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Summary. The standard approaches to solving overdetermined linear sys-

temsBx ≈ c construct minimal corrections to the vector c and/or the matrix

B such that the corrected system is compatible. In ordinary least squares

(LS) the correction is restricted to c, while in data least squares (DLS) it

is restricted to B. In scaled total least squares (STLS) [22], corrections to

both c and B are allowed, and their relative sizes depend on a real positive

parameter γ. STLS unifies several formulations since it becomes total least

squares (TLS) when γ = 1, and in the limit corresponds to LS when γ → 0,
and DLS when γ → ∞. This paper analyzes a particularly useful formula-

tion of the STLS problem. The analysis is based on a new assumption that

guarantees existence and uniqueness of meaningful STLS solutions for all

parameters γ > 0. It makes the whole STLS theory consistent. Our theory

reveals the necessary and sufficient condition for preserving the smallest

singular value of a matrix while appending (or deleting) a column. This

condition represents a basic matrix theory result for updating the singular

value decomposition, as well as the rank-one modification of the Hermitian

eigenproblem. The paper allows complex data, and the equivalences in the

limit of STLS with DLS and LS are proven for such data. It is shown how

any linear system Bx ≈ c can be reduced to a minimally dimensioned core

system satisfying our assumption. Consequently, our theory and algorithms

can be applied to fully general systems. The basics of practical algorithms

for both the STLS and DLS problems are indicated for either dense or large
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sparse systems. Our assumption and its consequences are compared with

earlier approaches.

Mathematics Subject Classification (1991): 15A18, 65F20, 65F25, 65F50

1 Introduction

We will use R(B) to denote the range (column space) of a matrix B. Two
useful approaches to solving the overdetermined approximate linear system

Bx ≈ c, B an n by k matrix, c an n-vector, c /∈ R(B),(1.1)

are ordinary least squares (LS, or OLS, see for example [1], [12, §5.3]) and
total least squares (TLS, see [10,11], and for example [1, §4.6], [12, §12.3],
[16]). In LS we seek (we use ‖ · ‖ to denote the vector 2-norm)

LS distance ≡ min
r,y

‖r‖ subject to By = c− r.(1.2)

In TLS, E and s are sought to minimize the Frobenius (F) norm in

TLS distance ≡ min
s,E,z

‖[s,E]‖F s. t. (B + E)z = c− s.(1.3)

In both LS and TLSwe look for a minimal correction such that the corrected

problem is compatible. While in LS the correction is restricted to the vector

c (which corresponds to the assumption that all errors are confined to the

vector of observations), in TLS the correction is allowed to compensate for

errors in the data matrixB as well as in the vector of observations c. The LS
and TLS problems have statistical relevance for different situations, see Van

Huffel and Vandewalle [16] for an excellent discussion and history. They

also carefully delineated the TLS theory and how it is related to LS.

The opposite case to LS is the data least squares problem (DLS), see

[13]. In DLS the correction is allowed only in B (errors are assumed to

affect only the data matrix)

DLS distance ≡ min
G,w

‖G‖F subject to (B +G)w = c.(1.4)

All these approaches can be unified by considering the following very

general scaled TLS problem (STLS), see the paper [22] by Rao, who called

it “weighted TLS”: for a given γ > 0,

STLS distance ≡ min
s̃,Ẽ,z̃

‖[s̃γ, Ẽ]‖F s. t. (B + Ẽ)z̃ = c− s̃.(1.5)

Here the relative sizes of the corrections in B and c are determined by the

real parameter γ > 0. When γ → 0 the STLS solution approaches the LS

solution, when γ = 1 (1.5) coincides with the TLS formulation, and when
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γ → ∞ it approaches DLS. The case γ → 0 is not completely obvious

since setting γ = 0 in (1.5) leads to Ẽ = 0, but allows arbitrary s̃, which
does not necessarily mean the LS solution. The case γ = 1 is obvious, and

we see that γ → ∞ requires s̃ → 0, leading to DLS. For more on STLS

and DLS see also [3], [4], [5]. Scaling by a diagonal matrix was considered

in [11], and this motivated later researchers, leading eventually to the STLS

formulation in [22]. The paper [8] considered the case where only some of

the columns of the data matrix are contaminated, and this also suggested a

way of treating LS as well as TLS in the one formulation.

The formulation of the STLS problem that we use is slightly different

from that in (1.5). For any positive bounded γ, substitute in (1.5) s ≡ s̃γ,
z ≡ z̃ and E ≡ Ẽ to obtain the new formulation of the STLS problem: for

a given γ > 0,

STLS distance ≡ min
s,E,z

‖[s,E]‖F s. t. (B + E)zγ = cγ − s.(1.6)

We call the z = z(γ) that minimizes this the STLS solution of (1.6). In

analogy with (1.3), we call z(γ)γ the TLS solution of (1.6). In (1.6) we

could have written z instead of zγ. We chose the present form so that for

positive bounded γ, the STLS solution z = z(γ) of (1.6) is identical to the

solution z̃ of (1.5). Thus (1.5) and (1.6) have identical distances and solutions
for positive bounded γ. Therefore our results and discussions based on (1.6)
apply fully to the scaled TLS problem (1.5).

We show for (1.6) that as γ → 0, z(γ) becomes the LS solution y of

(1.2), and (STLS distance)/γ becomes the LS distance. As γ → ∞, z(γ)
becomes the DLS solution w of (1.4), and the STLS distance becomes the

DLS distance. The convergence of the STLS problem to the LS problem has

been described in [22], and essentially in [11], for the real case. Here the

convergence is proven for complex data by explicitly taking the limits for

both solutions and distances.

We found that the development of our results was more simple and intu-

itive using the formulation (1.6) rather than (1.5). In particular, all the known

TLS theory and algorithms can be applied directly to (1.6). The equivalence

of (1.6) and (1.5) is extremely useful. This equivalence was pointed out to

us by Sabine Van Huffel [15] after she read an earlier version of our work

based on (1.6). We have not seen it stated in the literature, but it is implicit

in the paper by Rao [22].

In (1.6), γ simply scales the right-hand side vector c (and the STLS

solution z = z(γ)). Therefore it is appropriate to call the formulation (1.6)

the scaled TLS problem, rather than the “weighted” TLS problem as was

done in [22]. This also avoids the possibility of confusing the meaning of

“weighted” here with its different meaning in “weighted least squares”.
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Using γ can have a statistical significance. Suppose that the elements of

B are known to have independent zero-mean randomerrors of equal standard

deviation δB. Suppose also that the elements of c have been observed with

independent zero-mean random errors of equal standard deviation δc, and

that the errors in c and B are independent. Then taking γ = δB/δc in (1.6)

will ensure that all the errors in thatmodel have equal standard deviation (and

so variance), and (1.6) is the ideal formulation for providing estimates. This

agrees with the limiting behaviour described above, for clearly if δB = 0
and δc �= 0, then LS is the correct choice, while if δB �= 0 and δc = 0,
then DLS is the correct choice. However (1.6) can also be useful outside

any statistical context, see for example [20], and then γ does not have the

above interpretation.

In all these formulations, if c ∈ R(B), then zero distance can be obtained
via a direct solution. Otherwise TLS, and so STLS solutions can be found

via the singular value decomposition (SVD). Letσmin(·) denote the smallest

singular value of a given matrix. To be precise, σmin(G)will denote the j-th
largest singular value of an n by j matrix G, and will be zero if n < j. The
interlacing property for the eigenvalues of [B, c]H [B, c] and of BHB [23,

Ch2, §47, pp. 103–4] tells us that σmin([B, c]) ≤ σmin(B). When

σmin([B, c]) < σmin(B)(1.7)

the n by k matrix B must have rank k, the unique solution of the TLS

problem (1.3) is obtained from scaling the right singular vector of [B, c]
corresponding to σmin([B, c]), and the norm of the TLS correction satisfies

mins,E,z ‖[s,E]‖F = σmin([B, c]), (see for example [12, §12.3]). When

σmin([B, cγ]) < σmin(B) for a given γ > 0,(1.8)

it follows that

STLS distance in (1.6) = σmin([B, cγ]).(1.9)

In the general case, let Umin be the left singular vector subspace of B
corresponding to σmin(B). We explain in full later why (1.8) should not be

used as a basis for the STLS theory. Very briefly, if c ⊥ Umin, then [B, cγ]
has a singular value equal to σmin(B) for all γ > 0. But for a particular

value of γ, [B, cγ] might have a smaller singular value than σmin(B). Thus
we can have (1.8) and c ⊥ Umin. But c ⊥ Umin means σmin(B) plays no
role in solving the LS problem, so the comparison with σmin(B) in (1.8)

should not form the basis for deciding if there is a solution to the STLS, or

even TLS, problem.

