trained
by SIOU loss function was significantly improved compared
with baseline, increasing by 5.53% and 1.6% compared with
CIOU loss function on NWPU VHR-10. It is also 10.2%
higher than baseline and 2.5% higher than CIOU loss on
DIOR. It should be noted that, as a two-stage detector, in the

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3119562, IEEE Access

S.D. et al.: Scale-Sensitive IOU Loss: an improved Regression Loss Function in Remote Sensing Object Detection

(a)IOU loss (b)DIOU loss (c)CIOU loss (d)SIOU loss

FIGURE 9. Training and validation loss dynamic curves from different regression loss functions of YOLOv4 training on DIOR.

(a)IOU loss (b)CIOU loss (c)SIOU loss

(d)IOU loss (e)CIOU loss (f)SIOU loss

FIGURE 10. Comparison of detection results of YOLOv4 on DIOR.

TABLE 3. Detection Result of Faster R-CNN with Different Loss Functions on

NWPU VHR-10 and DIOR.

Loss function / Dataset NWPU VHR-10 DIOR

IOU loss 60.19 57.07
DIOU loss 60.34 57.93

Relative improve % 0.25% 1.51%
CIOU loss 62.55 61.32

Relative improve % 3.29% 7.45%
ICIOU loss 63.24 62.15

Relative improve % 5.07% 8.90%
SIOU loss 63.52 62.89

Relative improve % 5.53% 10.20%

training of Faster R-CNN, parameters are optimized in RPN

as well as Classifier. Its total loss value is as follows:

Tatalloss = rpnclc
loss + rpnbbx

loss

+ roiclcloss + roibbxloss

(16)

The first two items on the right of the equation are clas-
sification and regression loss values between the predicted
output values of RPN network and the ground truth, while the
last two items are loss values of the final predicted output of
Classifier. When modify the regression loss function, the loss
functions of RPN and Classifier are both modified, thus, both
of their prediction accuracy has been improved. In the RPN
stage, candidate boxes with higher accuracy can be obtained,
which promotes the final prediction in the Classifier stage.
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Therefore, the improvement of the two stages together will
lead to a significant increase in the final prediction accuracy.

Figure 11 shows some test result samples of the Faster
R-CNN model trained by three different loss functions on
DIOR dataset. From the images, some differences can be
seen intuitively in the selection of regression boxes and the
confidence of objects predicted by the three different loss
function models. In general, the detection result of SIOU
model is better, especially the selection of regression box is
more reasonable and balanced.

D. SSD ON NWPU VHR-10 AND DIOR

SSD is another popular and classic one-stage detection model
with multi-scale feature maps for detection, that is, it detects
the targets in several lower and upper feature maps directly
at the same time, and then use non-maximum suppression to
integrate all the results for a final better one. Because of its
unique multi-scale prediction, it has a relative higher preci-
sion than the early version detection models such as YOLO,
Fast R-CNN as well as much faster detection speed than most
of the two-stage detectors in many datasets. The regression
loss function in its original paper is Smooth L1 loss. The
feature extraction network usually use VGG-16, ResNet-50
and so on. SSD is the first one-stage detection model using
anchor box mechanism to make regression optimization,
meanwhile, to solve the problem that too many anchor boxes
may contain plenty of useless background boxes and just
a few target boxes thus causing the imbalance of the two
kinds of boxes and wrong optimization direction, it use Hard
Negative Mining mechanism [32] to select the positive boxes
and negative boxes with a ratio of 1:3, which could improve
training efficiency.

The configures of training on the two datasets are the same
with that in YOLOv4 model. The detection accuracy results
are shown in Table 4.

Compared with baseline, SIOU loss improves by 2.04%
and 1.65% on NUPU VHR-10 and DIOR respectively, which
are some slight improvements compared with Faster R-CNN.
It has something to do with the multi-scale detection structure
of SSD in theory. The selection of anchor boxes from differ-
ent convolution layers makes the initial regression boxes are
much more similar to the targets in area than that of other
models.

TABLE 4. Detection Results of SSD with Different Loss Functions on NWPU

VHR-10 and DIOR.

Loss function / Dataset NWPU VHR-10 DIOR

IOU loss 70.11 64.28
DIOU loss 70.52 64.67

Relative improve % 0.58% 0.61%
CIOU loss 71.16 64.90

Relative improve % 1.50% 0.96%
ICIOU loss 71.64 65.32

Relative improve % 2.18% 1.62%
SIOU loss 71.54 65.34

Relative improve % 2.04% 1.65%

E. YOLOV4 ON UCAS-AOD

UCAS-AOD dataset only has two types of targets: plane
and vehicle. Through dispersion coefficient analysis, the
target scales of UCAS-AOD dataset are relatively consistent
without great changes. In the theoretical model analysis in
the previous section, it is pointed out that SIOU loss has
advantages in multi-scale target detection and optimization,
while for targets with little scale changes, the optimization
effect does not improve very obviously. In order to verify
the correctness of this theoretical analysis from the opposite
side, UCAS-AOD dataset is selected, and used on YOLOV4
model to train and verify it. 500 plane images and 500 vehicle
images were selected from the dataset, with a total of 1,000
images. Then, 70% are randomly selected as the train and
validation set and the remaining 30% as the test set. During
the training process, the parameters were set in accordance
with those during the training on the NWPU VHR-10. The
detection accuracy results of each model after training are
shown in Table 5.

