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Abstract

scRNA-seq dataset integration occurs in different contexts, such as the identification of cell type-specific differences in
gene expression across conditions or species, or batch effect correction. We present scAlign, an unsupervised deep
learning method for data integration that can incorporate partial, overlapping, or a complete set of cell labels, and
estimate per-cell differences in gene expression across datasets. scAlign performance is state-of-the-art and robust to
cross-dataset variation in cell type-specific expression and cell type composition. We demonstrate that scAlign reveals
gene expression programs for rare populations of malaria parasites. Our framework is widely applicable to integration
challenges in other domains.

Keywords: scRNA-seq, Data integration, Data harmonization, Alignment, Deep learning, Neural networks, Response to
stimulus, Batch effects, Domain adaptation

Background

Single cell RNA sequencing (scRNA-seq) technologies

enable the capture of high-resolution snapshots of

gene expression activity in individual cells. As the

generation of scRNA-seq data accelerates, integrative

analysis of multiple scRNA-seq datasets [1–8] is be-

coming increasingly important. The goal of scRNA-

seq data integration is to characterize and eliminate

the effect of experimental factors driving expression

variation between multiple scRNA-seq datasets, so

that downstream analyses such as clustering [9, 10]

and trajectory inference [10–12] performed on all

datasets jointly are not driven by these factors. Such

experimental factors include both technical nuisance

factors such as batch or sequencing protocol [13–18],

as well as biological factors of interest such as in

case-control studies [19–22] or speciation [23].

Integrative analyses are challenging due to several

factors. First, dataset integration can be viewed as

mapping one dataset onto another. For example, in

case-control studies for which a pair of scRNA-seq

datasets are generated from biological replicate popu-

lations before and after stimulus, functionally matched

cell types across datasets must be identified and

aligned in order to estimate cell type-specific response

to stimulus. The more differential the response of the

individual cell types, the more complex a mapping is

required. Therefore, integrative tools must be able to

freely scale up or down the complexity of their map-

ping functions to successfully perform integration de-

pending on the heterogeneity of cell type-specific

response to stimulus. In the extreme case where some

cell types are present in only a subset of conditions being

integrated, this poses additional mapping challenges since

there may not be a 1-1 correspondence between types

across conditions. Second, current integrative tools can be

separated into two exclusive sets: those that require all

cells from all datasets to have known cell type labels (su-

pervised) and those that do not make use of any cell type

labels (unsupervised). Consequently, when only a subset of

cells can be labeled with high accuracy, or if only one data-

set is labeled (as is the case when reference annotated cell

atlases are available [23–28]), this partial set of labels cur-

rently cannot be used in data integration. Third, measured

transcriptomes even for homogeneous populations of cells

occupy a continuum of cell states, for both technical [29,
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30] and biological [31–33] reasons. Thus, individual cells

cannot be matched exactly across datasets. Therefore,

downstream analysis of integrated datasets typically

involves clustering cells across datasets to find match-

ing cell types and estimating cell type-specific differ-

ences across datasets. The clustering step makes it

difficult to find rare cell populations that differ be-

tween datasets.

Here, we present scAlign, a deep learning-based

method for scRNA-seq alignment. scAlign performs

single cell alignment of scRNA-seq data by learning a

bidirectional mapping between cells sequenced within

individual datasets, and a low-dimensional alignment

space in which cells group by function and type, re-

gardless of the dataset in which it was sequenced.

This bidirectional map enables users to generate a

representation of what the same cell looks like under

each individual dataset and therefore simulate a

matched experiment in which the exact same cell is

sequenced simultaneously under different conditions.

Compared to previous approaches, scAlign can scale

in alignment power due to its neural network design,

and it can optionally use partial, overlapping, or a

complete set of cell type labels in one or more of the

input datasets. We demonstrate that scAlign outper-

forms existing alignment methods including Seurat [3,

34], scVI [7], MNN [2], scanorama [8], scmap [5],

MINT [1], and scMerge [4], particularly when individ-

ual cell types exhibit strong dataset-specific signatures

such as heterogeneous responses to stimulus. While
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Fig. 1 Schematic of unsupervised alignment and state variation mapping with scAlign. (a) The input to scAlign consists of cells sequenced across
multiple scRNA-seq conditions. Expression can be represented as either gene-level expression or embedding coordinates from dimensionality
reduction techniques such as PCA or CCA. (b) A deep encoding network learns a low-dimensional alignment space that simultaneously aligns
cells from all conditions. (c) Paired decoders project cells from the alignment space back into the gene expression space of each condition and
can be used to interpolate the expression profile of cells sequenced from any condition into any other condition. (d) For a single cell sequenced
under any condition, we can calculate its interpolated expression profile in all conditions, then measure the predicted variance across all input
conditions to calculate a state variation map for the same cell state under different conditions to identify cells whose expression profiles vary
significantly across condition
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misalignment of cell types unique to one dataset is an

inherent challenge for any alignment technique, we

show that scAlign produces minimal false positive

matchings. Furthermore, we show that our bidirec-

tional map enables identification of changes in rare

cell types that cannot be identified from alignment

and data analysis steps performed in isolation. We also

demonstrate the utility of scAlign in identifying

changes in expression associated with sexual commit-

ment in malaria parasites and posit that scAlign may

be used to perform alignment in domains other than

single cell genomics as well.

Results

The overall framework of scAlign is illustrated in

Fig. 1. While this paper is written in the context of

integrating multiple datasets representing cell popula-

tions exposed to different stimuli or control condi-

tions, scAlign can be readily used for any data

integration context discussed in the introduction. The

premise of integration methods is that when similar

cell populations are sequenced under different condi-

tions, some (possibly large) separation can be ob-

served between cells of the same functional type but

sequenced in different conditions (Fig. 1 (a)). The first

Fig. 2 scAlign outperforms existing alignment approaches on four benchmarks. a CellBench, a benchmark consisting of mixtures (mt) of RNA from three
cancer cell lines sequenced using multiple protocols. Plots from left to right: (1) UMAP plot of embeddings after alignment with scAlign, where each point
represents a cell, and cells are colored according to their mixture type (mt) as reported in Tian et al. (2) UMAP plot of embeddings after alignment with
supervised scAlign (scAlign+). (3) Bar plot indicating the accuracycomposite (see the “Methods” section) of a classifier, measured as a weighted combination of
cross-condition label prediction accuracy and alignment score. b Same as a, but with the Kowalczyk et al. benchmark consisting of hematopoietic cells
sequenced from young and old mice. Cells are colored according to type (LT, ST, MPP, legend at bottom). c Same as a, but with the Mann et al. benchmark
consisting of hematopoietic cells sequenced from young and old mice, challenged with LPS. d Same as a, but with the HeterogeneousBenchmark dataset
consisting of hematopoietic cells responding to different stimuli
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component of scAlign is the construction of an align-

ment space using scRNA-seq data from all conditions,

in which cells of the same functional type are indis-

tinguishable, regardless of which condition they were

sequenced in (Fig. 1 (b)). This alignment space represents

an unsupervised dimensionality reduction of scRNA-seq

data from genome-wide expression measurements to a

low-dimensional manifold, using a shared deep encoder

neural network trained across all conditions. Unlike

autoencoders, which share a similar architecture to scA-

lign but use a different objective function, our low-

dimensional manifold is learned by training the neural

network to simultaneously encourage overlap of cells in

the state space from across conditions (thus performing

alignment), yet also preserving the pairwise cell-cell simi-

larity within each condition (and therefore minimizing

distortion of gene expression). Optionally, scAlign can

take as input a partial or full set of cell annotations in one

or more conditions, which will encourage the alignment

to cluster cells of the same type in alignment space.

