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Abstract

Warped compactifications with branes provide a new approach to the hierarchy
problem and generate a diversity of four-dimensional thresholds. We investigate the
relationships between these scales, which fall into two classes. Geometrical scales, such
as thresholds for Kaluza-Klein, excited string, and black hole production, are generi-
cally determined soley by the spacetime geometry. Dynamical scales, notably the scale
of supersymmetry breaking and moduli masses, depend on other details of the model.
We illustrate these relationships in a class of solutions of type IIB string theory with
imaginary self-dual fluxes. After identifying the geometrical scales and the resulting
hierarchy, we determine the gravitino and moduli masses through explicit dimensional
reduction, and estimate their value to be near the four-dimensional Planck scale. In the
process we obtain expressions for the superpotential and Kähler potential, including
the effects of warping. We identify matter living on certain branes to be effectively
sequestered from the supersymmetry breaking fluxes: specifically, such “visible sector”
fields receive no tree-level masses from the supersymmetry breaking. However, loop
corrections are expected to generate masses, at the phenomenologically viable TeV
scale.
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1 Introduction

Recent years have opened up a new universe of string compactifications. Much of the work

done on string phenomenology after the “first superstring revolution” of 1984 had focused on

traditional Kaluza-Klein compactifications of string theory to four dimensions. However, we

now see a great range of extensions of this picture: one may first of all consider more generally

warped compactifications, and secondly one may have brane world scenarios in which branes

– wrapped or otherwise – are present. This leads to a wide new spectrum of possibilities for

reproducing four-dimensional Poincaré invariant physics from higher-dimensional string/M-

theory. Particularly interesting are the resulting geometrical/dynamical mechanisms that

allow the string scale to be many orders of magnitude lower than the traditional value

∼ 1019 GeV – and perhaps even as low as O(1 TeV), providing a completely new potential

resolution of the hierarchy problem. We still seem only to have scratched the surface in

exploring this new universe.

The added complexities of these models imply the possibility of various new phenomena

taking place at differing scales. In the case where some of these thresholds are lowered

to O(1 TeV) – or even lower – clearly it is especially interesting to understand what they

are, and how they are related to the geometry and fields on the internal manifold. The

diversity of possible scales include the natural scale for scalar masses, the apparent and

fundamental Planck scales, thresholds for production of Kaluza-Klein states, excited string

states, or microscopic black holes, and the supersymmetry breaking scale. We will discuss the

emergence of these in general warped compactifications/brane worlds that occur in string/M-

theory.

Models exhibiting these phenomena include the large extra dimensions scenario of [1] and

the warped model of [2]. Although inspired by stringy developments, the original proposals

were not directly related to an underlying microscopic theory, but were solutions of effective

theories capturing essential ideas. Large extra dimensions were subsequently discussed in

the context of string theory in [3], and more complete embeddings of warped scenarios have

emerged. As a specific example, [4] provides a string solution that geometrically realizes a

hierarchically low fundamental string scale via warping, along the lines of [2]. A warped

geometry is created within a Calabi-Yau threefold by fluxes in the spirit of [5, 6, 7], with a

throat that comes to a smooth end playing the role of an infrared brane, while the Calabi-

Yau manifold itself plays the role of an ultraviolet brane by terminating the throat at the

top. Since the total space is compact, this picture bears similarities to both [1] and [2].

In these theories, the fluxes have the additional benefit of freezing many geometric moduli

of the Calabi-Yau background, as well as the dilaton (see also [8]). The “Gukov-Vafa-

Witten” (GVW) superpotential [9] that freezes these moduli also can break supersymmetry

spontaneously.

In this paper we study the relationship of the various thresholds of physical phenomena
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in a warped/brane world compactification, both to each other, and to properties of the

underlying geometry. Several of these scales rely only on simple properties of the geometry,

and very general statements can be made. We refer to these as geometrical scales. Some of

the scales, particularly involving supersymmetry breaking, are less generic and more model

dependent; we refer to these as dynamical scales. We will illustrate some of this model

dependence in the context of the model of [4] and the GVW superpotential.

In outline, we begin with a brief general discussion of warped compactifications and brane

worlds. We follow this by discussing the general relationships between geometrical scales:

the fundamental and apparent four-dimensional Planck scales, the string scale, and the typ-

ical mass-scales for brane matter. This is essentially a simple extension of known results.

We then discuss the more model-dependent (but still geometrical) question of the thresholds

for Kaluza-Klein modes. We next turn to dynamical scales, particularly the supersymmetry

breaking scale. Here the observed scales depend sensitively both on the form of supersym-

metry breaking (e.g. gravity-mediated from the moduli sector or a hidden brane sector, or

gauge-mediated from extended gauge dynamics on the branes), and on the warping in the

region where it is localized.

We then give an extensive illustration of our comments in the context of the compactifica-

tions of [4]. With a moderate choice of discrete fluxes, these solutions generate a hierarchy

between the weak and Planck scales, while at the same time breaking supersymmetry and

fixing many of the problematic moduli familiar from traditional Calabi-Yau compactifica-

tions. After outlining properties of these solutions, we derive expressions for the gravitino

mass and for the potential for moduli. While not essential for the derivation, these can be

thought of as arising from a four-dimensional effective supergravity action, and we exhibit

the corresponding Kähler and superpotentials, explicitly including the effects of warping.

Generically the gravitino and moduli masses are estimated to be large, of order M4 ∼ 1019

GeV, an apparent phenomenological disaster. However, as a result of no-scale structure, tree

level masses for scalars living on an IR brane vanish. Moreover, fermion masses also vanish at

tree level [10], producing a close analog of the sequestered scenarios of [11]. To our knowledge

this is the first realization of sequestering in a string theory background. The sequestered

form persists even incorporating brane backreaction, though it may not survive α′ correc-

tions. These “visible sector” masses receive contributions from loops; the warped structure

of the solution indicates that these corrections should be of order O(TeV) for solutions where

the hierarchy is indeed generated by warping. Section 5 is rather long and technical, but the

reader interested in a brief overview is directed to a summary in subsection 5.6.

2 Warped geometries, brane worlds, and the hierarchy

In traditional Kaluza-Klein compactifications, the extra dimensions ym, m = 1, · · · , D− 4 of

D-dimensional space time (or more generally, in string theory the extra-dimensional confor-
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mal field theory) are taken to form a direct product geometry with the visible dimensions

xµ, µ = 0, 1, 2, 3:

ds2 = ηµνdx
µdxν + gmn(y) dymdyn , (1)

where gmn is the metric in the extra dimensions. However, we have increasingly realized the

potential importance of compactifications in which this geometry is extended to the most

general 4d Poincaré-invariant form:

ds2 = e2A(y)ηµνdx
µdxν + gmn(y) dymdyn . (2)

Such a compactification is known as a warped compactification, and the function e2A as a

warp factor [12, 13, 14, 15].

A second important extension, following from the “second superstring revolution,” is the

inclusion of branes. In order to preserve 4d Poincaré invariance, these should be fully ex-

tended over the dimensions of observed four-dimensional spacetime. Their configuration in

the extra dimensions is more flexible. Simplest is the case of D3 branes, which then are point-

like in the extra dimensions. But more generally, the compact geometry can have non-trivial

closed cycles on which some of the dimensions of a Dp-brane, with p > 3, can wrap.

Within the context of string theory, there are also higher-form antisymmetric tensor fields

that can acquire vevs in the compact directions, without spoiling Poincaré invariance.

D-branes, fluxes, and warping are of course in general related, since D-branes serve as

sources for fluxes, and both D-branes and fluxes may serve as sources of non-trivial warp

factors. It is also possible for D-branes and fluxes to transmute into one another.

Our interest is in string/M theory propagating on the spacetime (2). As long as geometrical

features are larger than the fundamental Planck length, the dynamics is well-described in

terms of a low-energy effective action of the form

S =
MD−2

D

(2π)D−4

∫
dDx

√−g1

2
R +

∫
dDx

√−gL , (3)

where MD is the fundamental Planck mass (in the phenomenologically useful conventions of

[16]), R is the Ricci scalar, and L is the Lagrangian for other fields and sources, including

matter, fluxes, and branes.

We would like to determine the parameters that govern four-dimensional phenomenology,

in terms of the parameters of the underlying fundamental theory. In the example of a string

compactification of the type II string, for which D = 10, the string frame Lagrangian takes

the form

S ∝M8
s

∫
d10x

√−ge−2φ R + · · · , (4)

up to a numerical constant, where φ is the dilaton and the string coupling is gs = e〈φ〉. The

relation between the fundamental string scale and the Planck scale immediately follows:

M10 = g
− 1

4
s Ms . (5)
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The relation between the fundamental and apparent 4-dimensional Planck scales is nearly

as simple. Indeed, replace the metric (2) by one including 4d fluctuations

ds2 = e2A(y)gµνdx
µdxν + gmn(y) dymdyn , (6)

and substitute into the action (4). We find that fluctuations of the 4d metric about internal

geometries obeying the equations of motion are governed by an effective action

S4 =
M2

4

2

∫
d4x

√
−g4(x)R4 , (7)

with the four- and D-dimensional Planck masses related by

M2
4

M2
D

=
(
MD

2π

)D−4 ∫
dD−4y

√
gD−4e

2A ≡
(
MD

2π

)D−4

Vw . (8)

This equation defines the “warped volume” Vw.