We argue that a satisfactory condition for building the theory of the TLS,

DLS and STLS formulations for solving (1.1) is the γ-independent criterion:

the n× k matrix B has rank k, and c �⊥ Umin.(1.10)
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We will show in Theorem 3.1 (see (3.7)) that this implies

σ(γ) ≡ σmin([B, cγ]) < σmin(B) for all γ ≥ 0,(1.11)

which of course implies (1.7) and (1.8). The condition (1.10) is the simplest

one. It only requires the SVD ofB, while the others each require two SVDs.
Note also that (1.10) is purely geometric.

A trivial example of B with rank k, but c not satisfying (1.10), is

[

c B
]

=





2 4 0
0 3 0
0 0 1



 .(1.12)

Note that for sufficiently large γ (even γ = 1), this example gives

σmin([B, cγ]) = σmin(B).(1.13)

But dropping the last row and column of [c,B], to give [c1, B11], results in
a “core” problem B11x1 ≈ c1 satisfying (1.10) and (1.11).

Almost all practical problems will satisfy (1.10), and so (1.11), but to

complete the theoretical foundations of the STLS problem, Theorem 3.1 an-

alyzes when it is possible to have (1.13). This case seems never to have been

fully analyzed before. Clearly (1.13) corresponds to the smallest singular

value of a matrix being preserved when appending (or deleting) a column.

This is useful in the theory of updating the singular value decomposition,

and the rank-one modification of the Hermitian eigenproblem.

A crucial property of the criterion (1.10) is that any linear systemBx ≈ c
can in theory be reduced to a “core” problem satisfying (1.10). In practice

this can be done by direct computations that can be usefully applied to all

small and dense STLS problems. We also suggest an algorithm for the large

sparse matrix case.

Thus in this paper we present a new and thorough analysis of the theo-

retical foundations of the STLS problem, and of its relationships to the LS

and DLS problems. But we also develop some more generally applicable

matrix theory, and suggest the basics for useful approaches to solving STLS

and DLS problems.

The rest of the paper is organized as follows. We start in Sect. 2 by

reviewing some mathematical tools that we will need. In Sect. 3 we prove

just when (1.13) can hold, since this is poorly understood, but is needed for

a full understanding of TLS, DLS and STLS problems, and for our choice

of criterion (1.10). It represents a general matrix theory result that might

be useful outside the context of this paper. In Sect. 4 we give the valuable

secular equationwhich σmin([B, cγ]) in (1.9)must satisfy. Section 5 derives

alternative forms of the STLS formulation (1.6) and the DLS formulation

(1.4), aswell as theDLS solution.We allow complex data, and the functional
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to be optimized is not an analytic function, so the derivative cannot be

taken in the usual way. Thus we give new algebraic proofs of optimality,

instead of using derivatives. In Sect. 6 we show how the STLS problem (1.6)

corresponds to the LS problem (1.2) when γ → 0, and to the DLS problem

(1.4) when γ → ∞. Section 7 shows why the formulations (1.3)–(1.6) are

incompletewithout the criterion (1.10), sincewhen this does not hold, they at

best contain computationally dangerous irrelevant data, and at worst do not

lead to meaningful solutions. Section 8 shows how to handle the completely

general STLS (or even Bx ≈ c) problem by reducing it to a core problem

that satisfies an even stronger criterion than (1.10)— one which ensures the

core problem is irreducible in the sense of containing no information that is

irrelevant to the solution.This suggests practical approaches to solvingSTLS

problems, whether the data matrixB is small and dense, or large and sparse.

Section 9 discusses how STLS problems can be solved computationally, and

describes a simple solution to the DLS problem. Section 10 compares our

chosen assumptions for ensuring unique STLS solutions with the criteria for

“generic” TLS problems given in [16]. We will always use these quotes here

because we show that some of the problems labelled “generic” in [16] are

not generic in the more usual sense of the word. This is in no way a criticism

of [16] — the authors were probably using the terminology to indicate that

all such problems could be solved by the standard algorithm of Golub and

Van Loan [11].

This paper deals with equalities, and is the first in a sequence. The next

one [20] will deal with bounds and the LS–STLS relationship when γ > 0.
We use [cγ,B] for some purposes, and [B, cγ] for others. Their SVDs

are trivially related. Of course all the ideas given here for general γ apply

to the TLS problem (1.3) by taking γ = 1.
The philosophy behind this paper is radically different from that of pre-

vious TLS, STLS or DLS work known to us. The STLS formulation (1.6)

makes it easy to analyze and solve the STLS problem (it shows the STLS

problem is just the TLS problemwith its right-hand side c scaled by γ, so all
the TLS artillery is available). But more importantly than that, the approach

of reducing a problem Bx ≈ c to its “core” problem (Sect. 8) and solving

that core problem simplifies our understanding of the area. It also simplifies

the development of algorithms, while unifying the theoretical problems in

the area. Crucial to all this is the new (γ-independent) criterion (1.10) for

STLS (also TLS, DLS and even possibly LS) problems. This is based on c
and the SVD of B, whereas the previous main TLS criterion (1.7) involved

the SVDs of both B and [B, c] (and so would be dependent on γ for STLS

problems). The key here is that any STLS (or LS or TLS or DLS) prob-

lem can in theory be transformed by direct unitary transformations into two

independent problems: a (possibly nonexistent) trivial problem, and a core
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problem, where the core problem automatically satisfies (1.10). Solving the

core problem then solves the original problem. Thus no complicated con-

ditions such as (1.7) or (1.10) need be tested, and no special cases need be

treated. All the decisions can be made by examining the sizes of elements

in the unitarily transformed data. Both theory and computations can thus be

unified, simplified and clarified.

2 Mathematical preliminaries

Here we introduce some notation and general theory that we will need in

the paper. We use ᾱ to denote the complex conjugate of the scalar α, and
aH to denote the complex conjugate transpose of the vector a. The k × k
unit matrix is I = [e1, . . . , ek]. We will need the following lemma. It is

a generalization of the familiar result obtained by taking m = −1 in the

lemma.

Lemma 2.1 For any integerm and matrix Z,

Z(ZHZ − λI)mZH − λ(ZZH − λI)m = (ZZH − λI)m+1,(2.1)

where ifm < 0, the scalar λ must be such that the inverses exist.

Proof. Clearly (2.1) is true for m = 0. Multiply each side of (2.1) by

ZZH − λI , giving

Z(ZHZ − λI)m+1ZH − λ(ZZH − λI)m+1 = (ZZH − λI)m+2,(2.2)

which is (2.1) withm increased by unity. Thus since (2.1) holds form = 0,
it holds for all integers m ≥ 0. Now if m = −1, (2.2) is true, so (2.1) is

also true if ZZH − λI is nonsingular. Similarly we can show (2.1) is true

form = −2,−3, . . . . ⊓⊔

We can avoid the restriction on λ as follows.

Corollary 2.1 For m < 0, (2.1) also holds for any scalar λ if we replace

each inverse by the Moore–Penrose pseudo-inverse (the G1234 generalized

inverse).

Proof. Replace Z by its singular value decomposition, and use (2.1) for the

nonsingular part. ⊓⊔

In order to analyze or solve (1.2)–(1.6) we usually transform the data

[B, c]. The transformations that we use here take the form

[B̃, c̃] = PH [BQ, c], P and Q unitary,(2.3)
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(for obtaining LS solutions,Q need only be nonsingular). These do not alter

the distances defined in Sect. 1, and the solution vector for the original data

[B, c] is Q times that for the transformed data.

We regularly use the following for r, c, B and y in (1.2). Let n ≥ k
in (1.1). Let the n × k matrix B have rank k and singular values σi with

singular value decomposition (SVD)

B = U

[

Σ
0

]

V H , Σ ≡ diag(σ1, . . . , σk), σ1 ≥ . . . ≥ σk > 0.(2.4)

HereU is ann×n unitarymatrix,Σ is k×k, and k×k V is a unitarymatrix.

If n > k, in U = [UB|ÛB] = [u1, . . . , uk|uk+1, . . . , un], ÛB is arbitrary up

to multiplication on the right by a unitary matrix, so assume it is chosen to

give ÛH
B c = e1ρ, ρ ≥ 0. If n = k, this ρ will not exist. For this study, an

important part of the SVD of B is

Umin ≡ the left singular vector subspace of B for σmin(B).(2.5)

A useful allowable transformation of the data is

UH [B, c]

[

V 0
0 1

]

=





Σ a
0 ρ
0 0



 ,

a ≡ (α1, . . . , αk)
T ≡ [u1, . . . , uk]

Hc = UH
B c.(2.6)

We also denote, for γ ≥ 0,

N ≡ UH [B, cγ]

[

V 0
0 1

]

=





Σ aγ
0 ργ
0 0



 .(2.7)

N has the same singular values as [B, cγ]. The elements of a are the com-

ponents of the vector of observations c in the directions of the left singular

vectors of the data matrix B. With (1.2) we see that

UHr = UH(c−By) =





a−ΣV Hy
ρ
0



 =





0
ρ
0





gives the minimum for ‖r‖. Then for the LS solution and residual

y = V Σ−1a, ‖y‖2 =

k
∑

i=1

|αi|2
σ2

i

,(2.8)

‖r‖ = ρ.(2.9)

For analysis of the STLS problem (1.6), we will be interested in the

singular values σ of [B, cγ], see (1.9), and so the eigenvalues σ2 of NHN
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forN in (2.7). We use the following classical results (see for example [14])

to analyze these. Consider a matrixGwith partitioningG =

[

C D
E F

]

. When

C is square and nonsingular, the Schur complement (G/C) of C in G is

defined as (we will also need C = CH , D = EH and F = FH for (2.12)

below)

(G/C) ≡ F−EC−1D, so G =

[

I 0
EC−1 I

][

C 0
0 (G/C)

][

I C−1D
0 I

]

.