In the second component of scAlign (Fig. 1 (c)),

we train condition-specific deep decoder networks

capable of projecting individual cells from the align-

ment space back to the gene expression space of

each input condition, regardless of what condition

the cell is originally sequenced in. We use these de-

coders to measure per-cell and per-gene variation of

expression across conditions, which we term the cell

state variation map. In the case of integrating two

conditions, this cell state variation map estimates a

paired difference in expression of the same cell

across conditions (Fig. 1 (d)). scAlign therefore seeks

to re-create the ideal experiment in which the exact

same cell is sequenced before and after a stimulus in

a case-control study, for example.

scAlign captures cell type-specific response to stimulus

We first benchmarked the alignment component of scA-

lign using data from four publicly available scRNA-seq

studies for which the same cell populations were

Fig. 3 Joint analysis of cells from all conditions leads to more accurate clustering of cell types compared to independent analysis of individual conditions.
a Scatterplot illustrating the quality of clustering of cell types within each condition from the Mann et al. benchmark. Each point represents one cell type in
one condition, when the embedding is computed using either the original expression data (“expression”), the embedding dimensions of scAlign, or the
embedding dimensions of an autoencoder with the same neural network architecture as scAlign. The y-axis represents classification accuracy, while the x-
axis represents the silhouette coefficient. b Same as a, but for HeterogeneousBenchmark. c tSNE plots visualizing the embedding space of scAlign trained
on both conditions and d an autoencoder trained on a single condition
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sequenced under different conditions and for which the

cell type labels were obtained experimentally (Fig. 2,

Additional file 1: Figure S1). Our first benchmark is Cell-

Bench [35], a dataset consisting of three human lung

adenocarcinoma cell lines (HCC827, H1975, H2228) that

were sequenced using three different protocols (CEL-

Seq2, 10x Chromium, Drop-Seq Dolomite) as well as at

varying relative concentrations of either RNA content or

numbers of cells in a mixture. While the alignment of the

homogeneous cell populations sequenced across protocols

was trivial and did not require data integration methods

(Additional file 1: Figure S2), alignment of RNA mixtures

across protocols was more challenging and more clearly il-

lustrated the performance advantage of scAlign (Fig. 2a).

We additionally benchmarked alignment methods using

data generated by Kowalczyk et al. [36] and Mann et

al. [37] on three hematopoietic cell types (LT-HSC,

ST-HSC, MPP) collected from the C57BL/6 mouse

strain at approximately 2 months (“young”) and 2

years (“old”) of age. Mann et al. additionally chal-

lenged the mice with an LPS or a control stimulus.

Similar to our results with CellBench, scAlign outper-

forms other approaches on both of these benchmarks

(Fig. 2b, c). The results of scAlign in these compari-

sons were robust to network depth, width, and input

features (Additional file 1: Figure S3 and Figure S4)

along with choice of hyper parameters.

To better understand why the relative performance of

the other methods was inconsistent across benchmarks

(Fig. 2a–c), we next characterized the difficulty of each

benchmark for alignment. For each cell type in each

benchmark, we identified cell type marker genes by

computing the differentially expressed genes (DEGs)

between cell types, individually for each condition. We

observed considerable overlap in the cell type marker

genes (Additional file 1: Figure S5), suggesting these

benchmarks may be less challenging to align and there-

fore more difficult to distinguish alignment methods

from each other. We therefore constructed a novel

benchmark termed HeterogeneousBenchmark by com-

bining published scRNA-seq data on hematopoietic cells

measured across different studies and stimuli. This

benchmark yields smaller overlap in cell type marker

genes (Additional file 1: Figure S5), which makes it more

challenging to align. On HeterogeneousBenchmark, we

find that scAlign’s performance is robustly superior,

while Seurat and Scanorama also outperform the

remaining methods (Fig. 2d).

scAlign simultaneously aligns scRNA-seq from multiple

conditions and performs a non-linear dimensionality

reduction on the transcriptomes. This is advantageous be-

cause dimensionality reduction is a first step to a number

of downstream tasks, such as clustering into putative cell

types [38] and trajectory inference [39–41]. Dimensionality

reduction of cell types generally improves when more data

is used to compute the embedding dimensions, and so we

hypothesized that established cell types will cluster better in

scAlign’s embedding space in part due to the fact we are

defining a single embedding space using data from multiple

conditions. We therefore compared the clustering of

known cell types in the scAlign embedding space to

an autoencoder neural network that uses the same

architecture and number of parameters as scAlign, but

is trained on each condition separately (see the

“Methods” section). In two of the three benchmarks

we tested, we found that known cell types cluster

more closely and are more distinct in scAlign embed-

ding space compared to that of the corresponding

autoencoder (Fig. 3, Additional file 1: Figure S6), sug-

gesting scAlign’s embedding space benefits from pooling

cells from across all conditions. Furthermore, by pooling

cells into a common embedding space, scAlign can

Fig. 4 Semi-supervised alignment mode of scAlign enables use of partial sets of cell type labels. UMAP visualization of the HeterogenousBenchmark
after alignment with scAlign+ trained with a labels for all cells in both conditions, b after removal of labels for LT-HSC HSC in the stimulated condition,
c after removal of labels for LT-HSCs and ST-HSCs in the stimulated condition, and d scAlign trained without cell labels
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identify new subpopulations within known cell type clus-

ters (Additional file 1: Figure S7).

A unique feature of scAlign is that it can optionally use

cell type labels for a subset of (or all) cells if available, but

does not require any labels by default. In other words,

scAlign can perform unsupervised, semi-supervised, or

fully supervised alignment. One example of a use case

would be when a labeled, highly-quality cell atlas is avail-

able, it can be used to label cells sequenced from a newer,

smaller study. Figure 2 a–d illustrate, for each of the four

benchmarks, that scAlign performance improves when

cell type labels are available at training time and exceeds

the performance of other supervised methods such as

MINT [30], scMerge [4], and scmap [5]. Even when only a

subset of cells from one condition have labels available for

semi-supervised training, scAlign performance improves

compared to a strictly unsupervised alignment, though

still lower than a fully supervised scAlign+ (Fig. 4, Add-

itional file 1: Figure S8). When provided with labels, the

cell-cell similarity matrix of the supervised scAlign

method is qualitatively similar to the cell-cell similarity

matrix of cells in the original gene expression space as

well as the unsupervised scAlign alignment space, suggest-

ing the inferred alignment space is robust to adding labels

during alignment (Additional file 1: Figure S9).

scAlign is robust to large differences in cell type

representation across conditions

Besides cell type-specific responses to stimuli, we reasoned

that the other factor that determines alignment difficulty

is the difference in the representation (or proportion

present) of each cell type across conditions. For example,

cell types unique to one condition may pose challenges to

alignment because there are no functionally matched cell

types in the other conditions. We therefore explored the

behavior of scAlign and other approaches when the rela-

tive proportion of cell types varies significantly between

the conditions being aligned.