Next consider mass scales for matter fields. In particular, if fermion masses are generated

by a Higgs scalar H , in the absence of a protection mechanism, radiative corrections are

expected to generate scalar masses MH of order the cutoff, which here is expected to be

O(MD), in the Lagrangian L. In the general brane world scenario, where fermion and

Higgs fields propagate on a “standard model” p-brane with coordinates z, this results in a

contribution to the action of the form

SH = −1

2

∫
d4x

∫
dp−4z

√
gbrane

[
e2A(∇µH)2 +M2

He
4AH2

]
, (9)

where gbrane is the induced metric on the brane. From this we find that the Higgs mass scale

is given in terms of averages of the warp-factor over the standard-model brane, by

M2
0 =

∫
dp−4z

√
gbranee

4A

∫
dp−4z

√
gbranee2A

M2
H ∼ e2ASMM2

D (10)

where we denote the average of the warp factor on the standard model (SM) or visible brane

by

e2ASM =
∫
dp−4z

√
gbranee

2A . (11)

This makes it clear that fields localized in regions where eA ≪ 1 have their masses suppressed

relative to the fundamental scale MD; natural TeV scale masses can be generated by the

warp factor.

An alternative viewpoint of this mechanism comes from using the Weyl symmetry of the

actions (4), (9). Define the new variables

g = λ2ḡ ; (MD,M0) = (M̄D, M̄0)/λ ;H = H̄/λ , (12)
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with corresponding scalings for other fields and dimensionful parameters. This choice of

scale may be used to set the average

e2ĀSM = 1 . (13)

In these units (barring a large ratio of the different averages that enter in (9)), the funda-

mental Planck scale and the Higgs mass are both naturally comparable, and we therefore

have a choice:

1. Conventional Planck-scale compactification: Take M̄D ∼ M4 ∼ 1019 GeV, and find a

mechanism, such as supersymmetry, to suppress the Higgs mass to a far smaller scale;

2. TeV-scale gravity scenario: Take M̄D ∼ 1 TeV, which then requires Vw ≫ 1/M̄D−4
D .

From the definition (8) of the warped volume and the convention (13) we see that the latter

choice results from either large volume or a large warp factor away from the brane, or some

combination of the two; in the barred variables, these two effects are on the same footing.

Thus to summarize, there are two possible conventions from which to understand the

physics of the hierarchy in the context of a TeV-scale gravity model. In the first, the

fundamental scale is MD ∼ 1019 GeV, and scalar masses are suppressed to a TeV. The second

corresponds to a definition of four dimensional energy relative to an observer localized on the

brane; for such an observer, the fundamental scale is reached at four-dimensional energies

M̄D ∼ TeV , and this is also the natural scale for scalar masses. The four-dimensional Planck

scale M4 is enhanced relative to these by the large warp factor in (8). We will find the barred

variables to be convenient for most the the following sections, although we will revert to the

unbarred variables for the purposes of calculating masses of bulk fields in section 5.

3 Geometrical scales and thresholds

In conventional Planck-scale compactifications, many of the new phenomena resulting from

the compactification are only accessible in the vicinity of the four-dimensional Planck scale,

M4 ∼ 1019 GeV. One of the reasons for the great interest in warped compactifications is the

much greater latitude in the possible scales at which observable phenomena may occur. Many

of these scales are determined purely from the geometry of the warped compactification, as

opposed to other dynamical information. We have just seen two examples: the relationships

between the fundamental Planck scale, the apparent four-dimensional Planck scale, and the

naturalness scale for scalar masses are determined through relations (8) and (10) and depend

only on the warp factor and the geometry of the internal manifold. In this section we will

extend this discussion of physical scales and the corresponding thresholds for other physical

phenomena.
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3.1 Strings and black holes

The most exciting possibility raised by warped compactification is that, as outlined above,

the fundamental Planck scale may be much lower than the apparent four-dimensional Planck

scale. This means that we may begin to experimentally access the dynamics of quantum

gravity much sooner than previously anticipated.

For example, it is believed that the generic high-energy physics of gravity is the production

of black holes. If, as in the preceding section, we work in units where the warping is unity

on the IR brane, the fundamental Planck scale M̄D may be as low as a TeV. Of course, the

fundamental Planck scale generically represents the threshold for production of microscopic

black holes, so above this energy collisions of particles on the SM brane can produce black

holes; this corresponding phenomenology is discussed in [17, 18, 19]4.

In the context of string theory, this threshold may be pushed up to make room for an

intermediate regime where string states are produced. This depends on the value of gs. As

we see from (5), at weak coupling the threshold for string production is below the Planck

energy. At the same time, the string length exceeds the Planck length,

ls ∼ g−1/4
s lp . (14)

Objects smaller than this will explicitly exhibit behavior characterized by non-local string

dynamics, and classical black holes will only begin to exist once their radii exceed this value,

at the correspondence scale [32]

Mc ∼
Ms

g2
s

. (15)

Between Ms and Mc we expect perturbative string states gradually to become more strongly

coupled and morph into black hole states, perhaps with intermediate states best described

as “string balls” [33, 34].

So, to summarize the results of this subsection, for weakly coupled string theory, we

should start seeing perturbative string states at the threshold g1/4
s M10; these become more

strongly coupled, and evolve into the generic gravitational physics of black holes above the

threshold Ms/g
2
s . Some of the phenomenology of the initial perturbative string regime has

been discussed in [35].

4It has long been believed that collisions above the Planck energy should create black holes. An early
concrete statement is Thorne’s hoop conjecture [20], and such processes were further studied in [21] and
[22, 23, 24]. Ref. [25] pointed out the relevance of such black hole formation within the TeV-scale gravity
models of [1], and discussed some aspects of the phenomenology. Other aspects of black holes in these models
were discussed in [26], and their evaporation in [27]. The experimental relevance of black hole formation
in warped scenarios was pointed out in [17]. A general argument for classical black hole formation at high
energies appears in [28]. For reviews, see [29, 30, 31].
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3.2 Kaluza-Klein modes

Another generic phenomenon is production of Kaluza-Klein modes. For simplicity we just

discuss these in the case of scalar fields, although results for higher-spin fields should be

qualitatively similar.

Specifically, consider a D-dimensional scalar field Φ, with action

SΦ = −1

2

∫
dDx

√−g
[
(∇Φ)2 +M2

ΦΦ2
]

(16)

= −1

2

∫
d4x

√−g4

∫
d6y

√
g6e

4A
[
e−2Aηµν∇µΦ∇νΦ + gmn∇mΦ∇nΦ +M2

ΦΦ2
]
.

This gives an equation of motion

4Φ + e−2A
[
∇m

(
e4A∇mΦ

)
−M2

Φe
4AΦ

]
= 0 . (17)

Therefore masses of Kaluza-Klein states will be given by the eigenvalues of the wave

operator

e−2A
[
∇m

(
e4A∇mYi(y)

)
−M2

Φe
4AYi(y)

]
= −M2

i Yi(y) . (18)

The size of these masses for Kaluza-Klein modes localized in the vicinity of the SM brane

is generically determined by the scales on which the 6d metric and warp factor A vary. For

example, in an unwarped compactification, the lightest scale is roughly 1/L, where L is the

size of the largest dimension. In the case of the model of [2], the Kaluza-Klein masses are of

size 1/R, where R is the AdS radius, in other words the scale of variation of the warp factor

which in this case is just

A = −y/R ; (19)

a similar result is found for the string solutions of [4] which have an approximately AdS

region. Either kind of geometrical scale will typically be larger than the fundamental length

scale (otherwise a geometrical description may not apply), so the Kaluza-Klein masses will

typically be below the fundamental scale, even far below as in the extreme case of [1].

