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SUMMARY

In studies that involve multivariate outcomes it is often of interest to test for a common exposure effect.
For example, our research is motivated by a study of neurocognitive performance in a cohort of HIV-
infected women. The goal is to determine whether highly active antiretroviral therapy affects different
aspects of neurocognitive functioning to the same degree and if so, to test for the treatment effect using
a more powerful one-degree-of-freedom global test. Since multivariate continuous outcomes are likely to
be measured on different scales, such a common exposure effect has not been well defined. We propose
the use of a scaled marginal model for testing and estimating this global effect when the outcomes are all
continuous. A key feature of the model is that the effect of exposure is represented by a common effect size
and hence has a well-understood, practical interpretation. Estimating equations are proposed to estimate
the regression coefficients and the outcome-specific scale parameters, where the correct specification of
the within-subject correlation is not required. These estimating equations can be solved by repeatedly
calling standard generalized estimating equations software such as SAS PROC GENMOD. To test whether
the assumption of a common exposure effect is reasonable, we propose the use of an estimating-equation-
based score-type test. We study the asymptotic efficiency loss of the proposed estimators, and show
that they generally have high efficiency compared to the maximum likelihood estimators. The proposed
method is applied to the HIV data.

Keywords: Asymptotic relative efficiency; Effect size; Estimating equations; Global effect; Multivariate response;
Score test.

1. INTRODUCTION

A goal of many studies is to assess the effect of an exposure on multiple related outcomes. For
example, the effect of prenatal exposure of some agent on multiple measures of birth defects may be
of interest in teratology studies (Sammel and Ryan, 1996); in reproductive health studies, interest may
lie in the effect of pesticide exposure on multiple measures of semen quality (Linet al., 2000). Often
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372 J. ROY ET AL.

interest is in not only in whether the exposure affects the outcomes, but also whether the exposure affects
each outcome to the same degree (i.e. whether there is a common exposure effect). If so, one would be
interested in developing a more powerful one-degree-of-freedom global test for the common effect and to
estimate it.

For example, in this paper we consider the effect of highly active antiretroviral therapy (HAART)
on several measures of neurocognitive functioning in HIV-infected women. The study consisted of
125 women, 55 of whom were on HAART therapy and 70 of whom were not (Cohenet al., 2001).
HIV infection can affect both cognitive and psychomotor ability. Therefore, neurocognitive performance
was measured using three instruments: Color Trail Making (CTM), Controlled Oral Word Association
(COWAT) and Grooved Pegboard (GPB). COWAT is designed to measure verbal fluency; CTM and
GPB measure psychomotor speed; all three measure information processing to some extent. Interest is
in whether HAART treatment enhances neurocognitive functioning, which was measured by performance
on the three tasks. Whether or not HAART affects the different aspects of neurocognitive functioning, e.g.
psychomotor speed and verbal fluency, to the same degree is also an important substantive question. This
knowledge would provide insight not only into the disease process, but also into the specific benefits of
treatment. This implies a need for both tests of global exposure effects (i.e. does the exposure affect the
outcomes?) and common exposure effects (i.e. does the exposure affect all of the outcomes to the same
degree?). If the assumption on the common exposure effect is plausible, one would be interested in testing
for the common exposure effect using a more powerful one-degree-of-freedom test and estimating it. In
addition, because women were not randomized to treatment, adjustment for confounders in a regression
setting is crucial.

Several approaches have been proposed for testing in problems involving multiple outcomes.
Traditional techniques such as Hotelling’sT 2 statistic, multivariate analysis of variance (MANOVA) and
Bonferroni adjustment of univariate tests (Wichern and Johnson, 2002) are unsatisfactory for a variety
of reasons, including that there is a lack of flexibility in the types of hypotheses that can be tested and
that these tests are often inefficient (O’Brien, 1984). O’Brien (1984) and Pococket al. (1987) proposed
global tests that better address the questions of interest (e.g. by allowing the alternative hypothesis to
have treatment effects in the same direction for all outcomes), and tend to be more efficient. However,
these techniques cannot be easily adapted to observational studies where there is a need to adjust for
confounding in a regression setting. In addition, these approaches do not allow one to test for a common
effect of exposure.