We performed a series of experiments on the Kowalczyk

et al. benchmark where we measured alignment per-

formance of all methods as we removed an increasing

proportion of cells from each cell type from the old

a

b

Fig. 5 Alignment performance is robust to imbalance in cell type representation across conditions. a Accuracy of classifiers on the Kowalczyk et al.
benchmark, when removing either LT-HSC, ST-HSC, or MPP cells from the old condition. scAlign outperforms all other methods and exhibits minimal
degradation in performance as increasing numbers of cells are removed within each cell type. b Heatmap showing the pairwise similarity matrix for
the young cells from Kowalczyk et al. when no cells have been removed. c Heatmap showing the pairwise similarity matrix for the young cells from
Kowalczyk et al. after removing 25% of the old mouse cells from all cell types
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mouse condition (Fig. 5). While scAlign had superior

performance across all experiments and was most ro-

bust to varying cell type proportions, surprisingly, we

found that other methods were generally robust as

well. Removing even 75% of the cells of a given type only

led to a median drop of 11% in accuracy across the tested

methods. When we repeated these experiments on the

Mann et al. benchmark, we generally found a larger de-

crease in performance as we removed more cells from

each type compared to the Kowalczyk et al. benchmark,

though scAlign still outperformed all other methods

(Additional file 1: Figure S10).

We next investigated the factors that underlie scA-

lign’s robustness to imbalanced cell type representation

across conditions. scAlign optimizes an objective

function that minimizes the difference between the pair-

wise cell-cell similarity matrix in gene expression space

and the pairwise cell-cell similarity matrix implied in the

alignment space when performing random walks of

length two (Fig. 6a). The random walk starts with a cell

sequenced in one condition, then moves to a cell se-

quenced in the other condition based on proximity in

alignment space. The walk then returns to a different

cell (excluding the starting cell) in the original condition,

also based on proximity in alignment space. For every

cell in each condition, we calculated the frequency that

such random walks (initiated from the other condition)

pass through it (Fig. 6b, c). We found that a select few

representatives for each cell type are visited much more

frequently than others and that even when those cells

Fig. 6 Random walks during scAlign training frequently visit a small number of hub cells. a Schematic of the cross condition round trip random
walk prior to and after training of scAlign. b Visualization of the probability of a walk from each individual young cell (top) to each individual old
cell (bottom) after training scAlign on the Kowalczyk et al. benchmark. Edge density represents the magnitude of the probability of a given walk.
c Same as b, except the edges represent the probability of walking from individual old cells (top) to individual young cells (bottom) in the
Kowalczyk et al. benchmark
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are removed from the condition, another cell is automat-

ically selected as a replacement (Additional file 1: Figure

S11). This suggests that a given cell type in one con-

dition only depends on a few cells of the same type

in the other condition to align properly, and so scA-

lign alignment does not need every cell type to be

represented in the same proportion across conditions.

In the above experiments, we have aligned conditions

in which the same set of cell types are present in all con-

ditions. We next explored the behavior of scAlign and

other approaches when there are cell types represented

in only a subset of the conditions. We expect such sce-

narios to arise when only a subset of cell types respond

to, or are targeted by, a stimulus or condition. For each

of our benchmarks, we removed one cell type from one

of the conditions (e.g., the LPS condition of the Mann

benchmark or the old mouse condition of the Kowalczyk

benchmark) and aligned the control and stimulated condi-

tions to determine the extent to which the unique popula-

tion maintained separation from other cell types after

alignment. Figure 7a demonstrates that in eight out of nine

cases, scAlign outperforms other alignment methods in

terms of classification accuracy. Even in cases where the

alignment accuracy was similar between methods, scAlign

visually separates cell types in its alignment space more so

than other approaches such as Scanorama and Seurat

a

b

Fig. 7 scAlign is robust to distinct cell type sets between conditions. a Scatterplot matrix of performance of each method when both conditions
have the same number of cell types (y-axis), compared to when one cell type has been removed (the LPS condition of the Mann benchmark, or
the old mouse condition of the Kowalczyk benchmark) (x-axis). Each point is scaled in size by the silhouette coefficient for the clustering after
alignment. b tSNE plots with cells colored by cell type and condition for the top performing methods
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(Fig. 7b). For other approaches, the separation of different

cell types within the same condition shrinks when one cell

type is removed (Additional file 1: Figure S12).

scAlign interpolates gene expression accurately

One of the more novel features of scAlign is the ability

to map each cell from the alignment space back into the

gene expression space of each of the original conditions,

regardless of which condition the cell was originally

sequenced in. This mapping is performed through

interpolation: for each condition, we learn a mapping

from the alignment space back to gene expression space

using cells sequenced in that condition, then apply the

map to all cells sequenced in all other conditions. This

interpolation procedure enables measurement of vari-

ation in gene expression for the same cell state across

multiple conditions and simulates the ideal experiment

in which the exact same cell is sequenced before and

after a stimulus is applied, and the variation in gene ex-

pression is subsequently measured.

To measure the accuracy of scAlign interpolation, for

each of the three hematopoietic benchmarks, we trained de-

coder neural networks to map cells from the alignment

space back into each of the case and control conditions. We

then measured interpolation accuracy as the accuracy of a

classifier trained on the original gene expression profiles of

cells sequenced under one condition (e.g., stimulated), when

used to classify cells that have been interpolated from the

other condition (e.g., control). Comparing this interpolation

accuracy to cross-validation accuracy of classifying cells in

their original condition using the original measured gene ex-

pression profiles, we see that interpolation accuracy is simi-

lar to expression accuracy (Fig. 8a), suggesting that cells

maintain their general type when mapped into another

condition.

Figure 8b illustrates the cell-cell similarity matrix com-

puted in gene expression space of hematopoietic cells

collected in the Kowalczyk study, when including cells

sequenced in the young mice, as well as cells that have

been interpolated from the old mice into the young condi-

tion. We see that cells cluster largely by cell type (LT-

HSC, ST-HSC, MPP) and not by their condition of origin.

Furthermore, by computing a state variance map from the

interpolation of all cells into both conditions, we identify

differentially expressed genes that were not identified by

traditional differential expression analysis (Additional file 1:

Figure S13). This demonstrates that the encoding and

interpolation process maintains data fidelity, even though

the encoder is trained to align data from multiple condi-

tions and is not explicitly trained to minimize reconstruc-

tion error like typical autoencoders. Figure 8c and d

further illustrate that the cell-cell similarity matrix in
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Fig. 8 Interpolation of gene expression patterns is accurate. a Scatterplot of classifiers trained on gene expression profiles of one condition, which are
subsequently used to predict labels of either measured expression profiles from the same condition in a cross-validation framework (x-axis) or used to predict
labels of cells sequenced from the other condition that were then interpolated into this condition (y-axis). Similarity in accuracy represented by points near the
diagonal indicates that cell type identity encoded in the gene expression profile is maintained even after interpolation. b The pairwise cell-cell similarity matrix
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the young condition (blue). Note that cells cluster largely by cell type regardless of the condition in which they were sequenced. c The pairwise cell-cell
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dimensional coordinates within the alignment space learned by scAlign. Similarity between c and d indicates the scAlign embedding maintains global similarity
patterns between cells in the original gene expression space
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embedding space is faithful to the cell-cell similarity

matrix in the original gene expression space.

Interpolation identifies early gametocyte markers of the

engineered ap2-g-dd strain of P. falciparum

We next applied scAlign to identify genes associated with

early steps of sexual differentiation in Plasmodium falcip-

arum, the most widespread and virulent human malaria

parasite. Briefly, the clinical symptoms of infection are the

result of exponential growth of asexual parasites within

red blood cells, while parasite transmission depends on

the formation of the non-replicating male and female

sexual stages necessary for infection of the parasite’s mos-

quito vector. During each round of asexual replication, a

subpopulation of parasites will activate expression of the

ap2-g gene, which encodes the transcriptional master

regulator of sexual differentiation, to initiate sexual differ-

entiation. While the gene ap2-g is a known master regula-

tor of sexual commitment, and its expression is necessary

for sexual commitment, the events which follow ap2-g

activation and lead to full sexual commitment are un-

known [42]. Furthermore, ap2-g expression is restricted to

a minor subset of parasites, making the identification of

the precise stage of the life cycle when sexual commitment

occurs a challenging task.