(2.10)

Define the “inertia” In(M) of a Hermitian matrixM to be the ordered triple

{i+, i−, i0}, where i+ denotes the number of positive eigenvalues ofM , i−
the number of negative eigenvalues, and i0 the number of zero eigenvalues.

We will use results that follow from (2.10):

det(G) = det(C) · det(G/C),(2.11)

In(G) = In(C) + In(G/C).(2.12)

3 The minimum singular values of [B, cγ] and B

When the minimum singular values of [B, cγ] and B are distinct, the STLS

problem (1.6) has a unique solution. The other possibility,

σmin([B, cγ]) = σmin(B),(3.1)

is important but subtle, so here we show just when this can happen. This will

lead us to a full understanding of the different possible meanings of STLS

problems.

The condition for (3.1) to hold is also the condition for the smallest

singular value of a full column rank matrix (here B) to remain unchanged

whenwe append a column (here cγ) to thematrixB (or delete the column cγ
from thematrix [B, cγ]). The singular value 0 is clearly unchanged ifB does

not have full column rank.Clearly, a similar condition canbe formulatedwith

respect to the rows of a matrix. This represents a general result independent

of the context of our paper. The proof is an extension of the following result.

Lemma 3.1 If the vector a has at least one element, the Hermitian arrow

matrix A ≡
[

0 a
aH α

]

is positive semi-definite (singular with no negative

eigenvalues) if and only if a = 0 and the scalar α ≥ 0.

Proof. Suppose a �= 0, then without loss of generality we can assume its

last element is nonzero. By considering the determinant, we see the last 2×2
principal submatrix of A has a negative eigenvalue, and by the interlacing
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property (see [23, Ch2, §47, pp. 103–4]) the whole ofAmust have a negative

eigenvalue. If a = 0, A is singular but has no negative eigenvalue if and

only if α ≥ 0. ⊓⊔

Theorem 3.1 Let γ > 0 be a scalar, and for n ≥ k ≥ 1 let [B, cγ] be an n
by k+ 1 matrix with n by k submatrix B. Let B have singular values σ1 ≥
. . . ≥ σj > σj+1 = . . . = σk ≡ σmin(B) > 0 with the corresponding left

singular vectors u1, . . . , uk. Let ρ = ‖r‖ be the minimum in (1.2), see (2.6),

(2.9). Then

σmin([B, cγ]) = σmin(B)(3.2)

if and only if (see (2.6))

αi ≡ uH
i c = 0, i = j + 1, . . . , k,(3.3)

and

ψj(σk, γ) ≥ 0, ψj(σ, γ) ≡ γ2‖r‖2−σ2−γ2σ2

j
∑

i=1

|αi|2
σ2

i − σ2
.

(3.4)

The summation term is ignored if all singular values of B are equal.

Proof. Write Σ1 ≡ diag(σ1, . . . , σj), Σ2 ≡ diag(σj+1, . . . , σk) = σkI ,
a1 ≡ (α1, . . . , αj)

T , a2 ≡ (αj+1, . . . , αk)
T , a ≡ (aT

1 , a
T
2 )T . Σ1 and a1

need not exist (j can be zero), but Σ2 and a2 do (k − j > 0). To prove the

theorem, we need to show for any given γ > 0,

σmin([B, cγ]) = σmin(B) ⇔ {a2 = 0 & ψj(σk, γ) ≥ 0}.(3.5)

Clearly (3.2) holds if and only if σk is the minimum singular value of N in

(2.7), that is, if and only if

NHN − σ2
kI =





Σ2
1 − σ2

kIj 0 Σ1a1γ
0 0 · Ik−j a2σkγ

γaH
1Σ1 γσka

H
2 γ2(aHa+ ρ2) − σ2

k



(3.6)

is positive semi-definite. If j > 0 the Schur complement M of positive

definite Σ2
1 − σ2

kI in N
HN − σ2

kI is, see (2.10),

M =

[

0 a2σkγ
γσka

H
2 ψ

]

,

ψ ≡ γ2(aHa+ ρ2) − σ2
k − γ2aH

1 Σ1(Σ
2
1 − σ2

kI)
−1Σ1a1

= γ2(aH
2 a2 + ρ2) − σ2

k − γ2σ2
ka

H
1 (Σ2

1 − σ2
kI)

−1a1

= ψj(σk, γ) + γ2aH
2 a2,
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using Lemma 2.1 withm = −1, and ψj(σk, γ) in (3.4). From (2.12)

In(NHN − σ2
kI) = In(Σ2

1 − σ2
kI) + In(M),

so (3.2) holds if and only if M is positive semi-definite. But a2 has at

least one element, so from Lemma 3.1 this is true if and only if a2 = 0
and ψ = ψj(σk, γ) + γ2aH

2 a2 = ψj(σk, γ) ≥ 0. Thus (3.3) and (3.4)

are necessary and sufficient for (3.2). If j = 0 the same result follows by

applying Lemma 3.1 directly to (3.6). ⊓⊔

Since σmin([B, c · 0]) = 0, this has proven for γ ≥ 0 (the left hand side

is (1.10))

{B full column rank & a2 �= 0} ⇒ σmin([B, cγ]) < σmin(B).(3.7)

The theorem also tells us that for B and c representing data from some real

world application, having σmin([B, cγ]) = σmin(B) exactly is a rare event.
It requires all left singular vectors ofB corresponding to its smallest singular

value σk to be orthogonal to c, as well as (3.4). The first condition (a2 = 0
in the theorem) is highly unlikely to be satisfied. Moreover, even when it is

true, we cannot necessarily find γ satisfying (3.4). For a particular B and c
it is possible to have

‖r‖2 − σ2
k

j
∑

i=1

|αi|2
σ2

i − σ2
k

≤ 0,(3.8)

giving ψj(σk, γ) < 0 for all γ > 0, see (3.4). In fact we have:

Corollary 3.1 Using the notation of Theorem 3.1, where a2 �= 0 corre-

sponds to c �⊥ Umin in (1.10), if B has rank k then

{a2 �= 0} or {a2 = 0 & (3.8)}
⇔ {σmin([B, cγ]) < σmin(B) ∀ γ ≥ 0},

{a2 = 0} & {∃ γ0 > 0 such that ψj(σk, γ0) = 0 in (3.4)}

⇔
{

σmin([B, cγ]) < σmin(B) ∀ 0 < γ < γ0,
σmin([B, cγ]) = σmin(B) ∀ γ ≥ γ0.

Proof. These follow from (3.5) and the form of ψj(σk, γ) in (3.4). ⊓⊔

Remark 3.1 From this we can see that for an arbitrary B and c with

σmin([B, cγ1]) < σmin(B) for some γ1 > 0, one cannot always get

σmin([B, cγ]) = σmin(B) by increasing γ. But sometimes for a B, c
and γ1 with σmin([B, cγ1]) < σmin(B) there exists γ0 > γ1 such that

σmin([B, cγ]) = σmin(B) for all γ ≥ γ0.
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4 The secular equation for singular values of [B, cγ]

When (1.10) holds, the smallest singular value of [B, cγ] is the STLS dis-

tance in (1.6). We now derive several forms of the secular equation for

this STLS distance. These forms will be useful for examining the limiting

behaviour in Sect. 6, and for obtaining bounds in [20].

Lemma 4.1 For anyn×kmatrixB andn-vector c letσ(γ)≡σmin([B, cγ]).
If (1.10) holds, then for all γ ≥ 0 the STLS distance in (1.6) is σ(γ), which

is the smallest nonnegative scalar σ satisfying

0 = ψk(σ, γ) ≡ det([B, cγ]H [B, cγ] − σ2I)/det(BHB − σ2I)(4.1)

= γ2cHc− σ2 − γ2cHB(BHB − σ2I)−1BHc(4.2)

= γ2cH [I −B(BHB − σ2I)−1BH ]c− σ2(4.3)

= −γ2σ2cH(BBH − σ2I)−1c− σ2(4.4)

= γ2ρ2 − σ2 − γ2σ2aH(ΣΣH − σ2I)−1a(4.5)

= γ2‖r‖2 − σ2 − γ2σ2

k
∑

i=1

|αi|2
σ2

i − σ2
,(4.6)

where these last two lines use the notation of (2.4), (2.6), (2.9).