Estimating and testing for a common exposure effect on multiple continuous outcomes poses a special
difficulty in that the outcomes are typically measured on different scales. Recently, Sammel and Ryan
(1996) proposed a latent variable regression model where it is assumed that the outcomes all measure
some underlying latent variable. The effect of exposure on this latent variable is then of interest, and
can be thought of as the common effect. However, because the marginal mean and variance depend on
common parameters, the latent variable model is highly sensitive to model misspecification (Sammel
and Ryan, 2002). Further, the interpretation of the hypothetical latent variable is not always clear. To
address these issues, Sammelet al. (1999) proposed a multivariate linear mixed model (MLMM) that
disentangles the mean and variance parameters. Linet al. (2000) extended the MLMM by allowing a
more flexible covariance structure. In both cases the fact that each outcome is measured on a different scale
was addressed by scaling the outcomes by the standard deviation of the error term, which is the residual
term not accounted for by the random effects. A common exposure effect on these scaled outcomes can
be estimated and tested. However, a disadvantage of this approach is that the correlation between the
outcomes must be correctly specified. In addition, the interpretation of the common effect is not attractive
because the outcomes are not scaled by their total standard deviations, but by part of the total standard
deviations. Hence it does not have the conventional effect size interpretation.

To address these concerns, we propose a scaled marginal model for estimating a common exposure
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effect on multiple continuous outcomes. One of the advantages of this approach is that the correlation
between outcomes does not have to be correctly specified in order to obtain consistent estimates. In
addition, the exposure effect has the attractive interpretation of being a common effect size. In Section
2 wespecify the model. In Section 3 we describe the estimation procedure. Tests of common exposure are
presented in Sections 3.2 and 3.3. We study the asymptotic efficiency of the estimators in Section 4. The
application to the HIV data is presented in Section 5. Finally, there is a discussion in Section 6.

2. THE SCALED MARGINAL MODEL FOR MULTIPLE CONTINUOUS OUTCOMES

2.1 Review of the scaled linear mixed model

Suppose thatM continuous outcomesyi = (yi1, . . . , yi M )T , an exposure variablewi and a vector of
covariatesxi are observed for thei th of n subjects. Ifyi was avector of repeated measurements of the
same outcome (as in longitudinal studies), then an attractive analytic approach would be to fit a linear
mixed model. However, whenyi represents a vector of different response variables measured at a common
time, the traditional mixed model approach is not satisfactory. This is largely because theM responses
are likely measured on different scales, which makes defining a common exposure effect within this
framework difficult. As a result, Linet al. (2000) proposed the following scaled linear mixed model for
the j th outcomeyi j ( j = 1, . . . , M)

yi j

τ j
= xT

i β j + wiα + zT
i j bi + ei j , (2.1)

wherezi j is a design vector,bi is a vector of random effects followingN {0, D(θ)}, τ j is the standard
deviation of{yi j |xi , wi , bi }, and theei j are errors distributed asN (0, 1). Like linear mixed models for
longitudinal data, within-subject correlation is modeled using random effects. The primary difference is
model (2.1) first scales the responses. This model is attractive because it enables the estimation of a global
treatment effect on the scaled outcomes. Therefore, one can easily test for an exposure effect using a one-
degree-of-freedom test (i.e. test whetherα = 0). In addition, the mean is not overly restrictive in that the
effect ofxi on yi j is not constrained to be constant across outcomesj .

However, there are several drawbacks of this approach. First, notice that var(yi j |bi ) = τ2
j and the

marginal variance var(yi j ) = τ2
j zT

i j D(θ)zi j + τ2
j . Therefore, the outcomes are standardized by the

conditional standard deviations givenbi , as opposed to the marginal standard deviations ofyi j . In other
words, the outcomes are standardized by part of the total standard deviation. This is unattractive because
the regression parameters do not have effect size interpretations in the conventional way and would cause
difficulties in explaining the results to practitioners. Second, depending on the form ofzT

i j bi , the marginal

variance ofyi j/τ j , which is equal to var(yi j/τ j ) = zT
i j D(θ)zi j + 1, may not be constant across outcomes.

Hence this does not fulfill the goal of standardization—to make the standardized outcomes have a common
variance 1. Finally, consistency of the estimators ofβ, α and τ requires the covariance matrixVi of
yi = (yi1, . . . , yi M )T to be correctly specified. As a result, estimation of the regression parameters might
not be robust to misspecification of the correlation matrix. This is because ifVi is misspecified, equation
(7) of Lin et al. (2000) (the score equations forτ2) does not have zero expectation. Note that this property
is different from that of standard linear mixed models, where misspecification of the correlation structure
only affects the efficiency but not the consistency of the regression parameter estimators.