Of course, there may be more complicated scenarios where contributions of the warp

factor relative to that on the SM brane rescale these masses. Kaluza Klein modes localized

in a region with warp factor A will have their masses scaled by eA. For example, ref. [37]

investigates scenarios with multiple throats that are approximately anti de-Sitter; if we

consider the KK modes localized in throat j in a vicinity with warp factor Aj , then the

corresponding masses will be renormalized by the factor eAj as seen by an observer on the

SM brane. Of course couplings of such modes in a distinct throat to those of the visible

sector are expected to be correspondingly suppressed.
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3.3 Summary of geometric thresholds

To summarize the results of this section, in a TeV-scale gravity scenario with hierarchy

generated by warping, the sequence of thresholds is as follows. (This summary is given

in the “brane-based” conventions outlined in the preceding section.) The lowest energy

threshold is generically that for Kaluza-Klein states,

MKK ∼ eAKK

R
(20)

where AKK is the warp factor in the region where the state is localized, and R is a char-

acteristic proper geometrical scale. Next, in the case of a string scenario, and at least for

moderately weak string coupling, comes the threshold for producing string states:

MS ∼ g1/4
s M10 . (21)

For the possibly more realistic case of strong string coupling, this is degenerate with the

fundamental Planck scale, which as measured by observers on the standard model brane is

M̄D ∼ TeV; this is the approximate threshold for producing black holes. Scalar masses are

also naturally of this size:

M0 ∼ M̄D . (22)

The four-dimensional Planck scale lies far beyond, at

M2
4

M̄2
D

=

(
M̄D

2π

)D−4

Vw . (23)

4 Dynamical scales; supersymmetry breaking

Certain physical thresholds are determined by more detailed dynamical information than

that contained in the metric; these are the dynamical scales. An obvious example is that

of supersymmetry breaking mass scales: the mass of the gravitino, and of superpartners.

Moreover, generic Calabi-Yau compactifications suffer from a plethora of moduli, but these

typically also get masses upon supersymmetry breaking. Details of these scales depend

sensitively on the dynamics; we will exhibit the mechanism of flux-generated masses in the

next section.

There are two broad classes of relevant supersymmetry breaking mechanisms, gauge-

mediated and gravity-mediated, and in particular the latter appears to offer the possibility

of a large range of scales.

In gauge-mediated supersymmetry breaking, we imagine that in addition to the standard

model dynamics, the infrared branes produce other dynamics that breaks supersymmetry

and is conveyed to the standard model fields via a gauge theory messenger. Such mechanisms
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have been widely studied; for a review and references see [36]. It should be noted that while

many of their features are not necessarily modified by virtue of the warped setting, a TeV-

scale gravity scenario does apparently put one strong constraint on allowed scenarios since

the highest allowed scale in the gauge theory near the SM brane is the TeV scale. This is

problematic in view of the need for SUSY breaking scales of order 100 TeV to avoid flavor

problems. We will not explore further aspects of these scenarios in this paper.

In gravity-mediated scenarios, it appears that there can be a much richer interplay be-

tween the supersymmetry-breaking dynamics and the warping. For example, first consider

supersymmetry breaking produced by gauge dynamics on other IR branes that are only cou-

pled to standard model fields via gravity. In this case, if the hidden-sector supersymmetry

breaking scale is Λ, we expect that the splittings in the standard model sector are given by

m3/2 ∼
Λ2

Mp
(24)

where here Mp ∼ M̄D ∼ 1 TeV if the branes are separated on scales small as compared to the

curvature scales/radii of the extra dimensions, and Mp ∼M4 if the branes are separated on

larger scales. For Λ ∼ TeV this can produce the correct splittings if the effective gravitational

mediation scale is M̄D. However, this produces splittings that are far too low, O(10−4) eV,

if the mediation scale goes like M4.

Different scales may.moreover, be generated depending on the location of the supersym-

metry breaking in the extra dimensions; we expect a general relationship

Λ ∼ eASUSYΛSUSY (25)

where ΛSUSY is the proper scale for supersymmetry breaking (as measured by a higher-

dimensional observer in the supersymmetry breaking region) and eASUSY is corresponding

warp factor of that region. For example, one may consider supersymmetry breaking on

some branes that have been raised some distance up an AdS throat relative to the standard

model branes – although a critical question is how to stabilize such branes. Alternatively, as

mentioned previously, one may generically have warped compactifications with more than

one region with strong warp factor; standard model branes could be in one region and the

supersymmetry breaking sector in another. A large relative warp factor between the two

regions can generate a large variation in the supersymmetry breaking scale.5 Of course one

expects that the proper scale of supersymmetry breaking is bounded by the fundamental

scale, ΛSUSY<∼M̄D. But the relative factor in (25) can easily produce a sufficiently large

gravitino mass,

m3/2 ∼
e2ASUSY Λ2

SUSY

M4

. (26)

5Ref. [37] proposed a different mechanism, tunneling mediation, for supersymmetry breaking in such
scenarios, although for a large range of parameters gravity mediation dominates.
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Indeed, the gravitino mass can also in practice be too high. For example, SUSY breaking

in the vicinity of the UV brane could produce a scale

m3/2 ∼M4 ; (27)

we will see a similar phenomenon in models which produce SUSY breaking through flux in

the next section. However, there is one other interesting caveat: supersymmetry breaking

does not always generate tree-level masses for superpartners. This may for example happen

if the Kähler and superpotentials of the visible and hidden sectors completely separate.

Such a mechanism was was proposed in the “sequestered” scenario of [11]. In this case the

splittings will be produced by loop corrections. If the gravitino has a mass given by (27), it

is effectively removed from the theory on scales smaller than M4. One might think this leads

to loop corrections of order M4 to scalar masses in the visible sector, but note that when one

computes the divergent diagrams that give such masses, the cutoff should actually be the

fundamental Planck scale M̄D. The important point is that as seen from the perspective of

an observer on the standard model brane, she lives in a theory that is not supersymmetric,

but in which the fundamental scale and cutoff is M̄D ∼ TeV. Quantum corrections should

thus produce scalar masses of TeV size. Similar, though less general, observations were made

in [38].

5 A string theory example: hierarchies from fluxes

A concrete realization of many of these ideas is provided by the warped compactification

solutions described in [4]. These exhibit some of the basic ideas of the two-brane scenario

of [2] in a known microscopic theory, namely type IIB string theory. They also have other

appealing features, as they improve on a standard phenomenological difficulty of string theory

by stabilizing many of the moduli fields. Supersymmetry is generically broken, but both the

cosmological constant and, as we discuss below, masses for “visible sector” fields living on a

brane are zero at tree level; this can be related to a “pseudo-BPS” condition on the branes,

which we describe shortly.

Specifically, quantized three-form fluxes are introduced inside a compact six-dimensional

manifold, warping a region of the space into an approximately AdS throat. The throat is

terminated smoothly at the infrared end by a geometry that is an appropriate analogue of

the Klebanov-Strassler solution [7], while the unwarped region of the manifold plays the role

of an ultraviolet brane, much as in [5].

Mobile branes that fill the non-compact directions are generically required to be present.

Some of these branes are taken to reside in the throat region, where the warping induces

a hierarchy of scales for the “visible sector” fields on these branes. In principle one would

like these to be the Standard Model fields, which could perhaps be realized by placing an
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additional singularity (or more generally brane intersections) at the base of the throat, but

we will for the moment content ourselves with the simpler case of the U(N) spectrum of

D3-branes at a generic point.

5.1 Solutions and geometric scales

We begin by describing these solutions in more detail. The bosonic low-energy action for

type IIB supergravity in Einstein frame can be written (we use the conventions of [4]):

Sb
IIB =

1

2κ2
10

∫
d10x

√−g


R− ∂Mτ∂

M τ̄

2(Im τ)2
− G(3) · Ḡ(3)

12 Im τ
−

F̃ 2
(5)

4 · 5!



− 1

8iκ2
10

∫ C(4) ∧G(3) ∧G(3)

Im τ
(28)

where we have

G(3) ≡ F(3) − τH(3) , τ ≡ C(0) + ie−φ , (29)

F(3) = dC(2) , H(3) = dB(2) , F̃(5) = dC(4) −
1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F(3) .

Here R is the Ricci scalar, φ is the dilaton, C(0) the RR scalar, B(2) and C(2) the NSNS and

RR 2-form potentials, and C(4) is the RR 4-form potential. The five-form field strength F̃(5)

is self-dual,

F̃(5) = ∗F̃(5) , (30)

which does not follow from the action (28); rather, (28) is understood to produce the correct

equations of motion when supplemented by (30). Dimensionally reducing the action in a

background 5-form field must be done with care, as we discuss in section 5.3.

It is familiar that a four-dimensional, N = 2 supersymmetric solution may be obtained

from a type II theory by considering a background geometry of the form R4 ×M, where M
is a Calabi-Yau threefold. However, there is a much wider class of warped compactifications

preserving the Poincaré symmetry. The general Poincaré invariant configuration allows the

axion-dilaton scalar to vary over the compact manifold,

τ = τ(y) , (31)

and allows components of the three- and five-form fluxes in the compact directions:

G(3) =
1

3!
Gmnp(y) dy

mdyndyp , (32)

F̃(5) = ∂mα(y)(1 + ∗) dymdx0dx1dx2dx3 . (33)

The expression for the five-form is manifestly consistent with self-duality (30), and is the

most general form consistent with the Bianchi identity. Poincaré invariance also allows D3-

branes, which will be pointlike in the extra dimensions, 5-branes wrapped on two-cycles,

11



D7-branes wrapped on four-cycles, and D9-branes. The metric in general takes the warped

form

ds2 = GMNdx
MdxN = e2A(y)ηµν dx

µdxν + gmn(y) dymdyn . (34)

With a typical configuration of branes and fluxes, gmn is no longer Calabi-Yau.

