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Abstract

An inherent property of objects in the world is that they only exist as mean-
ingful entities over certain ranges of scale. If one aims at describing the structure
of unknown real-world signals, then a multi-scale representation of data is of
crucial importance.

This chapter gives a tutorial review of a special type of multi-scale represen-
tation, linear scale-space representation, which has been developed by the com-
puter vision community in order to handle image structures at di�erent scales in
a consistent manner. The basic idea is to embed the original signal into a one-
parameter family of gradually smoothed signals, in which the �ne scale details
are successively suppressed.

Under rather general conditions on the type of computations that are to
performed at the �rst stages of visual processing, in what can be termed the
visual front end, it can be shown that the Gaussian kernel and its derivatives
are singled out as the only possible smoothing kernels. The conditions that
specify the Gaussian kernel are, basically, linearity and shift-invariance combined
with di�erent ways of formalizing the notion that structures at coarse scales
should correspond to simpli�cations of corresponding structures at �ne scales
| they should not be accidental phenomena created by the smoothing method.
Notably, several di�erent ways of choosing scale-space axioms give rise to the
same conclusion.

The output from the scale-space representation can be used for a variety of
early visual tasks; operations like feature detection, feature classi�cation and
shape computation can be expressed directly in terms of (possibly non-linear)
combinations of Gaussian derivatives at multiple scales. In this sense, the scale-
space representation can serve as a basis for early vision.

During the last few decades a number of other approaches to multi-scale
representations have been developed, which are more or less related to scale-
space theory, notably the theories of pyramids, wavelets and multi-grid methods.
Despite their qualitative di�erences, the increasing popularity of each of these
approaches indicates that the crucial notion of scale is increasingly appreciated
by the computer vision community and by researchers in other related �elds.

An interesting similarity with biological vision is that the scale-space op-
erators closely resemble receptive �eld pro�les registered in neurophysiological
studies of the mammalian retina and visual cortex.
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1 Introduction

We perceive objects in the world as meaningful entities only over certain ranges of
scale. A simple example is the concept of a branch of a tree, which makes sense only
at a scale from, say, a few centimeters to at most a few meters. It is meaningless to
discuss the tree concept at the nanometer or the kilometer level. At those scales it
is more relevant to talk about the molecules that form the leaves of the tree, or the
forest in which the tree grows. Similarly, it is only meaningful to talk about a cloud
over a certain range of coarse scales. At �ner scales it is more appropriate to consider
the individual droplets, which in turn consist of water molecules, which consist of
atoms, which consist of protons and electrons etc.

This fact, that objects in the world appear in di�erent ways depending on the
scale of observation, has important implications if one aims at describing them. It
shows that the scale concept and the notion of multi-scale representation are of crucial
importance. These general needs are well-understood, for example, in cartography;
maps are produced at di�erent degrees of abstraction. A map of the world contains
the largest countries and islands, and possibly, some of the major cities, whereas
towns and smaller islands appear at �rst in a map of a country. In a city guide, the
level of abstraction is changed considerably to include streets and buildings, etc. An
atlas can be seen as a symbolic multi-scale representation of the world around us,
constructed manually and with very speci�c purposes in mind.

In physics, phenomena are modelled at several levels of scales, ranging from parti-
cle physics and quantum mechanics at �ne scales, through thermodynamics and solid
mechanics dealing with every-day phenomena, to astronomy and relativity theory at
scales much larger than those we are usually dealing with. Notably, a physical de-
scription may depend strongly upon the scale at which the world is modelled. This
is in clear contrast to certain idealized mathematical entities, such as `point' or `line',
which appear in the same way independent of the scale of observation.

Speci�cally, the need for multi-scale representation arises when to design methods
for automatically analysing and deriving information from signals that are the results
of real-world measurements. It is clear that to extract any type of information from
data it is necessary to interact with it using certain operators. The type of information
that can be obtained is to a large extent determined by the relationship between the
size of the actual structures in the data and the size (resolution) of the operators
(probes). Some of the very fundamental problems in signal processing concern what
type of operators to use, where to apply them, and how large they should be. If these
problems are not appropriately addressed, then the task of interpreting the operator
responses can be very hard.

In certain controlled situations, appropriate scales for analysis may be known a
priori . For example, a characteristic property of a physicist is the intuitive ability to
select proper scales for modelling a problem. Under other circumstances, for example,
in applications dealing with automated signal processing, however, it may not be
obvious at all how to determine in advance what are the proper scales. One such
example is a vision system with the task to analyse unknown scenes. Besides the
inherent multi-scale properties of real-world objects (which, in general, are unknown),
such a system has to face the problems that the perspective mapping gives rise to
size variations, that noise is introduced in the image formation process, and that the
available data are two-dimensional data sets re
ecting indirect properties of a three-
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dimensional world. To be able to cope with these problems, an essential tool is a
formal theory for describing structures at multiple scales.

The goal with this presentation is to review some fundamental results concerning a
theory for multi-scale representation, called scale-space theory . It is a general frame-
work that has been developed by the computer vision community for representing
image data and the multi-scale nature of it at the very earliest stages in the chain of
visual processing that is aims at understanding (perception). We shall deal with the
operations that are performed directly on raw image data by the processing modules
termed the visual front-end.

Although this treatment, from now on, will be mainly concerned with the anal-
ysis of visual data, the general notion of scale-space representation is of much wider
applicability and arises in several contexts where measured data are to be analyzed
and interpreted by automatic methods.

1.1 Scale-space theory for computer vision

Vision deals with the problem of deriving meaningful and useful information about
the world from the light re
ected from it. What should be meant by \meaningful
and useful information" is, of course, strongly dependent on the goal of the analysis,
that is, the underlying purpose why we want to make use of visual information and
process it with automatic methods. One reason may be that of machine vision|
the desire to provide machines and robots with visual abilities. Typical tasks to be
solved are object recognition, object manipulation, and visually guided navigation.
Other common applications of techniques from computer vision can be found in image
processing, where one can mention image enhancement, visualization and analysis of
medical data, as well as industrial inspection, remote sensing, automated cartography,
data compression, and the design of visual aids, etc.

A subject of utmost importance in automated reasoning is the notion of inter-
nal representation. Only by representation can information be captured and made
available to decision processes. The purpose of a representation is to make certain
aspects of the information content explicit, that is, immediately accessible without
any need for additional processing. This article deals with the basic aspects of early
image representation|how to register the light that reaches the retina, and how to
make explicit important aspects of it that are useful for later stages processes. This
is the processing performed in the visual front-end. If the operations are to be local,
then they have to preserve the topology at the retina; for this reason the processing
can be termed retinotopic processing.

An obvious problem concerns what information should be extracted and what
computations should be performed at these levels. Is any type of operation feasible?
An axiomatic approach that has been adopted in order to restrict the space of pos-
sibilities, is to assume that the very �rst stages of visual processing should be able
to function without any direct knowledge about what can be expected to be in the
scene. As a natural consequence, the �rst processing stages should be as uncommitted
and make as few irreversible decisions or choices as possible. Speci�cally, given that
no prior information can be expected about what scales are appropriate, the only
reasonable approach is to consider representations at all scales. This directly gives
rise to the notion of multi-scale representation.

Moreover, the Euclidean nature of the world around us and the perspective map-
ping to images impose natural constraints on a visual system. Objects move rigidly,
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the illumination varies, the size of objects at the retina changes with the depth from
the eye, view directions may change etc. Hence, it is natural to require early visual
operations to be una�ected by certain primitive transformations.

In this article, we shall show that these constraints, in fact, substantially restrict
the class of possible low-level operations. For an uncommitted vision system, the
scale-space theory states that the natural operations of perform in a visual front-end
are convolutions with Gaussian kernels and their derivatives at di�erent scales. The
output from these operations can then, in turn, be used as input to a large number of
other visual modules. What types of combinations of Gaussian derivatives are natural
to perform can to a large extent be determined from basic invariance properties. An
attractive property of this type of approach is that it gives a uniform structure on
the �rst stages of computation.

With these remarks I would like close this philosophical introduction with the
hope that it should motivate the more technical treatment that follows below.

2 Multi-scale representation of image data

The basic idea behind a multi-scale representation is to embed the original signal
into a one-parameter family of derived signals. How should such a representation be
constructed? A crucial requirement is that structures at coarse scales in the multi-
scale representation should constitute simpli�cations of corresponding structures at
�ner scales | they should not be accidental phenomena created by the smoothing
method.

Figure 1: A multi-scale representation of a signal is an ordered set of derived signals intended
to represent the original signal at various levels of scale.

This property has been formalized in a variety of ways by di�erent authors. A
noteworthy coincidence is that the same conclusion can be reached from several dif-
ferent starting points. The main result we will arrive at is that if rather general
conditions are posed on the types of computations that are to be performed at the
�rst stages of visual processing, then the Gaussian kernel and its derivatives are sin-
gled out as the only possible smoothing kernels. The requirements, or axioms, that
specify the uniqueness of the Gaussian kernel are basically linearity and spatial shift
invariance combined with di�erent ways of formalizing the notion that structures at
coarse scales should be related to structures at �ner scales in a well-behaved manner;
new structures should not be created by the smoothing method.

Why should one represent a signal at multiple scales when all information is any-
way in the original data? The major reason for this is to explicitly represent the
multi-scale aspect of real-world images. Another aim is to simplify further processing
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by removing unnecessary and disturbing details. More technically, the latter mo-
tivation re
ects the common need for smoothing as a pre-processing step to many
numerical algorithms as a means of noise suppression.

Of course, there exists a variety of possible ways to construct a one-parameter
family of derived signals from a given signal. The terminology that will be adopted1

here is to refer to as \multi-scale representation" any one-parameter family for which
the parameter has a clear interpretation in terms of spatial scale. The term \scale-
space" will be reserved for the multi-scale representation constructed by convolution
with Gaussian kernels of increasing width, or equivalently by solving the di�usion
equation.

This presentation aims at giving an overview of some of the main results from
the theory of scale-space representation, as it has been developed to its current state.
Only few indications of proofs will be given; the reader is referred to the original
sources concerning details and further explanation. In order to give a wider back-
ground to the problem, a number of outlooks will also be given concerning early and
related work on other types of multi-scale representations. Inevitably, a short sum-
mary like this one will be biased towards certain aspects of the problem. Therefore,
I would like to apologize for any reference that has been left out.

As a guide to the reader it should be remarked that in order keep the length of the
presentation reasonably short, some descriptions of original work have been reduced
to very condensed summaries. In those cases, a reader unfamiliar with the subject
is recommended to proceed and to interpret the presentation merely as an overview
that could serve as introduction to a more thorough study of the original sources.

3 Early multi-scale representations

The general idea of representing a signal at multiple scales is not entirely new. Early
work in this direction was performed by Rosenfeld and Thurston 1971, who observed
the advantage of using operators of di�erent sizes in edge detection. Related ap-
proaches were considered by Klinger (1971), Uhr (1972), Hanson and Riseman (1974),
and Tanimoto and Pavlidis (1975) concerning image representations using di�erent
levels of spatial resolution, i.e., di�erent amounts of subsampling. These ideas have
then been furthered, mainly by Burt and by Crowley, to one of the types of multi-
scale representations most widely used today, the pyramid . A brief overview of some
main results concerning this concept is given below.

3.1 Quad-tree

One of the earliest types of multi-scale representations of image data is the quad tree
introduced by Klinger (1971). It is a tree-like representation of image data, where
the image is recursively divided into smaller regions.

The basic idea is as follows: Consider, for simplicity, a discrete image f of size
2K � 2K for some K 2 Z, and de�ne a measure � of the grey-level variation in any
region. This measure may e.g. be the standard deviation of the grey-level values.

