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ABSTRACT

The extrema in a signal and its first few derivatives pro-
vide a useful general purpose qualitative description for
many kinds of signals. A fundamental problem in comput-
ing such descriptions is scale: a derivative must be taken
over some neighborhood, but there is seldom a principled
basis for choosing its size. Scale-space filtering is a method
that describes signals qualitatively, managing the ambigu-
ity of scale in an organized and natural way. The signal is
first expanded by convolution with gaussian masks over a
continuum of sizes. This "scale-space" image is then col-
lapsed, using its qualitative structure, into a tree providing
a concise but complete qualitative description covering all
scales of observation. The description is further refined by
applying a stability criterion, to identify events that persist
of large changes in scale.

1. Introduction

Hardly any sophisticated signal understanding task can
be performed using the raw numerical signal values directly;
some description of the signal must first be obtained. An
initial description ought to be as compact as possible, and
its elements should correspond as closely as possible to
meaningful objects or events in the signal-forming process.
Frequently, local extrema in the signal and its derivatives—
and intervals bounded by extrema—are particularly ap-
propriate descriptive primitives: although local and closely
tied to the signal data, these events often have direct seman-
tic interpretations, e.g. as edges in images. A description
that characterizes a signal by its extrema and those of its
first few derivatives is a qualitative description of exactly
the kind we were taught to use in elementary calculus to
"sketch" a function.

A great deal of effort has been expended to obtain this
kind of primitive qualitative description (for overviews of
this literature, see [11],[2],[1O].) and the problem has proved
extremely difficult. The problem of scale has emerged con-
sistently as a fundamental source of difficulty, because the
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events we perceive and find meaningful vary enormously
in size and extent. The problem is not so much to elimi
nate fine-scale noise, as to separate events at different scales
arising from distinct physical processes.[7] It is possible to
introduce a parameter of scale by smoothing the signal with
a mask of variable size, but with the introduction of scale-
dependence comes ambiguity: every setting of the scale pa-
rameter yields a different description; new extremal points
may appear, and existing ones may move or disappear. How
can we decide which if any of this continuum of descriptions
is "right"?

There is rarely a sound basis for setting the scale pararne-
ter. In fact, it has become apparent that for many tasks no
one scale of description is categorically correct: the phys-
ical processes that generate signals such as images act at
a variety of scales, none intrinsically more interesting or
important than another. Thus the ambiguity introduced
by scale is inherent and inescapable, so the goal of scale-
dependent description cannot be to eliminate this ambigu-
ity, but rather to manage it effectively, and reduce it where
possible.

This line of thinking has led to considerable interest in
multi-scale descriptions [12],[2],[9], [81. However, merely
computing descriptions at multiple scales does not solve
the problem; if anything, it exacerbates it by increasing
the volume of data. Some means must be found to orga-
nize or simplify the description, by relating one scale to
another. Some work has been done in this area aimed at
obtaining "edge pyramids" (e.g. [6]), but no clear-cut cri-
teria for constructing them have been put forward. Marr
[7] suggested that zero-crossings that coincide over several
scales are "physically significant," but this idea was neither
justified nor tested.

How, then, can descriptions at different scales be related
to each other in an organized, natural, and compact way?
Our solution, which we call scale-space filtering, begins by
continuously varying the scale parameter, sweeping out a
surface that we call the scale-spare image. In this rep-
resentation, it is possible to track extrema as they move
continuously with scale changes, and to identify the singu-
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tar points at which new extrema appear. The scale-space
image is then collapsed into a tree, providing a concise but
complete qualitative description of the sigiial over all scales
of observation. 1

2. The Scale-Space Image

Descriptions that depend on scale can be computed in
many ways. As a primitive scale-parameterization, the
gaussian convolution is attractive for a number of its prop-
erties, amounting to "well-behavedness": the gaussian is
symmetric and strictly decreasing about the mean, and
therefore the weighting assigned to signal values decreases
smoothly with distance. The gaussian convolution behaves
well near the limits of the scale parameter, a, approaching
the un-smoothed signal for small a, and approaching the
signal's mean for large a. The gaussian is also readily dif-
ferentiated and integrated.

The gaussian is not the only convolution kernel that
meets these criteria. However, a more specific motivation
for our choice is a property of the gaussian convolution's
zero crossings (and those of its derivatives): as a decreases,
additional zeroes may appear, but existing ones cannot in
general disappear; moreover, of convolution kernels satisfy-
ing "well behavedness" criteria (roughly those enumerated
above,) the gaussian is the only one guaranteed to satisfy
this condition [1]. The usefulness of this property will be
explained in the following sections.

