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Abstract

Images are re-mapped as scale-space trees. The minimal data structure is

then augmented by “complement nodes” to increase the practical value of the

representation. It is then shown how the resulting ctree can be used to remove

noise from images, provide a hierarchical way to estimate a dense disparity

map from a stereo pair and to provide a basic segmentation of images for

image retrieval purposes.

1 Introduction

There have been a number of attempts to represent images in a hierarchical fashion. Tree

data structures, widely adopted in computer graphics, are natural candidates for describ-

ing decompositions of scenes, since they provide mechanisms for preserving object hier-

archies. There is now renewed interest in object-based scene descriptions which is being

driven by the proposed MPEG-4 and MPEG-7 standard [1].

Early work attempted to interpret images in terms of a semantic hierarchy [10] and

relate these to quad-trees [17]. Proposals, for analyzing images into tree-like hierarchies,

from the signal and image processing community have included Laplacian pyramids [7,8]

and wavelets [21, 22, 24]. Both are computationally efficient but they have some funda-

mental drawbacks in the context of producing trees: they have the potential to introduce

spurious features at large scale (and therefore branches); large scale features are blurred

and hence the resulting, large scale, fuzzy blobs do not accurately represent the shape of

objects. The first problem, spurious extrema, has been nicely solved. It had long been rec-

ognized that objects tend to be associated with extrema in intensity images. This formed

the starting point for attempts to isolate meaningful edges [23, 26, 27] and subsequently

for the theoretically tidy representation of images known as scale-space [2, 12, 18, 35].

The, now classical, method uses a set of Gaussian, or near Gaussian, filters [9, 19, 20].

The problem remains that they produce blurred images (inevitably for linear systems) and

this is, perhaps, sufficient reason not to use them as a starting point for creating trees with

semantic meaning.

Several non-linear alternatives have subsequently emerged including: anisotropic dif-

fusion in which the conductivity is allowed to vary with image gradient [30]; erosion and

dilation with elliptic paraboloids [15, 34]; and nested sets of connected-set alternating

sequential filters [3, 5, 14, 31, 33]. The performance of these systems as scale-space pro-

cessors has been reviewed [11] and the latter, in particular, appear to have the potential
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to produce meaningful regions. They have provided a starting point for attempts to build

object trees [13, 32].

Here, we attempt to resolve some problems associated with these approaches and

show how the resulting scale-tree might be applied to three very different problems namely

those of simplifying images (denoising), obtaining dense stereo maps and of image re-

trieval.

2 Methods

2.1 Building the tree from a grayscale image

We assume the underlying theory of the scale-space decomposition [3, 4, 14]. The image

is decomposed by identifying local max and local min (extremal) level-sets according to

their scale, namely area. The process starts at the smallest scale, slicing off small-scale,

local, extrema irrespective of shape, and proceeds to the largest scale, namely the whole

image. Adapting the notation in [14] the complete decomposition is denoted by

S
C( f ) = SmSm�1 � � �S2S1 (1)

where m is the maximum scale associated with image, namely the total number of pixels

in the image. Differences between successive stages, namely the regions sliced off, are

defined as granule functions Gs = Ss�1 f �Ss f which may contain more than one granule,

gsi
. Granules are connected regions in G with non-zero value. To build the tree then, at

every stage of the scale decomposition, (1), every granule, gsi
, is labeled as a node, Nsi.

As a new node is created a link is also created between it and previous nodes that have

been merged with that node. Each link represents a parent relation, P ,
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where g̃si
represents the support region, or footprint, of granule gsi

. An example image

and scale-tree is shown in Figure 1.

The order complexity, C of computing the tree appears to be bounded: n< C < n logn

and this is consistent with the fast execution times illustrated in Figure 1B and C which

shows the cpu time and memory usage of our current implementation when applied to

real images of areas from 500 to 500,000 pixels.