2.2 The scaled marginal model

We are interested in a model that keeps some of the attractive features of the scaled linear mixed model,
while addressing the shortcomings. First, scaling by the total standard deviation ofyi j , as opposed to
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374 J. ROY ET AL.

the standard deviation ofyi j givenbi , is more attractive and practically meaningful. This is because (1)
the mean parameters will have conventional effect size interpretations and will be easy to explain to
practitioners; (2) the variance of the scaled responses will be constant. Second, we are interested in an
estimation procedure that is robust to misspecification of the within-subject correlation matrix.

First, consider the following scaled marginal model with heterogeneous exposure effects

E(yi j |xi , wi )

σ j
= xT

i β j + wiα j , (2.2)

for j = 1, . . . , M , where var(yi j |xi , wi ) = σ 2
j . Note that model (2.2) makes no assumption on the

joint distribution of yi j and no assumption on the correlation among theyi j . The estimated exposure
effectsα j and the covariate effectsβ j should be similar to those from fitting separate regression models
for individual outcomes. As described previously, a major challenge is to determine whether or not the
exposurewi affects theM outcomes to the same degree. We define this common effect in terms ofwi

having the same ‘effect size’ on each outcome. Therefore, we are interested in testing the hypothesis that
H0: α j = α ( j = 1, . . . , M). In Section 3.2 we derive the estimating-equation-based score-type test of
this hypothesis.

If the null hypothesis is correct, then we can estimate a common exposure effect using the following
scaled marginal model:

E(yi j |xi , wi )

σ j
= xT

i β j + wiα. (2.3)

The parametersβ j still represent the effect of the covariates on each outcome. The parameterα is now the
common exposure effect. The primary benefit of model (2.3) is the effect of exposure can be tested using
a more powerful one-degree-of-freedom test. When the common effect assumption is valid, this test will
clearly be more powerful than anM-degree-of-freedom test, where heterogeneous effects were assumed.
In addition, because we scaled by the standard deviations of{yi |xi , wi }, the parameterα has a meaningful
interpretation in that it represents common effect size. We would like to note that, as pointed out by the
Associate Editor, the meanings of the scale parametersσ j are affected by the choices of covariatesxi

included in the models. In other words, the scale parameters are conditional on the selected set of the
covariatesxi .

We allow the yi j to be correlated by assuming in the estimation procedure a working within-subject
correlation matrix and allow the working correlation matrix to be misspecified. Therefore, this model
is nearly as general as the case where models are fitted separately for each response, but accounts for
correlation within subject (see Section 3.1) and allows one to easily test for a global exposure effect
using a one-degree-of-freedom test. It is convenient to write model (2.3) in matrix notation. Letσ 2 =
(σ 2

1 , . . . , σ 2
M ), � = diag(σ 2), y∗

i = �−1/2yi , Xi = (xT
i ⊗ I, wi 1M ) andγ = (βT

1 , . . . , βT
M , α)T . Then,

model (2.3) can be succinctly written as

E(y∗
i |Xi ) = Xiγ.

3. INFERENCE IN THE SCALED MARGINAL MODEL

3.1 Estimation

For estimation we focus on model (2.3), which assumes a common exposure effect. We do this because
(i) estimation assuming heterogeneous effects in model (2.2) only requires minor changes to the below
algorithm and (ii) the score test for common exposure (Section 3.2) only requires fitting the common
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exposure model. We propose estimatingδ = (σ 2T
, γ T )T by solving the following set of estimating

equations:

n∑
i=1

X T
i R−1(y∗

i − Xiγ ) = 0, (3.1)

n∑
i=1

{
yi j

σ j

(
yi j

σ j
− Xiγ

)
− 1

}
= 0, j = 1, . . . , M, (3.2)

where R= R(θ) is a working correlation matrix and depends on a vector of parametersθ , which can
be estimated using the method of moments (Liang and Zeger, 1986). Possible choices of a working
correlation matrix include independence, exchangeable and factor analytic. Notice that these estimating
equations are unbiased even if R is misspecified. This is different from the score equations in scaled
linear mixed models (Linet al., 2000), where the consistency of both the estimated regression coefficients
and the estimated marginal variances requires the correlation matrix among the outcomes to be correctly
specified.