Let f (K) = f . If �(f (K)) is greater than some pre-speci�ed threshold �, then
split f (K) into sub-images f (K�1)

j (j = 1::p) according to some rule. Then, apply the

1In some literature the term \scale-space" is used for denoting any type of multi-scale represen-
tation. Using that terminology, the scale-space concept developed here should be called \(linear)
di�usion scale-space".
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procedure recursively to all sub-images until convergence is obtained. A tree of degree
p is generated, in which each leaf f (k)j is a homogeneous block with �(f

(k)
j ) < �. In

the worst case, each pixel may correspond to an individual leaf. On the other hand,
if the image contains a small number of regions with a relatively uniform grey-level,
then a substantial data reduction can be obtained in this way.

Concerning grey-level data, this representation has been used in simple segmenta-
tion algorithms for image processing. In the \split-and-merge" algorithm, a splitting
step is �rst performed according to the above scheme. Then, adjacent regions are
merged if the variation measure of the union of the two regions is below the thresh-
old. Another application (when typically � = 0) concerns objects de�ned by uniform
grey-levels, e.g. binary objects; see e.g. the book by Tanimoto and Klinger (1980) for
more references on this type representation.

Figure 2: Illustration of the quad-tree concept and the split-and-merge segmentation algo-
rithm; (left) original grey-level image, (middle) the leaves of the quad-tree, i.e., the regions
after the split step that have a standard deviation below the given threshold, (right) regions
after the merge step.

3.2 Pyramids

Pyramid representations are representations of grey-level data that combine the sub-
sampling operation with a smoothing step (see �gure 3 and �gure 4). To illustrate
the idea, assume again, for simplicity, that the size of the input image f is 2K � 2K ,
and let f (K) = f . The representation of f (K) at a coarser level f (K�1) is de�ned by a
reduction operator. For simplicity, assume that the smoothing �lter is separable, and
that the number of �lter coe�cients along one dimension is odd. Then, it is su�cient
to study the following one-dimensional situation.

f (k�1) = REDUCE(f (k))

f (k�1)(x) =
PN

n=�N c(n) f (k)(2x� n); (1)

where c : Z! R denotes a set of �lter coe�cients. This type of low-pass pyramid
representation was proposed almost simultaneously by Burt (1981) and in a thesis by
Crowley (1981). A main advantage with this representation it is that the image size
decreases exponentially with the scale level, and hence also the amount of computa-
tions required to process the data. If the �lter coe�cients c(n) are chosen properly,
then the representations at coarser scale level (smaller k) will correspond to coarser
scale structures in the image data. Some of the most obvious design criteria that
have been proposed for selecting the �lter coe�cients are
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2n+1 � 2n+1

2n � 2n

2n�1 � 2n�1

Figure 3: A pyramid representation is obtained by successively reducing the image size by
combined smoothing and subsampling.

� positivity: c(n) � 0,

� unimodality: c(jnj) � c(jn+ 1j),
� symmetry: c(�n) = c(n), and

� normalization:
PN

n=�N c(n) = 1.

Another natural condition is that all pixels should contribute with equal amounts to
all levels. In other words, any point that has an odd coordinate index should con-
tribute equally much to the next coarser level as any point having an even coordinate
value. Formally, this can be expressed as

� equal contribution:
PN

n=�N c(2n) =
PN

n=�N c(2n+ 1).

Equivalently, this condition means that the kernel (1=2; 1=2) of width two should
occur as at least one factor in the smoothing kernel.

Whereas most authors agree on these criteria, mutually exclusive conditions have
been stated in the frequency domain. Motivated by the sampling theorem, Meer
et al. (1987) proposed to approximate an ideal low-pass �lter as closely as possible.
Since there is no non-trivial �nite support kernels with ideal low-pass properties,
an approximation is constructed which minimizes the error in the frequency domain.
When using the L1 norm, this approach is termed \equiripple design". An alternative
is to require the kernel to be positive and unimodal also in the frequency domain.
Then, any high frequency signal is guaranteed to be suppressed more than any lower
frequency signal.

The choice of N gives rise to a trade-o� problem. A larger value of N increases
the number of degrees of freedom in the design, at the cost of increased computational
work. A natural choice when N = 1 is the binomial �lter

(
1

4
;

1

2
;

1

4
); (2)
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Gaussian (low-pass) pyramid

Figure 4: A Gaussian (low-pass) pyramid is obtained by successive smoothing and subsam-
pling. This pyramid has been generated by the general reduction operator in equation (1)
using the binomial �lter from equation (2).
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Laplacian (band-pass) pyramid

Figure 5: A Laplacian (low-pass) pyramid is obtained from by forming di�erences between
adjacent levels in the Gaussian pyramid (equation (5)).
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Gaussian pyramid Laplacian pyramid

Figure 6: Alternative illustration of the Gaussian and Laplacian pyramids from �gures 4{5.
Here, the images at the di�erent levels of resolution are rescaled to the same size.
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which is the unique �lter of width 3 that satis�es the equal contribution condi-
tion. It is also the unique �lter of width 3 for which the Fourier transform  (�) =PN

n=�N c(n) exp(�in�) is zero at � = ��. A negative property of this kernel, however,
is that when applied repeatedly, the equivalent convolution kernel, which corresponds
to the combined e�ect of iterated smoothing and subsampling, tends to a triangular
function.

Of course, there is a large class of other possibilities. Concerning kernels of width
5, the previously stated conditions in the spatial domain imply that the kernel has to
be of the form

(
1

4
� a

2
;

1

4
; a;

1

4
;

1

4
� a

2
): (3)

Burt and Adelson (1983) argued that a should be selected such that the equivalent
smoothing function should be as similar to a Gaussian as possible. Empirically, they
selected the value a = 0:4.

By considering a representation de�ned as the di�erence between two adjacent
levels in a low-pass pyramid, one obtains a bandpass pyramid, termed \Laplacian
pyramid" by Burt, and DOLP (Di�erence Of Low Pass) by Crowley. It is de�ned by

L(k) = f (k) � EXPAND(f (k�1))
L(0) = f (0); (4)

where EXPAND is an interpolation operator that constitutes the reverse of REDUCE.
Formally, it can be expressed as

~f (k) = EXPAND(f (k�1))
~f (k)(x) = 2

PN

n=�N c(n) f
(k�1)(x�n2 ); (5)

where only the terms for which x � n is even are to be included in the sum. This
interpolation procedure means that the same weights are used for propagating grey-
levels from a coarser to a �ner sampling as were used when subsampling the signal.

The bandpass pyramid representation has been used for feature detection and
data compression. Among features that can be detected are blobs (maxima), and
peaks and ridges etc (Crowley et al 1984, 1987).

The idea behind using such pyramids for data compression is that a bandpass
�ltered signal will be decorrelated, and have its grey-level histogram centered around
the origin. If a coarse quantization of the grey-levels is su�cient for the purpose in
mind (typically display), then a data reduction can be obtained by e.g. coding the
quantized grey-levels by variable length encoding. From the set of coded bandpass
images f~L(k)g, an approximation to the original image ~f (K) can then be reconstructed
by essentially reversing the construction in (4),

~f (0) = ~L(0)

~f (k) = ~L(k) + EXPAND( ~f (k�1)): (6)

To summarize, the main advantages of the pyramid representations are that they
lead to a rapidly decreasing image size, which reduces the computational work both
in the actual computation of the representation and in the subsequent processing.
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The memory requirements are small, and there exist commercially available imple-
mentations of pyramids in hardware. The main disadvantage with pyramids is that
they correspond to quite a coarse quantization along the scale direction, which makes
it algorithmically complicated to relate (match) structures across scales. Pyramids
are not translationally invariant.

There is a large literature on further work of pyramid representations; see e.g. the
book by Jolion and Rosenfeld JolRos94-book (1994), the books edited by Rosenfeld
(1984), Cantoni and Levialdi (1986) and the special issue of IEEE-TPAMI edited by
Tanimoto (1989). A selection of recent developments can also be found in the articles
by Chehikian and Crowley (1991), Knudsen and Christensen (1991), and Wilson and
Bhalerao (1992), for a selection of recent developments. An interesting approach is
the introduction of \oversampled pyramids", in which not every smoothing step is
followed by a subsampling operation, and hence, a denser sampling along the scale
direction can be obtained.

It is worth noting that pyramid representations show a high degree of similar-
ity with a type of numerical methods called multi-grid methods; see the book by
Hackbusch (1985) for an extensive treatment of the subject.

4 Scale-space representation

Scale-space representation is a special type of multi-scale representation that com-
prises a continuous scale parameter and preserves the same spatial sampling at all
scales. As Witkin (1983) introduced the concept, the scale-space representation of a
signal is an embedding of the original signal into a one-parameter family of derived
signals constructed by convolution with a one-parameter family of Gaussian kernels
of increasing width. Later, we shall see that the Gaussian kernel is, in fact, a unique
choice.

Formally, the linear scale-space representation of a continuous signal is constructed
as follows. Let f : RN ! R represent any given signal. Then, the scale-space
representation L : RN �R+ ! R is de�ned by L(�; 0) = f and

L(�; t) = g(�; t) � f; (7)

where t 2 R+ is the scale parameter, and g : RN � R+nf0g ! R is the Gaussian
kernel; in arbitrary dimensions it is written

g(x; t) =
1

(2�t)N=2
e�x

T x=(2t) =
1

(2�t)N=2
e�
P

N
i=1 x

2
i=(2t) (x 2 RN; xi 2 R): (8)

The square root of the scale parameter, � =
p
t, is the standard deviation of the

kernel g, and is a natural measure of spatial scale in the smoothed signal at scale t.
The scale-space family L can equivalently be de�ned as the solution to the di�usion
equation

@tL =
1

2
rTrL =

1

2

NX
i=1

@x2
i
L: (9)

with initial condition L(�; 0) = f , which is the well-known physical equation that
describes how a heat distribution L evolves over time t in a homogeneous medium
with uniform conductivity, given an initial heat distribution L(�; 0) = f ; see e.g.
Widder (1975), or Strang (1986).
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Figure 7(a) shows the result of smoothing a one-dimensional signal to di�erent
scales in this way. Notice how this successive smoothing captures the intuitive notion
of the signals becoming gradually smoother. A two-dimensional example is presented
in Figure 8. Here, the scale levels have been determined such that the standard devi-
ation of the Gaussian kernel is equal to the standard deviation of the corresponding
pyramid generation kernel.

From this scale-space representation, multi-scale spatial derivatives can be de�ned
by

Lxn(�; t) = @xnL(�; t) = gxn(�; t) � f; (10)

where gxn denotes a (possibly mixed) derivative of some order2 n. In terms of explicit
integrals, the convolution operation (10) is written

Lxn(x; t) =

Z
x02RN

gxn(x� x0; t) f(x0) dx0 =

Z
x02RN

gxn(x
0; t) f(x� x0) dx0: (11)

This representation has a strong regularizing property. If f is bounded by some
polynomial, e.g. if there exist some constants C1; C2 2 R+ such that

jf(x)j � C1 (1 + xTx)C2 (x 2 RN); (12)

then the integral is guaranteed to converge for any t > 0. Hence, (10) provides a well-
de�ned way to construct multi-scale derivatives of a function f , although the function
itself may not be di�erentiable of any order3. Thus, the scale-space representation
given by (7) can for every t > 0 be treated as in�nitely di�erentiable ( C1).