Proof. When (1.10) holds, we proved in Theorem 3.1 that (1.11) holds, so

σ(γ) is the STLS distance in (1.6) for all γ ≥ 0, see (1.9). But (1.11) shows
BHB − σ2(γ)I is positive definite, so σ(γ) is the smallest nonnegative σ
satisfying (4.1). Since

[B, cγ]H [B, cγ] − σ2I =

[

BHB − σ2I BHcγ
γcHB γ2cHc− σ2

]

,

(4.1) and (2.11) show that

ψk(σ, γ) = det(([B, cγ]H [B, cγ] − σ2I)/(BHB − σ2I)),

which is the Schur complement of BHB − σ2I in [B, cγ]H [B, cγ] − σ2I ,
since the Schur complement is a scalar here. Thiswith the definition in (2.10)

proves (4.2). But (4.3) is just (4.2) rearranged, and (4.4) follows from (4.3)

by using Lemma 2.1 withm = −1. Finally (4.5) and (4.6) follow from (4.4)

by using the SVD of B in (2.4), and the notation of (2.6) and (2.9). ⊓⊔

When the elements αi of a are nonzero and the σi are distinct in (4.6)

(see [23, §39, pp. 94–6], which also handles the case when this last is not

so) all the singular values of [B, cγ] are given by the k+ 1 solutions σ ≥ 0
of the secular equation 0 = ψk(σ, γ). When some αi = 0, (2.6) and (2.7)

show both B and [B, cγ] have the singular value σi. However we are only
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interested in σ(γ), the smallest singular value, thus when (1.10) holds, we

see from (4.6) σ(γ) satisfies

0 = ψk(σ(γ), γ) = γ2‖r‖2 − σ(γ)2 − γ2σ(γ)2
k

∑

i=1

|αi|2
σ2

i − σ(γ)2 .(4.7)

With γ = 1, (4.7) was derived in [11], see also [16, Thm. 2.7, & (6.36)],

where [16, (6.36)] corresponds to a more general case. These derivations

assumed the weaker condition (1.7), and so cannot be generalized to STLS

for all γ ≥ 0, see Remark 3.1.

It is of interest to examine how σ(γ) changes with γ.

Corollary 4.1 If (1.10) holds, γ > 0, and c is not in the range of B, then

σ(γ) ≡ σmin([B, cγ]) increases as γ increases, and decreases as γ de-

creases, strictly monotonically.

Proof. (1.10) implies n× k B has rank k. If finite γ > 0 and c is not in the
range of B, then σ(γ) ≡ σmin([B, cγ]) > 0. Differentiating ((4.7) divided

by γ2σ(γ)) with respect to γ gives

σ̇(γ)

[

σ(γ)

k
∑

i=1

|αi|2
(σ2

i − σ(γ)2)2 +
‖r‖2

σ(γ)3

]

=
1

γ3
.

But when (1.10) holds, (3.7) shows σ(γ) < σk for all γ > 0, so the factor

[·] here represents a positive finite number, and thus σ̇(γ) > 0 for all γ > 0.
⊓⊔

It is revealing to put the result of Theorem 3.1 in the context of work

on updating the SVD, or on rank-one modification of the Hermitian eigen-

problem (see for example [2], which is based on the ideas of Wilkinson

described in [23, Ch.2, §39, pp. 94–96]). Assume that the condition (3.3)

is satisfied. Then 0 = ψj(σ, γ) represents the secular equation of the cor-

responding deflated problem (where the k − j deflation steps correspond

to αj+1 = . . . = αk = 0). Then [B, cγ] has k − j singular values equal
to σmin(B). The condition (3.4) guarantees that the deflated secular equa-

tion does not have a solution σ less than σmin(B) (when ψj(σk, γ) < 0,
it does have such a solution). Conversely, if σmin([B, cγ]) = σmin(B),
then (3.3) must hold and σmin(B) must be deflated, otherwise the function

ψk(σ, γ) will have a pole at σmin(B) and a positive solution σ(γ) strictly
less than σmin(B) (which gives a contradiction). Moreover, the deflated

secular equation 0 = ψj(σ, γ) must not have a positive solution less than

σmin(B), which gives (3.4). We see that we could have proved our Theo-

rem 3.1 directly using the ideas of Wilkinson, but we prefer our way above,

because it is logically simpler, and it also provides some algebraic relations

that we use later in the paper. Some related questions were also studied in

[6], but a statement similar to our Theorem 3.1 was not considered there.
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5 Alternative STLS and DLS formulations

When the minimum singular values of [B, c] and B are distinct, the SVD

approximation theory used to provide the TLS solution (see for example [11,

12,1,16]) is so powerful that two intermediate formulations which we need

are usually not mentioned. These hold even when the minimum singular

values are equal. The STLS and DLS versions are needed here to prove a

theoretical weakness of the formulations (1.3)–(1.6), andmay even be useful

otherwise.

For the generality of this paper we allow the data to be complex. This

leads to nontrivial proofs, since (1.6) is a constrained optimization problem,

but for example ‖E‖2
F is not an analytic function of the elements of the

complex matrix E. Thus we avoid differentiation in our proofs. We learnt

a technique for doing this by listening to J. H. Wilkinson. The idea is to

start with the answer— perhaps found by differentiating the Lagrangian for

the real case and generalizing — and show that any change to the answer

increases the functional. This also allows us to give a rigorous proof of the

form of the DLS solution when the data can be complex.

For clarity in this analysis we define x ≡ zγ, so (1.6) becomes:

σ2
S ≡ min

s,E,x
‖[s,E]‖2

F , subject to (B + E)x = cγ − s.(5.1)

Suppose for a given γ > 0 that x̂ and ŝ are the vectors in the solution of the
STLS problem (5.1). We now show that the matrix part of the solution is

Ê = d̂x̂H/x̂H x̂, d̂ ≡ cγ −Bx̂− ŝ.(5.2)

For Ê and the solution vectors x̂ and ŝ, (5.1) simplifies to

σ2
S = min

F
{‖ŝ‖2 + ‖Ê + F‖2

F } s. t. (B + Ê + F )x̂ = cγ − ŝ.(5.3)

For any F satisfying these constraints,

d̂ ≡ cγ −Bx̂− ŝ = (Ê + F )x̂ = d̂+ Fx̂,

so Fx̂ = 0. Thus FÊH = Fx̂d̂H/x̂H x̂ = 0, and

‖Ê + F‖2
F = trace[(Ê + F )(Ê + F )H ] = ‖Ê‖2

F + ‖F‖2
F .

This shows that the unique minimum in (5.3) is at F = 0, and (5.2) is the

matrix part of the solution to (5.1). It follows that we can substitute

E = (cγ −Bx− s)xH/xHx(5.4)

in (5.1) to give the first alternative formulation of STLS :

σ2
S = min

s,x
{‖s‖2 + ‖cγ −Bx− s‖2/‖x‖2},(5.5)
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since the constraints in (5.1) are automatically satisfied by E in (5.4).

Suppose x̂ and ŝ solve (5.5). We will show that

ŝ = s̃ ≡ (cγ −Bx̂)/(1 + x̂H x̂), so that Ê = ŝx̂H ,(5.6)

where the expression for Ê follows by substituting ŝ in (5.2). Define

d̃ ≡ cγ −Bx̂− s̃ = s̃(1 + ‖x̂‖2) − s̃ = s̃‖x̂‖2.(5.7)

Our proof that s̃ solves (5.5) will also show that d̃ = d̂ in (5.2). If x̂ is known,
we can replace x and s in (5.5) by x̂ and s̃+ t to give

σ2
S = min

t
ζ(t), ζ(t) ≡ {‖s̃+ t‖2 + ‖d̃− t‖2/‖x̂‖2},

ζ(t) = ‖s̃‖2 + s̃Ht+ tH s̃+ ‖t‖2 + (‖d̃‖2 − d̃Ht− tH d̃+ ‖t‖2)/‖x̂‖2.

(5.8)

But from (5.7) tH s̃ − tH d̃/‖x̂‖2 = 0, so the unique minimum of (5.8) is

given by t = 0. Thus if x̂ and ŝ solve (5.5), (5.6) holds, giving with (5.5)

our second alternative formulation of STLS (5.1):

σ2
S = min

x
‖cγ −Bx‖2/(1 + ‖x‖2).(5.9)

For the real case, this was derived in [11], see also [3, (3.21), p.57].