To be of value, a tree representation of an image should be a mapping of the image

and so have the perfect reconstruction property familiar from quadrature mirror filter-

banks and certain wavelets: it should be possible to switch between the image and tree

representations and choose to use whichever is the more convenient. The need for this

property, “Invertibility” [14], is one of the reasons for preferring this scale-space. The

theory establishes that if the value associated with each node is the granule amplitude,

then the image f = ∑m
s=1 gs where m is the scale of the root node (area of image). It also

shows that node values can be set to zero (so deleting the node) and the resulting tree can

still be interchanged with its new associated image. This does however lead to a problem

for applications envisioned in this paper. For example, it might be desirable to select and

render or match a branch with branch-root of scale mb <m in isolation from the rest of the
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Figure 1: A) An example image and associated tree. B) Computation time (ordinate 0 to

10 s) on a 300 Mhz Pentium II. C) Memory usage (for a number of real images)

image. As it stands this could be awkward because the rebuilding operation would require

the values of nodes lying between the branch-root and the image root to be known. This

can be avoided by associating the grayscale-image-value with each granule (and therefore

node) as it is removed. This is equivalent to fs = ∑m
p=s gp. An image is then rebuilt by

starting at the branch root and replacing the pixel values in the regions of support for each

child node by fs =∑m
p=s gp where s is the scale of the child. Let the replacement operation

be ρ. Since the pixel value at any point in the image is the sum of granule amplitudes we

have

Theorem 1 Suppose that (gs)
m
s=1 is the M-granule decomposition of an image, f = Z2,

with finite support then the original image can be rebuilt from the nodes f = ρm
s=1 fs.

Such a representation is analagous to the Visual Object Planes of MPEG4.

2.2 Complement trees or ctrees

Although the scale-tree is a mapping of the image, and so completely represents it, the

tree is not necessarily in the most convenient form. It is implicit, in the reasoning behind

scale-space, that interesting objects are represented by local extrema. This is often true

but not always. For example, the scale-tree in Figure 2B,C of Figure 2A, has no node

representing the castle-roof even though it is clearly an object. We overcome this by
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Figure 2: A) A simplified image with features (the castle roof) that should be nodes in

the tree. B) The associated scale-tree. C) Viewed from the top. Nodes are at the centre

of mass of each associated segment. There is no node associated with the castle roof. D)

Complement tree showing nodes associated with every flat zone in the image including

the roof. E) Left is a simple scale tree with A � B � fC;D;Eg. Right is the ctree with

additional nodes G = A
T

B̄, F = B
T

E
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. These complement regions are the non-extremal level-sets and

the new tree is called a ctree (Figure 2E). On the left of the panel is an image and its

associated scale tree. On the right is the augmented tree with two additional nodes. The

cyan links and patches represent the complement nodes. Leaves are always associated

directly with pixels and non-leaf nodes, shown in red, represent the topological structure

of the image. Although the tree is now complicated, the conjecture is that the structure

nodes introduce a way to generate a simpler, object based, representation of the image.

Furthermore ctrees can be simplified easily.

2.3 Simplifying the trees

In Figure 1A the tree has been built from a grayscale image, derived from the lefthand

graphic, quantised to 16 levels and with all extremal nodes (leaves in the scale-tree) up to

scale 30 deleted. The resulting tree, right panel, still provides a hierarchical access to the

object. This approach is practical but ugly and it does not exploit properties of the tree.

Alternatives include scale-space tracking in which unbranched chains are collapsed to the

peak in a scale-selection measure [13].
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Figure 3: (A) A real image represented by a scale-tree with 3123 nodes (B). This has been

simplified to 1100 nodes (C) and the rebuilt image is (D). The semantic meaning in the

image has changed little despite the reduction in complexity of the tree.

The overall problem is to find criterea for merging segments specified by ctree nodes.

Two major sources of nodes are noise-like textures that create small-scale nodes that add

little to the understanding of the image and blurred objects that lead to extended branches

in the tree. Both may be addressed by associating a significance score with each edge

in the tree and removing edges with a low significance. Since each node represents a

parent-child relationship the significance of the difference between the parent region and

the child region is tested. Two tests are immediately available: the conventional t-test

with a Student’s-t confidence distribution [16] and a parametric likelihood ratio with a χ2

confidence [6, 25] distribution.