4.1 Continuous signals: Original formulation

The main idea behind the construction of this scale-space representation is that the
�ne scale information should be suppressed with increasing values of the scale pa-
rameter. Intuitively, when convolving a signal by a Gaussian kernel with standard
deviation � =

p
t, the e�ect of this operation is to suppress4 most of the structures

in the signal with a characteristic length less than �; see Figure 7(a).
WhenWitkin introduced the term scale-space, he was concerned with one-dimensional

signals, and observed that new local extrema cannot be created in this family. Since
di�erentiation commutes with convolution,

@xnL(�; t) = @xn(g(�; t) � f) = g(�; t) � @xnf; (13)

this non-creation property applies also to any nth order spatial derivative computed
from the scale-space representation.

2Here, n should be interpreted as a multi-index n = (n1; :::;nN )T 2ZN where ni 2 Z. In other
words, @xn = @xn11

:::@xnN
N

, where x = (x1; :::; xN )T 2RN and xi 2R.
3In this sense, the scale-space representation of a signal shows a high degree of similarity with

Schwartz distribution theory (1951), although it is neither needed nor desired to explicitly compute
the limit case when the (scale) parameter t tends to zero. (See also Florack et al (1993)).

4This property does, however, not hold exactly. As we shall see later, adjacent structures (e.g.
extrema) can be arbitrary close after arbitrary large amounts of smoothing, although the likelihood
for the distance between two adjacent structures to be less than some value � decreases with increasing
scale.
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Figure 7: (left) The main idea with a scale-space representation of a signal is to generate a
family of derived signals in which the �ne-scale information is successively suppressed. This
�gure shows a one-dimensional signal that has been smoothed by convolution with Gaussian
kernels of increasing width. (right) Under this transformation, the zero-crossings of the second
derivative form paths across scales, that are never closed from below. (Adapted from Witkin
(1983)).

Recall that an extremum in L is equivalent to a zero-crossing in Lx. The non-
creation of new local extrema means that the zero-crossings in any derivative of L form
closed curves across scales, which will never be closed from below; see Figure 7(b).
Hence, in the one-dimensional case, the zero-crossings form paths across scales, with a
set of inclusion relations that gives rise to a tree-like data structure, termed \interval
tree".

An interesting empirical observation made by Witkin was that he noted a marked
correspondence between the length of the branches in the interval tree and perceptual
saliency:

... intervals that survive over a broad range of scales tend to leap out to
the eye ...

In later work by Lindeberg (1991, 1992) it has been demonstrated that this obser-
vation can extended to a principle for actually detecting signi�cant image structures
from the scale-space representation.
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Scale-space, L r
2
L

Figure 8: A few slices from the scale-space representation of the image used for illustrating
the pyramid concept. The scale levels have been selected such that the scale level of the
Gaussian kernel is approximately equal to the standard deviation of the equivalent convolution
kernel corresponding to the combined e�ect of smoothing and subsampling. For comparison,
the result of applying the Laplacian operator to these images is shown as well. Observe the
di�erences and similarities compared to Fig. 6.
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Gaussian smoothing has been used also before Witkin proposed the scale-space
concept, e.g. by Marr and Hildreth (1980), who considered zero-crossings the Lapla-
cian in images convolved with Gaussian kernels of di�erent standard deviation. One
of the most important contributions with Witkin's scale-space formulation, however,
was the systematic way to relate and interconnect such representations and image
structures at di�erent scales, in the sense that a scale dimension should be added to
the scale-space representation, so that the behaviour of structures across scales can
be studied.

4.2 Causality

Koenderink (1984) emphasized that the problem of scale must be faced in any imaging
situation. Any real-world image has a limited extent determined by two scales, the
outer scale corresponding to the �nite size of the image, and the inner scale given by
the resolution; for a digital image the inner scale is determined by the pixel size, and
for a photographic image by the grain size in the emulsion.

As described in the introduction, similar properties apply to objects in the world,
and hence also to image features. The outer scale of an object or a feature may be
said to correspond to the (minimum) size of a window that completely contains the
object or the feature, while the inner scale may be loosely be said to correspond the
scale at which substructures of the object or the feature begin to appear. The scale
parameter in the scale-space representation determines the minimum scale, or the
inner scale, that can be reached in an observation of an image at that scale.

Referring to the analogy with cartography given in the introduction, let us note
that an atlas usually contains a set of maps covering some region of interest. Within
each map the outer scale typically scales in proportion with the inner scale. A single
map is, however, usually not su�cient for us in order to �nd our way around the
world. We need the ability to zoom in to structures at di�erent scales; i.e., decrease
and increase the inner scale of the observation according to the type of situation at
hand.

Koenderink also stressed that if there is no a priori reason for looking at speci�c
image structures, then the visual system must be able to handle image structures at
all scales. Pyramid representations approach this problem by successive smoothing
and subsampling of images. However,

The challenge is to understand the image really on all these levels simul-
taneously , and not as unrelated set of derived images at di�erent levels of
blurring ...

Adding a scale dimension onto the original data set, as is done in the one-parameter
embedding, provides a formal way to express this interrelation.

The observation that new local extrema cannot be created with increasing scale
shows that Gaussian convolution satis�es certain su�ciency requirements for being
a smoothing operation. The �rst proof of the necessity of Gaussian smoothing for
scale-space representation was given by Koenderink (1984), who also gave a formal
extension of the scale-space theory to higher dimensions.

He introduced the concept of causality , which means that new level surfaces
f(x; y; t) 2 R2 � R : L(x; y; t) = L0g must not be created in the scale-space rep-
resentation when the scale parameter is increased. By combining causality with the
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notions of isotropy and homogeneity , which essentially mean that all spatial posi-
tions and all scale levels must be treated in a similar manner, he showed that the
scale-space representation must satisfy the di�usion equation

@tL =
1

2
r2L: (14)

Since the Gaussian kernel is the Green's function of the di�usion equation at an
in�nite domain, it follows that the Gaussian kernel is the unique kernel for generating
the scale-space. A similar result holds in one dimension, and as we shall see later,
also in higher dimensions.

Figure 9: The causality requirement means that level surfaces in scale-space must point
with their concave side towards �ner scale (a); the reverse situation (b) must never occur.

The technique used for proving this necessity result was by studying the level
surface through any point in scale-space for which the grey-level function assumes
a maximum with respect to the spatial coordinates. If no new level surface is to
be created with increasing scale, then the level surface must point with its concave
side towards decreasing scales. This gives rise to a sign condition on the curvature
of the level surface, which when expressed in terms of derivatives of the scale-space
representation with respect to the spatial and scale coordinates assumes the form
(14). Since the points at which the extrema are attained cannot be assumed to be
known a priori, this condition must hold in any point, which proves the result.

In the one-dimensional case, this level surface condition becomes a level curve
condition, and is equivalent to the previously stated non-creation of local extrema.
Since any nth order derivative of L also satis�es the di�usion equation

@tLxn =
1

2
r2Lxn ; (15)

it follows that new zero-crossing curves in Lx cannot be created with increasing scale,
and hence, no new maxima.

A similar result was given by Yuille and Poggio (1986) concerning the zero-
crossings of the Laplacian of the Gaussian. Related formulations have also been
expressed by Babaud et al (1986), and by Hummel (1986, 1987).

4.3 Decreasing number of local extrema

Lindeberg (1990, 1991) considered the problem of characterizing those kernels who
share the property of not introducing new local extrema in a signal under convolution.
A kernel h 2 L1 possessing the property that for any input signal fin 2 L1 the number
of extrema in the convolved signal fout = h � fin is always less than or equal to the
number of local extrema in the original signal is termed a scale-space kernel:

� scale-space kernel: #extrema(h � fin) � #extrema(fin) 8fin 2 L1.
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From similar arguments as in Section 4.1, this de�nition implies that the number of
extrema (or zero-crossings) in any nth order derivative is guaranteed to never increase.
Hence, convolution with a scale-space kernel has a strong smoothing property.

Such kernels can be easily shown to be positive and unimodal both in the spatial
domain and in the frequency domain. These properties may provide a formal justi-
�cation for some of the design criteria listed in Section 3.2 concerning the choice of
�lter coe�cients for pyramid generation.

Provided that the notion of local maximum or zero-crossing is de�ned in a proper
manner to cover also non-generic functions, it holds that the scale-space kernels can
be completely classi�ed using classical results by Schoenberg (1950). It can be shown
that a continuous kernel h is a scale-space kernel if and only if it has a bilateral
Laplace-Stieltjes transform of the form

Z 1

x=�1

h(x) e�sxdx = C e
s
2+�s

1Y
i=1

eais

1 + ais
(�c < Re(s) < c) (16)

for some c > 0, where C 6= 0, 
 � 0, � and ai are real, and where
P1

i=1 a
2
i is

convergent; see also the excellent books by Hirschmann and Widder (1955), and by
Karlin (1968).

Interpreted in the spatial domain, this result means that for continuous signals
there are four primitive types of linear and shift-invariant smoothing transformations;
convolution with the Gaussian kernel,

h(x) = e�
x
2

(17)

convolution with the truncated exponential functions,

h(x) =

�
e�j�jx x � 0
0 x < 0

h(x) =

�
ej�jx x � 0
0 x > 0

(18)

as well as trivial translation and rescaling.
The product form of the expression (16) re
ects a direct consequence of the def-

inition of scale-space kernel; the convolution of two scale-space kernels is a scale-
space kernel. Interestingly, the characterization means that the reverse holds; a
shift-invariant linear transformation is a smoothing operation if and only if it can
be decomposed into these primitive operations.

4.4 Semi-group and continuous scale parameter

A natural structure to impose on a scale-space representation is a semi-group struc-
ture, i.e., if every smoothing kernel is associated with a parameter value, and if two
such kernels are convolved with each other, then the resulting kernel should be a
member of the same family,

h(�; t1) � h(�; t2) = h(�; t1 + t2): (19)

In particular, this condition implies that the transformation from a �ne scale level
to any coarse scale level should be of the same type as the transformation from the
original signal to the scale-space representation. Algebraically, this property can be
written

L(�; t2) = fde�nitiong = T (�; t2) � f = fsemi-groupg =
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= (T (�; t2 � t1) � T (�; t1)) � f = fassociativityg =

= T (�; t2 � t1) � (T (�; t1) � f) = fde�nitiong = T (�; t2 � t1) � L(�; t1): (20)

If a semi-group structure is imposed on a one-parameter family of scale-space kernels
that satisfy a mild degree of smoothness (Borel-measurability) with respect to the
parameter, and if the kernels are required to be symmetric and normalized, then the
family of smoothing kernels is uniquely determined (Lindeberg, 1990)

h(x; t) =
1p
2��t

e�x
2=(2�t) (t > 0 � 2 R): (21)

In other words, when combined with the semi-group structure, the non-creation of
new local extrema means that the smoothing family is uniquely determined.

Despite the completeness of these results, they cannot be extended directly to
higher dimensions, since in two (and higher) dimensions there are no non-trivial
kernels guaranteed to never increase the number of local extrema in a signal. One
example of this, originating from an observation by Lifshitz and Pizer (1990), is
presented below; see also Yuille (1988):

Imagine a two-dimensional image function consisting of two hills, one
of them somewhat higher than the other one. Assume that they are
smooth, wide, rather bell-shaped surfaces situated some distance apart
clearly separated by a deep valley running between them. Connect the
two tops by a narrow sloping ridge without any local extrema, so that
the top point of the lower hill no longer is a local maximum. Let this
con�guration be the input image. When the operator corresponding to
the di�usion equation is applied to the geometry, the ridge will erode much
faster than the hills. After a while it has eroded so much that the lower
hill appears as a local maximum again. Thus, a new local extremum has
been created.