This is the result we need for our analysis of STLS, so we go no further

with solving STLS here, but we will continue with the solution of the DLS

formulation (1.4). Suppose wD is the vector in the solution of the DLS

problem

σ2
D ≡ min

G,w
‖G‖2

F , subject to (B +G)w = c.(5.10)

Doing the analysis (5.1)–(5.5) while insisting s = 0 proves the matrix part

of the solution of this is

G = dwH
D /w

H
D wD, d ≡ c−BwD,(5.11)

so that (5.10) simplifies to the unconstrained DLS formulation

σ2
D = min

w
‖Bw − c‖2/‖w‖2.(5.12)

For the real case, this was stated in [3, (4.47), p.120], with a proof in Ap-

pendix B of that Thesis.

Now we derive a closed form DLS solution. We assume that (1.10)

holds, and that ρ > 0 in (2.9). Using (2.4), (2.6), and remembering that

σ1 ≥ · · · ≥ σk ≡ σmin(B) > 0, consider the equation

0 = ψ(σ2) ≡ cH(BBH − σ2I)−1c

= cHU(UHUBΣ
2UH

B U − σ2I)−1UHc =

k
∑

i=1

|αi|2
σ2

i − σ2
− ρ2

σ2
,(5.13)
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where (1.10) ensures at least one of the αi corresponding to σmin(B) will
be nonzero. Clearly ψ(σ2) is unbounded below as σ2 ց 0, and unbounded
above as σ2 ր σ2

k. Thus (5.13) has its minimal solution σ2
M satisfying

0 < σ2
M < σ

2
k when (1.10) holds and ρ > 0.(5.14)

In this case we will show σ2
D = σ2

M and the solution of (5.12) is

wD ≡ (BHB − σ2
MI)

−1BHc.(5.15)

This wD withm = −1 in (2.1) gives

BwD −c = [B(BHB−σ2
MI)

−1BH −I]c = σ2
M(BBH −σ2

MI)
−1c.

(5.16)

So using (2.1) withm = −2, and (5.13),

σ2
M‖wD‖2 − ‖BwD − c‖2

= σ2
Mc

HB(BHB − σ2
MI)

−2BHc− σ4
Mc

H(BBH − σ2
MI)

−2c

= σ2
Mc

H(BBH − σ2
MI)

−1c = 0.

This shows that σM and wD are candidates for solving (5.12), since

σ2
M = ‖BwD − c‖2/‖wD‖2.(5.17)

It remains for us to show that any nonzero change v towD increases this

functional. Define

φ(v) ≡ ‖B(wD + v) − c‖2 − σ2
M‖wD + v‖2

= ‖BwD − c‖2 + (BwD − c)HBv + vHBH(BwD − c) + ‖Bv‖2

−σ2
M(‖wD‖2 + wH

D v + vHwD + ‖v‖2).

But if we use (5.15), we see that

vHBH(BwD − c) − σ2
Mv

HwD = vH [(BHB − σ2
MI)wD −BHc] = 0.

This with (5.17) and (5.14) gives for nonzero v

φ(v) = ‖Bv‖2 − σ2
M‖v‖2 > 0,

so σ2
M < ‖B(wD + v) − c‖2/‖wD + v‖2 if v �= 0. But this shows (5.17) is

the optimum. When (1.10) holds and ρ > 0, wD in (5.15) and G in (5.11)

uniquely solve (5.10), and σ2
D = σ2

M is the minimum σ2 in (5.13).

Relations (5.9) and (5.12) represent a formulation of the STLS and DLS

problems (1.5) ((1.6)) and (1.4) analogous to the classical formulation of

the LS problem

‖r‖2 = min
y

‖c−By‖2.

These were known before, but we proved them for the complex case assum-

ing (1.10). The generalized total least squares approach used in [3–5] can

be extended to complex data in a similar way.
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6 Equivalence in the limit of STLS with LS, DLS

We need to prove that when γ → 0 the STLS solution of the STLS formula-

tion (1.6) becomes the LS solution, and when γ → ∞ the STLS formulation

corresponds to DLS (1.4). For DLS this seems reasonable, since for any pos-

itive bounded γ, (1.5) and (1.6) are equivalent with the substitutions s ≡ s̃γ,
z ≡ z̃ and E ≡ Ẽ. Clearly (1.5) becomes DLS as γ → ∞, so it appears

that (1.6) becomes DLS too. Alternatively for any positive bounded γ we

can rewrite (1.6) as

STLS distance ≡ min
s,E,z

‖[s,E]‖F s. t. (B + E)z = c− s/γ.

As γ → ∞ it appears that we can take s = 0, corresponding to DLS.

But neither of these arguments is rigorous, so we resort to the closed form

solution of (1.6) to prove these equivalences. For the case of real data, the

basic ideas for γ → 0 were given in [11, Corollary 4.2], and more precisely

in [22, Theorem 3.1]. This section is thus an extension of these works.

We will assume (1.10) holds, so in particular (1.11) holds, and B has

full column rank. For the case of (1.11), [16, Thm. 2.7] showed (for the

real case with γ = 1) that the closed form TLS solution of (1.6) is, with

σ(γ) ≡ σmin([B, cγ]),

z(γ)γ = [BHB − σ2(γ)I]−1BHcγ.(6.1)

Ifv ≡ (ṽT , ν)T withν �= 0 is a right singular vector of [B, cγ] corresponding
to σ(γ), then we know z(γ)γ = −ṽ/ν. But{[B, cγ]H [B, cγ]−σ2(γ)I}v =
0, and the first k elements of this give (6.1). This could also have been proven

from the formulation (5.9) (remembering x ≡ zγ), see the proof of (5.15)
from (5.12).

The definition σ(γ) ≡ σmin([B, cγ]) shows limγ→0 σ(γ) = 0, so

lim
γ→0

z(γ) = (BHB)−1BHc = the LS solution y for (1.2).(6.2)

Next we relate the distanceswhen γ → 0. The STLS distance is the smallest

singular valueσ(γ) of [B, cγ], see (1.9), and so is the smallest solutionσ ≥ 0
of (4.1). If we defineM ≡ I−B(BHB)−1BH =MH =M2, (4.3) shows

that for the LS residual r = c−By =Mc in (1.2),

lim
γ→0

STLS distance in (1.6)

γ
= lim

γ→0

σ(γ)

γ
=

√
cHMc =

√
rHr

= LS distance in (1.2).(6.3)

This completes our proof that as γ → 0, the STLS solution of the STLS

formulation (1.6) becomes the LS solution, and the STLS distance divided

by γ becomes the LS distance.
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For the DLS equivalence we have the added difficulty of unknown

σ(∞) ≡ limγ→∞ σ(γ). Taking the limit γ → ∞ in (4.4) shows that the

STLS distance σ(∞)must be the smallest positive solution σM < σmin(B)
of (5.13), see (5.14). But this means that σ(∞) is also the DLS distance σD.

Also from (6.1) and (5.15) we see in the limit the STLS solution z(γ) of
STLS (1.6) becomes the solution vector wD of (1.4). Summarizing:

lim
γ→∞

STLS distance = DLS distance, lim
γ→∞

z(γ) = wD.(6.4)

This completes the proof that when γ → ∞, the STLS formulation (1.6)

corresponds exactly to the DLS formulation (1.4).

7 Conditions for meaningful solutions

Here we show when the problem formulations (1.3)–(1.6) are not good for

solvingBx ≈ c in (1.1). Because (1.3) is a special case of (1.6), and (1.5) is
equivalent to (1.6) for bounded γ > 0, we need only consider the DLS (1.4)

and STLS (1.6) formulations. Of course the LS formulation (1.2) always

has a meaningful solution.

We first show that (1.3)–(1.6) are not good when n by k B does not have

rank k. The functional in each case is nonnegative. Suppose c does not lie
in the range of B, so the functional is positive. For the STLS problem an

alternative formulation is (5.9) with x ≡ zγ. But taking any x and adding to
it a large enough component in the null space ofB will make the functional

in (5.9) arbitrarily close to zero. A similar argument holds for DLS via

(5.12). Thus the formulations should at least demand the solution vectors

be orthogonal to the null space. It is preferable to eliminate the null space.

We argue that (1.3)–(1.6) are best restricted to problems of the form (1.1)

satisfying (1.10), that is,

the n× k matrix B has rank k, and c �⊥ Umin,

where Umin is the left singular vector subspace of B corresponding to

σmin(B). If this holds, then Theorem 3.1 shows (1.11) holds, see (3.7),

and we have the standard, meaningful solutions. But if it does not hold, we

will show these four formulations either have solutions that do not make

sense as solutions to (1.1), or contain data which is irrelevant to the solution

and could cause unnecessary inaccuracies with finite precision computation.

It is rarely possible to tell ahead of time which is the case, and we recom-

mend that the formulations (1.3)–(1.6) each come with the proviso that B
and c must obey (1.10).