If the image data are assumed to be distributed as a multivariate normal in the regions

Rp(G) and Rc(G) where, for level-set trees formed from the intensity data, Rp(G) �
Rc(G) then it is simple to define a likelihood ratio, λ for the data given that the two

regions have separate means and variances versus the hypothesis that the two regions
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are homogeneous and so have a common mean and variance. In [6] it is shown that

�2logλ = N log jSα
j �Np log jSpj �Nc log jScj where Np;c are the number of points in

Rp;c(G), Sp;c are the sample covariance matrices computed in those regions and Sα is

the sample covariance computed over the combined region. The statistic 2 logλ is dis-

tributed as approximately χ2(2d) where d is the dimensionality of the image features.

For one-dimensional features, such as grey-scale intensity, by associating a variance of

h2=12 with each level-set (h is the intensity separation between adjacent level sets) it

is easy to show that, where A =
�

Np +Nc+
NpNc

N
(Ip � Ic)

2
�

then, logλ = N
2

log
�

A
N

�

with an associated confidence, δ = 1�
�
A2=N2

�
�2

. An alternative is the conventional

t-statistic: t = (12NpNc=N)1=2 (Ip� Ic) which is distributed as Student’s t distribution

with ν = N2
�
N2

c =(Np �1)+N2
p=(Nc �1)

�
�1

. Either gives acceptable results but here we

use the likelihood ratio, λ, since it extends to multidimensional features and, for scalar

features, the confidence δ is closed form.

Figure 3 shows how this can work for a real image. Edges, where the confidence

score computed between the parent’s complement node and a child node was less than

0.99 have been removed in panel C. The resulting simplified image, shown in panel D,

is very similar to the original, panel A. Likewise a different image, Figure 4. Although

Original Image2

nodes=163957

Simplified Image2

nodes=21512

A B C D

Figure 4: A,C) Original image (*lzw.tif size 37KB) has a tree with 163957 nodes. B,D)

Simplified image (21KB) has a tree with 21512 nodes.

the new image is considerably simplified, it looks similar to the original and preserves

important details, such as the gun barrel (and arms up in surrender). In these examples

the ctree is being used as a denoising filter.

We now provide two further illustrations of how the scale-tree can be used in computer

vision.

2.4 Stereo disparity

For stereo vision with parallel calibrated cameras, features of two or more images are

matched and the three dimensional geometry of the scene recovered from the shift, dis-

parity, along the epipolar line of each image feature. To obtain a dense disparity map from

a pair of images, the ctree obtained from the left image and then simplified (see above) is

traversed in preorder. For each node the disparity is computed from the position and error

of the best match. This disparity is then assigned to the node. If the error of the disparity

for this node is lower than that of its parent, then its disparity is accepted in preference to

that of its parent. This process is similar in principle to that used above to simplify a tree.
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Castle 1 Castle 1 Castle 2 Castle 3 Parking meter

A B C D E

F G H I J

Figure 5: (A-E) Left images of stereo pairs and (F-J) their dense disparity maps. The

algorithm was developed using A and tested on the remainder. (F,H,I,J) show disparities

obtained from the ctree and (G) is the disparity from an SSD sliding window method.

Figure 5A (B is the same as A), C and D shows three stereo pairs of a calibrated

castle scene [28]. The resulting dense disparity maps are shown in Figure 5F,G,H,I. A

comparison of Panels (F) and (G) allows the new method (F) to be compared with a sum

of square differences associated with a fixed window (G). A comparison of estimated

disparities for regions with known ground truth show that the new method has promise:

new method Panel (F) has mean disparity error of 0.6 with standard deviation of 0.5

compared to 1.2 and 7.8 respectively for the SSD method. A more rigorous comparison

using random dot stereograms and a variant on this algorithm is reported elsewhere and

demonstrates it is not much worse then conventional SSD in highly textured regions but

is much better in low textured ones [29]. In Figure 5 the new method fails when there is

no reasonable match to be found but the resulting disparity map is sharp-edged.