Figure 9a illustrates the alignment space of parasites

which are either capable of ap2-g expression and will

contain an ap2-g-expressing subpopulation in the initial
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Fig. 9 Alignment of P. falciparum cells sequenced from a conditional ap2-g knockdown line identifies cycle 2 gametocytes. a tSNE visualization of
cells that cannot stably express ap2-g (−Shld) and ap2-g expression-capable cells (+Shld) after alignment by scAlign. Each cell is colored by its
corresponding cluster identified in Poran et al., and clusters are numbered according to relative position in the parasite life cycle. b scAlign state
variation map defined by projecting every cell from (a) into both the +/−Shld conditions, then taking the paired difference in interpolated expression
profiles. Rows represent cells, ordered by cluster from early stage (top) to late stage and GC (bottom), and columns represent the 661 most varying
genes. The state variation map reveals that cluster 13 is predicted to differ in expression the most between +/−Shld. The column annotations on top
indicate which of the variable genes have been previously established as a target of ap2-g via ChIP-seq experiments [43] which genes have been
reported as playing a role in cell cycle 2 gametocyte maturation [44] and which gene represents ap2-g. c The same state variation map of c, but
zoomed in on Cluster 13 and the genes predicted to be most differentially expressed between +/−Shld. d Average per-cluster expression levels of
PF3D7_0220000 reported in c, for both the +/−Shld conditions. PF3D7_0220000 is predicted to be upregulated in −Shld relative to +Shld, which is
reflected in the per-cluster expression levels. e Same as d, but for PF3D7_1102500, a gene predicted to be upregulated in +Shld relative to −Shld
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stages of sexual differentiation (+Shld), or are ap2-g defi-

cient and therefore all committed to continued asexual

growth (−Shld). As was observed in the original paper

[42], the +/−Shld cells fall into clusters that can be or-

dered by time points in their life cycle (Fig. 9a). scAlign

alignment maintains the gametocytes from the +Shld

condition as a distinct population that is not aligned to

any parasite population from the −Shld condition,

whereas other tested methods are unable to isolate the

gametocyte population (Additional file 1: Figure S14).

To further investigate how scAlign is able to maintain

the gametocytes as a distinct population after alignment,

we looked at the random walks performed by the gam-

etocyte cells to see which cells from the −Shld condition

they walked to, and found that scAlign maps a very

small number of cells from similar surrounding clusters

into the peripheral region of alignment space near the

gametocytes. These −Shld cells in the periphery of the

gametocyte cluster allow the gametocytes to use those

cells as “anchors” in their random walk and maintain

their overall separation from the −Shld cells. To confirm

this hypothesis, we removed the contaminating −Shld

parasites used as anchors by the +Shld gametocytes and

re-aligned the +Shld and reduced set of −Shld cells.

After realignment, we found that scAlign “sacrificed”

parasites from similar surrounding clusters to act as new

anchors and preserve the distinct +Shld gametocytes as

a distinct population (Additional file 1: Figure S15).

Because the +Shld and −Shld cells form a set of clusters

that we could order from early stage to late stage then

gametocytes (+Shld), we hypothesized that the state vari-

ation map computed by scAlign could reveal where in the

life cycle sexual-committing cells (a subset of +Shld cells)

distinguished themselves in variation from asexual-

committing cells (all −Shld cells). Using the interpolation

component of scAlign, we projected each cell sequenced

from each condition in the alignment space into the

expression space of both of the +/−Shld conditions. By tak-

ing the difference in interpolated expression for each cell

between the +Shld and −Shld transcriptomes, we com-

puted a state variation map illustrating the predicted differ-

ence between the two conditions along the entire life cycle

(Fig. 9b). From the state variation map, we observed few

overall predicted differences in gene expression between

the two conditions across most stages of the life cycle, ex-

cept within a cluster of cells containing the gametocytes

specific to the +Shld condition (Fig. 9b, cluster 13). In

other words, gametocytes from cluster 13 exhibited the lar-

gest predicted differential gene expression between the

+Shld gametocytes and neighboring −Shld non-

gametocyte parasites. We verified that scAlign

interpolation uses cells from neighboring clusters to pre-

dict −Shld expression within cluster 13 (Fig. 9d, e, see the

“Methods” section).

Over all 661 highly variable genes we analyzed, we found

the predicted differentially expressed genes in cluster 13 are

enriched in genes previously established to play a role in

gametocyte maturation (Fig. 9b) (p = 1.2 × 10−6, Wilcox

rank sum test), including pfg27 (PF3D7_1302100) and

etramp4 (PF3D7_0423700) [44]. Furthermore, for the genes

we predict to be upregulated in cluster 13 of the +Shld con-

dition, we observed an enrichment of ap2-g targets identi-

fied via ChIP-Seq [43] (p = 6.8 × 10−7, Wilcox rank sum

test). This upregulation of ap2-g targets is consistent with

the fact that cells that have entered the gametocyte stage

must have turned on ap2-g expression, but that −Shld cells

cannot express ap2-g. Our state variation map identifies an

additional eight genes not reported by Bancells and col-

leagues as playing a role in gametocyte maturation, but that

are predicted to differ between +/−Shld (Fig. 9c). Taken in

total, these results suggest the other genes we have pre-

dicted as differing between +/−Shld may also play a role in

gametocyte conversion (Fig. 9b, c).

scAlign identifies highly variable genes in pancreatic islet

cells sequenced using multiple protocols

We next tested scAlign’s ability to infer an alignment space

across more than two conditions by aligning pancreatic

islet cells [15] derived from 8 donors and captured using

four different protocols (CEL-Seq, CEL-Seq2, Smart-Seq2,

and C1). The un-aligned pancreatic islet cells separate by

protocol and not cell type, indicating strong protocol-

specific effects which are removed after scAlign alignment

(Additional file 1: Figure S16 and Figure S17a). scAlign

outperforms Seurat and scVI in terms of composite align-

ment accuracy on this dataset (Additional file 1: Figure

S17b-c). Interestingly, scAlign preserves the stellate, ductal,

and gamma cell types as separate clusters of cells, even

though these three groups are represented in only a subset

of the four protocols.

Having aligned the pancreatic islet cells into an align-

ment space, we next computed scAlign’s state variance

map to identify cell types and genes exhibiting high

expression variation across three protocols to provide

insight into how the choice of protocol affects gene ex-

pression measurement (Fig. 10a–d). Here, we excluded

C1 because of the overall high gene expression specific

to this protocol. We identified multiple subpopulations

of cells within the alpha and beta cell types that are

remarkably variable across protocols (Fig. 10e). We fur-

ther show that our state variance map identifies subpop-

ulations of alpha cells that are not consistent with the

subclustering of alpha cells based on the embeddings

(alignment space), illustrating that the state variance

map finds unique patterns of expression variation across

conditions not found by classic clustering approaches

(Fig. 10f). Notably, the most highly variable genes with

respect to protocol were specific to the activated stellate
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cells, and we confirmed these genes to be enriched in

gene functions related to stellate function

(Additional file 2).