Suppose the data can be unitarily transformed, see (2.3), so that

[

c̃ B̃
]

= PH
[

c BQ
]

=

[

c1 B11 0
0 0 B22

]

.(7.1)
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Note that in this case the SVD problems of [c̃, B̃] and of B̃ each split into

two independent SVD problems. The approximation problem Bx ≈ c then
represents two independent approximation problems:

B11x1 ≈ c1, B22x2 ≈ 0, x ≡ Q
[

x1

x2

]

,(7.2)

in that the solution to each of these has no effect upon, and can be found

independently of, the other. Each of (1.2)–(1.6) applied toB22x2 ≈ 0 gives

zero distance and x2 = 0, an eminently meaningful solution.

If (1.10) does not hold, a transformation (2.3) clearly exists giving (7.1)

where B22 contains all the singular values of B equal to σmin(B). In the

worst case we will show, see (7.3)–(7.6), that (1.3)–(1.6) applied directly to

the combined problem Bx ≈ c can give meaningless solutions. But even

in the best case these minimum singular values are irrelevant, and should

be removed from the problem, lest rounding errors effectively introduce

a nonzero vector below c1 in (7.1), and so cause these irrelevant singular

values to contaminate the solution. This is more likely the smaller σmin(B)
is. Although (1.2) in theory gives x2 = 0, this last comment suggests we

might gain by insisting on (1.10) for LS too. The rest of this section will

further develop our argument justifying the fundamental role of (7.1).

The practical reader, who agrees that problems Bx ≈ c with data that

can be transformed to (7.1) should be solved as two independent problems,

can ignore the rest of this section and go to Sect. 8. That shows how transfor-

mations may be applied to produce [c1, B11] in (7.1) that cannot be reduced
any further.

We examine TLS. From (5.9) with γ = 1 we see that (1.3) corresponds

to

(TLS distance)2 = min
x

‖Bx− c‖2/(1 + ‖x‖2).(7.3)

Suppose x1 solves

σ2
11 ≡ min

s,E,x
‖[s,E]‖2

F s. t. (B11 + E)x = c1 − s,

then from (7.3)

σ2
11 = ‖B11x1 − c1‖2/(1 + ‖x1‖2).(7.4)

Suppose (to give the worst case mentioned above, see (1.12) as a numerical

example of this),

σk ≡ σmin(B22) < σ11,(7.5)

B22v = uσk, uHB22 = σkv
H , vHv = uHu = 1.
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We now show taking x = Q

(

x1

v

)

in (7.3) with (7.1) gives a functional

value less than σ2
11, so Q

(

x1

0

)

does not minimize (7.3) when (7.1) and

(7.5) hold. Using (7.4), the functional in (7.3) becomes

‖B11x1 − c1‖2 + σ2
k

1 + ‖x1‖2 + 1
=
σ2

11 + σ2
k/(1 + ‖x1‖2)

1 + 1/(1 + ‖x1‖2)
< σ2

11,(7.6)

since σ2
k < σ2

11. Thus the meaningful solution x = Q

(

x1

0

)

does not

solve the combined problem correctly using the formulation (1.3). Using

(5.12) instead of (7.3) shows the DLS formulation (1.4) has exactly the

same weakness.

The case for STLS is more dangerous still, since Theorem 3.1 showed

that when (1.10) does not hold (giving (7.1)), we could have σmin([B, c]) <
σmin(B), but σmin([B, cγ]) = σmin(B) for some γ, see Corollary 3.1. It

can be shown that this also allows the possibility that (7.5) holds — the

worst case above.

The fundamental difficulty revealed here in a clear way by the form

(7.1) has been noticed and described in various different ways before. Van

Huffel and Vandewalle [16] developed a rigorous and fascinating, but quite

complicated theory allowing them to construct a meaningful solution to the

approximation problemBx ≈ c. Later workers assumed (1.11), and applied

this theory in [16] directly to the STLS problem.

We argue for the criterion (1.10) for all the formulations (1.3)–(1.6),

since unlike (1.11) this criterion is independent of γ, but it ensures (1.11)
holds; it is simpler than (1.11), it leads to a clear and consistent theory, and it

ensures that theminimum singular value ofB is relevant to the solution. This

argument is easy to acceptwhenwe realize there is an elegant transformation

which produces the minimally dimensioned core problem obeying (1.10)

from any given [c,B].

8 The core problem within Bx ≈ c

Here we answer the following important question. Given a general n by

k matrix B and n-vector c, how can the data be transformed so that the

problem Bx ≈ c splits into two independent problems as in (7.1) and

(7.2), giving a trivial problem B22u2 ≈ 0 of maximal dimensions, and the

minimally dimensioned core problem B11u1 ≈ c1 satisfying (1.10). This

last condition ensures each of the formulations (1.2)–(1.6) has a unique

meaningful solution, which can be expressed via a simple closed form.
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The answer we give immediately suggests a very useful direct (that is,

not iterative) practical computation, but we only give the theoretical (exact

precision) version here.

Remember the STLS solution requires some knowledge of the SVD

of [cγ,B]. Our reduction leads to a core problem from which this SVD

information can be computed easily and efficiently. Choose unitary matrices

P and Q to produce the following real bidiagonal matrix, see for example

[12, §5.4.3–5, pp. 251–254]. In the usual case of n × k B with n > k
we obtain, where a blank means a zero element, and the bottom 0 could

represent a zero vector or be nonexistent:

[c̃, B̃] ≡ PH
[

c B
]

[

1
Q

]

=

















γ1 β1

γ2 β2

· ·
γk βk

γk+1

0

















.(8.1)

Notice how theSVDof [cγ,B] canquickly be computed from this bidiagonal

form for any choice of γ, see for example [12, §8.6.2, pp. 452–456].
There are two ways this algorithm can terminate prematurely, so we

describe the relevant partial reductions. Initially we design unitary P1 so

that PH
1 c = e1γ1, then unitaryQ1 so that (e

T
1 P

H
1 B)Q1 = β1e

T
1 , etc.. After

the first half of the j-th step, j ≤ k + 1, we have

PH
j · · ·PH

2 P
H
1

[

c BQ1Q2 · · ·Qj−1

]

=













γ1 β1

· ·
γj × ×
0 × ×
0 × ×













.(8.2)

Stop if γj = 0, since then the exact solution (zero STLS distance) can

be found by discarding columns j + 1, . . . , k, and rows j, . . . , n of the

transformed [c,B]. Otherwise if j ≤ k, choose unitary Qj so that

PH
j · · ·PH

2 P
H
1

[

c BQ1Q2 · · ·Qj

]

=













γ1 β1

· ·
γj βj 0
0 × ×
0 × ×













.(8.3)

Stop if βj = 0, discarding columns j+1, . . . , k and rows j+1, . . . , n of the
transformed [c,B], leaving a STLS problem with a j by j upper bidiagonal
matrix [c̃, B̃]. In both these terminations we assume

γiβi �= 0, i = 1, . . . , j − 1.(8.4)
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Notice that in each of these early terminations, direct transformations have

split the SVD of [cγ,B] (and of B) into two independent SVDs.

The computations described in [12, §5.4.3–5, pp. 251–254] are designed
for dense matrices. If we have large sparse [c,B], then we could consider

the iterative bidiagonalization suggested by Golub and Kahan in [9], see

also [17]. This iterative bidiagonalization is the basis for the valuable LSQR

algorithm in [18,19] which solves large sparse LS (as well as consistent)

problems. The bidiagonalization “Bidiag 1” of [18, p.47] is used for the

LSQRalgorithm (and code) in [19]. In theory after j and a half steps, “Bidiag
1” applied to [c,B] ([b, A] in [18]) produces the first j + 1 columns of P ,
the first j columns of Q, and the leading j + 1 by j + 1 block of the right-

hand side in (8.1). Åke Björck [1, §7.6.5, pp.310-311] suggested applying

the iterative bidiagonalization (as in LSQR) to the TLS problem, see also

[7, Section 4.1]. Now we see this approach is also applicable to solving the

STLS problem, as well as (at least in theory) delivering the core problem, for

any large sparse linear systemBx ≈ c. The adaptation of LSQR for solving

large sparse STLS or DLS problems using finite precision computations will

be further investigated. See Sect. 9 for the DLS solution using (8.1).

The main theoretical importance of the reduction (8.1) here is that if

(8.4) holds, then our main criterion (1.10) holds for the reduced bidiagonal

matrix. If γj = 0 this is the bidiagonal matrix in the top left corner of the

transformed [c,B] in (8.2); or if γj �= 0, it is the bidiagonal matrix in the

top left corner of the transformed [c,B] in (8.3) if βj = 0. Also (1.10) holds
for [c,B] in (8.1) if the algorithm is not stopped prematurely. We now prove

this.