Ref. [4] considers a very general class of string solutions that are obtained by making an

additional assumption, and this class will be the focus of our description for the rest of the

paper. The assumption is that localized sources such as branes and orientifold planes must

satisfy a BPS-like condition relating their stress-energy to their D3-brane charge:

1

4
(Tm

m − T µ
µ )loc ≥ T3ρ3 . (35)

Here ρ3 is the D3-brane charge density of the localized sources, and the constant T3 is the

D3-brane tension. This “pseudo-BPS” condition roughly states that negative-tension sources

(which are of course allowed in string theory, as for example orientifold planes) can’t be too

strong.

Under these added assumptions, [4] finds the general solutions in terms of an underlying

Calabi-Yau geometry (or more generally, in the case with 7-branes, an F-theory background).

The warp factor and five-form are related by

e4A = α , (36)

the internal metric is conformal to a Calabi-Yau (or F-theory base) metric g̃,

gmn = e−2Ag̃mn , (37)

the flux must be imaginary self-dual (ISD) in the compact dimensions,

∗6G(3) = iG(3) , (38)

where ∗6 denotes the six dimensional Hodge dual, and finally, the BPS-like condition (35) is

in fact saturated for all sources.

The presence of localized sources is not an option, but is forced on us by flux conservation.

Because the H(3) and F(3) fluxes participate in the 5-form Bianchi identity,

dF̃(5) = H(3) ∧ F(3) , (39)

together they produce a source of D3-brane charge. Additional sinks of D3-brane flux must

then be introduced on the compact manifold to cancel this charge. Two options were dis-

cussed in ref. [4]: one may quotient the space by a discrete symmetry so as to introduce

orientifold 3-planes, or one may add 7-branes wrapped on four-cycles, both of which carry a

12



D3-brane charge (in the latter case the charge is induced by the curvature of the four-cycle).

The 7-branes require a non-Ricci-flat unwarped geometry as well as a varying axion-dilaton

τ , all of which is summarized as an F-Theory compactification on a Calabi-Yau four-fold X.

The total charge that must vanish is then

QD3 = ND3 − 1
4
NO3 −

χ(X)

24
+

1

2κ2
10T3

∫

M
H(3) ∧ F(3) = 0 . (40)

χ(X) is the Euler number of X, and ND3 and NO3 denote the numbers of D3-branes and

O3-planes, respectively. Notice that with a general choice of fluxes, satisfying this constraint

requires the presence of some number of explicit D3-branes, on which gauge dynamics may

live. To avoid the complications of the F-theory examples, we will often keep the orientifold

case in mind, but it should be remembered that both are possible.

The underlying Calabi-Yau manifold in general has a large collection of both Kähler and

complex structure moduli, and this is typically a problem for string phenomenology. How-

ever, for given quantized fluxes, the ISD condition (38) fixes many of these moduli [4]. This

condition can be reexpressed in terms of the Dolbault cohomology of the CY, as permitting

only a primitive (2, 1) form (i.e. a Gijk̄ satisfying gjk̄Gijk̄ = 0) and a (0, 3) form. The former

preserves N = 1 supersymmetry, while the latter breaks all SUSY. Generically, one expects

both types to be present in a given compact background, and so SUSY is generally broken.

These models are found classically to be no-scale models [39], [40], and in particular the

cosmological constant vanishes despite supersymmetry breaking.

The 3-form fluxes must satisfy quantization conditions with respect to the 3-cycles on M;

if CI form a homology basis for three cycles,
∫

CI

F(3) = (2π)2α′MI ,
∫

CI

H(3) = −(2π)2α′KI . (41)

Consequently they are fixed and do not fluctuate. A particularly interesting case, which we

will bear in mind as an example, arises if we work in the vicinity of a conifold point in the

Calabi-Yau moduli space. Call the degenerating cycle A and its dual cycle B, and suppose

we have turned on a flux configuration with
∫

A
F3 = (2π)2α′M ,

∫

B
H3 = −(2π)2α′K . (42)

As [4] found, this generates an approximately AdS region, locally resembling the Klebanov-

Strassler geometry [7].

These particular solutions exemplify the features of warped compactifications that we have

discussed in earlier sections. The most fundamental is the warping that arises in the AdS-like

region. The fluxes (42) produce a relative warp factor

eAmin ∼ exp(−2πK/3Mgs) . (43)
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between the unwarped region and the bottom of the throat.

Since the gravitational potential is minimized at the bottom of the throat, and the config-

uration is not truly BPS, a reasonable hypothesis is that a potential for the position of the

branes is generated at loop level and has a minimum when they are at the bottom of the

throat. (We will return to related comments when we discuss generating masses for brane

matter.) Fields living on branes at the bottom of the throat will perceive a hierarchy of

scales between the apparent M4 and the fundamental Planck scale M̄D; realistic values of

M4 ∼ 1019 GeV, M̄D ∼ 1 TeV may be generated through (8), (43) with quite modest values

for the flux quanta.

The rest of the discussion of geometrical scales of section 3 also directly applies. If the

fundamental Planck scale has been lowered to O(TeV), black holes may of course be pro-

duced above this threshold on the SM brane. Likewise, string states may be produced,

at comparable or lower thresholds depending on the value of the string coupling (thus to

agree with phenomenological bounds, weakly coupled models should instead have Ms set to

O(TeV) or higher). Furthermore, the lightest Kaluza-Klein modes will have masses given by

the approximate geometrical scales at the bottom of the throat; from [7] we find

EKK ∼ M̄s

gsM
. (44)

This exhausts the discussion of the geometrical scales.

An important question is to determine the corresponding dynamical scales, in particular

the scale of supersymmetry breaking, the magnitude of the resulting splittings in supermul-

tiplets in the visible sector, and the masses of the moduli fields. We turn to this task in the

coming sections. We calculate the mass of the gravitino broken by (0, 3) flux as a measure

of supersymmetry breaking, as well as determining the potential for the moduli6. We also

comment on how supersymmetry breaking is not communicated to the visible sector fields

at tree level, a phenomenon analogous to the sequestered scenarios of [11]. In the process, we

develop expressions for the Kähler and superpotentials for such warped compactifications,

which heretofore have not been calculated with the warping taken into account.

5.2 The gravitino

In the absence of (0, 3) flux, N = 1 supersymmetry is preserved in four dimensions. Corre-

spondingly there is a massless gravitino. When SUSY is broken by the flux, the mass m3/2 of

this gravitino is a useful measure of the breaking. We shall begin by computing this quantity

by dimensional reduction of the 10D theory, and in the process relate this to the expressions

for the superpotential and Kähler potential including the effects of warping.

6Related work involving partial SUSY breaking in the unwarped case appeared in [41].
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The equations of motion for the IIB fermions are given in Appendix B. We find it con-

venient to work in terms of an action from which these equations can be derived, and to

determine the gravitino mass it is sufficient to consider the gravitino squared terms:

1

κ2
10

∫
d10x

√−g
{
iΨ̄MΓMNP

(
DNΨP − i

2
QNΨP − RP ΨN

)
−
[
i

2
Ψ̄MΓMNPSP Ψ∗

N + h.c.
]}

,(45)

where ΨM is Weyl but not Majorana, QN is a composite connection composed of derivatives

of τ (see [42]), and the supercovariantizations are7

RM ≡ − i

16 · 5!
(ΓM1···M5F̃M1···M5

)ΓM , SM ≡ 1

96 (Im τ)1/2
(Γ NPQ

M GNPQ − 9ΓNPGMNP ) .(46)

The supersymmetry variation of the gravitino is

δΨM = (DM − i
2
QM)ε+RMε+ SMε

∗ , (47)

where the supersymmetry parameter ε is a 10D Weyl spinor field.

We must first identify the 4D N = 1 gravitino as a particular component of the 10D field.

In a warped background satisfying (33), (34), (36) without 3-form fluxes, the preserved 4D

supersymmetries are associated to Killing spinors (for more detail, see [43]8):

ε = ζ(x) ⊗ eA(y)/2χ(y) , D̃mχ = 0 , (48)

where we use the tilde to denote the CY metric9. We normalize the covariantly constant

spinor on the unwarped compact space χ as χ†χ = 1.

Knowing the preserved supersymmetry, we can easily determine the associated gravitino

as the SUSY partner of the 4D graviton. The supersymmetry variation of the 4D metric gµν

is

δgµν ∝ ζ̄γµψν + ζ̄γνψµ , (49)

and its 10D counterpart is analogous. One then finds the 4D gravitino ψµ embedded in the

10D gravitino as

Ψµ = ψµ ⊗ eA/2χ . (50)

It is straightforward to see that under dimensional reduction, the Einstein and Rarita-

Schwinger terms for the 4D metric gµν and gravitino ψµ match the standard form:

S =
1

κ2
4

∫
d4x

√−g4

{
1
2
R4 + iψ̄µγ

µνρDνψρ

}
, (51)

7The G-field picks up an additional τ -dependent phase in transforming from the conventions of [42], which
we absorb into a redefinition of Ψ.