Robust cell type marker genes drive alignments

To gain insight into the general principles and genes

used by scAlign to perform alignment, we performed a

series of in silico expression perturbation experiments.

scAlign uses the same feed-forward network to reduce

the dimensionality of cells from all input conditions. We

therefore hypothesized that scAlign is implicitly identify-

ing cell type marker genes that are invariant (robust)

across conditions and using these marker genes to per-

form dimensionality reduction as they will naturally

cause similar cell types across conditions to map to the

same regions of alignment space. We tested this

hypothesis by first identifying a set of marker genes for

each cell type that were robust across conditions within

a given dataset (Additional file 3) (see the “Methods”

section). We then systematically perturbed the expres-

sion of all common marker genes across all cells and

measured the downstream effect of the perturbation on

the embeddings of the cells in alignment space. Intui-

tively, perturbing the expression levels of genes that

more strongly contribute to the alignment will yield lar-

ger deviations in the embeddings of the cells. As a con-

trol, we performed the same perturbation experiments

on random control sets of genes matched for size and

expression level (see the “Methods” section). Perturbing

the common marker genes yielded significantly larger

deviations in the cell embeddings than the control sets

(P < 10−4, permutation test), with the embeddings

Fig. 10 Alignment of pancreatic islet cells captured using three different protocols identifies cell type-specific variation across protocols. a–d UMAP
visualization of pancreatic islet cells sequenced on CEL-Seq, CEL-Seq2, and Smart-Seq2 after alignment by scAlign, colored by protocol, cell type, clustering
on the alignment space, or scAlign’s state variance map. e Scatterplot indicating the overlap of clusters defined using the state variance map (y-axis) and
based on the cell type labels as reported in Stuart et al. f Comparison of clusters identified using the embeddings, versus using the state variance map.
Shown are two clusters defined in the embedding space, termed alpha-1 and alpha-2 because of their overlap with the alpha cell type. Gray points in the
alpha-1 plot indicate cluster 2 cells, and gray points in the alpha-2 plot indicate cluster 1 cells. Colored points represent the three clusters identified in the
state variance map. scAlign’s variance map clusters (1, 2, and 3) are each found in both alpha-1 and alpha-2, indicating poor agreement. g Heatmap of the
state variance map computed across the three capture protocols (CeL-Seq, CEL-Seq2, and Smart-Seq2) where red indicates high variance of expression
predicted for a given gene and cell across protocols
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moving an average of 5.2-fold more than the control sets

(Additional file 1: Figure S18).

We next sought to evaluate the extent to which

scAlign’s unique random walk-based objective func-

tion contributes to its alignment accuracy. Traditional

neural networks that focus on unsupervised dimen-

sionality reduction such as autoencoders use an ob-

jective function that explicitly learn embeddings that

minimize the reconstruction loss of each cell. In con-

trast, the scAlign objective function simultaneously

encourages embeddings to maintain cell-cell similarity

within condition, as well as match cells in the align-

ment space across conditions. We therefore evaluated

the utility of scAlign’s objective function by substitut-

ing scAlign’s loss function for a classic reconstruction

loss-based autoencoder loss function. This autoenco-

der shares the same number of layers and nodes per

layer as scAlign and furthermore uses a shared en-

coder across all conditions similar to scAlign, but

unique decoders for each condition (see the

“Methods” section). Both the autoencoder and scAlign

therefore have the same number of parameters and

therefore equal model capacity, and only differ by

their respective objective functions. When comparing

this autoencoder to scAlign on each of our four

benchmarks, we found that the autoencoder was able

to achieve similar accuracy on benchmarks with min-

imal cell type-specific condition effects, such as Cell-

bench and Kowalczyk et al. (Additional file 1: Figure

S19a-b). However, on more challenging benchmarks

such as Mann et al. and our HeterogeneousBench-

mark, the autoencoder performed worse than scAlign

(Additional file 1: Figure S19c-d). Furthermore, the

autoencoder did not maintain the cell-cell similarity

matrix in embedding space as well as scAlign (Add-

itional file 1: Figure S19 and Figure S20), suggesting

the low-dimensional embeddings learned by the auto-

encoder may not as faithfully recapitulate the gene

expression inputs.

Discussion

We have shown that scAlign outperforms other integra-

tion approaches, particularly when there are strong cell

type-specific differences across conditions, or when there

is an imbalance in cell type representation across condi-

tions. Compared to other approaches, scAlign will be

particularly useful in the context where only some cell

type labels are available in one or more conditions. We

envision two scenarios where this may occur. First, with

the increasing number of cell atlases [23–28] that are ac-

curately labeled by domain experts and are now publicly

available, scAlign can take advantage of the accurate la-

beling of these atlases to annotate new datasets that lack

labels. Second, marker genes may be available for only a

subset of cell types such as specific hematopoietic cells,

in which case only a subset of cells may be reliably la-

beled. Even when marker genes are available, markers

may not be unique to individual cell types and technical

factors such as dropout may prevent truly expressed

markers from being detected in the RNA. Here, scAlign

can be used in conjunction with only the most confident

labeled cells, or can even be used when there is overlap-

ping labels (due to marker uncertainty).

Another advantage of scAlign over other integra-

tion methods is the improved ability to detect rare

differential expression events between conditions.

For typical alignment methods, once the effect of

condition is removed via alignment, cells must still

be clustered into putative cell types in order to iden-

tify which cells match across condition, and then

perform an unpaired differential expression test

within each cluster to identify condition-specific dif-

ferences. The need to cluster cells means the detec-

tion of rare cell types can be highly sensitive to the

choice of clustering algorithm or parameters. In con-

trast, through interpolation, scAlign predicts how

each individual cell within the alignment space dif-

fers in expression between any of the input condi-

tions, effectively performing a paired (or matched)

differential expression calculation per-cell without

the need to cluster. The result is scAlign can detect

the presence of rare cell populations that differ in

expression across conditions (Fig. 9).

scAlign implements two approaches to aligning more

than two conditions simultaneously. In the reference-based

alignment, a single reference condition is established and

all other conditions are being aligned against the reference

(Additional file 1: Figure S21). This is expected to work well

when all cell types are represented in all conditions, and

has the benefit of speed. Alternatively, the all-pairs align-

ment mode performs an all-pairwise set of alignments sim-

ultaneously, which will be more robust to the presence of

cell types only represented in a subset of the conditions.

The general design of scAlign’s neural network archi-

tecture and loss function makes it agnostic to the input

RNA-seq data representation. Thus, the input data can

either be gene-level counts, transformations of those

gene-level counts, or the result of a preliminary step of

dimensionality reduction such as principal component

scores or canonical correlation vectors. In our study, we

first transformed data into a relatively large number of

principal component scores before input into scAlign, as

this yielded much faster run times with little to no per-

formance degradation. The improvement in computa-

tion time due to PCA preprocessing of the input data

allowed scAlign to both converge more quickly and be-

come feasible on a CPU-based system, therefore making

scAlign a broadly applicable deep learning method. More
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generally, the design of scAlign’s neural network architec-

ture and loss functions are general and not specific to

scRNA-seq data. We therefore expect that scAlign should

be applicable to any problem in which the study design

consists of comparing two or more groups of unmatched

samples, and where we expect there to be subpopulations

of individuals within each group.

Here, we have primarily compared scAlign against un-

supervised alignment methods. In our supervised alignment

results, scAlign compared favorably against the supervised

methods MINT [1] and scmap [5] when assuming all cells

are labeled. In the context of alignment, however, we rea-

soned that if a complete set of labels are available for all

cells and conditions, then addressing the task of alignment

is less useful, because cells of the same type across condi-

tions can be directly compared via per-cell type differential

expression analysis without alignment. Alternatively, in

those contexts, each matching pair of cell types across con-

ditions can be independently aligned using the unsuper-

vised scAlign (or other unsupervised methods) to identify

matching subpopulations of cells.