The estimating equation (3.1) was constructed in such a way that (1) it is asymptotically fully efficient
under independence(R = I ); (2) the estimating equations forγ (for knownσ 2) are fully efficient when R
is correctly specified, even when the outcomes within each subject are correlated. However, within-subject
correlation is not accounted for in the estimating equation (3.2) forσ 2. This is due to the robustness
consideration. If one puts the working correlation matrix R in (3.2), the estimator ofσ 2 would likely be
biased if R is misspecified. The resulting estimator ofσ 2 is hence robust to misspecification of the working
correlation matrix, but is likely to be less efficient compared to the maximum likelihood counterpart when
R is correctly specified. It should be noted that the estimating equations (3.2) are equivalent to the score
equations forσ 2 assuming the responses are independent and normally distributed. We study in Section 4
the asymptotic efficiency of the estimators ofγ andσ 2.

Denote the estimating equations byU (δ) = ∑n
1=1 Ui (δ) = 0, whereUi = (U T

1i , U T
2i )

T , U1i is
equation (3.2) andU2i is equation (3.1). These estimating equations can be solved using a modified Gauss–
Seidel algorithm (Lange, 1999). This algorithm can be implemented by alternating between a generalized
estimating equation (GEE) routine (Liang and Zeger, 1986) using existing software forγ , and a Newton–
Raphson algorithm forσ 2. Specifically, we first set initial values forσ 2 using the sample variances ofyi .
Next, estimateγ as

γ̂new =
(

n∑
i=1

X T
i R−1Xi

)−1 n∑
i=1

X T
i R−1y∗

i .

This can be done using standard software by first calculatingy∗
i (using the current estimate ofσ ) and

then fitting a GEE model with identity link and GEE variance parameter fixed at one (e.g. SAS PROC
GENMOD with the NOSCALE option). This GEE routine will also update the estimate ofθ using a
moment estimator. Given the current estimates ofθ andγ , update the estimate ofσ 2 using Newton–
Raphson. Specifically, the updated estimate ofσ 2 is found by iterating

σ 2
new = σ 2

old +
[∑

i

{�−1 + (1/2)diag(Xiγ )�−1diag(Xiγ )}
]−1 ∑

i

{�−1/2diag(yi )(y∗
i − Xiγ ) − 1M }

until convergence, where� is a function ofσ 2
old. The above steps are repeated until convergence.
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Denote byδ̃ the solution of
∑

Ui (δ) = 0. The variance of̃δ is estimated using the sandwich method
as var(δ̃) = (Ĩ)−1, whereĨ = H(δ̃)T {∑i Ui (δ̃)Ui (δ̃)

T }−1H(δ̃). Here

H(δ) = E

{
−∂U (δ)

∂δT

}
=

(
H11 H12
H21 H22

)
,

where

H11 = �−1 + (1/n)
∑

i
1
2diag(Xiγ )�−1diag(Xiγ ),

H21 = 1
2

∑
i X T

i R−1�−1diag(Xiγ )

H12 = 1
n

∑
diag(Xiγ )Xi ,

H22 = ∑
i X T

i R−1Xi .

3.2 The score test for common exposure

An assumption of model (2.3) is that the exposure effect is the same for all outcomes. To check this
assumption, we are interested in testing the null hypothesis that there is a common exposure effect using
the heterogeneous exposure model (2.2), i.e.H0: α j = α, ( j = 1, . . . , M). We propose an estimating-
equation-based score-type test statistic. An advantage of this score test is that one only needs to fit the
common exposure model (2.3), and does not need to fit the heterogeneous exposure effect model (2.2). We
first rewrite the null hypothesis in terms of two nested models by reparametrizing the model. Specifically
model (2.2) is equivalent to

E(Yi j/σ j ) = xT
i β j + wiη1 + wi I( j > 1)η j , (3.3)

where I(·) is an indicator function and we arbitrarily setα1 as the baseline (i.e.η1 = α1 andη j = α j −α1
for j > 1). We can then reformulate the null hypothesis asH0: η j = 0, j = 2, . . . , M . Let γ 0 =
(βT , η1)

T , δ0 = (σ 2, γ 0T )T andη = (η1, . . . , ηM )T . Then, we can partition the estimating functions as
U (δ) = (U1T , U2T )T , whereU1 is the estimating function forδ0 andU2 is the estimating function for
η2, . . . , ηM , i.e.