8The five-form in [43] is related to our F̃5 by FGP = −F̃5.
9In the case of an F-theory compactification, χ is covariantly constant with respect to D̃m − i

2
Qm.
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with the 4D gravitational constant κ4 given in terms of the 10 gravitational constant κ10

and the warped volume Vw:

1

κ2
4

=
Vw

κ2
10

, Vw ≡
∫
d6y

√
g̃6 e

−4A . (52)

The 4D gravitino ψµ is massless as long as supersymmetry is preserved. The SP term in the

action vanishes, and a possible mass contribution from the RP term is canceled by the term

in the spin connection containing a derivative of A.

However, in the presence of 3-form fluxes, supersymmetry is generically broken and the

gravitino ψµ acquires a mass. For a pseudo-BPS solution, the 5-form/warp factor relation

(36) persists and the RP and spin connection terms continue to cancel. The mass term for ψµ

is then generated solely from the SP term in the 10D action. Its reduction is straightforward,

and one obtains

1

κ2
10

∫
d4x

√−g4
1

(Im ρ)3/2

{(
ψ̄µγ

µνψ∗
ν

)
( i

48

∫
d6y

√
g̃6

1

(Im τ)1/2
χ†γ̃mnpχ∗Gmnp) + h.c.

}
, (53)

where in the above we included the Kähler modulus ρ controlling the overall scale of the

compact directions; we discuss ρ in the next subsection. This is the proper form for a

gravitino mass term10, with

m3/2 =
1

(Im ρ)3/2(Im τ)1/2Vw

(
1
24

∫
d6y

√
g̃6χ

†γ̃mnpχ∗Gmnp

)
. (54)

Taking a complex basis i, j, k, ı̄, ̄, k̄ for the Calabi-Yau, we may define the covariantly con-

stant spinor to be the “lowest weight” for the Clifford algebra: γ ı̄χ = 0. One then sees

immediately that only the (0, 3) piece of G(3) contributes to the gravitino mass, as expected.

Given our normalization for χ, we have the relation

χ†γ̃ ı̄̄k̄χ∗ = ǫı̄̄k̄ =
Ωı̄̄k̄

||Ω|| , (55)

up to an undetermined phase, where Ωijk is the holomorphic 3-form of the Calabi-Yau and

3!||Ω||2 = ΩijkΩ
ijk

. Using

||Ω||2Vw = ||Ω||2
∫
d6y

√
g̃6e

−4A , (56)

=
∫
e−4A Ω ∧ Ω ≡ ωw ,

we then obtain

m3/2 = (Im ρ)−3/2(Vwωw)−1/2(Im τ)−1/2
(

1
4

∫
Ω ∧G

)
. (57)

10The bilinear ψ̄µγ
µνψ∗

ν may seem unfamiliar if one is used to 4D gravitini written in Majorana form, but
it is the correct expression for a Weyl gravitino, which arises naturally from our reduction.
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In the absence of G(0,3) flux, m3/2 → 0 and 4D N = 1 supersymmetry is restored. This

suggests that the supersymmetry breaking can be captured in an N = 1 language, where a

gravitino mass can be expressed in terms of the Kähler potential K and superpotential W

as

m3/2 ∝ κ2
4 e

K/2 W . (58)

After discussing the moduli in the next subsection, we will present values for the Kähler

and superpotentials, and demonstrate that (57) can be written in the form (58). We will

estimate the value of m3/2 in subsection 5.4.

5.3 The moduli

Ordinary Calabi-Yau compactifications possess a large number of moduli, massless fields

corresponding to the deformations of the compact manifold consistent with the Calabi-Yau

condition, as well as the axion-dilaton. Since the our solutions of have an underlying Calabi-

Yau space, in the absence of fluxes such moduli would also be present there. Specifically, the

corresponding light fields are the complex structure moduli zα(x), the Kähler moduli ρi(x),

and the axion-dilaton τ(x). However, an advantage of the pseudo-BPS warped compactifi-

cations, beyond their original motivation of solving the hierarchy problem, is that many of

the moduli are fixed by the fluxes, including the dilaton. This was understood in [4]; one

explanation follows from the assumption of a superpotential of the Gukov-Vafa-Witten form

[9],

W =
a

κ8
4

∫

M
Ω ∧G , (59)

(where a is a convention-dependent numerical constant) which is believed to arise in a wide

variety of compactifications of string/M-theory with fluxes turned on threading calibrated

submanifolds. The flux is fixed, and the moduli (in this case the complex structure and

axion-dilaton) adjust to minimize F-terms arising from (59).

In order to give a more complete treatment of these moduli, in this section we turn to

the problem of working out their 4d effective action and in particular their potential. The

appendix of [4] began the process of explicitly demonstrating this action, by working out

the kinetic terms and potential, together with their connection with the superpotential (59),

in the limit where warping can be neglected. The purpose of the present section is to give

a more complete derivation, and in particular to find the effective action and Kähler and

superpotentials in the presence of non-trivial warping. This means not just including the

warp factor in the terms studied in [4], but also incorporating the contributions from the

Einstein and five-form terms, which vanished there. We proceed by fixing the fluxes—in

accord with the quantization condition (41)—and investigating the action for slowly varying

fields zα(x), ρi(x), and τ(x).
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First we calculate the moduli kinetic terms including the warping, and derive the corre-

sponding warped Kähler potential. The geometrical moduli fields arise in the metric as

ds2 = e2A(y)e−6u(x)gµνdx
µdxν + e−2A(y)e2u(x)

(
g̃mn(y) + T I(x) δgImn(y)

)
dymdyn , (60)

where the δgI are traceless, g̃mnδgImn = 0, so that fluctuations of e2u scale the total volume,

while the T I , which in principle include both the remaining Kähler structure moduli and the

complex structure moduli, are volume-preserving at linear order. The factor e−6u on the 4D

part must be introduced to decouple u(x) from the 4D graviton.

The kinetic terms for the moduli fields are found by extracting the quadratic order terms

in an expansion of the Einstein-Hilbert term in the Lagrangian (28) using the decomposition

(60). These are calculated to be

Smod =
1

2κ2
10

∫
d4x

√−g4d
6y
√
g̃6 e

−4A
{
−6

4
e−8u(∂µe

4u)2 − 1

4
∂µT

I∂µT J δgImnδg
m̃n
J

}
,

=
1

κ2
4

∫
d4x

√−g4

{
−3

∂µρ̄∂
µρ

|ρ− ρ̄|2 − 1

8Vw

∂µT
I∂µT J

∫
d6y

√
g̃6 e

−4AδgImnδg
m̃n
J

}
, (61)

where we have defined the complex field ρ such that Im ρ = e4u; the real part is a form field

that was discussed in [4]. The moduli space metric for the remaining fields is seen to be a

suitably warped version of the Weil-Petersson metric. From (28), one easily calculates the

4D dilaton kinetic term to be

Sdil =
1

κ2
4

∫
d4x

√−g4

{
− ∂µτ̄ ∂

µτ

|τ − τ̄ |2
}
. (62)

The kinetic terms (61), (62) are consistent with the Kähler potential

K = −3 log(−i (ρ− ρ̄)) − log

(
− i

κ6
4

∫
d6ye−4A

√
ĝ6

)

− log

(
− i

κ6
4

∫
e−4A Ω ∧ Ω

)
− log(−i (τ − τ̄)) . (63)

where the volume piece is computed using the metric

ĝ(x, y) = g̃mn(y) + T I(x) δgI
mn(y) (64)

with the overall scale piece removed, as in (60). Notice that N = 1 supersymmetry will

match the real T I fields corresponding to Kähler moduli with a set of p-form modes into

complex pairs, but these p-form fields do not appear in the Kähler potential.

The Kähler potential (63) has a form quite similar to that which arises in the unwarped

case, with a correction due to the warp factor inserted to the volume integrals. The coefficient

of the ρ term identifies this Kähler potential as being of the no-scale form, as noticed in [4].
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As a result the tree-level cosmological constant will vanish despite supersymmetry breaking.

The result (63) is valid only to leading order in α′; some next-to-leading-order results were

examined in [44] (neglecting warping). We will comment more on these corrections later.