The tasks of transcriptional alignment and batch correc-

tion of scRNA-seq data are intimately related, as one can

view the biological condition of a cell as a batch whose ef-

fect should be removed before integrated data analysis.

Compared to batch correction methods, scAlign leverages

the flexibility of neural networks to perform alignment

where cell states might exhibit heterogeneous responses

to stimuli, yet through interpolation provides the inter-

pretability that canonical batch correction methods enjoy.

Like all other supervised and unsupervised alignment

methods, scAlign makes an underlying assumption that the

two or more conditions used as input make sense biologic-

ally to align. That is, alignment methods assume that there

are at least some common cell types between conditions

that share some functional origin or similarity, that should

be matched across conditions, even if they differ in state

(e.g., expression) due to condition or stimulus. To the best

of our knowledge, there is no procedure or strategy for

identifying datasets that should not be aligned due to lack

of matching cell types. As a result, any alignment method

when applied to datasets which contain unrelated or dis-

similar cell types can potentially lead to false positive

matchings. This limitation is not specific to alignment

methods; scRNA-seq analysis tools designed for other pur-

poses, such as trajectory inference, assume that a trajectory

exists in the input data in the first place, and will return a

trajectory regardless of whether it makes sense to do so.

scRNA-seq tools in general are useful for generating hy-

potheses (in the case of alignment, hypotheses about which

cell types match across conditions, and how they differ),

but need to be used cautiously by downstream users.

A related concern is the performance of alignment

methods when there exist condition-specific cell types that

have no matching cell type in another condition. In

our experiments, we show that scAlign outperforms

other alignment methods in this scenario by choosing

a small number of cells from a matching cell type

and placing those small numbers of cells in the same

region of alignment space as the condition-specific

cell type; in other words, scAlign purposefully mis-

aligns a small number of cells. scAlign tends to sacri-

fice a small number of cells because its objective

function minimizes the distortion of the cell-cell pair-

wise similarity matrix within each input condition,

and so sacrificing many cells would lead to a large

distortion of the pairwise similarity matrix.

As a neural network-based method, scAlign usage re-

quires specification of the network architecture before

training, defined by the number of layers and number of

nodes per layer. In our results, we have shown scAlign is

largely robust to the size of the architecture, in part be-

cause in addition to the ridge penalty we apply to the

weights of the network, our objective function minimizes

the difference between the similarity matrix in the ori-

ginal expression and alignment spaces, which also acts

as a form of data-driven regularization.

Methods

Methods overview

The scAlign method consists of two steps: (1) alignment,

which learns a mapping from gene expression space of

individual conditions into a common alignment space,

and (2) interpolation, which learns a mapping from the

common alignment space back to the gene expression

space of the original conditions.

Pairwise scRNA-seq alignment with scAlign

We define the alignment task as identifying a low-

dimensional embedding space (termed the alignment

space) in which functionally similar cells map to the same

coordinates. Viewed from the lens of perturbation studies,

if sequencing a cell immediately before and after stimulus

were possible, alignment would bring cells post-stimulus

into the same region of alignment space as the cell before

stimulus, therefore removing the effect of the stimulus.

scAlign encodes the alignment space by extending

the recent approach of learning by association for

neural networks [45, 46] into a unified framework for

both unsupervised and supervised applications. For

notational simplicity, we will assume we are aligning

scRNA-seq data from a pair of conditions, though the

framework extends to multiple conditions (see below).

Let x!
s

i and x!
t

j be vectors of length G that represent

the gene expression profiles of cells i and j in condi-

tions s and t, respectively. Similarly, let e!
s

i and e!
t

j

be vectors of length K that represent that alignment
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space embedding of cells i and j in conditions s and

t, respectively, where the embeddings represent the

linear activations of the final output layer of an en-

coder neural network.

scAlign trains an encoder neural network (parameter-

ized by weights W) that defines the alignment space by

optimizing the network weights used to calculate e!
s

i

and e!
t

j to minimize the following objective function:

f ¼
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The central idea of the alignment procedure of scAlign

is that it optimizes the embeddings of cells ( e!
s

i and e!
t

j)

such that the scaled, pairwise cell-cell similarity matrix

(or formally, a transition matrix) computed between cells

within each condition in gene expression space (Qs and

Q
t) should be maintained within the alignment space (Ps

and P
t), respectively. The novel aspect of scAlign com-

pared to other dimensionality reduction methods is in

how P
s and P

t are calculated. While P
s would

canonically be calculated by transforming the dot prod-

uct of the embeddings e!
s

i as is done in the tSNE

method [47] for example, scAlign computes roundtrip

random walks of length two that traverse the two condi-

tions. Ps
i;k , the transition probability of moving from cell

i to cell k within condition s, is calculated as the prob-

ability of randomly walking from cell i to cell k in two

steps: first from cell i to any cell j in the other condition

t in the first step, then from that cell j to cell k (in condi-

tion s) in the second step. By forcing the random walk

to first visit a cell in the other condition, scAlign encour-

ages the encoder to bring cells from across the two con-

ditions into similar regions of alignment space.

The network weights W are initialized by Xavier [48]

and optimized via the Adam algorithm [49] with an ini-

tial learning rate of 10− 4 and a maximum of 15,000 iter-

ations. The neural network activation functions of each

hidden layer are ReLU, and the embedding layer has a

linear activation function. Regularization is enforced

through an L2 penalty on the weights along with per-

layer batch normalization and dropout at a rate of 30%.

The scAlign framework has three tunable parameters:

the per-cell variance parameter σ2i that controls the ef-

fective size of each cell’s neighborhood when defining

the similarity matrix in gene expression space, the mag-

nitude of the penalization term λ over W that is fixed at

10− 4, and the size of the encoder network architecture.

For the tuning parameter σ2i , small values yield more

local alignment, whereas larger values yield more global

alignment. In our experiments, we train each model with

a range of values for σ2
i . Typically, [5, 10, 29] provide ro-

bust results when training on mini-batches of less than

300 samples. While the per-cell variance parameter σ2i
operates on the training mini-batch, we found training is

robust to the choice of σ2i .
In our experiments, we set the size of the encoder

architecture by either automatically constructing a net-

work based on the dimensionality of the input data in

conjunction with a complexity parameter, or from a

catalog of network architectures which are at most three

layers deep. As with other neural networks, the size of

the architecture defines the complexity and power of the

network. Model complexity is important for alignment

because the network must be powerful enough to align

cells from conditions that yield heterogeneous responses

to stimulus, but not so powerful that any cell in one

condition can be mapped to any other cell in another

condition, regardless of whether they are functionally re-

lated. We have found in our experiments (Add-

itional file 1: Figure S3) that the combination of cross-

entropy loss and shrinkage applied to the network

weights yields robustness to generously large network

architectures. Namely, by encouraging small weights and
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minimizing the differences in cell-cell similarity matrices

between the expression and embedding spaces, we avoid

training the neural network to perform unnecessary

complex transformations on the data.

Overview of multi-way alignment with scAlign

Alignment of three or more conditions simultaneously is

implemented in two ways in the scAlign framework. In

approach one (“all-pairs alignment”), round trip walks

are computed between all pairs of conditions and is ex-

pected to be the most accurate form of multi-way align-

ment. In approach two (“reference-based alignment”),

one condition is defined as a reference, against which all

other conditions are aligned.