Theorem 8.1 Suppose n by k B has SVD B =
∑k

i=1
uiσiv

H
i , and there

exist unitary matrices P and Q giving [c̃, B̃] ≡ PH [c,BQ] where

[

c̃ B̃
]

≡

















γ1 β1

γ2 β2

· ·
γk βk

γk+1

0

















, γjβj �= 0, j = 1, . . . , k.(8.5)

Then we have a stronger condition than (1.10) for this c and B:

rank(B) = k; cHui �= 0, i = 1, . . . , k.(8.6)

The k singular values of B are distinct and nonzero; the k + 1 singular

values of [c,B] are distinct, and all nonzero if and only if γk+1 �= 0.

Proof. Clearly B̃ and B have the same singular values, as do [c̃, B̃] and

[c,B], and B̃ = PHBQ has the SVD B̃ =
∑k

i=1
ũiσiṽ

H
i ≡
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∑k
i=1
PHuiσiv

H
i Q, so

cHui = cHPPHui = c̃H ũi, i = 1, . . . , k.

Write B̃ ≡ [b1, B1], then B̃
HB̃ is k × k tridiagonal with nonzero next to

diagonal elements, and BH
1 B1 remains when the first row and column are

deleted. Thus the eigenvalues ofBH
1 B1 strictly separate those of B̃

HB̃, see
[23, Ch.5, §37, p.300], and the singular values of B1 strictly separate those

of B̃. Thus B̃, and so B, has distinct singular values (see also [21, Lemma

7.7.1, p.134]). A similar argument holds for [c,B]. B clearly has rank k,
and [c,B] has rank k + 1 if and only if γk+1 �= 0. Suppose σ is a singular

value of B̃ with singular vectors u and v such that

c̃Hu = γ̄1e
T
1 u = 0, uσ = B̃v, σvH = uHB̃, ‖u‖ = ‖v‖ = 1,

then 0 = eT1 uσ = eT1 B̃v = β1e
T
1 v, and e

T
1 v = 0. Writing v =

(

0
q

)

shows

B̃v = B1q = uσ, uHB1 = σqH , ‖u‖ = ‖q‖ = 1,

so σ is also a singular value ofB1. This is a contradiction since the singular

values of B1 strictly separate those of B̃, so (8.6) holds. ⊓⊔

Thus we need not derive results for the most general possible [cγ,B].
We can instead assume (1.10). Any more general Bx ≈ c problem can be

reduced to a core problem that satisfies (8.6) (and so (1.10)) by applying the

reduction (8.1) and stopping at the first zero γj or βj . Suppose the resulting

core data is [c1, B11], see (7.1). Then the theorem also showed that B11 has

no multiple singular values, so any singular value repeats must appear in

B22.

We do not insist on (8.6), because a problem only satisfying (1.10) will

in theory give the same solution and distance as it would if it were reduced

to one satisfying (8.6). This can be seen for example by using the transfor-

mations of (2.6) in (6.1) to give

z(γ) = V [Σ2 − σ2(γ)I]−1ΣUH
B c.

Clearly when (1.10) holds and αi ≡ uH
i c = 0 for some i, 1 ≤ i ≤ k, the

corresponding σi in Σ does not contribute to the solution, and need not, at

least in theory, be eliminated. In practice it is preferable to carry out the

reduction (8.1) leading to (8.6), see Sect. 9.
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9 Computing STLS and DLS solutions

In order to compute either STLS solutions or the DLS solution for given

data [c,B], we recommend first carrying out a reduction of the form (8.1) to

the core problem in Sect. 8 — unless there are clear reasons for not doing

so. The reasons for doing so are hard to reject. For general data we will

not know if the formulations (1.2)–(1.6) have unique meaningful solutions,

but the reduction will give us a subproblem for which this is so. Even if we

know the original data satisfies (1.10), it is (from the computational point

of view) highly preferable to remove all the irrelevant information from our

data as early in the solution process as possible, and this is exactly what the

transformation (8.1) does. In any case we still need some sort of SVD of the

data, and this will usually first perform a reduction as costly as that in (8.1).

But (8.1) allows us to find the SVD of [cγ,B] easily for different choices

of γ and so is the obvious choice. There are excellent fast and accurate

algorithms for finding all or part of the SVD of (8.1) with γ1 replaced by

γ1γ. We can find just the smallest singular value and its singular vectors,

fromwhich the solution vector z(γ) can be simply attained, see (6.1) and the

two sentences following it. If we have some idea of the accuracy of our data,

then when we use numerically reliable unitary transformations in (8.1), we

will have a good idea of what element of (8.1) (if any) we can set to zero to

obtain one of the stopping criteria as soon as possible in (8.1)–(8.4). Thus

the crucial decisions can be made before any SVD computations are carried

out. This is more efficient, but it is almost certainly more reliable to make

such decisions from unitary transformations of the original data than from

the elements of singular vectors, (see for example [16, p.23] or (10.1) later).

The remaining computations for STLS are fairly obvious. Finally (8.1) leads

to a solution to the DLS problem (1.4), which we now describe.

We saw from (5.13) and (5.15) that when (1.10) holds, the solution wD

and distance σD of the DLS problem (1.4) are

wD ≡ (BHB − σ2
MI)

−1BHc, σD = σM ≥ 0,(9.1)

where σ2
M is the minimal solution σ2 of

0 = ψ(σ2) ≡ cH(BBH − σ2I)−1c.(9.2)

Now suppose that the core part [c̃, B̃] of the transformed [c,B] has the
form in (8.5). This obviously applies to the usual case where the reduction

does not stop prematurely, but it also applies to the core problem in (8.2)

or (8.3) by replacing k here by j. We will solve the DLS problem for this

reduced, or core data. Now Theorem 8.1 proved (1.10) holds. If γk+1 = 0
the DLS distance is zero, and the solution is obvious. Otherwise, writing

[c̃|B̃] ≡
[

γ1 β1e
T
1

0 B2

]

,



Scaled TLS fundamentals 141

we see for this reduced problem that σ2
M must be the minimal solution σ2 of

0 = c̃H(B̃B̃H − σ2I)−1c̃ = |γ1|2eT1 (B̃B̃H − σ2I)−1e1

= |γ1|2 det(B2B
H
2 − σ2I)/det(B̃B̃H − σ2I),

since for nonsingularA,A−1 = adjugate(A)/det(A), see for example [23,

(36.3), p.39]. But because the γi and βi in (8.5) are nonzero for i = 1, . . . , k,
no singular value of B2 is a singular value of B̃ (by strict separation, see

the proof of Theorem 8.1), so σM must be the smallest singular value of

the nonsingular bidiagonal matrixB2. This is relatively easy to find, see for

example [12, §8.6.2, pp. 452–456].
Now let v be the right singular vector of B2 corresponding to σM , then

eT1 v �= 0 (otherwise σM would also be a singular value of B̃) and

wD = vγ1/(β1e
T
1 v), σD = σM = σmin(B2),(9.3)

are the DLS solution and distance in (1.4) for the reduced data [c̃, B̃]. We

see wD satisfies the equivalent of (9.1) for this reduced data, since

B̃HB̃ = |β1|2e1eT1 +BH
2 B2, B̃H c̃ = e1β̄1γ1, BH

2 B2v = vσ2
M ,

(B̃HB̃ − σ2
MI)wD = |β1|2e1eT1 vγ1/(β1e

T
1 v) = e1β̄1γ1 = B̃H c̃.

10 “Generic” TLS problems

It is useful in the light of our new knowledge to compare (1.10) with the

criterion for “generic” TLS [16] as applied to STLS (1.6), and we do this

now.We simplify the results of [16] to the case of a single right hand side c in
(1.6), but allow γ �= 1 in order to extend their results to the STLS problem.

VanHuffel andVandewalle used the following definition of the “generic”

(S)TLS problem in [16, p.23]. Consider the singular value decomposition

of the extended matrix [B, cγ] for some γ > 0

[B, cγ] = U ′Σ′V ′H , with Σ′ ≡ [diag(σ′

1, . . . , σ
′

k+1), 0]T ,

for n × n unitary U ′, (k + 1) × (k + 1) unitary V ′ ≡ [v′

1, . . . , v
′

k+1
] with

elements ν ′

ij , and n × (k + 1) Σ′, with σ′

1 ≥ . . . ≥ σ′

k+1
≥ 0. The STLS

problem (1.6) is “generic” if for j ≤ k defined so that

σ′

j > σ
′

j+1 = · · · = σ′

k+1, we have [ν ′

k+1,j+1, . . . , ν
′

k+1,k+1] �= 0.
(10.1)

This includes the rank(B) < k case. The TLS solution of a “generic”

problem is called the “generic” TLS solution, and can be computed by the

algorithm of Golub and Van Loan [11].