Notice however, that this decomposition of the scene is intuitively quite reasonable.
The narrow ridge is a �ne-scale phenomenon, and should therefore disappear before
the coarse scale peaks. The property that new local extrema can be created with
increasing scale is inherent in two and higher dimensions.

4.5 Scale invariance

A recent formulation by Florack et al (1992) shows that the uniqueness of the Gaussian
kernel for scale-space representation can be derived under weaker conditions, essen-
tially by combining the earlier mentioned linearity, shift invariance and semi-group
conditions with scale invariance. The basic argument is taken from physics; physical
laws must be independent of the choice of fundamental parameters. In practice, this
corresponds to what is known as dimensional analysis; a function that relates physi-
cal observables must be independent of the choice of dimensional units. Notably, this
condition comprises no direct measure of \structure" in the signal; the non-creation
of new structure is only implicit in the sense that physical observable entities that
are subjected to scale changes should be treated in a self-similar manner.

Some more technical requirements must be used in order to prove the uniqueness.
The solution must not tend to in�nity when the scale parameter increases. Moreover,
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either rotational symmetry or separability in Cartesian coordinates needs to be im-
posed in order to guarantee uniform treatment of the di�erent coordinate directions.
Since the proof of this result is valid in arbitrary dimensions and not very technical, I
will reproduce a simpli�ed5 version of it, which nevertheless contains the basic steps.

4.5.1 Necessity proof from scale invariance

Recall that any linear and shift-invariant operator can be expressed as a convolution
operator. Hence, assume that the scale-space representation L : RN�R+ ! R of any
signal f : RN ! R is constructed by convolution with some one-parameter family of
kernels h : RN �R+ ! R

L(�; t) = h(�; t) � f: (22)

In the Fourier domain (! 2 RN), this can be written

L̂(!; t) = ĥ(!; t)f̂(!): (23)

A result in physics, called the Pi-theorem, states that if a physical process is scale in-
dependent, then it should be possible to express the process in terms of dimensionless
variables. Here, the following dimensions and variables occur

Luminance: L̂, f̂

Length�1: !, 1=
p
t.

Natural dimensionless variables to introduce are hence, L̂=f̂ and !
p
t. Using the Pi-

theorem, a necessary requirement for scale invariance is that (23) can be expressed
on the form

L̂(!; t)

f̂(!; t)
= ĥ(!; t) = Ĥ(!

p
t) (24)

for some function Ĥ : RN ! R. A necessary requirement on Ĥ is that Ĥ(0) = 1.
Otherwise L̂(!; 0) = f̂(!) would be violated.

If h is required to be a semi-group with respect to the scale parameter, then the
following relation must hold in the Fourier domain

ĥ(!; t1) ĥ(!; t2) = ĥ(!; t1 + t2); (25)

and consequently in terms of Ĥ ,

Ĥ(!
p
t1) Ĥ(!

p
t2) = Ĥ(!

p
t1 + t2): (26)

Assume �rst that Ĥ is rotationally symmetric, and introduce new variables vi =
uTi ui = (!

p
ti)

T (!
p
ti) = !T!ti. Moreover, let ~H : R! R be de�ned by ~H(uTu) =

Ĥ(u). Then, (26) assumes the form

Ĥ(v1) Ĥ(v2) = Ĥ(v1 + v2): (27)

5Here, it is assumed that the semi-group is of the form g(�; t1) � g(�; t2) = g(�; t1 + t2), and
that the scale values are measured in terms of t should be added by regular summation. This is a
so-called canonical semi-group. More generally, Florack et al (1992) consider semi-groups of the form
g(�; �

p
1
) � g(�; �

p
2
) = g(�; �

p
1
+ �

p
2
) for some p � 1, where the scale parameter � is assumed to have

dimension length. By combining rotational symmetry and separability in Cartesian coordinates, they
show that is uniquely �xates p to be two.
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This expression can be recognized as the de�nition of the exponential function, which
means that

Ĥ(v) = exp(�v) (28)

for some � 2 R, and
ĥ(!; t) = Ĥ(!

p
t) = e�!T! t: (29)

Concerning the sign of �, it is natural to require limt!1 ĥ(!; t) = 0 rather than
limt!1 ĥ(!; t) = 1. This means that � must be negative, and we can without
loss of generality set � = �1=2, in order to preserve consistency with the previous
de�nitions of the scale parameter t. Hence, the Fourier transform of the smoothing
kernel is uniquely determined as the Fourier transform of the Gaussian kernel

ĝ(!; t) = e�!
T!t=2: (30)

Alternative, the assumption about rotational invariance can be replaced by separa-
bility. Assume that Ĥ in (26) can be expressed on the form

Ĥ(u) = Ĥ(u(1); u(2); :::; u(N)) =
NY
i=1

�H(u(i)) (31)

for some function �H : R! R. Then, (26) assumes the form

NY
i=1

�H(v(i)1 )
NY
i=1

�H(v(i)2 ) =
NY
i=1

�H(v(i)1 + v
(i)
2 ); (32)

where new coordinates v
(i)
j = (u(i)j )2 have been introduced. Similarly to above, it

must hold for any ! 2 Rn, and hence under independent variations of the individual
coordinates, i.e.,

�H(v(i)1 ) �H(v(i)2 ) = �H(v(i)1 + v
(i)
2 ); (33)

for any v
(i)
1 ; v(i)n 2 R. This means that �H must be an exponential function, and that

ĥ must be the Fourier transform of the Gaussian kernel. Q.E.D.

Remark. Here, it has been assumed that the semi-group is of the form

g(�; t1) � g(�; t2) = g(�; t1 + t2);

and that the scale values measured in terms of t should be added by regular summa-
tion. This is a so-called canonical semi-group. More generally, Florack et al. (1992b)
consider semi-groups of the form g(�; �p1) � g(�; �p2) = g(�; �p1 + �p2) for some p � 1,
where the scale parameter � is assumed to have dimension length. By combining
rotational symmetry with separability in Cartesian coordinates, they show that these
conditions uniquely �xate the exponent p to be two.

For one-dimensional signals though, this parameter will be undetermined. This
gives rise to a one-parameter family of one-parameter smoothing kernels having
Fourier transforms of the form

ĥ(!) = e�
j!jp

2
t;
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where p is the free parameter. An analysis by Pauwels et al. (1994) shows that
only a discrete subset of the corresponding multi-scale representations generated by
these kernels can be described by di�erential equations (corresponding to in�nitesimal
generators in analogy with the (discrete) equation (51)), namely those for which p

is an even integer. Out of these, only the speci�c choice p = 2 corresponds to a
non-negative convolution kernel. Similarly, p = 2 is the unique choice for which
the multi-scale representation satis�es the causality requirement (corresponding to
non-enhancement of local extrema).

4.5.2 Operators derived from the scale-space representation

Above, it was shown that the Gaussian kernel is the unique kernel for generating a
(linear) scale-space. An interesting problem, concerns what operators are natural to
apply to the output from this representation.

In early work, Koenderink and van Doorn (1987) advocated the use of the multi-
scale N -jet signal representation, that is the set of spatial derivatives of the scale-space
representation up to some (given) order N . Then, in (Koenderink and van Doorn,
1992) they considered the problem of deriving linear operators from the scale-space
representation, which are to be invariant under scaling transformations. Inspired by
the relation between the Gaussian kernel and its derivatives, here in one dimension,

@xng(x; t) = (�1)n 1

(2t)n=2
Hn(

xp
2t
) g(x; t); (34)

which follows from the well-known relation between the derivatives of the Gaussian
kernel and the Hermite polynomials Hn

@xn(e
�x2) = (�1)nHn(x) e

�x2; (35)

they considered the problem of deriving operators with a similar scaling behaviour.
Starting from the ansatz

 (�)(x; t) =
1

(2t)�=2
'(�)(

xp
2t
) g(x; t); (36)

where the superscript (�) describes the \order" of the function, they considered the
problem of determining all functions '(�) : RN ! R such that  (�) : RN ! R satis�es
the di�usion equation. Interestingly, '(�) must then satisfy the time-independent
Schr�odinger equation

rTr'(�) + ((2�+N)� �T �)'(�) = 0; (37)

where � = x=
p
2t. This is the physical equation that governs the quantum mechan-

ical free harmonic oscillator. It is well-known from mathematical physics that the
solutions '(�) to this equation are the Hermite functions, that is Hermite polynomi-
als multiplied by Gaussian functions. Since the derivative of a Gaussian kernel is a
Hermite polynomial times a Gaussian kernel, it follows that the solutions  (�) to the
original problem are the derivatives of the Gaussian kernel.

This result provides a formal statement that Gaussian derivatives are natural
operators to derive from scale-space. As pointed out above, these derivatives sat-
isfy the di�usion equation, and obey scale-space properties, for example the cascade
smoothing property

g(�; t1) � gxn(�; t2) = gxn(�; t2 + t1): (38)
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The latter result is a special case of the more general statement

gxm(�; t1) � gxn(�; t2) = gxm+n(�; t2 + t1); (39)

whose validity follows directly from the commutative property of convolution and
di�erentiation.

4.6 Special properties of the Gaussian kernel

Let us conclude this treatment concerning continuous signals by listing a number
of other special properties of the Gaussian kernel. The de�nition of the Fourier
transform of any function h : RN �R! R that has been used in this paper is

ĥ(!) =

Z
x2RN

h(x) e�i!
Tx dx: (40)

Consider for simplicity the one-dimensional case and de�ne the normalized second
moments (variances) �x and �! in the spatial and the Fourier domain respectively
by

�x =

R
x2R

xTxjh(x)j2dxR
x2R

jh(x)j2dx (41)

�! =

R
!2R

!T!jĥ(!)j2d!R
!2R

jĥ(!)j2d! (42)

These entities the \spread" of the distributions h and ĥ. Then, the uncertainty
relation states that

�x�! � 1

2
: (43)

A remarkable property of the Gaussian kernel is that it is the only real kernel that
gives equality in this relation. Moreover, the Gaussian kernel is the only rotationally
symmetric kernel that is separable in Cartesian coordinates.

The Gaussian kernel is also the frequency function of the normal distribution. The
central limit theorem in statistics states that under rather general requirements on
the distribution of a stochastic variable, the distribution of a sum of a large number
of such stochastic variables asymptotically approaches a normal distribution, when
the number of terms tend to in�nity.

4.7 Discrete signals: No new local extrema

The treatment so far has been concerned with continuous signals. However, real-world
signals obtained from standard digital cameras are discrete. An obvious problem
concerns how scale-space theory should be discretized, while still maintaining the
scale-space properties.

For one-dimensional signals it turns out to be possible to develop a complete
discrete theory based on a discrete analogy to the treatment in Section 4.3. Following
Lindeberg (1990, 1991), de�ne a discrete kernel h 2 l1 to be a discrete scale-space
kernel if for any signal fin the number of local extrema in fout = h � fin does not
exceed the number of local extrema in fin.
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Using classical results (mainly by Schoenberg (1953); see Karlin (1968) for a
comprehensive summary) it is possible to completely classify those kernels that satisfy
this de�nition. A discrete kernel is a scale-space kernel if and only if its generating
function 'h(z) =

P1
n=�1 h(n) zn is of the form

'K(z) = c zk e(q�1z
�1+q1z)

1Y
i=1

(1 + �iz)(1 + �iz
�1)

(1� �iz)(1� 
iz�1)
; (44)

where c > 0, k;2 Z, q�1; q1; �i; �i; 
i; �i � 0, �i; 
i < 1 and
P1

i=1(�i+�i+
i+�i) <1.
The interpretation of this result is that there are �ve primitive types of linear and

shift-invariant smoothing transformations, of which the last two are trivial;

� two-point weighted average or generalized binomial smoothing

fout(x) = fin(x) + �ifin(x� 1) (� � 0);

fout(x) = fin(x) + �ifin(x+ 1) (�i � 0);

� moving average or �rst order recursive �ltering

fout(x) = fin(x) + �ifout(x� 1) (0 � �i < 1);

fout(x) = fin(x) + 
ifout(x+ 1) (0 � 
i < 1);

� in�nitesimal smoothing or di�usion smoothing (see below for an explanation),

� rescaling, and

� translation.