The gaussian convolution of a signal f(x) depends both
on x, the signal's independent variable, and on a, the gaus-
sian's standard deviation. The convolution is given by

1
F(x,a) = 1(x) sg(x, a) = J f(u) eidu, (1)— a(2r)o

where "*" denotes convolution with respect to x . This
function defines a surface on the (x, a)-plane, where each
profile of constant a is a gaussian-smoothed version of f(x),
the amount of smoothing increasing with a. We will call the
(x, a)-plane scale space , and the function, F, defined in (1),
the scale-space image of f• 2 Fig. 1 graphs a sequence of
gaussian smoothmgs with increasing a. These are constant-
a profiles from the scale-space image.

At any value of a, the extrema in the nth derivative of
the smoothed signal are given by the zero-crossings in the
(n + 1)th derivative, computed using the relation

0°F — 0"g

where the derivatives of the gaussian are readily obtained.
Although the methods presented here apply to zeros in any
derivative, we will restrict our attention to those in the

Figure 1. A sequence of gaussian smoothings of a wave-
form, with u decreasiag from top to bottom. Each graph is
a constant-u profile from the scale-space image.

second. These are extrema of slope, i.e. inflection points. In
terms of the scale-space image, the inflections at all values
of a are the points that satisfy

F5 O,Fj (2)

using subscript notation to indicate partial differentiation.

& Coarse-to-fine Tacking

The contours of F25 = 0 mark the appearance and mo-
tion of inflection points in the smoothed signal, and pro-
vide the raw material for a qualitative description over all
scales, in terms of inflection points. Next, we will apply two
simplifying assumptions to these contours: (1) the identity
assumption, that extrema observed at different scales, but
lying on a common zero-contour in scale space, arise from
a single underlying event, and (2) the localization assump-
tion, that the true location of an event giving rise to a
zero-contour is the contour's x location as a —s 0.

Referring to fig. 2, notice that the zero contours form
arches, closed above, but open below. The restriction that
zero-crossings may never disappear with with decreasing a
(see section 2) means that the contours may never be closed
below. Note that at the apexes of the arches, F555 = 0,
so by eq. (2), these points do not belong to the contour.
Each arch consists of a pair of contours, crossing zero with
opposite sign.

The Thcalization assumption is motivated by the obser-
vation that linear smoothing has two effects: qualitative
simplification—the removal of fine-scale features—and spa-
tial distortion—dislocation, broadening and flattening of
the features that survive. The latter undesirable effect may
be overcome, by tracking coarse extrema to their fine-scale
locations. Thus, a coarse scale may be used to identify ex-
trema, and a fine scale, to localize them. Each zero-contour
therefore reduces to an (x, a) pair, specifying its fine-scale
location on the x-axis, and the coarsest scale at which the
contour appears.

Note that the second condition in (2) excludes zero-crossings that are paraltel to
the s-axis, because these are not zero-crossings in the convolved signal.
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A complementary approach to the "natural" scale problem has been developed
by Hoffman
It i5 actually convenient to treat loge as the scale parameter, uniform expansion

or contraction of the signal in the s-direction will cause a translation of the scale-
space image along the loge axis.
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DII

FIgure 2. Contours of F, = 0 in a scale-space im-
age. The x-axis is horizontal; the coarsest scale is on top.
To simulate the effect of a continuous scale-change on the
qualitative description, hold a straight-edge (or better still,
a slit) horizontally. The intersections of the edge with the
zero-contours are the extremal points at some single value
of u. Moving the edge up or down increases or decreases o.

FIgure 3. Below is shown a signal with a coarse-to-fine
tracking approximation superimposed. The approximation
was produced by independent parabolic fits between the lo-
calized inflections. Above is shown the corresponding (qual-
itaively isomorphic) gaussian smoothing.

A coarse-to-fine tracking description is compared to the
corresponding linear smoothing in Fig. 3. '

4. The Interval Tree

While coarse-to-fine tracking solves the problem of lo-
calizing large-scale events, it does not solve the multi-scale
integration problem, because the description still depends
on the choice of the continuous global scale parameter, 41,
just as simple linear filtering does. In this section, we re-
duce the scale-space image to a simple tree, concisely but
completely describing the qualitative structure of the signal
over all scales of observation.