U1 =
( ∑

n−1{�−1/2diag(yi )(y∗
i − Xiγ

0 − wi�1η) − 1M }∑
X T

i R−1(y∗
i − Xiγ

0 − wi�1η)

)
U2 =

∑
wi�R−1(y∗

i − Xiγ
0 − wi�1η),

where� j is theM × M identity matrix except thej th diagonal element is zero and� is an(M − 1)× M
matrix which is the identity matrix with the first row deleted. Define

A = E

(
∂U2

∂δ0T

)
= −

{
1

2

∑
wi�R−1�−1diag(Xiγ

0 + wi�1η),
∑

wi�R−1Xi

}

and G= ∑
Ui (δ)Ui (δ)

T . Also, note that E
(
− ∂U1

∂δ0T

)
= H(δ0), where H was defined in Section 3.1. Then,

following Breslow (1990), it can be shown that the score test ofH0 : η2 = · · · = ηM = 0 is

S = {U2(δ̃0T )}T −1(δ̃0)U2(δ̃0T ),

where  = G22 − AH−1G12 − G21(H−1)T AT + AH−1G11(H−1)T AT , G11, G12, G21 and G22 are
the corresponding submatrices of G and all of the matrices are evaluated atδ̃0. The score statisticS
asymptotically follows aχ2 distribution withM − 1 degrees of freedom underH0.
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3.3 The Wald test for common exposure

Alternatively, a Wald test for common exposure can be constructed by fitting the heterogeneous exposure
model (2.2) and estimatingα, or equivalently by fitting the heterogeneous exposure model (3.3) and
estimatingη. Estimates ofη can easily be found using the algorithm described in Section 3.1 by changing
the definition of the design matrix. Alternatively, estimates ofη can be obtained by estimating the vector
α from model (2.2) and transforming these estimates toη̃. The true covariance matrix ofη̃ has a sandwich
form similar to that given at the end of Section 3.1. Calculations of the Wald statistic hence involve
the same amount of additional programming as is required to calculate the score statistic, and it further
requires fitting the heterogeneous exposure model (3.3). Therefore, the score test for the common exposure
effect is more convenient to do than the Wald test.

However, we can calculate a naive Wald test for the common exposure effect by fitting the
heterogeneous exposure model (3.3) and obtaining naive estimates of the covariance matrix ofη̃ directly
from standard GEE software at convergence. We call this estimated covariance matrix ‘naive’ because it
assumesσ 2 is known and ignores the variability associated with estimation ofσ 2. The Wald test based
on this naive variance is̃η∗T { ˜var(η̃∗)}−1η̃∗, whereη∗ = (η2, . . . , ηM )T and ˜var(η̃∗) denotes the ‘naive’
covariance ofη. This naive Wald test is easier to compute than the score test, because it can be output
directly from standard software packages, whereas the score test requires additional code for finding
 (see Section 3.2). Unfortunately, because this test is using the naive standard errors by ignoring the
variability in estimatingσ 2, it is likely to be asymptotically biased. However, this bias might be small
in practice in some settings. We will compare in Section 5 the score test and the naive Wald test in the
analysis of the HIV data.

4. ASYMPTOTIC EFFICIENCY

Our parameter estimator is estimating-equation-based. While it is more robust than the maximum
likelihood estimator (MLE), it might be less efficient than the MLE when the likelihood function and
the correlation matrix are correctly specified. We consider in this section the asymptotic efficiency of
our estimator ofγ andσ 2 relative to the MLE when the likelihood function and the correlation matrix
are correctly specified. Specifically, in our asymptotic efficiency study, we further assume the outcomes
follow model (2.3) and are normally distributed with the correlation matrix correctly specified. It follows
that

Yi ∼ N (�1/2Xiγ, �1/2RT(θ)�1/2), (4.1)

whereRT is the true correlation matrix. Assumingθ is known, some calculations show that the information

matrix of the MLE of(γ̂ , σ̂ 2) is

Î =
(

Î11 Î12

ÎT
12 Î22

)
,

where

Î11 =
n∑

i=1

X T
i R−1

T Xi

Î12[., j] = 1

2σ̂ 2
j

n∑
i=1

X T
i R−1

T (I − � j )Xi γ̂

Î22[ j, k] = n

4σ̂ 4
j

I( j = k) +
n∑

i=1

1

4σ̂ 2
j σ̂

2
k

[tr{(I − � j )R−1
T (I − �k)RT} + γ̂ T X T

i (I − � j )R−1
T (I − �k)Xi γ̂ ]
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for j, k = 1, . . . , M . The notationÎ12[., j] refers to thej th column of Î12. The asymptotic relative
efficiency (ARE) for a particular vector of parametersφ is

ARE(φ̃, φ̂) =
(

lim
n→∞

|cov(φ̂)|
|cov(φ̃)|

)1/q

whereφ is β, α or σ 2 andq is the dimension ofφ. The term cov(φ̂) is just the appropriate submatrix of
Î−1, whereas cov(φ̃) is the submatrix of the sandwich estimatorĨ−1.