It follows that a discrete kernel is a scale-space kernel if and only if it can be de-
composed into the above primitive transformations. Moreover, the only non-trivial
smoothing kernels of �nite support arise from generalized binomial smoothing.

If this de�nition is combined with a requirement that the family of smoothing
transformations must obey a semi-group property over scales and possess a contin-
uous scale parameter, then the result is that there is in principle only one way to
construct a scale-space for discrete signals. Given a signal f :Z! R the scale-space
representation L :Z�R+! R is given by

L(x; t) =
1X

n=�1

T (n; t)f(x� n); (45)

where T :Z�R+! R is a kernel termed the discrete analogue of the Gaussian kernel.
It is de�ned in terms one type of Bessel functions, the modi�ed Bessel functions In
(see Abramowitz and Stegun 1964):

T (n; t) = e��tIn(�t): (46)

This kernel satis�es several properties in the discrete domain that are similar to those
of the Gaussian kernel in the continuous domain; for example, it tends to the discrete
delta function when t ! 0, while for large t it approaches the continuous Gaussian.
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The scale parameter t can be related to spatial scale from the second moment of the
kernel, which when � = 1 is

1X
n=�1

n2 T (n; t) = t: (47)

The term \di�usion smoothing" can be understood by noting that the scale-space
family L satis�es a semi-discretized version of the di�usion equation:

@tL(x; t) =
1

2
(L(x+ 1; t)� 2L(x; t) + L(x� 1; t)) =

1

2
(r2

2L)(x; t) (48)

with initial condition L(x; 0) = f(x), i.e., the equation that is obtained if the con-
tinuous one-dimensional di�usion equation is discretized in space using the standard
second di�erence operator r2

2L, but the continuous scale parameter is left untouched.
A simple interpretation of the discrete analogue of the Gaussian kernel is as fol-

lows: Consider the time discretization of (48) using Euler's explicit method

L(k+1)(i) =
�t

2
L(k)(i+ 1) + (1��t)L(k)(i) +

�t

2
L(k)(i� 1); (49)

where the superscript (k) denotes iteration index. Assume that the scale-space rep-
resentation of L at scale t is to be computed by applying this iteration formula using
n steps with step size �t = t=n. Then, the discrete analogue of the Gaussian kernel
is the limit case of the equivalent convolution kernel

(
t

2n
; 1� t

n
;

t

2n
)n; (50)

when n tends to in�nity, i.e., when the number of steps increases and each individual
step becomes smaller.

Despite the completeness of these results, and their analogies to the continuous
situation, the extension to higher dimensions fails because of arguments similar to
the continuous case; there are no non-trivial kernels in two or higher dimensions that
are guaranteed to never introduce new local extrema. Hence, a discrete scale-space
formulation in higher dimensions must be based on other axioms.

4.8 Non-enhancement of local extrema

It is clear that the continuous scale-space formulations in terms of causality and scale
invariance cannot be transferred directly to discrete signals; there are no direct dis-
crete correspondences to level curves and di�erential geometry in the discrete case.
Neither can the scaling argument be carried out in the discrete situation if a contin-
uous scale parameter is desired, since the discrete grid has a preferred scale given by
the distance between adjacent grid points. An alternative way to express the causal-
ity requirement in the continuous case is as follows: If for some scale level t0 a point
x0 is a local maximum for the scale-space representation at that level (regarded as a
function of the space coordinates only) then its value must not increase when the scale
parameter increases. Analogously, if a point is a local minimum then its value must
not decrease when the scale parameter increases.

It is clear that this formulation is equivalent to the formulation in terms of level
curves for continuous images, since if the grey-level value at a local maximum (mini-
mum) would increase (decrease) then a new level curve would be created. Conversely,
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if a new level curve is created then some local maximum (minimum) must have in-
creased (decreased). An intuitive description of this requirement is that it prevents
local extrema from being enhanced and from \popping up out of nowhere". In fact,
it is closely related to the maximum principle for parabolic di�erential equations (see,
e.g., Widder (1975) and also Hummel (1987)).

If this requirement is combined with a semi-group structure, spatial symmetry,
and continuity requirements with respect to the scale parameter (strong continuity;
see Hille and Phillips (1957)), then it can be shown that the scale-space family L :
ZN�R+ ! Rof a discrete signal f :ZN ! Rmust satisfy the semi-discrete di�erential
equation

(@tL)(x; t) = (AScSpL)(x; t) =
X
�2ZN

a�L(x� �; t); (51)

for some in�nitesimal scale-space generator AScSp, which is characterized by

� the locality condition a� = 0 if j�j1 > 1,

� the positivity constraint a� � 0 if � 6= 0,

� the zero sum condition
P

�2ZN a� = 0, as well as

� the symmetry requirements a(��1;�2;:::;�N ) = a(�1;�2;:::;�N ) and aPN
k
(�1;�2;:::;�N ) =

a(�1;�2;:::;�N ) for all � = (�1; �2; :::; �N) 2 ZN and all possible permutations PN
k of

N elements.

In one and two dimensions respectively (51) reduces to

@tL = �1r2
3L; (52)

@tL = �1r2
5L+ �2r2

�2L; (53)

for some constants �1 � 0 and �2 � 0. The symbols, r2
5 and r2

�2 denote two
common discrete approximations of the Laplace operator; they are de�ned by (below
the notation f�1;1 stands for f(x� 1; y + 1) etc.):

(r2
5f)0;0 = f�1;0 + f+1;0 + f0;�1 + f0;+1 � 4f0;0;

(r2
�2f)0;0 = 1=2(f�1;�1+ f�1;+1 + f+1;�1 + f+1;+1 � 4f0;0):

In the particular case when �2 = 0, the two-dimensional representation is given by
convolution with the one-dimensional Gaussian kernel along each dimension. On the
other hand, using �1 = 2�2 corresponds to a representation with maximum spatial
isotropy in the Fourier domain.

Concerning operators derived from the discrete scale-space representation, it holds
that the scale-space properties transfer to any discrete derivative approximation de-
�ned by spatial linear �ltering of the scale-space representation. In fact, the converse
result is true as well (Lindeberg 1993); if derivative approximation kernels are to
satisfy the cascade smoothing property,

�xnT (�; t1) � T (�; t2) = �xnT (�; t1 + t2); (54)
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Figure 10: Graphs of the one-dimensional Gaussian derivative kernels @xng(x; t), and their
corresponding discrete analogues �xnT (x; t) up to order n = 4. The scale value in the left
column is t = 1:0 and in the right column t = 16:0. The derivative/di�erence order increases
from top to bottom. The upper row shows the raw smoothing kernel. Then follow the �rst,
second, third and fourth order derivative/di�erence kernels. The block diagrams indicate the
discrete kernels and the smooth curve the continuous Gaussian.
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Figure 11: Grey-level illustrations of the equivalent two-dimensional discrete derivative ap-
proximation kernels up to order three (in the separable case corresponding to 
 = 0). (row 1)
(a) Zero-order smoothing kernel, T , (inverted). (row 2) (b-c) First order derivative approx-
imation kernels, �xT and �yT . (row 3) (d-f) Second order derivative approximation kernels
�xxT , �xyT , �yyT . (row 4) (g-j) Third order derivative approximation kernels �xxxT , �xxyT ,
�xyyT , �yyyT . (row 5) (k-l) First and second order directional derivative approximation
kernels computed from the well-known expression for the directional derivative operator in
direction �, @� = cos�@x + sin�@y, here in the direction 22:5�. (Scale level t = 64:0, image
size 127� 127 pixels).
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and if similar continuity requirements concerning scale variations are imposed, then by
necessity also the derivative approximations must satisfy the semi-discretized di�usion
equation (51). The speci�c choice of operators �xn is however arbitrary; any linear
operator satis�es this relation. Graphs of these kernels at a few levels of scale and
for the lowest orders of di�erentiation are shown in Figure 10 and Figure 11.

To summarize, there is a unique and consistent way to de�ne a scale-space repre-
sentation and discrete analogues to smoothed derivatives for discrete signals, which to
a large extent preserves the algebraic structure of the multi-scale N -jet representation
in the continuous case.

4.9 Summary and retrospective

As we have seen, the uniqueness of the Gaussian kernel for scale-space representation
can be derived in a variety of di�erent ways, non-creation of new level curves in scale-
space, non-creation of new local extrema, non-enhancement of local extrema, and scale
invariance. Similar formulations can be stated both in the spatial domain and in the
frequency domain. The essence of these results is that the scale-space representation
is given by a (possibly semi-discretized) parabolic di�erential equation corresponding
to a second order di�erential operator with respect to the spatial coordinates, and a
�rst order di�erential operator with respect to the scale parameter.

A natural question then arises: Does this approach constitute the only reasonable
way to perform the low-level processing in a vision system, and are the Gaussian
kernels and their derivatives the only smoothing kernels that can be used? Of course,
this question is impossible to answer to without any further speci�cation of the pur-
pose of the representation, and what tasks the visual system are to accomplish. In
any su�ciently speci�c application it should be possible to design a smoothing �lter
that in some sense has a \better performance" than the proposed Gaussian deriva-
tive model. For example, it is well-known that scale-space smoothing leads to shape
distortions at edges by smoothing across object boundaries, and also in surface ori-
entation estimates computed by algorithms like shape from texture. Hence, it should
be emphasized that the theory developed here is rather aimed at describing the prin-
ciples of the very �rst stages of low-level processing in an uncommitted visual system
aimed at handling a large class of di�erent situations, and in which no or very little
a priori information is available. Then, once initial hypotheses about the structure of
the world have been generated within this framework, the intention is that it should
be possible to invoke more re�ned processing, which can compensate for this, and
adapt to current situation and the task at hand; see Section 10 for some indications
about work in this direction. From the viewpoint of such non-uniform scale-space ap-
proaches, the linear scale-space model based on the rotationally symmetric Gaussian
kernel provides a natural starting point for such analysis.

In fact, a certain degree of agreement6 can be obtained with the result from
this solely theoretical analysis and the experimental results of biological evolution.

6Another interesting similarity concerns the spatial layout of receptive �elds over the visual �eld.
If the scale-space axioms are combined with the assumption of a �xed readout capacity from the visual
front end, then it is straightforward to show that there is a natural distribution of receptive �elds (of
di�erent scales and di�erent spatial position) over the retina such that the minimum receptive �eld
size grows linearly with eccentricity, that is the distance from the center of the visual �eld (Lindeberg
and Florack 1992). There are several results in psychophysics, neuroanatomy and electro-physiology
in agreement with such a linear increase (Koenderink and van Doorn 1978; van de Grind et al. 1986;
Bijl 1991).
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Neurophysiological studies by Young (1985, 1987) have shown that there are receptive
�elds in the mammalian retina and visual cortex, whose measured response pro�les
can be very well modelled by Gaussian derivatives. For example, Young models cells
in the mammalian retina by kernels termed di�erences of o�set Gaussians (DOOG),
which basically correspond to the Laplacian of the Gaussian with an added Gaussian
o�set term. He also reports cells in the visual cortex, whose receptive �eld pro�les
agree with Gaussian derivatives up to order four.