A general flux configuration will lift the complex-structure moduli zα and fix the dilaton

τ . In order to find this potential, we assume a general metric that is constant in x,

ds2 = e2A(y)gµνdx
µdxν + e−2A(y)g̃mn(y) dymdyn ; (65)

the moduli potential is exhibited from dependence of the action on the Calabi-Yau metric

g̃mn, as well as the dilaton. Specifically, the effective potential for these is computed from

the R, |G(3)|2 and F̃ 2
(5) terms in the action (28); these are terms with explicit dependence on

the metric in the compact directions.11

For the metric (65), the Einstein-Hilbert term can be shown to give

∫
d10x

√
−gR =

∫
d4x

√−g4

∫
d6x

√
g

6

[
−8(∇A)2e4A

]
. (66)

The action for F̃5 is more subtle: for a self dual field, it vanishes. This is part of the usual

problem for formulating an action for self-dual p-form field strengths. One way to obtain a

consistent dimensionally-reduced action is to double the coefficient on the 5-form term, but

restrict to components of F̃(5) with indices along R4 (or equivalently, restricting it only to

components with no indices along R4). It is readily checked that this prescription yields the

correct dimensionally reduced equations of motion for the metric. Using the expression (33),

we find ∫
d10x

√−g F̃ 2
5

4 · 5!
→
∫
d4x

√−g4

∫
d6y

√
g6
e−4A

2
(∂mα)2 . (67)

Then from the relation (36), we find a contribution equivalent to (66). This can be rewritten

in terms of the fluxes using the Bianchi identity (39), which takes the form

A =
iGmnp ∗Gmnp

48 Im τ
+ local (68)

(the localized source terms cancel for sources saturating the pseudo-BPS condition (35)).

The first term is a total derivative when integrated. We therefore find

∫
d10x

√−g10

[
R− F̃ 2

5

4 · 5!

]
=
∫
d4x

√−g4

∫
d6y

√
g6

ie4AGmnp ∗6 Ḡ
mnp

12 Im τ
. (69)

Combining this with the G3 term then gives

SV =
1

2κ2
10

∫
d4x

√−g4

∫
e4A

2 Im τ
G(3) ∧

(
∗6G(3) + iG(3)

)
. (70)

11As usual, in the F-theory case the dilaton term must be added to the Ricci term to get the desired result.
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Defining imaginary self- and anti-self-dual parts of the flux G(3),

G±
(3) = 1

2
(G(3) ± i ∗6 G(3)) , ∗6G

±
(3) = ∓iG±

(3) , (71)

we can write the potential (70) as

SV =
1

2κ2
10

∫
d4x

√−g4

∫ ie4A

Im τ
G(3) ∧G+

(3) ,

=
1

2κ2
10

∫
d4x

√−g4

∫
e4A

Im τ
G+

(3) ∧ ∗6G
+
(3) , (72)

where in the second line we used the self-duality properties (71) to relate G
+
(3) to ∗6G

+
(3) and

to show G−
(3)∧G

+
(3) = 0. The potential (72) has the form anticipated in [4], but with warping

included.

We also anticipate that we should be able to write this potential in terms of the Kähler

potential (63) and a superpotential via the usual N = 1 formula

V = κ2
4 e

K
{
(G−1)AB̄DAWDB̄W − 3|W |2

}
, (73)

and it is interesting to check whether the Gukov-Vafa-Witten form (59) persists in the

presence of warping. For simplicity we specialize to the case τ = const. The equation of

motion for G(3) is [4]

dΛ +
i

Im τ
dτ ∧ ReΛ = 0 , Λ ≡ e4A ∗6 G(3) − iαG(3) , (74)

which then becomes

de4AG+
(3) = 0 = d ∗6 e

4AG+
(3) . (75)

Consequently e4AG+
(3) is harmonic on the Calabi-Yau, and we can expand it in a basis of

harmonic three-forms. The analysis now proceeds analogously to that in [4]. Only the (3, 0)

and (1, 2) forms have the correct self-duality properties to appear in the expansion, so we

find

e4AG+
(3) =

1

ωw

(
Ω
∫
G(3) ∧ Ω + Gαβ̄χ̄β̄

∫
G(3) ∧ χα

)
, (76)

where we used
∫
G+

(3) ∧ Ω =
∫
G(3) ∧ Ω and an analogous expression for the basis of (2,1)

forms χα, and where Gαβ̄ is the inverse to the metric

Gαβ̄ = − 1

ωw

∫
e−4A χα ∧ χ̄β̄ , (77)

which follows from the Kähler potential (63).
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Hence the potential is (restoring factors of ρ)

SV =
1

2κ2
10

1

ω2
w

∫
d4x

√−g4
1

(Im ρ)3

∫
e−4A

Im τ

[
Ω ∧ Ω

∫
G(3) ∧ Ω

∫
G(3) ∧ Ω

+(G−1)αγ̄(G−1)δβ̄χ̄β̄ ∧ χα

∫
G(3) ∧ χδ

∫
G(3) ∧ χ̄γ̄

]
(78)

=
1

2κ2
4

1

Vw ωw

∫
d4x

√−g4
1

(Im ρ)3

1

Im τ

[∫
G(3) ∧ Ω

∫
G(3) ∧ Ω + (G−1)αβ̄

∫
G ∧ χα

∫
G ∧ χ̄β̄

]
,

It is not hard to show that this form can be derived from the Kähler potential (63), together

with an unwarped GVW superpotential of the GVW form (59). Using the identity ∂αΩ =

kαΩ + χα, where kα is a moduli-dependent constant, one may show

DτW = − 1

(τ − τ̄)

a

κ8
4

∫
Ω ∧G , DαW =

a

κ8
4

∫
χα ∧G , DρW = − 3W

ρ− ρ̄
. (79)

The potential (73) may then be computed. As in the large-volume case, the |DρW |2 term

cancels −3|W |2, producing a no-scale potential. The other terms then reproduce (78), with

the overall factors arising from the Kähler potential.

Notice the subtlety of distinguishing ωw (which depends on the complex structure moduli)

from Vw (which depends on the Kähler moduli) was essential in making this identification.

In the large-volume case in [4] this subtlety was not clearly treated.

A check of our derivation of the Kähler potential (63) and superpotential (59) can be

obtained by reproducing the gravitino mass (57) from the formula (58). We indeed reproduce

the correct form. This gives us confidence in our results, as well as reinforcing the ubiquity

of he Gukov-Vafa-Witten superpotential. Although it is generally believed not to receive

corrections from the warp factor, this is to our knowledge the first demonstration that this

is the case.

5.4 Estimating gravitino and moduli masses

Having obtained an analytic expression for the gravitino and moduli masses, we would like

to estimate their values. One might intuit that a bulk field like the gravitino gaining mass

from SUSY breaking in the bulk will have a mass of the same order as the effective scale

of gravity, namely M4. Indeed this proves generally to be the case. In calculating bulk

quantities it is more convenient to use the conventions where the warp factor is one at the

top of the throat rather than at the bottom, which we shall do below.

Having succeeded in expressing the gravitino mass (57) in terms of a topological integral

independent of the warping, we can evaluate it in terms of the moduli of the Calabi-Yau

in straightforward fashion. For the Klebanov-Strassler fluxes (42) this was already done in
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[4], with the result (using, in our conventions,
∫
A Ω = V 1/2z where V =

∫
d6y

√
g̃6 is the

unwarped volume)

∫
Ω ∧G = (2π)2(α′)V 1/2[Kτz −MG(z)] , (80)

where G(z) = z log z/(2πi) + holomorphic. Although the complex structure modulus z is

the source of the hierarchy and is fixed to be exponentially small, the holomorphic part of

G(0) is generically O(1). Consequently (80) is just (α′)V 1/2 times factors of order unity.

Cases with more general flux configurations will behave similarly: exponentially small terms

in W (z, τ) will be washed out by O(1) terms, and the overall dimensionful constants will

not change.

The expression (57) for m3/2 also involves background values of the moduli Im τ and Im ρ.

The axion-dilaton Im τ is fixed by the superpotential to be of order unity12. The volume

modulus Im ρ has a flat potential at tree level. We have chosen units, however, where the

background value is 〈Im ρ〉 = 1; the overall size of the compact manifold is then given by

values for the integrals such as V and Vw. Thus we see that

m3/2 ∼
(α′)V 1/2

Vw

. (81)

When the volume and the warped volume are of the fundamental scale MD ∼ M4, we find

that m3/2 ∼ M4.

One can estimate the moduli masses in similar fashion. From (73) we read off the form

for the moduli potential

V ∼ 1

κ2
4

m2
3/2 GīDiWD̄W

|W |2 . (82)

Hence the potential for the moduli is also generically of the scale M4.

The supersymmetry breaking may be heuristically thought of as coming from the region

around the top of the throat. The G-flux vanishes when the warp factor stops varying, so

the source of SUSY breaking is concentrated in the throat; however it is not localized at

the bottom of the throat, but instead receives its dominant contribution where the warp

factor is largest, which is near the top. From the point of view of the earlier discussion on

supersymmetry breaking, one may interpret our result m3/2 ∼ M4 as eqs. (24), (25) with

ΛSUSY = M4 since the breaking is fundamental scale, Mp = M4 since the SUSY-breaking is

well-separated from the visible sector, and eASUSY ∼ 1 since it is near the top of the throat.