The AREs ofγ̃ andσ̃ 2 compared tôγ andσ̂ 2 are of interest. First note that when there is no correlation
between the outcomes (i.e.RT = I) and working independence is assumed, the estimatorδ̃ is fully
efficient. This can be seen by noticing that the estimating equationsU (δ) are equivalent to the score
equations from the true model (4.1), whenRT = R = I. However, when there is correlation between the
outcomes,̃δ will tend to be less efficient.

Westudy the AREs numerically for the following simple special case:

E(yi j/σ j ) = β0 j + xiβ1 j + wiα

wherewi is a binary exposure variable with half of the subjects being exposed and half not,xi is a
confounder and corr(yi ) = RT. The covariatexi was generated fromN (3, 1) if wi = 0 and fromN (1, 1)

if wi = 1. This was done to create imbalance in the data—mimicking real-world observational studies.
For simplicity we assumedβ0 j = β0 andβ1 j = β1 for all j . We calculated the AREs for a variety of
values ofγ andθ . It can be easily shown that the ARE of(γ, σ 2) does not depend onσ 2. We assumed
the number of outcomes wasM = 3, and the true correlation matrix was either exchangeable or factor
analytic. For simplicity, we used the following factor analytic structure:

RT =

 1 θ θ

θ 1 1− θ

θ 1 − θ 1


 ,

so thatRT only depends on a single parameter. We calculate the asymptotic relative efficiency of our
estimator when the correlation matrix is misspecified and is correctly specified.

The results are given in Table 1. The efficiency of our estimating-equation-based estimators tend
to be quite high compared to the MLEs when the correlation is small (θ = 0.3), especially for the
estimator of the exposure effectα. The efficiency loss is larger when the correlation increases(θ = 0.7),
with approximately 20% efficiency loss in some cases. When the true correlation is exchangeable,
misspecifying the correlation matrix has little effect on efficiency. However, when the true correlation
is factor analytic, correctly specifying R results in efficiency gains, particularly forα. The efficiency of
the estimator ofσ 2 is also quite high compared to its maximum likelihood counterpart, although its loss
of efficiency is a little higher than that of the estimator ofα. This is because the estimating equations of
σ 2 ignore correlation between outcomes.

5. APPLICATION TO THEHIV DATA

We illustrate the methods with a study of neurocognitive performance in HIV-infected women. The
study involved 125 HIV-seropositive women from the HER study (Smithet al., 1997)—an epidemiologic
study of HIV-infected women. Women were given a neurocognitive exam every six months after their
CD4 count fell below 100 (106 cells/l). Neurocognitive data at baseline and at their most recent visit
(about 3 years since the baseline) were used in the analysis. The goal was to determine whether HAART,
which has been shown to reduce viral load and improve immune functioning, enhances neurocognitive
performance (Cohenet al., 2001).
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Table 1.Asymptotic relative efficiency of the scaled marginal model
parameter estimates with respect to the MLEs. Upper entry is for

exchangeable RT; lower entry is factor analytic RT

Working R

True parameter values Independence Exchangeable Factor analytic
θ β α α σ2 α σ2 α σ2

0.3 (1,1) 0 1 0.94 1 0.94 1 0.94
0.3 (1,1) 0 0.97 0.87 0.98 0.87 1 0.88

0.3 (1,1) 3 0.95 0.94 0.96 0.94 0.95 0.94
0.3 (1,1) 3 0.89 0.87 0.89 0.88 0.92 0.88

0.3 (3,3) 0 1 0.95 1 0.95 1 0.95
0.3 (3,3) 0 0.97 0.88 0.97 0.88 1 0.89

0.3 (3,3) 3 0.96 0.95 0.96 0.95 0.96 0.95
0.3 (3,3) 3 0.89 0.88 0.89 0.88 0.92 0.89

0.7 (1,1) 0 1 0.78 1 0.78 1 0.78
0.7 (1,1) 0 0.90 0.80 0.90 0.80 1 0.81

0.7 (1,1) 3 0.84 0.78 0.84 0.78 0.84 0.78
0.7 (1,1) 3 0.81 0.81 0.81 0.81 0.86 0.80

0.7 (3,3) 0 1 0.79 1 0.79 1 0.79
0.7 (3,3) 0 0.90 0.83 0.90 0.83 1 0.82

0.7 (3,3) 3 0.84 0.79 0.84 0.79 0.84 0.79
0.7 (3,3) 3 0.81 0.83 0.80 0.83 0.86 0.83