All-pairs alignment with scAlign

In this strategy, we extend the pairwise alignment ap-

proach by performing round trip walks between all pairs

of conditions simultaneously, while still sharing a single

encoder’s neural network parameters across all condi-

tions. Compared to the reference-based alignment ap-

proach below, the all-pairs approach will be more robust

when there are cell types that are only represented in a

subset of the input conditions. The objective function of

the pairwise alignment approach is modified to include

round trip walks between each condition k and the

remaining conditions l ≠ k:
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Reference-based multi-way alignment with scAlign

In this strategy, multiple conditions are aligned simul-

taneously by selecting one condition to be a reference

(kref), against which all other conditions (l ≠ kref) are

aligned. Compared to the all-pairs approach, reference-

based alignment is faster and therefore more scalable,

though is expected to perform worse when there are cell

types shared amongst non-reference conditions, that are

not represented in the reference condition. The objective

function for reference-based alignment is as follows:
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The remaining details for optimizing scAlign’s ob-

jective function in the multi-way case are identical

to the paired alignment task described previously.

We note that in our experiments the number of em-

bedding dimensions had to be increased for three or

more conditions in order to accommodate the in-

creased information in the embeddings of the en-

coder shared across all k condtions.
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scRNA-seq interpolation with scAlign

The interpolation component of scAlign trains a

condition-specific decoder to map cells from the align-

ment space back into each of the individual condition-

specific gene expression spaces. The decoder network

architecture is chosen to be symmetric with the encoder

network trained during the alignment process, with

weights randomly initialized and optimized again via the

Adam optimizer [49] with learning rate set at 10−4 and

trained for at most 30,000 iterations.

Calculation of the state variance map

After interpolating every cell (sequenced in any condi-

tion) from the alignment space back to every input

condition, for each cell, we obtain multiple condition-

specific representations for each cell. Then, per cell,

we compute the variance of the interpolated expres-

sion patterns for that cell across the input conditions.

The result is a matrix, termed the state variance map,

which illustrates the variance in each gene-specific ex-

pression level for each cell predicted across condi-

tions. In the special case where two conditions are

being aligned, this state variance map can be viewed as

a (predicted) paired differential expression map, where

differences are calculated per cell.

Shared autoencoder optimization

The training procedure for training a shared autoen-

coder followed that of scAlign in that the autoenco-

der was trained on data from all conditions

simultaneously. The shared alignment space of the

autoencoder was learned by optimizing with respect

to the traditional mean squared error of reconstruct-

ing the original expression profiles for each condi-

tion by simultaneously training condition-specific

decoder networks.

Principal component analysis and canonical correlation

analysis preprocessing transformations of scRNA-seq data

The objective function that scAlign optimizes does not

incorporate terms specific to scRNA-seq data such as a

negative binomial observation model. We found that

computing the principal component and canonical cor-

relates of the normalized scRNA-seq data and using the

resulting scores in place of gene expression measure-

ments maintained alignment and interpolation accuracy

but sped up training significantly (Additional file 1: Fig-

ure S4). Note that even when the encoder network is

given PC or CC dimensions as input instead of gene ex-

pression measurements, the decoder is still trained to

transform alignment space coordinates into the original

gene expression space.

Using partial or complete cell type labels with scAlign

The objective function optimized by scAlign can natur-

ally incorporate partial, overlapping, or complete cell

type labels for the cells, in one or more conditions. Sup-

pose there are C cell type labels available, in a pairwise

alignment scenario. Then define matrix A
s such that As

i;c

¼ 1 if cell i in condition s has cell type label c, else As
i;c

¼ 0. Similarly, define matrix Â
s
containing the predicted

class labels for all cells in condition s. The scAlign ob-

jective function then becomes:
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We incorporate partial, overlapping, or complete label

information by introducing an extra set of terms corre-

sponding to classification loss and weighted by the factor

β. The classifier loss terms minimize the mean cross-

entropy of the predicted and actual cell labels as defined

by the second term within each summation of f. The adap-

tation and classifier components f are balanced by hyper-

parameter weights α and β respectively. Adjusting α and β

allows emphasis to be placed individually on the pairwise

cell similarity or known labels; in this work, both weights

were fixed to 1.0 when label information is provided.

Acquisition and preprocessing of Mann et al. benchmark

We obtained the gene count matrix for HSC data gener-

ated from Mann et al. [37] from GSE100426. The pro-

vided data matrix was already filtered based on quality

control metrics. We normalized the count matrix to

TP10K and then removed plate-specific batch effects by

fitting a linear model on the scaled and centered data

using Seurat’s NormalizeData and ScaleData functions.

We retained the union of the top 3000 variable genes

between control and condition cells.

Acquisition and preprocessing of Kowalczyk et al.

benchmark

We obtained the gene count matrix for both C57BL6

and DBA mouse HSC data generated from Kowalczyk

et al. [36] from GSE59114. Only single cell data from

mouse C57BL6 was used during alignment to avoid

cross mouse batch effects. We normalized the count

matrix to TP10K then scaled and centered using Seurat’s

NormalizeData and ScaleData functions. We retained

the union of the top 3000 variable genes between young

and old cells and genes associated with GO terms re-

ported in Kowalczyk et al.
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Acquisition and preprocessing of CellBench benchmark

We obtained the gene count matrix for the RNA mix-

ture experiments in CellBench generated by Tian et al.

[35] from the R data file mRNAmix_qc.RData available

on GitHub. We normalized the count matrix to TP10K

then scaled and centered using Seurat’s NormalizeData

and ScaleData functions. We retained the union of the

top 3000 variable genes between mixtures profiled on

CEL-Seq2 and SORT-Seq.

Execution of scAlign for benchmark data

We provided scAlign with normalized and scaled gene

expression following standard Seurat preprocessing pro-

tocols. The most variable genes were identified using

FindVariableGenes function implemented in Seurat

which was used to subset the data matrices. scAlign was

then trained with default parameter settings including

15,000 steps, mini-batch size of 150, perplexity of 30, a

3-layer neural network with 32 dimensions in the final

embedding layer.

Execution of scAlign for P. falciparum (malaria parasite)

data

We provided scAlign with the top 26 PCs as reported by

Poran et al. and available on the Kafsack lab Github.

scAlign was then trained for 15,000 steps, mini-batch

size of 1000, perplexity of 100, a 3-layer neural network

with 32 dimensions in the final embedding layer.

Execution of scAlign for pancreatic islet data

We provided scAlign with the top 30 canonical correl-

ation vectors as computed by Seurat following the stand-

ard preprocessing pipeline. scAlign was then trained

with default parameter settings primarily defined by 15,

000 steps, mini-batch size of 1000, perplexity of 100, a

3-layer neural network with 64 dimensions in the final

embedding layer.