Note (10.1) used the SVD of [B, cγ], whereas (1.10) used that ofB. Let
σ1 ≥ . . . ≥ σk ≥ 0 be the singular values of B, see (2.4). The interlacing
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property for the eigenvalues of [B, cγ]H [B, cγ] and ofBHB [23, Ch2, §47,
pp. 103–4] tells us that

σ′

1 ≥ σ1 ≥ · · · ≥ σ′

j ≥ σj ≥ σ′

j+1 ≥ σj+1 ≥ · · · ≥ σ′

k ≥ σk ≥ σ′

k+1.
(10.2)

In their Lemma 3.1 and Corollary 3.4 in [16, pp. 64-5], Van Huffel and

Vandewalle proved another necessary and sufficient condition for (1.6) to

be “generic”. For a given γ > 0 this condition can be stated in the following
way: if j ≤ k is defined so that σ′

j > σ
′

j+1 = · · · = σ′

k+1
then the STLS

problem (1.6) is “generic” if and only if

σj > σ
′

j+1 = · · · = σ′

k+1.(10.3)

(In fact they considered γ = 1, and proved that (10.3) is equivalent to

[ν ′

k+1,j+1
, . . . , ν′

k+1,k+1
] �= 0). With (10.2), (10.3) becomes

σ′

j ≥ σj > σ
′

j+1 = σj+1 = · · · = σ′

k = σk = σ′

k+1,(10.4)

meaning the STLS problem (1.6) is “generic” if and only if

σmin(B) > σmin([B, cγ]) when σmin([B, cγ]) is simple,(10.5)

or, when σmin([B, cγ]) is multiple:(10.6)

multiplicity(σmin([B, cγ])) > multiplicity(σmin(B)).(10.7)

Since (10.5) is just (1.8), this new formulation (for a single right-hand

side c) emphasizes that the purpose for using the “generic” TLS criterion

[16] is to provide solutions where possible in the subtle case where [B, c]
has a multiple minimum singular value.

Our criterion (1.10) is far more brutal than (10.5)–(10.7) — it rejects

some cases where (10.5) holds, see Corollary 3.1, and all cases where (10.6)

holds. This last because (10.6) implies σmin([B, cγ]) = σmin(B), so that

a2 = 0 in Corollary 3.1, and (1.10) does not hold. Yet the intentions and

outcomes of the criteria in [16] and our criterion (1.10) are not very different.

In particular note that in nearly all practical problems our restrictive criterion

(1.10) will hold, and so (10.5) will also hold, and any differences in the

criteria apply to a small number of problems at best.

If our data [c,B] does not meet the criterion (1.10), we do not wish to

reject it — we want to transform it to obtain a reduced problem that sat-

isfies (1.10). In fact, we go even further. We suggest that the data [c,B]
should always be transformed to a reduced system (7.1) with B11 of min-

imal dimensions. If we do this via the approach in Sect. 8, we discard all

the components of the SVD of B that are irrelevant to the main approxi-

mation problem in Bx ≈ c. But this is partly what is done in [16]. In the

case of isolated σmin([B, cγ]), (10.5) shows if σmin([B, cγ]) = σmin(B)
the “generic” STLS solution does not exist. Moreover, in Theorem 3.1
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σmin([B, cγ]) = σmin(B) implies a2 = 0 and therefore σmin(B) ≡ σk

makes no contribution to themain approximation problem inBx ≈ c (which
is whywe eliminate it). For this case VanHuffel and Vandewalle [16, §3.4.1]
proposed a nongeneric TLS solution that effectively also discards σmin(B).
So in this case of isolated σmin([B, cγ]) the intentions are the same and the

outcomes are similar.

When (10.6) and (10.7) hold, the “generic” TLS solution exists but it is

not unique, and Van Huffel and Vandewalle construct the minimum norm

TLS solution [16, Thm. 3.7]. The “generic” solution exists because the

minimum eigenvalue of
[

Σ2
1 Σ1a1γ

γaH
1Σ1 γ2(aHa+ ρ2)

]

is the minimum eigenvalue of NHN in (3.6) (see (10.7)). It is not unique

because this minimum eigenvalue is also equal to the unwanted minimum

eigenvalues σ2
j+1 = · · · = σ2

k of BHB in Theorem 3.1. This shows this

form of “generic” problem is extremely unlikely — and in STLS problems

any minute change in γ will upset this equality, see Corollary 4.1. Thus

such problems (even TLS problems) are not generic in the usual sense of

the word. One definition of generic is ‘general, not specific or special’, so we

would expect a generic problem to satisfy (8.6) and so (10.5), but certainly

not (10.6) and (10.7).

For (10.6)–(10.7) our approach would first get rid of all the unwanted

singular values ofB (not only those equal to σmin(B)), leading to a unique
solution of a reduced problem. This will provide unique solutions in all

cases. So again the intentions are the same, though the outcomes may differ.

The philosophy here is to reduce the problem to one of minimal dimensions

with a unique meaningful solution. The tendency in [16] was more to seek

such solutions without such a reduction — but by applying orthogonality

conditions to the solution instead.

In summary, the stronger but simpler criterion (1.10) together with the

concept of the core problem in Sect. 8 has allowed us to achieve simply,

clearly, thoroughly, and with one uniform approach, what [16] sought to do,

and partially achieved through the ingenious use of several techniques.

11 Summary and conclusion

The total least squares (TLS) problem for the matrix B and the right-hand

side cγ, γ > 0, represents a formulation (1.6) of the scaled TLS (STLS)

problem. For positive bounded γ it is equivalent to the usual formulation

(1.5) of the STLS problem for B and c, where the relative sizes of the

corrections in B and c are determined by γ. Our results bring, we believe,
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a new view to the theoretical foundations of STLS problems, and a new

understanding of these, including TLS problems, as well as of data least

squares (DLS) problems.

In Theorem 3.1 we proved the necessary and sufficient condition for

σmin(B) = σmin([cγ,B]), which reveals that this undesirable event must

be rare in practical STLS problems. This is a general matrix theory result

— it gives a necessary and sufficient condition for preserving the smallest

singular value of a matrix while appending or deleting a column. This led

us to a new criterion for scaled total least squares (STLS) problems, and

we showed that when this criterion is not obeyed, the standard formulations

can lead to computationally risky, or even meaningless solutions. We have

given algebraic proofs of alternative formulations of the STLS and DLS

problems, and proven the form of the DLS solution for the case of possibly

complex data. We proved how our formulation (1.6) of the STLS problem

corresponds to LS as γ goes to zero, and to DLS as γ goes to infinity. We

showed how to reduce any general LS, STLS or DLS problem to the core

and transparent problem where the system matrix B has full column rank

and distinct singular values, and the right-hand side c is not orthogonal to
any left singular vector ofB. This removes any irrelevant information from

the data and it more than obeys our criterion (1.10). We briefly indicated

new algorithms for solving STLS and DLS problems, when the data [c,B]
is small and dense, and when it is large and sparse.

Van Huffel and Vandewalle [16, p.19] call the TLS problem “basic”

when it has only one right-hand side vector and a unique solution. If [B, c]
satisfies our criterion (1.10) then the STLS formulation (1.6) yields a unique

solution for any γ > 0. The LS andDLS formulations then also yield unique

solutions. The reduction in Sect. 8 yields a core problem that has minimal

dimensions and satisfies (8.6). This last criterion is even stronger than (1.10).

So perhaps we could call such problems, or the general approximation prob-

lemBx ≈ c, “basic”when [B, c] satisfies (1.10), and “core”when it satisfies
(8.6).

If [B, c] satisfies (1.10), then in theory there is no need to perform the

reduction to the minimally dimensioned core problem satisfying (8.6). Both

the original problem satisfying (1.10) and the reduced minimally dimen-

sioned core problemhave identical solutions and distances. Computationally

however, it seems always desirable to perform the proposed reduction.

Throughout this paper we have only dealt with problems Bx ≈ c with
one right-hand side vector c. For this case Sect. 10 developed a new for-

mulation (10.5)–(10.7) of the existence condition for the “generic” TLS

solution in [16]. We used this to show that reducing the problem to one

which satisfied the simpler but stronger criterion (1.10) (or preferably the

even stronger (8.6)), then solving this problem, achieved everything that this
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difficult “generic” concept and its related solution methods did, and more.

In Sect. 9 we argued that the reduction in Sect. 8 to the core problem be

applied to any STLS problem unless there is a good reason not to do so.

Thus for problems with one right-hand side, if we use this reduction there is

no need for the subtle and sophisticated concept of “generic TLS” and the

related solution methods for special cases introduced in [16]. Perhaps this

reduction and the criterion (1.10) can be developed to apply to problems

with more than one right-hand side?

As we mentioned earlier, this paper deals with exact relationships. Our

next paper [20] follows on from this, and will deal with bounds and the

LS–STLS relationship when γ > 0. A crucial element in that is the amount

by which σmin([cγ,B]) is less than σmin(B), and many of the results will

depend on δ(γ) ≡ σmin([cγ,B])/σmin(B).
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