Three tasks were used to measure neurocognitive performance: Color Trail Making 1 total time
(CTM), Controlled Word Association Test (COWAT) and Grooved Pegboard total time (GPB). CTM and
GPB are the time it takes to complete the corresponding tasks (shorter time indicates better performance).
COWAT is a score that measures verbal fluency, and lower values indicate better performance. These
tasks measure neurocognitive functioning from different perspectives. For example, COWAT is a measure
of verbal fluency; CTM and GPB measure psychomotor speed and information processing. The outcome
variables of interest are changes in these three measures from baseline. Specifically, we define the three
outcome variables asy1 = CTM (evaluation 2)− CTM (evaluation 1),y2 = COWAT (evaluation 2)−
COWAT (evaluation 1) andy3 = GPB (evaluation 2)− GPB (evaluation 1). A negative value of each
of the three outcomes indicates an improvement in neurocognitive performance for that measure. One
subject that had an extreme outlier fory1 was removed from the analyses.

Table 2 gives the means and standard deviations of the three outcomes for each treatment group
(HAART and non-HAART). For all three measures, neurocognitive performance has declined for the
non-HAART group and improved for the HAART group. Because the three outcomes measure different
aspects of neurocognitive functioning, one important question is whether HAART has a common effect
on the three measures. This is difficult to tell from the raw data, because the outcomes are measured on
different scales. The (pooled) estimated standard deviations are 21.6, 5.6 and 35.9 for the three outcomes,
respectively. Once we scale by these sample standard deviations, we see that a common effect size of
HAART may be quite plausible (mean differences of−0.44, −0.47 and−0.44, respectively). Figure 1
presents box plots of the standardized outcomes, stratified by treatment group.

These preliminary analyses ignore potential confounders, as well as the correlation between the
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Table 2.Summary statistics for outcomes by treatment status. y1 is
color trail (eval. 2 − eval. 1); y2 is COWAT (eval. 2 − eval. 1); y3

is grooved peg board (eval. 2 − eval. 1)

Non-HAART (n = 69) HAART (n = 55)
Outcome Mean SD Mean SD Mean diff.
y1 3.9 22.6 −5.6 19.1 −9.5
y2 1.5 4.9 −1.1 6.1 −2.6
y3 6.6 38.8 −9.2 30.0 −15.8

y1/sd(y1) 0.18 1.0 −0.26 0.89 −0.44
y2/sd(y2) 0.27 0.88 −0.20 1.1 −0.47
y3/sd(y3) 0.18 1.1 −0.26 0.84 −0.44
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Fig. 1. Box plots of the standardized outcome variables stratified by treatment status. The sample standard deviations
were used to standardize each outcome. The standardized outcomes are color trail (strl), COWAT (s cowat) and
grooved pegboard (sgpb).

outcomes. We therefore apply our marginal scaled model to these data. To determine whether a common
treatment effect was reasonable, we first fitted model (2.2) withw = HAART (1 = HAART, 0 = non-
HAART) and the following covariates: age at baseline (years); depression severity as measured by the
Center for Epidemiology Scale (CESD); and CD4 count at baseline. We also considered other covariates,
such as change in CD4 count, illicit drug use and plasma viral load, but these had little impact in the
model. We therefore did not include these variables in the model. The individual treatment effectsα j

were estimated as−0.47 (SE= 0.18),−0.52 (SE= 0.22) and−0.47 (SE= 0.17). The score test statistic
for common exposure effect was 0.06 (d.f. = 2, p-value= 0.97). Therefore, there is no evidence that a
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Table 3.Parameter estimates and estimated standard
errors from application to the HIV data

Estimate SE Naive SE
Intercept β01 −0.57 0.77 0.78

β02 1.52 0.67 0.67
β03 −0.25 0.75 0.73

Age β11 0.012 0.014 0.014
β12 −0.031 0.014 0.014
β13 0.008 0.013 0.013

CESD β31 0.014 0.009 0.009
β32 0.002 0.008 0.008
β33 0.008 0.010 0.009

CD4 (40,100) β41 −0.48 0.27 0.27
β42 −0.10 0.23 0.23
β43 −0.12 0.18 0.18

CD4 (<40) β51 −0.18 0.23 0.23
β52 −0.17 0.21 0.21
β53 −0.21 0.17 0.17

HAART α −0.49 0.13 0.14

σ2
1 411 71.6

σ2
2 28.6 4.6

σ2
3 1206 293

common treatment effect is not a reasonable assumption. In addition, we calculated the naive Wald test
using the naive standard errors to test for the common exposure effect. The value of this test statistic was
0.06 (p-value = 0.97), which was consistent with the score test.