One may be puzzled that the gravitino mass rises so far above the scale of bulk KK exci-

tations (44). However, since the massless graviton stays massless even with the addition of

G-flux, the higher excitations of the graviton are protected by 4D general covariance from

12One needs a slightly more involved set of fluxes than (42) to fix the dilaton, see [4].
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receiving mass corrections from the fluxes, and consequently get mass only from their shape

in the compact geometry. The gravitini have no such protection.

Note that the broken gravitino will also generically receive mixing terms with the other 7

massive gravitini; for the case we have outlined all will have masses like M4, the (0, 3) flux

will be just as large as the (2, 1) flux, and there will not be a region of energies where N = 1

supersymmetry is a good description. One can speculate as to whether one of these other IIB

gravitini could come down in mass as the contribution from the Calabi-Yau compactification

is canceled by the contribution from fluxes (or more generally, whether an eigenvalue of

the gravitino mass matrix might be particularly small). Although such a cancellation could

conceivably be engineered at tree level, there is no reason why the mass should remain small

once quantum corrections are included.

All our results hold at leading order in the α′-expansion. It is likely that α′ corrections will

destroy the no-scale structure, giving a potential to the overall volume ρ. A computation

of the first subleading order was performed by Becker, Becker, Haack and Louis [44], where

a correction to the Kähler potential was found (neglecting warping). The leading order

correction was not enough to isolate an extremum of the ρ potential, but the corrections

involve additional factors of the superpotential and the volume, which presumably becomes

warped. The corrections to the potential are of order

δV ∼ eK|W |2
M2

4

∼ m2
3/2M

2
4 . (83)

This suggests that the induced potential for ρ is also of order M4; whether there is any

regime where the no-scale structure is approximately preserved is not known and would be

an important question to answer.

5.5 Brane matter and Sequestering

We have estimated the value of the gravitino mass m3/2 to be of order the 4D Planck scale

or slightly less. At first, this seems to be a phenomenological disaster, since symmetry

breaking effects in visible sector fields might be expected to be as large. Indeed, it is easy to

see that generic scalar fields φ with canonical Kähler potential Kφ ∼ φ̄φ and no quadratic

contribution to the superpotential receive masses from supersymmetry breaking on the order

of the gravitino mass:

DφW ∼Wφ̄+ O(φ2) → V ⊃ eK |W |2φ̄φ . (84)

One might naively believe that brane matter will couple in this fashion, in which case bulk

supersymmetry breaking by ISD fluxes in the pseudo-BPS spacetimes, despite other nice

features, would not be a viable candidate for phenomenology.
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However, one may explicitly calculate the mass induced by the fluxes for brane fields. The

action for a D-brane is given by the sum of Born-Infeld and Wess-Zumino actions, given here

in string frame,

SD3 = −T3

∫
d4xe−φ

√
det[P (Gab +Bab) + 2πα′Fab] + µ3

∫ ∑

i

P [C(i)] ∧ e2πα′F−B , (85)

where P denotes the pullback of a spacetime quantity to the brane, F is the worldvolume

gauge field and µ3 and T3 are the D3-brane charge and tension. In the absence of G(3),

the D3-brane preserves the same supersymmetries as the warped geometry, and thus there

is no potential generated; any potential must appear with the SUSY breaking. However,

G(3) appears in the D3-brane action solely through the pullback of the potentials B(2) and

C(2). Since neither potential is polarized along the D3-brane, it is not hard to convince

oneself that all nonvanishing terms in their pullbacks involve at least one derivative of the

brane fields, and hence cannot generate a potential. Indeed, one may explicitly check by

examining the three-brane action (85) that the relation (36) between the warp factor and

five-form guarantees a no-force condition on D3-branes, with gravitational and RR 5-form

potentials canceling.

Furthermore, it was found by Graña [10] that the D3-brane fermionic terms do not couple

to the imaginary self-dual part of G(3). Although other kinds of G(3) flux can lead to var-

ious masses and couplings for brane fermions, the brane is entirely insensitive to ISD flux.

Consequently, we arrive at the result that supersymmetry breaking by (0, 3) fluxes induces

no tree level masses at all for D3-brane fields.

Vanishing of scalar masses arises from the no-scale structure of the theory; the additional

feature of vanishing fermion masses is analogous to the sequestered structure proposed in

[11], and we shall refer to it as sequestering in what follows. The no-scale structure is

characterized by the Kähler potential

K = −3 log
[
fvisible(X, X̄) + ghidden(ρ, ρ̄)

]
, (86)

where X are visible sector fields and ρ are hidden-sector fields; supersymmetry breaking in

the hidden sector will not be communicated to the visible sector scalars at tree level.

Ref. [11] suggested the naturalness of sequestering when the visible sector lives on a brane

and the SUSY-breaking sector is physically separated from it in a higher-dimensional space.

However, Anisimov, Dine, Graesser and Thomas (ADGT) [45, 46] have pointed out several

examples from string/M-theory, including Type I, Hořrava-Witten, and Dp-Dp′ systems,

where sequestering is not generic despite the physical separation of sectors on two different

branes. The reason can be traced to the exchange of bulk (closed-string) modes at tree level,

which can generate contact terms between the sectors of the order of the gravitino mass.

Our scenario is the first example we know of sequestering in a string theory background, at

least to leading order in the α′ expansion. ADGT [45, 46] were aware of the no-scale Kähler

24



potential of the pseudo-BPS solutions of [4], but speculated that even were sequestering to

arise in such models with brane backreaction neglected, such backreaction would destroy the

sequestered form. This is not the case for our scenario. As remarked previously, the pseudo-

BPS solutions can include the presence of certain localized sources—including D3-branes—in

the background. Hence, although the backreaction of the D3-branes in the throat will locally

change the specific form of the solution, it will not bring it outside the pseudo-BPS class,

and our conclusions about the lack of tree level masses will persist.

This raises the question as to whether another type of brane known to sit in the almost-BPS

class of objects, such as the 7-brane wrapped on a 4-cycle, also has worldvolume excitations

sequestered from bulk supersymmetry breaking. If so, it would provide a richer set of possi-

bilities for engineering visible sector matter, with the wealth of possible cycles in the compact

space to wrap. We leave this question for the future.

In previous sections, we established the warped Kähler potential (63) for the bulk mod-

uli. The D3-brane matter must enter into the Kähler potential as well, and owing to the

sequestered form it must enter in a nontrivial fashion. A natural guess is something of the

form

K = −3 log
(
−i(ρ− ρ̄) +K(X̄,X)

)
+ K(τ, τ̄) + K(z, z̄) , (87)

where K(X̄,X) is related to the spacetime Kähler potential for the Calabi-Yau. This mod-

ified Kähler potential preserves the no-scale structure: one may verify that for arbitrary K,

the contributions to |DW |2 from ρ and X (including off-diagonal terms) always combine to

give precisely 3|W |2.
The expression (87) also leads to a coupling to the radial modulus, at leading order, of

the form

TD3

∫
d4x

√−g4
1

Im ρ
e2A g̃ī ∂µX

i∂µX̄ ̄ , (88)

which is the correct power of Im ρ arising in the BI action. The lack of coupling of the dilaton

that appears is also correct for the Einstein-frame action. We leave further exploration of

this Kähler potential, including the coupling of the complex structure moduli, for future

work.

Spartner masses vanish at tree level, but as discussed in section 4, should receive correc-

tions at loop level. From the point of view of an observer on the brane, supersymmetry

is broken – the gravitino is eliminated from the low energy spectrum. Thus generic loop

corrections are expected to raise mass scales to the cutoff scale. However, as we have em-

phasized, for an observer on an IR brane in a TeV-scale gravity scenario, the fundamental

scale is O(TeV), and this is where the cutoff on loop momenta should be placed: above

this scale, one encounters strongly-coupled gravitational physics. Thus spartner masses are

generically expected to be around a TeV in such a scenario, which is a reasonable answer for

phenomenology.
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Note that part of the original motivation for the sequestered scenarios of [11] was to

have a situation where the dominant contribution to spartner masses was through anomaly

mediation [11, 47], with mass scale

mAMSB ∼ b0

(
g2

16π2

)
m3/2 , (89)

where b0 is the one-loop beta function coefficient (for the scalars there is an an additional

constant from the anomalous dimensions). Given that in the present case the gravitino mass

is far above the effective cutoff scale of O(TeV), it seems that this formula cannot give the

correct masses here; rather it appears that the masses arise from generic loop corrections. A

better understanding of the role of AMSB in this model could be of interest.

Another possible way to exploit the no-scale structure is to find a background in which

the (0,3) component of G(3) can be switched off, and to break SUSY on another set of branes

situated in the middle of the throat. The Kähler potential becomes

K = −3 log
(
−i(ρ− ρ̄) + f(X̄,X) + g(Ȳ , Y )

)
+ K(τ, τ̄ ) + K(z, z̄) , (90)

where Y are the hidden sector fields. Again, as far as SUSY breaking is concerned this has

the no-scale form. The location of the hidden sector brane could be tuned to provide the

right amount of SUSY breaking; this is a fine-tuning, but it preserves the other advantage

of AMSB, that it addresses the supersymmetric flavor problem. This sort of “brane” SUSY

breaking is much more prevalent in the literature than the “bulk” SUSY breaking we have

examined for much of this paper.