Execution of other scRNA-seq alignment methods

We compared scAlign against MNN [2], Seurat [3],

scMerge [50], Scanorama [2], scVI [7], MINT [1], and

scmap [5]. Each method was run based on method-

specific guidelines provided by the original authors and

following the workflow defined by CellBench publicly

available on GitHub. Prior to running each method, the

FindVariableGenes function implemented in Seurat was

used to identify the most variable genes for a consistent

subsetting of the following data matrices. MNN was pro-

vided log-count data subset to the most variable genes

with all parameters set to default. Seurat v2 and v3 were

provided the count-level data which was normalized,

then scaled and centered using the NormalizeData and

ScaleData functions. Initially, 30 canonical correlates

were used for dimensionality reduction, then the

MetageneBicorPlot function was used to select the opti-

mal number of dimensions as defined by Seurat’s inte-

grated PBMC tutorial. The remaining canonical

correlates were aligned using the Seurat v2 AlignSub-

space function or Seurat v3 FindIntegrationAnchors and

IntegrateData functions. scMerge was provided both

count and log-count data along with a set of least vari-

able genes identified by sorting the results of the var.

function in R on the normalized count matrix. The par-

ameter kmeansK that specifies the number of clusters

was set based on cell type information. Supervised

scMerge (scMerge+) was additionally provided cell la-

bels, and the “cell_type_match” parameter was set to

true. Scanorama was provided with log-count data sub-

set to the most variable genes previously identified by

decompseVar, and return_dense was set to TRUE. scVI

was provided with the full count data and trained until

convergence based on log likelihood for the best model

parameterization identified by grid search (see below).

MINT was provided with the log-count data and the cell

type labels. scmap was provided the count and log-count

data, and both indexCluster and indexCell functions

were used to compute cross condition labels.

Execution of scVI and parameter search

The provided tutorials for scVI varied the input parame-

ters to scVI and did not provide further guidance on

how to select parameters. We therefore performed a grid

search over scVI parameters and chose the parameter

combination that minimized the reported loss. The grid

search was performed with respect to number of

layers (1, 2, or 3), number of epochs (1000, 2500, or

5000), and learning rate (0.01, 0.001, or 0.0001) (Add-

itional file 1: Figure S22).

Construction of HeterogeneousBenchmark

We constructed the HeterogeneousBenchmark bench-

mark by merging multiple count matrices from the

Mann et al. and Kowalczyk et al. studies. The control

condition was defined completely by young C57BL/6

mouse cells. To construct the stimulated condition, we

merged LT-HSCs perturbed by LPS from Mann et al.,

ST-HSCs from old C57BL/6 mouse cells, and MPPs

from both young and old DBA mouse cells collected by

Kowalczyk et al.

Acquisition and preprocessing of P. falciparum (malaria

parasite) data

We obtained the gene count matrix for the P. falcip-

arum data generated by Poran et al. [42] from the Kaf-

sackLab GitHub repository. The data was preprocessed

using the provided scripts and subset into the +/− Shld

conditions using the metadata.
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Acquisition and preprocessing of pancreatic islet data

We obtained the gene count matrix for the human pan-

creatic islet datasets from the following accessions:

GSE81076 (CEL-Seq), GSE85241 (CEL-Seq2), GSE86469

(Fluidigm C1), and E-MTAB-5061 (Smart-Seq2). Follow-

ing preprocessing previously defined by Stuart et al. [34],

we filtered out cells for which fewer than 1750 unique

genes/cell (CEL-Seq) or 2500 genes/cell (CEL-Seq2/Flui-

digm C1/Smart-Seq2) were detected.

Identification of differentially expressed genes

Differentially expressed (DE) genes were computed using

the bimod, DESeq2, and MAST methods implemented

in the Seurat findMarkers function. The intersection of

DE genes with P value less than 0.01 from these three

methods was used to define a final set of DE genes for

each cell type. The analysis was performed on the nor-

malized, scaled, and centered data matrices computed by

Seurat’s preprocessing pipeline.

Identification of robust marker genes

Differentially expressed (DE) genes were computed using

bimod [51], DESeq2 [52], and MAST [53] methods im-

plemented in Seurat findMarkers function for each cell

type individually for each condition. The union of cell

type marker genes with corrected P value less than 0.05

was used to define a final set of marker genes for each

condition. Additionally, genes which were highly corre-

lated (> 0.9) with the condition-specific marker genes

were also included. Finally, we took the intersection of

these marker gene sets to define the robust common

marker genes across conditions. The analysis was per-

formed on the normalized, scaled, and centered data

matrices computed by Seurat’s preprocessing pipeline.

Construction of matched gene sets

We first computed the mean expression level of all

genes and created five approximately equally sized bins

representing groups of genes with lowest to highest ex-

pression. For the robust common marker gene set, we

identified the number of common marker genes that

came from each bin. We then created control gene sets

by drawing random sets of genes of the same size as the

robust common marker set, and with the same distribu-

tion of genes over the five bins. We repeated the sam-

pling procedure 10,000 times to obtain a representative

collection of matched gene sets.

Measuring the deviation in cell embeddings by in silico

gene set perturbation

To determine the importance of a single gene set to

scAlign’s calculation of the embedded representation of

each cell, we zeroed out the expression measurements of

all genes in the gene set across all cells. We then

measure the median and maximum change (using Eu-

clidean distance) in cell embeddings before and after

zeroing out the expression measurements. To compute a

P value, we generated random gene sets of the same size

and matched for expression levels of the genes and cal-

culated the number of random gene sets that yielded a

deviation at least as large as what we observed for a gene

set of interest.

Measuring the accuracy of pairwise alignments

Alignment performance for each method was measured as

a weighted combination of cross-condition label predic-

tion accuracy and alignment score [3]. The cross-

condition label prediction was performed by training a

classifier to label one condition (stimulated condition by

default) using only labels from the corresponding control

condition. Specifically, a K-nearest neighbors classifier

from the R library “class” was initialized with control cell

embeddings after alignment, along with their correspond-

ing cell type labels. The classifier was then used to predict

labels for the stimulated cells. The predicted labels were

compared against heldout labels to measure accuracy. The

final score accuracycomposite is defined by the product of

the classifier accuracy and alignment score.

Measuring the accuracy of multi-way (three or more)

alignments

Similarly, to measure alignment performance on the align-

ment of three or more conditions, we measured the

weighted combination of a representative-based label pre-

diction accuracy and alignment score. The representative-

based label prediction was performed by iteratively treat-

ing each condition as the representative, and training a

classifier to label cells from all non-representative condi-

tions using only labels and cells from the single represen-

tative condition. The mean accuracy was computed for all

condition-specific label predictions as the final accuracy.

As a classifier, we chose a K-nearest neighbors classifier

from the R library “class” and initialized it with the repre-

sentative condition cell embeddings after alignment, along

with their corresponding cell type labels. The classifier

was then used to predict labels for all the non-

representative cells. The predicted labels were compared

against heldout labels to measure accuracy. The final score

accuracycomposite is defined by the product of the mean ac-

curacy and alignment score.

Measuring the accuracy of transcriptional interpolation

To measure interpolation accuracy, we measured the

ability of a classifier trained on the gene expression data

of the cells measured under one condition to correctly

label interpolated gene expression profiles of cells se-

quenced under the other condition (but interpolated

into the current condition). A K-nearest neighbors
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classifier from the R library “class” was initialized with

90% of expression data and tested on the remaining

heldout set of 10% to define gene expression-specific ac-

curacy. The classifier was then used to predict the labels

for cells represented by interpolated gene expression

values to compute an interpolation-specific accuracy.

Tenfold cross validation was performed using this pro-

cedure, and the average accuracy was reported.

2D tSNE visualizations of embeddings for alignment

methods

By default, we use the Rtsne implementation of tSNE,

which first projects input data into 50 principal compo-

nents before inputting into the tSNE algorithm. All

methods other than Seurat and scAlign produce corrected

expression matrices, and for these, we use the default 50

PCs for Rtsne. Seurat automatically selects the number of

dimensions to project into for each individual condition.

scAlign was used to align scRNA-seq data into a 32-

dimensional embedding space for all runs. For both Seurat

and scAlign, the PCA step of Rtsne was skipped.
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