2.5 Image retrieval

Often objects within an image are of more interest than the image itself and so both the

objects and the whole image should be used to generate features. The scale-tree appears

to be a candidate for generating a suitable segmentation of the objects. As with disparity

estimates the absence of a convolution window should mean that the segments are sharply

delineated. Moreover, the tree structure should allow a top-down approach.

A way is needed to automatically select the significant very large scale, nodes (near

to the root) that approximately segment entire objects. The numbered nodes in Figure 6

are examples, of which sixty-three is the root. It is clear that the choice of node has to be

made on evidence drawn from entire branches rather than adjacent nodes.

The intention is to get an intuition into how an image retrieval system might operate

rather than attempting to elaborate a method of reliably identifying the key nodes. We

associate with each node a feature that provides a some measure of not only itself and all

of its children. Here we take a very simple measure of this importance, I, of the node

which is defined as I =D=Droot where D is the depth. Leaves have depth 1 and the depth

of any other node is defined as D= 1+maxDc where Dc are the depths of all the children
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Figure 6: Left: scale-tree showing significant nodes. Right panel: associated segments.

of that node. I is reflected in the thickness of the edges plotted in Figures 1A and 6A. To

select those nodes that have segments that (roughly) include objects that might be used

in the image retrieval process we search for nodes with important brothers. To build a

database of important nodes we constrain the number of such nodes to lie between 2 and

10 so, for example, six segments are identified as shown in red on the right of Figure 6.

To illustrate how an image retrieval system based on object color might operate, each

segment in every image is characterized by a feature vector: Fs = fr;g;b;σr;σg;σbg

where r;g;b are red, blue and green colors. Having added segments for all the images to

the database the feature space is “squared-up” so that each feature has zero mean and unit

standard deviation. On recall the images are ranked in feature space using the distance

between the ith and jth image defined in terms of the distances between the pth segment in

the ith image and the qth segment in the jth image. Denote by Fi(p) the feature associated

with the pth segment in the ith image. The distance between the ith and jth image is

di; j =
1
Pi

∑
Pi
P=1 minq

��Fi(p)�F j(q)
�� where the ith image has Pi segments. Note this allows

multiple matches between one segment in the exemplar (ith) image and segments in the

jth image 1

Results from a simple test database are shown in Figure 7. The top-left image in

Figure 7A is the exemplar. The closest match is shown to the right (namely itself) followed

by less successful matches. The database has 720 images of which a random 10 are shown

in the bottom panel. The database has 19 images with white borders (like the exemplar)

namely 2.5% and 29% of the 19 are in the set of top 24 matches. The database has 190

portraits (head and torso) namely 26% and the top 24 contained 62%. Meaningful tests

results await a standardized database with an accepted ground-truth and it hoped that this

will emerge from, among other initiatives, MPEG. However, the experiment does show

how the tree might be used for image retrieval.

3 Discussion

We propose the ctree as a structure for representing bit-images. Leaves represent con-

nected level-sets and the remaining nodes provide a hierarchical structure. The structure

is independent of object rotation and other distortions that do not change the topology.

In images of densely packed objects this means less than for the simple cases presented

1If the exemplar shows one cup (object) it ought to match an image with two cups at least as well. Conversely,

if the the exemplar has two cups then it should match an image with one cup but not as well as one with two.
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A

B

Figure 7: A) Example image (top left) and the images that matched it. B) Random images

from the same database.

here, but it is still an advantage. In many instances the data structure provides access to

entire objects and this opens the way to a new attack on the old problem of segementing

images in a meaningful way. We have shown how nodes can be merged using statistical

criteria but the methods need to be developed further. Future work will explore how, for

example, both more node features and more nodes can be included in each decision to

merge. Perhaps it will be possible to work up through the tree collecting evidence: a

Bayesian decision, to merge or not, would then be based on probabilities obtained from a

training set, the evidence propogated from the children of the nodes under consideration

and features from the nodes themselves.
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