TABLE 5. Detection Results of YOLOv4 with Different Loss Functions on

UCAS-AOD.

Loss function / Dataset UCAS-AOD

IOU loss 93.24
DIOU loss 93.66

Relative improve % 0.45%
CIOU loss 94.21

Relative improve % 1.04%
ICIOU loss 95.08

Relative improve % 1.97%
SIOU loss 93.73

Relative improve % 0.53%

As can be seen from the table, the detection accuracy of
the four loss function training models are all relatively high,
reaching over 90%, which is related to the dataset itself.
As there are only two categories and nearly 700 training
images, the dataset is relatively sufficient and the training
difficulty is not large. Among the five Loss functions, the
detection accuracy of ICIOU loss is the highest, which is
1.97% higher than the baseline. Although the accuracy of
SIOU loss is better than that of IOU Loss, it does not have
the highest accuracy. After adding γ adjustment item, the
accuracy of SIOU loss is slightly lower than that of CIOU
and ICIOU loss. This result is within the expectation of
theoretical analysis and therefore not an anomaly.

Figure 12 shows some detection results of the three loss
functions. The prediction results of the three loss function
models are all relatively accurate, but there are slight differ-
ences in the selection of the regression boxes.

To intuitively compare the detection accuracy of the above
groups of experiments, the mAP values of the four models
in each group of experiments were drawn into a line chart as
shown in Figure 13. The proposed SIOU loss function used
on the three classic models have the highest detection accu-
racy on the two remote sensing dataset, meanwhile specific
dataset is also used to verify the characteristics and functions
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(a)IOU loss (b)CIOU loss (c)SIOU loss

(d)IOU loss (e)CIOU loss (f)SIOU loss

FIGURE 11. Comparison of detection results of Faster R-CNN on DIOR.

(a)IOU loss (b)CIOU loss (c)SIOU loss

FIGURE 12. Comparison of detection results of YOLOv4 on UCAS-AOD.

of the SIOU loss more comprehensively from the reverse
side.

F. ORIENTED BOUNDING BOX DETECTION

To expand the usage of our SIOU loss, we discuss the prob-
ability of applying our loss function to oriented bounding
box regression and also launched comparison experiment on
oriented object detection dataset, DOTA. Compared with the
traditional horizontal bounding box, the oriented bounding
box has one more location parameter θ, that is, (x,y,w,h,θ).

The first four parameters are the same with the traditional
bounding box, while θ defines the rotation angle towards the
X-axis. When doing optimization, there will also use IoU to
calculate the location relationship between the bounding box
and the ground truth box. Literature[38] proposed the angle-
related IoU(ArIoU) to calculate the IoU values of the oriented
boxes, as follows:

ArIoU(A,B) = area(Â∩B)

area(Â∪B)
|cos(θA − θB)|

= IoU ∗ |cos(θA − θB)|
(17)
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FIGURE 13. Line chart of the mAP. To illustrate the comparison of the mAP of

different loss functions, draw them into one line chart.

In literature [38], the author proposed the DRBox model
for oriented object detection. When doing training, the model
use ArIoU as shown in formula(17), to match the bounding
box with the ground truth box. In our comparison experiment,
we replace the IoU item in ArIoU with our SIOU, and we
select some images from the DOTA dataset for training and
detection. The detection result is shown in Table 6:

TABLE 6. Detection Results of DRBox Model with Original ArIoU and SIOU

on Oriented object Detection

Method Dataset AP(%) mAP(%)

DRBox
Ship 93.42

92.26Vehicle 85.03
Airplane 98.34

SIOU
Ship 94.16

94.53Vehicle 90.04
Airplane 99.38

The detection result on oriented bounding box dataset also
shows a significant improvement of our proposed method,
thus, the SIOU loss could not only be used in traditional
object detection, but also be used in oriented object detection.

VI. CONCLUSIONS

The proposed Scale-Sensitive IOU(SIOU) loss in our paper
improved the detection accuracy of the existing loss function-
s. It adjusts the regression loss value calculation and accel-
erates the convergence speed in multi-scale datasets. Mean-
while, another geometric factor, area difference, expands the
current three factors, i.e., overlap area, center point distance
and aspect ratio, and could differentiate all the bounding
boxes. Compared with the baseline of IOU loss on the two
datasets, the detection accuracy of the YOLOV4 improves by
1.66% and 1.9%, Faster R-CNN is used to improve by 10.2%
and 5.53%, meanwhile, SSD improves by 2.04% and 1.65%
respectively. Furthermore, the SIOU also has promotion on
oriented bounding box detection, which illustrates a wide
improvement on different models and tasks.
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