This simplification rests on a basic property of the
scale-space image: as is varied, extremal points in the
smoothed signal appear and disappear at singular points
(the tops of the arches in fig. 2.) Passing through such a
point with decreasing , a pair of extrema of opposite sign
appear in the smoothed signal. At these points, and only
these points, the undistinguished interval (i.e. an interval
bounded by extremal points but containing none) in which
the singularity occurs splits into three subintervals. In gen-
eral, each undistinguished interval, observed in scale space,

is bounded on each side by the zero contours that define
it, bounded above by the singular point at which it merges
into an enclosing interval, and bounded below by the sin-
gular point at which it divides into sub-intervals.

Consequently, to each interval, I, corresponds a node in
a (generally ternary-branching) tree, whose parent node de-
notes the larger interval from which I emerged, and whose
offspring represent the smaller intervals into which I subdi-
vides. Each interval also defines a rectangle in scale-space,
denoting its location and extent on the signal (as defined
by coarse-to-fine tracking) and its location and extent on
the scale dimension. Collectively, these rectangles tesselate
the (x, u)-plane. See fig. 4 for an illustration of the tree.

This interval tree may be viewed in two ways: as describ-
ing the signal simultaneously at all scales, or as generating
a family of single-scale descriptions, each defined by a sub-
set of nodes in the tree that cover the x-axis. (See Fig. 5.)
On the second interpretation, one may move through the
family of descriptions in orderly, local, discrete steps, either
by choosing to subdivide an interval into its offspring, or to
merge a triple of intervals into their parent.

We found that it is in general possible, by moving in-
teractively through the tree and observing the resulting
"sketch" of the signal, to closely match observers' spon-
taneously perceived descriptions. Thus the interval tree,
though tightly constrained, seems flexible enough to cap-
ture human perceptual intuitions. Somewhat surprisingly,
we found that the tree, rather than being too constraining,
is not constrained enough. That is, the perceptually salient
descriptions can in general be duplicated within the tree's
constraints, but the tree also generates many descriptions
that plainly have no perceptual counterpart. This observa-
tion led us to develop a stability criterion for further prun-
ing or ordering the states of the tree, which is described in
the next section.

5. Stability

Recall that to each interval in the tree corresponds a rect-
angle in scale space. The z boundaries locate the interval
on the signal. The 41 boundaries define the scale range over
which the interval exists, its stability over scale changes.
We have observed empirically a marked correspondence be-
tween the stability of an interval and its perceptual salience:
those intervals that survive over a broad range of scales tend
to leap out at the eye, while the most ephemeral are not
perceived at all. To capture this relation, we have devised
several versions of a stability criterion, one of which picks a
"top-level" description by descending the tree until a local
maximum in stability is found. Another iteratively removes
nodes from the tree, splicing out nodes that are less stable
than any of their parents and offspring. Both of these rad-
ically improve correspondence between the interval tree's
descriptions and perceptual features (see fig. 6.)

For previous uses of hierarchic signal descriptions see e.g. 141,131,121.
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In this asd all illustrations, approximations were drawn by fitting parabolic arcs
independently t the signal data on each interval marked by the description. This
procedure is crude, particularly because continuity is not enforced across inflec-
tions. Bear in mind that this procedure has been used only to display the qualita.
tive description.
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Figure 6. Several signals, with their maximum-stability
descriptions. These are "top-level" descriptions, generated
automatically and without thresholds. You should compare
the descriptions to your own first-glance "top-level" per-
cepts.

6. Summary

Scale-space filtering is a method that describes signals
qualitatively, in terms of extrema in the signal or its deriva-
tives, in a manner that deals effectively with the problem
of scale—precisely localizing large-scale events, and effec-
tively managing the ambiguity of descriptions at multi-
pie scales, without introducing arbitrary threshOlds or free
parameters. The one-dimensional signal is first expanded
into a two-dimensional 8cale-space image, by convolution
with gaussians over a continuum of sizes. This continu-
ous surface is then collapsed into a discrete structure, us-
ing the connectivity of extremal points tracked through
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scale-space, and the singular points at which new extrema
appear. The resulting tree representation is a a concise
but complete qualitative description of the signal over all
scales of observation. The tree is further constrained using
a maximum-stability criterion to favor events that persist
over large changes in scale.

We are currently developing applications of scale-space
filtering to several signal matching and interpretation prob-
lems, while investigating its ability to explain perceptual
grouping phenomena. The method is also being extended
t apply to two-dimensional images: the scale-space image
of a 2-D signal occupies a volume, containing zero-crossing
surfaces.
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Figure 4 A .. tree, represented as
a rectangular tesselation of scale-space. Each rectangle is
a node, indicating an interval on the signal, and the scale
interval over which the signal interval exists.

e cor-
responding approximation. The shaded rectangles are the
"active" nodes, i.e. those used to generate the approxima-
tion below.
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