Of course, far-reaching conclusions should not be drawn from such a qualitative
similarity, since there are also other functions, like Gabor functions that satisfy the
recorded data up to the tolerance of the measurements. Nevertheless, it is interesting
to note that operators similar to the Laplacian of the Gaussian have been reported
to be dominant in the retina. A possible explanation concerning the construction of
derivatives of other orders from the output of these operators can be obtained from the
observation that the original scale-space representation can always be reconstructed
from this data if Laplacian derivatives are available at all other scales. If the scale-
space representation tends to zero at in�nite scale, then it follows from the di�usion
equation that

L(x; t) = �(L(x; 1)� L(x; t)) = �
Z 1

t0=t

@tL(x; t
0)dt0 = �

Z 1

t0=t

r2L(x; t0)dt0:
(55)

Observe the similarity with the method (6) for reconstructing the original signal from
a bandpass pyramid.

What remains to be understood is if there are any particular theoretical advan-
tages of computing the Laplacian of the Gaussian in the �rst step. Of course, such an
operation suppresses any linear illumination gradients. We summarize by contend-
ing that spatial derivatives of the Gaussian can be approximated by di�erences of
Gaussian kernels at di�erent spatial position, and it is therefore, at least in principle,
possible to construct any spatial derivative from this representation. Remaining ques-
tions concerning the plausibility concerning biological vision are left to the reader's
speculation.

It will now be described, �rst how the scale-space model relates to some other
types of representations with multi-scale interpretation, and then how the scale-space
model can be used for expressing early visual operations.

5 Related multi-scale representations

5.1 Wavelets

A type of multi-scale representation that has attracted a great interest in both sig-
nal processing, numerical analysis, and mathematics during recent years is wavelet
representation, which dates back to Str�omberg (1983) and Meyer (1988). A (two-
parameter) family of translated and dilated (scaled) functions

ha;b(x) = jaj�1=2 h(x� b

a
) a; b 2 R; a 6= 0 (56)

de�ned from a single function h : R! R is called a wavelet. Provided that h satis�es
certain admissibility conditions

Z 1

!=�1

jĥ(!)j2
j!j d! <1; (57)
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then the representation Wf : Rnf0g�R! R given by

(Wf)(a; b) =< f; ha;b >= jaj�1=2
Z
x2R

f(x) h(
x� b

a
)dx (58)

is called the continuous wavelet transform of f : R ! R. From this background,
scale-space representation can be considered as a special case of continuous wavelet
representation, where the scale-space axioms imply that the function h must be se-
lected as a derivative of the Gaussian kernel. In traditional wavelet theory, the zero
order derivative is not permitted; it does not satisfy the admissibility condition, which
in practice implies that

Z 1

x=�1

h(x) dx = 0: (59)

There are several developments of this theory concerning di�erent special cases. A
particularly well studied problem is the construction of orthogonal wavelets for dis-
crete signals, which permit a compact non-redundant multi-scale representation of the
image data. This representation was suggested for image analysis by Mallat (1989,
1992). We will not attempt to review any of that theory here. Instead, the reader is
referred to the chapters by Kay (1993), and by Donoho and Johnston (1993) in this
volume.

5.2 Regularization

According to Hadamard, a problem is said to be well-posed if: (i) a solution exists,
(ii) the solution is unique, and (iii) the solution depends continuously on the input
data. It is well-known that several problem in computer vision are ill-posed; one
example is di�erentiation. A small disturbance in a signal, f(x) 7! f(x) + " sin!x,
where " is small and ! is large, can lead to an arbitrarily large disturbance in the
derivative fx(x) 7! fx(x) + !" cos!x, provided that ! is su�ciently large relative to
1=�.

Regularization is a technique that has been developed for transforming ill-posed
problems into well-posed ones, see Tikhonov and Arsenin, (1977) for an extensive
treatment of the subject. Torre and Poggio (1986) describe this issue with appli-
cation to one of the most intensely studied subproblems in computer vision, edge
detection, and develop how regularization can be used in this context. One example
of regularization concerning the problem \given an operator A and data y �nd z
such that Az = y" is the transformed problem \�nd z that minimizes the following
functional"

min
z

(1� �) jjAz � yjj2 + � jjPzjj2; (60)

where P is a stabilizing operator, and � 2 [0; 1] is a regularization parameter control-
ling the compromise between the degree of regularization of the solution and closeness
to the given data. Variation of the regularization parameter gives solutions with dif-
ferent degree of smoothness; a large value of � may give rise a smooth solution, while
a small value increases the accuracy at the cost of larger variations in the estimate.
Hence, this parameter has a certain interpretation in terms of spatial scale in the
result. (It should be observed, however, that the solution to the regularized problem
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is in general not a solution to the original problem, not even in the case of ideal
noise-free data.)

In the special case when P = @xx, and the measured data points are discrete, the
solution of the problem of �nding S : R! R that minimizes

min
S

(1� �)
X

(fi � S(xi))
2 + �

Z
jSxx(xi)j2dx (61)

given a set of measurements fi is given by approximating cubic splines; see de Boor
(1978) for an extensive treatment of the subject. Interestingly, this result was �rst
proved by Sch�onberg (1946), who also proved the classi�cation of P�olya frequency
functions and sequences, which are the natural concepts in mathematics that under-
lie the scale-space kernels considered in previous sections. Torre and Poggio made
the observation that the corresponding smoothing �lters are very close to Gaussian
kernels.

The strong regularization property of scale-space representation can be appre-
ciated in the introductory example. Under a small high-frequency disturbance in
the original signal f(x) 7! (x) + " cos!x, the propagation of the disturbance to
the �rst order derivative of the scale-space representation is given by Lx(x; t) 7!
Lx(x; t) + " !e!

2t=2 cos!x. Clearly, this disturbance can be made arbitrarily small
provided that the derivative of the signal is computed at a su�ciently coarse scale t
in scale-space.

6 Multi-scale feature detection in scale-space

The above treatment gives formal justi�cations for using linear �ltering as an initial
step in early processing of image data. More importantly, it provides a catalogue of
what �lter kernels are natural to use, as well as an extensive theoretical explanation
of how di�erent kernels of di�erent order and at di�erent scales can be related. This
forms the basis of a theoretically well-founded modelling of the smoothing operation.

Of course, linear �ltering cannot be used as the only component in a vision system
aimed at deriving symbolic representations from images; some non-linear steps must
be introduced into the analysis. More concretely, some mechanism is required for
combining the output from the Gaussian derivative operators of di�erent order and
at di�erent scales into some more explicit descriptors of the image geometry.

6.1 Di�erential geometry and di�erential invariants

An approach that has been advocated by Koenderink and his co-workers is to describe
image properties in terms of di�erential geometric descriptors, i.e., di�erent (possibly
non-linear) combinations of derivatives. A basic motivation for this position is that
di�erential equations and di�erential geometry constitute natural frameworks for ex-
pressing both physical processes and geometric properties. More technically, and as
we have seen in section 4.5.2, it can also be shown that spatial derivatives are natural
operators to derive from the scale-space representation.

When using such descriptors, it should be observed that a single partial derivative,
e.g. Lx1 , does not represent any geometrically meaningful information, since its value
is crucially dependent on the arbitrary choice of coordinate system. In other words,
it is essential to base the analysis on descriptors that do not depend on the actual co-
ordinatization of the spatial and intensity domains. Therefore, it is natural to require
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the representation to be invariant with respect to primitive transformations such as
translations, rotations, scale changes, and certain intensity transformations. In fact,
it would be desirable to directly compute features that are invariant under perspective
transformations. Since, however, this problem is known to be much harder, most work
has so far been restricted to invariants of two-dimensional Euclidean operations and
natural linear extensions thereof, like uniform rescaling and a�ne transformations of
the spatial coordinates.

As we shall also see indications of below, quite a few types of low-level operations
can expressed in terms of such multi-scale di�erential invariants de�ned from (non-
linear) combinations of Gaussian derivatives at multiple scales. Examples of these
are feature detectors, feature classi�cation methods, and primitive shape descriptors.
In this sense, the scale-space representation can serve as a useful basis for expressing
a large number of early visual operations.

Florack et al (1992, 1993) and Kanatani (1990) have pursued this approach of
deriving di�erential invariants in an axiomatic manner, and considered image prop-
erties de�ned in terms of directional derivatives along certain preferred coordinate
directions. If the direction, along which a directional derivative is computed, can
be uniquely de�ned from the intensity pattern, then rotational invariance is obtained
automatically, since the preferred direction follows any rotation of the coordinate sys-
tem. Similarly, any derivative is translationally invariant. These properties hold both
concerning transformations of the original signal f and the scale-space representation
L of f generated by smoothing with the rotationally symmetric Gaussian.

Detailed studies of di�erential geometric properties of two-dimensional and three-
dimensional scalar images are presented by Saldens et al (1992), who makes use
of classical techniques from di�erential geometry (Spivak 1975; Koenderink 1990),
algebraic geometry, and invariant theory (Grace and Young 1965; Weyl 1946) for
classifying geometric properties of the N -jet of a signal at a given scale in scale-space.

Here, a short description will be given concerning some elementary results. Al-
though the treatment will be restricted to the two-dimensional case, the ideas behind
it are general and can be easily extended to higher dimensions.

6.1.1 Local directional derivatives

One choice of preferred directions is to introduce a local orthonormal coordinate
system (u; v) at any point P0, where the v-axis is parallel to the gradient direction at
P0, and the u-axis is perpendicular, i.e. ev = (cos�; sin�)T and eu = (sin�;� cos�)T ,
where

evjP0 =
�

cos�
sin�

�
=

1p
L2
x + L2

y

�
Lx

Ly

������
P0

: (62)

In terms of Cartesian coordinates, which arise frequently in standard digital images,
these local directional derivative operators can be written

@�u = sin�@x � cos�@y : @�v = cos�@x + sin�@y ; (63)

This coordinate system is characterized by the fact that one of the �rst order direc-
tional derivatives, L�u, is zero.

Another natural choice of coordinate system is a (p; q) system aligned to the prin-
cipal curvature directions. To express directional derivative operators along these
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coordinates, which are characterized by L�p�q = 0, we can choose to rotate the coordi-
nate system by an angle � de�ned by

cos�jP0 =

vuuut1

2

0
@1 + Lxx � Lyyq

(Lxx � Lyy)2 + 4L2
xy

1
A
�������
P0

;

sin �jP0 =

vuuut1

2

0
@1� Lxx � Lyyq

(Lxx � Lyy)2 + 4L2
xy

1
A
�������
P0

;

(64)

and de�ne explicit expressions for unit vectors by e�p = (cos�; sin �) and e�q =
(sin �;� cos�). It is straightforward to verify that this de�nition implies that

L�p�q = @�p@�qL = (cos� @x + sin � @y)(sin � @x � cos� @y)L

= cos� sin �(Lxx � Lyy)� (cos2 � � sin2 �)Lxy = 0:
(65)

6.1.2 Monotonic intensity transformations

One approach to deriving di�erential invariants is by requiring the di�erential enti-
ties to be invariant with respect to arbitrary monotonic intensity transformations.
Then, any property that can be expressed in terms of the level curves of the signal
is guaranteed to be invariant. A classi�cation by Florack et al (1992) and Kanatani
(1990), which goes back to the classical classi�cation of polynomial invariants by
Hilbert (1893), shows that concerning derivatives up to order two, there are only two
irreducible di�erential expressions that are invariant to these transformations.