Wetherefore fitted the model assuming a common effect of HAART on the scaled outcomes. Because
there are only three outcomes, we left the working correlation matrix unspecified. The results are given
in Table 3. The estimate of the common effect of HAART was−0.49 (SE = 0.13). This indicates
that HAART does enhance neurocognitive performance. Specifically, the change in neurocognitive
performance for HAART-treated women was about a half a standard deviation better on all three outcomes
than for women who did not take HAART. It may be more meaningful to translate the common effect
onto the original scales by multiplying the estimate ofα by the corresponding standard deviations. The
estimated effect of HAART on the change in CTM, COWAT and GPB are−9.9, −2.6 and −17.0,
respectively. Older ages at baseline were associated with better verbal fluency (COWAT), but there was no
age effect on the other outcomes. Larger values of CESD (more depressed) were associated with poorer
neurocognitive performance, although the estimates were not significant. The estimated effect of CD4
count at baseline was negative, indicating sicker patients showed more benefits from HAART. Again,
however, these tended to not be significant. The estimated working correlation matrix was

R =

 1 0.12 0.29

0.12 1 0.29
0.29 0.29 1


 .

Table 3 also presents the naive SEs forγ which were obtained directly from SAS PROC GENMOD.
These SEs do not take into the account the fact thatσ 2 wasestimated. These naive SEs perform quite well
in this example.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/4/3/371/226605 by guest on 20 August 2022



382 J. ROY ET AL.

As a sensitivity analysis, we carried out an alternative analysis where instead of defining the response
variable as a difference between each measure at the two time points, we defined it as the response at
the most recent visit. Similar to ANCOVA models, we included the response at baseline as a covariate in
x and assumed working independence for the covariance matrix. The score test for a common treatment
effect could not be rejected, and the estimated common effect was significant (though slightly smaller in
magnitude). Because the results were similar, we do not present the findings here.

6. DISCUSSION

In this paper we proposed a scaled marginal model for test and estimation of global exposure effects.
An attractive feature of this model is the common exposure effect has an appealing interpretation in terms
of the common effect size. In addition, few restrictions are made on the coefficients of the other covariates
in the model for the scaled mean. It should be noted that the scale parameters are conditional on the
set of covariates included in the model, i.e. different choices of covariates affect the meanings of the
scales. Hence our method requires correctly specifying the scaled mean models by including appropriate
covariates. This is in the same spirit as GEEs. However, we do not make any assumption on the joint
distribution of the outcomes and no assumption on the correlation matrix. As a result, our method is more
robust than maximum likelihood estimation.

Our asymptotic efficiency analysis shows that in most of the situations that we considered there was
not much loss of efficiency compared to the MLE; in the worst cases there was about 20% efficiency loss.
Estimation of the model parameters is estimating equation based and can be easily obtained by iterating
between GEE estimation forγ using standard software (e.g. SAS PROC GENMOD) and a Newton–
Raphson algorithm for estimatingσ 2. The SAS macro that was used for estimation can be downloaded
from http://stat.brown.edu/AMPD.

There are several simpler,ad hoc, methods that could be used to fit scaled models. One possibility
is to just scale the outcomes by their sample standard deviations and fit a GEE model with a common
exposure effect. This approach is problematic because the sample standard deviations estimates do not
properly account for heterogeneity of the population. In addition, it would ignore the fact that the standard
deviations are estimated. A slightly more complicated alternative would be to fit the model in stages. First
fit a GEE model to the outcomes scaled by the sample standard deviations. Then use the residuals from
this model to come up with new estimates of the standard deviations and repeat the process. Again, this
approach does not account for the fact that the scale parameters are estimated. Also, the properties of the
corresponding estimates are not known.

For simplicity, we assume in this paper that the scale parameters are constant across exposure groups
and a common set of covariatesxi is included in each outcome model. Extensions of the proposed model to
relax these assumption by allowing different scale parameters for different exposure groups and different
sets of covariatesxi for different outcome models are straightforward with some changes of notation. We
can also easily allow the exposure variable to be continuous in our model. The same estimation procedure
applies. An area that warrants further research is the theoretical properties of the naive SEs and the naive
Wald test. The advantage of using the naive estimates is they are easier to compute. For the HIV data, the
naive SEs and the naive Wald test using the naive SEs performed well. It is worth studying whether that
is true in general and under what conditions they will perform poorly.
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