5.6 Summary of phenomenology

Since this section has been rather long and technical, we give an overview of its essential

results here.

String theory solutions found in [4] provide a non-trivial example of many of the warped

compactification ideas discussed in the first four sections, and in particular can be arranged

to generate a hierarchy through warping and thus produce a TeV-scale gravity scenario.

This means that geometrical scales will be realized as was discussed in sections 2 and 3.

In particular, for an observer on the IR brane where we imagine standard model physics

residing, the fundamental Planck scale will be reached at scattering energies O(TeV), and

we can envision string and black hole production taking place at such energies. Kaluza-Klein

masses are even lighter, and are given in terms of the flux quanta by eq. (44).

These solutions arise by considering close analogs of Calabi-Yau manifolds with three-form

fluxes frozen into their geometry. These fluxes break supersymmetry. They also generate

a potential for many of the moduli fields that would otherwise be massless in a standard

Calabi-Yau compactification. The gravitino mass is given in eq. (57), and can be estimated
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to be of order the four-dimensional Planck scale, 1019 GeV. The moduli kinetic terms are

given in eq. (61), and the potential for moduli in eq. (72). This lifts the complex structure

moduli and the dilaton to have masses also generically of order 1019 GeV. The action for

the moduli, and for the gravitino, can be conveniently summarized in supergravity language

in terms of a Kähler potential, eq. (63), and a superpotential, given by eq. (59). These

explicitly include the effects of the warping.

Although supersymmetry is broken at a high scale, at tree level the cosmological constant

vanishes and matter fields on an IR brane have vanishing masses. For scalars, this statement

corresponds to the fact that we are dealing with a no-scale model. This structure also extends

to fermion matter, resulting in a sequestered structure. This structure survives brane back-

reaction. Spartners are however expected to get masses from loop corrections, but since the

fundamental scale for brane matter, and hence the relevant cutoff, lies at the TeV scale,

these masses are expected to be TeV-size.

6 Conclusions

We have discussed a number of generic features of the scales and thresholds in warped

compactifications, and illustrated them in the special case of the solutions of IIB string

theory given in [4]. The latter solutions in particular offer possible solutions to some of the

difficult problems of string phenomenology. Supersymmetry is broken by three-form fluxes

frozen into the geometry, and a potential for a large number of otherwise problematic moduli

is generated at the same time. Spartner masses are not generated at tree level, but in such

a TeV-scale gravity scenario are expected to receive loop corrections of TeV magnitude.

While these certainly seem like interesting successes, it should be borne in mind that there

are a number of other problems that must be resolved in order to find solutions of string

theory that realize TeV-scale gravity and reproduce a realistic phenomenology including the

standard model. (Several of these are also problems also for more traditional Planck-scale

compactifications of string theory, so do not discriminate against TeV-scale scenarios.) One

obvious question is how to realize the structure of the standard model within the general

framework of this kind of solution. Many ideas have occurred in the literature, involving

intersecting branes and branes at singularities, and it may be possible to combine these sce-

narios with a framework like that presented here, but clearly there is some non-trivial work

to be done; some interesting recent progress in this direction includes [48, 49]. Particularly

challenging issues include reproducing the gauge groups and matter representations, with

reasonable couplings, of the standard model; addressing baryon and lepton number viola-

tion, and reproducing the relation between the gauge coupling constants that can otherwise

be taken to indicate matching via renormalization group running to a grand unified scale.

A second problem is that of the remaining moduli; in particular, Kähler moduli are not

stabilized by the fluxes we consider, and thus must be fixed by another mechanism. This
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is a generic problem, since the overall scale of the compact manifold is generically a Kähler

modulus. (For another approach, see [50].) Corrections at higher order in string loops or α′

(see e.g. [44]) may play a role, but it is difficult to see they do so and maintain reasonable

mass scales. In particular, we must ultimately face the thorny problem of the cosmological

constant, which here as in other scenarios with broken supersymmetry would appear to take

a value that is far too large.

Acknowledgments

The authors would like to thank N. Arkani-Hamed, T. Banks, M. Dine, S. Kachru, R.

Kallosh, J. Polchinski, R. Schoen, and S. Thomas for very valuable conversations. In addi-

tion, SBG would like to thank the Newton Institute, SLAC, and in particular the Stanford

ITP for their hospitality while much of this work was done. The research of OD was sup-

ported by the National Science Foundation under grant PHY99-07949. The research of SBG

was supported in part by Department of Energy under contract DE-FG-03-91ER40618, and

by the David and Lucile Packard foundation.

Appendix A: Conventions

We work in mostly-plus signature in both ten and four dimensions. We use M,N for 10D

indices, µ, ν for 4D indices, and m,n for generic 6D indices; the latter can in turn be divided

into holomorphic i, j and antiholomorphic ı̄, ̄ indices with respect to the complex structure

of the Calabi-Yau threefold.

Ten dimensional gamma-matrices ΓM are 32×32 matrices. They decompose into a product

of 4 × 4 4D matrices γµ and 8 × 8 6D matrices γ̃i as follows:

Γµ = e−Aγµ ⊗ I , Γm = eAγ5 ⊗ γ̃m , (91)

where

{γµ, γν} = 2gµν , {γ̃m, γ̃n} = 2g̃mn . (92)

The chirality matrices are related as Γ11 = γ5γ̃M, and obey γ5
2 = γ̃2

M = Γ11
2 = 1.

The ten-dimensional gravitino ΨM is Weyl (but not Majorana):

Γ11ΨM = −ΨM . (93)

It decomposes into the 4D gravitino as Ψµ = ψµ ⊗ eA/2χ, for which we have for our class of

solution

γ5ψµ = ψµ γ̃Mχ = −χ . (94)
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Appendix B: Fermionic equations of motion for IIB su-

pergravity

The fermionic equations of motion for type IIB supergravity (to linear order in fermions) are

presented in equations (4.6), (4.12) of [42] with coefficients given by (4.8), (4.14). However,

the derivative in these equations contains supercovariantizations involving three- and five-

form fluxes not explicitly recorded there. The complete definition is however implicit in other

expressions given in [42], notably the supersymmetric variations of the fermionic equations

of motion (4.7), (4.10), (4.13) and (4.15), and can be deduced from these. We collect the

complete equations here for future convenience.

In this appendix we use the conventions of [42] for the fields, although we use our index

conventions. We indicate how to pass to our field conventions at the end.

The dilatino equation of motion (4.6) of [42] is

ΓMD̂Mλ =
iκ

240
ΓM1...M5λFM1...M5

+ O(Ψ3) , (95)

where the supercovariant derivative of the dilatino is

D̂Mλ = DMλ− κTΨM − κUΨ∗
M , (96)

T = − i

24
ΓMNPGMNP , U =

i

κ
ΓMPM . (97)

Here DM = ∇M − i
2
QM contains the ordinary covariant derivative including the spin con-

nection ∇M , and a composite connection QM composed of the complex scalar, while PM is

the field strength for the complex scalar. The gravitino equation of motion is

ΓMNP D̂NΨP = − i

2
ΓP ΓMλ∗PP − iκ

48
ΓNPQΓMλG∗

NPQ + O(Ψ3) , (98)

where the supercovariant derivative acting on the gravitino is

D̂NΨP = DNΨP − κRP ΨN − κSP Ψ∗
N , (99)

RM =
i

480
(ΓM1···M5FM1···M5

)ΓM , SM =
1

96
(Γ NPQ

M GNPQ − 9ΓNPGMNP ) . (100)

A supercovariant derivative in a general supergravity theory consists of the ordinary covari-

ant derivative supplemented with terms involving the gravitino such that the supersymmetry

variation of the combined terms does not contain any derivatives of the supersymmetry pa-

rameter ε. These expressions arise naturally in supergravity equations of motion, as the

variation of a one-derivative fermionic equation must be a bosonic equation with two deriva-

tives on the fields, and hence a derivative may not be spared to act on ε. Equations (96),
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(99) constitute the general form for supercovariantization of the derivative in an arbitrary

supergravity theory with fermionic supersymmetry variations

δΨM =
1

κ
DMε+RMε+ SMε

∗ , (101)

δλ = Tε+ Uε∗ . (102)

In our conventions, Schwarz’s constant κ = 1, and should not be confused with our κ10 which

is an overall coefficient in the action and does not appear in the equations of motion. The

relation between Schwarz’s F and G and the F̃5 and G3 of this paper is

FSch = −1

4
F̃5 , GSch =

ieiθ

√
Im τ

G3 , eiθ ≡
(

1 + iτ̄

1 − iτ

)1/2

. (103)

For relations involving the complex scalar, see [43]; note that [43] use an F = 4Fsch, and

consequently for them α = −e4A.
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