� =
L2
xLyy + L2

yLxx � 2LxLyLxy

(L2
x + L2

y)
3=2

; (66)

� =
(L2

x � L2
y)Lxy � LxLy(Lyy � Lxx)

(L2
x + L2

y)
3=2

: (67)

Here, � is the curvature of level curves in the smoothed signal, and � the curvature
of the integral paths of the gradient vectors. A general scheme for extending this
technique to higher order derivatives and arbitrary dimensions has been proposed by
Florack et al (1993).

6.1.3 A�ne intensity transformations

Another approach is restrict the invariance to a�ne intensity transformations. Then,
the class of invariants becomes larger. A natural condition to impose is that a dif-
ferential expression DL should (at least) be a relative invariant with respect to scale
changes, i.e., under a rescaling of the spatial coordinates, L0(x)=̂L(sx), the di�eren-
tial entity should transform as DL0 = skDL for some k. Trivially, this relation holds
for any product of mixed directional derivatives, and extends to sums (and rational
functions) of such expressions provided that the sum of the orders of di�erentiation
is the same for any product of derivatives constituting one term in a sum.
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In order to give a formal description of this, let L�um�vn = L�u� denote a mixed
directional derivative of order j�j = m + n, and let D be a (possibly non-linear)
homogeneous di�erential expression of the form

DL =
IX

i=1

ci

JY
j=1

L�u�ij ; (68)

where j�ijj > 0 for all i = [1::I ] and j = [1::J ], and

JX
j=1

j�ijj = N (69)

for all i 2 [1::I ]. Then, DL is invariant with respect to translations, rotations, and
a�ne intensity transformations, and relative invariant to uniform rescalings of the
spatial coordinates. (Expressions of this form can be more compactly written using
tensor notation; see Florack et al).

6.2 Feature detection from di�erential singularities

The singularities (zero-crossings) of such expressions play an important role (Linde-
berg 1992). This is a special case of a more general principle of using zero-crossings
of di�erential geometric expressions for describing geometric features; see e.g. Bruce
and Giblin (1984) for an excellent tutorial. If a feature detector can be expressed as
a zero-crossing of such a di�erential expression (or a combination), then the feature
will also be absolute invariant to uniform rescalings of the spatial coordinates, i.e.
size changes. Formally, this invariance property can be expressed as follows:

Let SDL denote the singularity set of a di�erential operator of the form (68), i.e.
SDL = f(x; t) 2 R2�R+ : DL(x; t) = 0g, and let G be the Gaussian smoothing op-
erator, i.e., L = Gf . Under these transformations of the spatial domain (represented
by x 2 R2) and the intensity domain (represented by either the unsmoothed f or the
smoothed L) the singularity sets7 transform as follows:

Transformation De�nition Invariance
translation (T L)(x; t) = L(x+�x; t) SD G T f = SD T G f = T SD G f

rotation (RL)(x; t) = L(Rx; t) SD GR f = SDRG f = RSD G f

uniform scaling (UL)(x; t) = L(sx; t) SD G U f = SD U G f = U SD G f

a�ne intensity (AL)(x; t) = aL(x; t) + b SD G A f = SD AG f = SD G f

In other words, feature detectors formulated in terms of di�erential singularities
by de�nition commute with a number of elementary transformations of the spatial and
intensity domains, and it does not matter whether the transformation is performed
before or after the smoothing step. Some simple examples of feature detectors that
can be expressed in this way are listed below.

7Here, R is a rotation matrix, �x is a vector (2 R2), while a, b and s are scalar constants. The
de�nitions of the transformed singularity sets are as follows; T SDL = f(x; t) : DL(x+�x; t) = 0g,
RSDL = f(x; t) : DL(Rx; t) = 0g, and USDL = f(x; t) : DL(sx; s2t) = 0g.
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6.2.1 Examples of feature detectors

A natural way to de�ne edges from a continuous grey-level image L : R2 ! R is as
the union of the points for which the gradient magnitude assumes a maximum in the
gradient direction. This method is usually referred to as \non-maximum suppression",
(see e.g. Canny (1986), or Korn (1988)). Assuming that the second and third order
directional derivatives of L in the v-direction are not simultaneously zero, a necessary
and su�cient condition for P0 to be a gradient maximum in the gradient direction
may be stated as:

�
L�v�v = 0;
L�v�v�v < 0:

(70)

Since only the sign information is important, this condition can be restated as

�
~L�v�v = L2

�vL�v�v = L2
xLxx + 2LxLyLxy + L2

yLyy = 0;
~L�v�v�v = L3

�vL�v�v�v = L3
xLxxx + 3L2

xLyLxxy + 3LxL
2
yLxyy + L3

yLyyy < 0:
(71)

Interpolating for zero-crossings of ~L�v�v within the sign-constraints of ~L�v�v�v gives a
straightforward method for sub-pixel edge detection (Lindeberg 1993).

An entity commonly used for junction detection is the curvature of level curves in
intensity data, see e.g. Kitchen (1982) or Koenderink and Richards (1988). In terms
of directional derivatives it can be expressed as

� =
L�u�u

L�v

: (72)

In order to to give a stronger response near edges, the level curve curvature is usually
multiplied by the gradient magnitude L�v raised to some power k. A natural choice is
k = 3. This leads to a polynomial expression, see e.g. Brunnstr�om et al. (1992),

j~�j = jL2
�vL�u�uj = jL2

yLxx � 2LxLyLxy + L2
xLyyj: (73)

Since the sum of the order of di�erentiation with respect to x and y is the same for all
terms in this sum, it follows that junction candidates given by extrema in ~� also are
skew invariant (Blom 1992). Assuming that the �rst- and second-order di�erentials of
~� are not simultaneously degenerate, a necessary and su�cient condition for a point
P0 to be a maximum in this rescaled level curve curvature is that:

8>><
>>:

@�u(~�) = 0;
@�v(~�) = 0;
H(~�) = ~�H = ~��u�u~��v�v � ~�2�u�v > 0;
sign(~�)~��u�u < 0:

(74)

Interpolating for simultaneous zero-crossings in @�u(~�) and @�u(~�) gives a sub-pixel
junction detector. Zero-crossings of the Laplacian

rTrL = L�u�u + L�v�v = Lxx + Lyy = 0 (75)

have been used for stereo matching (see, e.g., Marr (1982)) and blob detection (see,
e.g., Blostein and Ahuja (1987)). Blob detection methods can also be formulated in
terms of local extrema (see, e.g., Lindeberg and Eklundh (1990, 1991)).
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Zero-crossings of the Laplacian have been used also for edge detection, although
the localization becomes quite poor at curved edges. This can be understood from
the relation between the Laplace operator and the second derivative in the gradient
direction

rTrL = L�u�u + L�v�v = L�v�v + �L�v: (76)

This example constitutes a simple indication of how theoretical analysis of feature
detectors becomes tractable when expressed in terms of the suggested di�erential
geometric framework.

There are several ways to de�ne ridges from intensity data. One way is to start
from the (p; q)-system considered in section 6.1.1 and to state the requirement that
for a point to be regarded as belonging to a bright ridge it must satisfy�

L�p = 0;
L�p�p < 0;

or

�
L�q = 0;
L�q�q < 0;

depending on whether the �p- or the �q-direction corresponds to the maximum absolute
value of the principal curvature. It is straightforward to show that in terms of the
(u; v)-system, this di�erential geometric ridge detector can equivalently be expressed
as the zero-crossings of L�u�v that satisfy L2

�u�u � L2
�v�v > 0. The sign of L�u�u determines

the polarity; L�u�u < 0 corresponds to bright ridges, and L�u�u > 0 to dark ridges.
(To derive these relationships, replace (x; y) by (u; v) in the expressions for L�p,

L�q , L�p�p, and L�q�q obtained by combining equations (61) and (62) (and use L�u = 0).
This gives,

L�p = sin �0 L�v; L�q = � cos�0 L�v;

where cos�0 and sin �0 represent the results of replacing (x; y) by (u; v) in (62). Then,
the condition L�pL�q = 0 can be rewritten as L�u�v = 0. Moreover, since in general L�v 6=
0, it follows that L�p = 0 corresponds to sin �0 = 0. Then, we have L�p�p = cos2 �0L�u�u

and L�q�q = cos2 �0L�v�v, which means that L�p�p < 0 corresponds to L�u�u < 0. The
requirement for the p-direction to correspond to the maximum absolute value of the
principal curvatures can be written jL�u�uj > jL�v�vj. Similar results are obtained for the
case L�q = 0.)

Examples of edge detection, junction detection and blob detection using this tech-
nique at a number of di�erent scales in scale-space are shown in Figure 12. Observe
how di�erent structures in the image manifest themselves at di�erent scales in scale-
space, and how the complexity in the feature data decreases with scale. Figure 13
shows corresponding results with ridge detection. Examples of shape cue computa-
tion using the Gaussian derivative framework are given by Jones and Malik (1992),
and Lindeberg and G�arding (1993).

7 Behaviour across scales: Deep structure

The treatment so far has been concerned with the formal de�nition of the scale-
space representation, and the de�nition of image descriptors at any single scale. A
very important problem concerns how to relate structures at di�erent scales. This
subject has been termed deep structure by Koenderink (1984). When a pattern is
subjected to scale-space smoothing, its shape changes. This gives rise to the notion
of \dynamic shape", which as argued by Koenderink and van Doorn (1986), is an
essential component of any shape description of natural objects.
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Figure 12: Example of multi-scale feature detection in scale-space using singularities of
di�erential invariants. (left) Smoothed grey-level images. (middle left) Edges de�ned by
L�v�v = 0 and L�v�v�v < 0. (middle right) Magnitude of ~�. (right) Dark grey-level blobs (every
blob corresponds to a local minimum in grey-level). Scale levels from top to bottom: t = 2,
8, 32, and 128.
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Figure 13: Examples of di�erential geometric ridge detection (without thresholding): (a){
(b) dark ridges from a detail from a telephone image at scale levels t = 16 and 64, (c){(d)
bright ridges from an aerial image at scale levels t = 16 and 64.

7.1 Iso-intensity linking

An early suggestion by Koenderink (1984) to relate structures at di�erent scales was
to identify points across scales that have the same grey-level and correspond to paths
of steepest ascent along level surfaces in scale-space.

Since the tangent vectors of such paths must be in the tangent plane to the level
surface, and the spatial component must be parallel to (Lx; Ly), these iso-intensity
paths are the integral paths of the vector �eld

v = (LxLt; LyLt;�(L2x + L2y)): (77)

Lifshitz and Pizer (1990) considered such paths in scale-space, and constructed a
multi-scale \stack" representation, in which the grey-level at which an extremum
disappeared was used for de�ning a region in the original image by local thresholding
on that grey-level.

Although the representation was demonstrated to be applicable for certain seg-
mentation problems in medical image analysis, Lifshitz and Pizer observed the serious
problem of non-containment , which basically means that a point, which at one scale
has been classi�ed as belonging to a certain region (associated with a local maxi-
mum), can escape from that region when the scale parameter increases. Moreover,
such paths can be intertwined in a rather complicated way.

7.2 Feature based linking (di�erential singularities)

The main cause to problem in the iso-intensity linking is that grey-levels correspond-
ing to a features tracked over scales change under scale-space smoothing. For example,
concerning a local extremum it is a necessary consequence of the di�usion equation
that the grey-level at the maximum point must decrease with scale. For this reason,
it may be more natural to identify features across scales rather than grey-levels. A
type of representation de�ned in this way is the scale-space primal sketch of blob-like
image structures (extrema with extent) de�ned at all scales in scale-space and linked
into a tree-like data structure (Lindeberg 1991, 1992).

More generally, consider a feature, which at any level of scale can be de�ned by

h(x; t) = 0 (x 2 RN; t 2 R+) (78)

38



for some function h : RN � R+ ! R
M. For example, the di�erential singularities

treated in Section 6.2 are of this form. Using the implicit function theorem it is then
formally easy to analyze the dependence of x on t in the solution to (78). Here,
some simple examples will be presented of how such analysis can be performed; see
Lindeberg (1992) for a more extensive treatment. Consider, for simplicity, data given
as two-dimensional images. Then, it is su�cient to study the cases when M is either
1 or 2.

7.2.1 Pointwise entities

If M = 2 then then the features will in general be isolated points. The implicit
function theorem states that these points form smooth paths across scales (one-
dimensional curves in three-dimensional scale-space) provided that the Jacobian @xh
is non-degenerate. The drift velocity along such a path can be written

@tx = �(@Tx h)�1@th: (79)

Concerning critical points in the grey-level landscape, we have h = (Lx; Ly)
T , and

the explicit expression for the drift velocity can be written

@tx = �1

2
(HL)�1rTr(rL); (80)

where HL denotes the Hessian matrix of L, and the fact that the spatial derivatives
satisfy the di�usion equation has been used for expressing derivatives of L with respect
to t in terms of derivatives with respect to x. A similar analysis can be performed
concerning, e.g. junctions given as maxima in ~�, although the expressions then contain
derivatives up to order �ve.

This result gives an estimate of the drift velocity of the features due to scale-
space smoothing, and provides a theoretical basis for relating and, hence, linking
corresponding features across scales in a well-de�ned manner.

7.2.2 Curve entities

If M = 1, then the set of feature points will in general be curves when treated at
a single scale and surfaces when treated at all scales. Hence, there is no longer any
unique correspondence between points at adjacent scales. This ambiguity is similar
to the so-called \aperture problem" in motion analysis. Nevertheless, the normal
component of the drift can be determined. If s represents a coordinate along the
normal direction, then the drift velocity can be expressed as

@ts = � ~hs
�1 ~ht = � ht

jrhj : (81)

For example, concerning an edge given by non-maximum suppression (� = ~L�v�v = 0),
the drift velocity in the normal direction assumes the form

(@tu; @tv) = � L�v(L�u�u�v�v + L�v�v�v�v) + 2L�u�v(L�u�u�u + L�u�v�v)

2((L�vL�u�v�v + 2L�u�vL�u�u)2 + (L�vL�v�v�v + 2L2
�u�v)

2)
(
��u

L�v

;
��v

L�v

); (82)

where

��u = L2
�vL�u�v�v + 2L�vL�u�vL�u�u;

��v = L2
�vL�v�v�v + 2L�vL

2
�u�v;

(83)
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represent the components of the normal vector (��u; ��v) to the edge expressed in the
(u; v) coordinate system. Unfortunately, this expression cannot be further simpli�ed
unless additional constraints are posed on L. For a straight edge, however, where all
partial derivatives with respect to u are zero, it reduces to

(@tu; @tv) = �1

2

L�v�v�v�v

L�v�v�v

(0; 1): (84)

This analysis can be used for stating a formal description of the edge focusing method
developed by Bergholm (1987), in which edges are detected at a coarse scale and then
tracked to �ner scales; see also Clark (1988) and Lu and Jain (1989) concerning the
behaviour of edges in scale-space.

Note the qualitative di�erence between linking across scales in the scale-space
representation of a signal and the corresponding problem in a pyramid. In the �rst
case, the linking process can be expressed in terms of di�erential equations, while in
the second case it corresponds to a combinatorial matching problem. It is well-known
that it is a hard algorithmic problem to obtain stable links across scales in a pyramid.

7.3 Bifurcations in scale-space

Previous section states that the scale linking is well-de�ned whenever the appropriate
submatrix of the Jacobian of h is non-degenerate, When the Jacobian degenerates,
bifurcations may occur.

Concerning critical points in the grey-level landscape, the situation is simple. In
the one-dimensional case, the generic bifurcation event is the annihilation of a pair
consisting of a local maximum and a minimum point, while in the two-dimensional
case a pair consisting of a saddle point and an extremum can be both annihilated
and created8 with increasing scale. A natural model of this so-called fold singularity
is the polynomial

L(x; t) = x31 + 3x(t� t0) +
NX
i=1

�(x2i + t� t0); (85)

which also satis�es the di�usion equation; see also Poston and Stewart (1978), Koen-
derink and van Doorn (1986), Lifshitz and Pizer (1990), and Lindeberg (1992). The
positions of the critical points are given by

x1(t) = �
p
t0 � t (xi = 0 i > 1) (86)

i.e. the critical points merge along a parabola, and the drift velocity tends to in�nity
at the bifurcation point.

Johansen (1993) gives a more detailed di�erential geometric study of such bifur-
cations, covering also a number of cases, which generically are unstable when treated
in a single image. Under more general parameter variations, however, like in image
sequences, such singularities can be expected to be stable in the sense that a small
disturbance of the original signal causes the singular point to appear at a slightly
di�erent time moment.

8An example of a creation event is given in the end of Section 4.4.
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8 Scale sampling

Although the scale-space concept comprises a continuous scale parameter, it is neces-
sary to actually compute the smoothed representations at some discrete set of sampled
scale levels. The fact that drift velocities may (momentarily) tend to in�nity indicates
that in general some mechanism for adaptive scale must be used. Such an approach
also simpli�es algorithms for tracking structures across scales. Under the assumption
of generic signals a su�ciently �ne scale sampling should make the scale matching
problem trivial. This property substantially simpli�es the algorithm for building the
scale-space primal sketch (Lindeberg 1991).

8.1 E�ective scale

Nevertheless, it is necessary to have some default strategy for scale selection when
no information is available. Introduce a transformed scale parameter, e�ective scale
� , such that default scale sampling corresponds to uniform scale steps �� measured
in this unit. Then, a straightforward scaling argument shows that for continuous
signals, the transformation function expressing � as function of t should be given by

�(t) = A+ B log t; (87)

and that the ratio between successive scale values should be constant. This result can
also be obtained directly from scale invariance and the Pi-theorem. If a dimensionless
parameter � is to be de�ned from t, then necessarily

d� = B
dt

t
(88)

for some B, which gives the logarithmic transformation. Some more care must be
taken if the lifetime of a structure in scale-space is to be used for measuring signi�-
cance in discrete signals, since otherwise a structure existing at scale zero would be
assigned an in�nite lifetime. An analysis in (Lindeberg 1992) shows that a natural
way to introduce such a scale parameter for discrete signals is by

�(t) = A+B log p(t); (89)

where p(t) constitutes a measure of the \amount of structure" in a signal at scale
t, for practical use the number of local extrema in a reference signal. It can be
shown that under rather general conditions on a one-dimensional signal, �(t) given
by (89) reduces to (87), while for a discrete signal �(t) is approximately linear at �ne
scales, and asymptotically approaches the logarithmic behaviour when t increases.
Hence, the latter approach provides a well-de�ned way to model the transition from
the genuine discrete behaviour at �ne scales to coarser scales where the continuous
approximation is valid.

9 Information content

Originating from the computational vision model by Marr and Hildreth (1980), in
which zero-crossings of the Laplacian play a dominant role, substantial e�orts have
been spent on analysing the information content of those features in scale-space.
Problems that have been treated concern whether the original signal can be recon-
structed, solely using the evolution properties over scales of these zero-crossing curves.
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The main result is that such reconstruction is possible (up to certain constants), al-
though unstable unless regularized in some sense, see e.g. Yuille and Poggio (1988),
and Hummel and Moniot (1989).

An interesting result is presented by Johansen et al (1986), who show that if
also negative scales are considered, then a band-limited one-dimensional signal is up
to a a multiplicative constant determined by its \top points", that is, the points in
scale-space where bifurcations between critical points occur.

When considering the entire scale-space representation, it is, of course, obvious
that the original signal can be \reconstructed" from the scale-space representation.
The philosophy that underlies this presentation is to us the scale-space representa-
tion for making explicit certain aspects of the information content, rather than for
deriving any \minimal and complete" representation, from which the signal can be
reconstructed.

10 Non-uniform scale-space

Although the linear scale-space representation generated by smoothing with the rota-
tionally symmetric Gaussian kernel provides a theoretically well-founded framework
for handling image structures at di�erent scale, the scale-space smoothing has the
negative property that it leads to shape distortions. For example, smoothing across
\object boundaries" can a�ect both the shape and the localization of edges in edge
detection. Similarly, surface orientation estimates computed by shape from texture
algorithms are a�ected, since the anisotropy of a surface pattern may decrease when
smoothed using a rotationally symmetric Gaussian

To reduce these problems, Perona and Malik (1990) proposed the use of anisotropic
di�usion. The basic idea is to modify the conductivity c(x; t) in a non-linear version
of the di�usion equation

@tL =
1

2
rT (c(x; t)rL) (90)

such as to favour intra-region smoothing to inter-region smoothing. In principle, they
solved the di�usion equation

@tL =
1

2
rT (h(jrL(x; t)j)rL) (91)

for some monotonic decreasing function h : R+ ! R+. The intuitive e�ect of this
evolution is that the conductivity will be low where the gradient magnitude is high
and vice versa.

This idea has been further developed by several authors. Nordstr�om (1990)
showed that by adding a bias term to the di�usion equation, it was possible to
relate this method to earlier considered regularization approaches by Terzopoulos
(1983) and Mumford and Shah (1985). Alternative modi�cations in terms of adap-
tive smoothing schemes have been presented by Saint-Marc et al. (1991), Nitzberg
and Shiota (1992), and Whittaker and Pizer (1993). .

By adopting an axiomatic approach, Alvarez et al. have shown that given certain
constraints on a visual front-end, a natural choice of non-linear di�usion equation is
the equation

@tL =
1

2
jrLj rT(rL=jrLj) = 1

2
L�u�u; (92)
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where L�u�u represents the second order derivative in the tangent direction to a level
curve. This evolution means that level curves move in the normal direction with a
velocity proportional to the curvature of the level curves. For a slightly modi�ed
version of (92),

@tL =
1

2
(jrLj2L�u�u)

1=3; (93)

the solutions are relative invariant under a�ne transformations of the spatial coordi-
nates. This property has been used by Sapiro and Tannenbaum (1993) for de�ning
an a�ne invariant curve evolution scheme.

An interesting approach to describing non-linear di�usion more generally has been
pursued by Florack (1993) who considers general non-linear coordinate transforma-
tions of the spatial coordinates as a common framework for expressing such opera-
tions. Interestingly, this approach covers several of the above-mentioned methods.

Trivially, it holds (and follows from the maximum principle) that if h > 0 then
any non-linear scale-space representation of the form (90) satis�es the causality re-
quirement, or equivalently the non-enhancement property of local extrema: @tL < 0
at local maxima, and @tL > 0 at local minima.

Improvements relative to the rotationally symmetric scale-space representation
can also be obtained using linear theory. As has been argued by several authors,
it can be advantageous to use �lters that correspond to di�erent scale values along
di�erent directions; for example a large scale value along the direction of an edge,
and a smaller scale value in the perpendicular direction. At junctions, where several
directions meet, the converse behaviour can be advantageous. In shape from texture,
Lindeberg (1994) and Lindeberg and G�arding (1994) demonstrate that linear shape
adaption of the smoothing kernels can be used for improving the accuracy in surface
orientation estimates, and in fact making a shape from texture method invariant with
respect to the locally linearized perspective mapping.
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