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Scaling Algebraic Multigrid Solvers:
On the Road to Exascale

Allison H. Baker, Robert D. Falgout, Todd Gamblin, Tzanio V. Kolev, Martin
Schulz and Ulrike Meier Yang

Abstract Algebraic Multigrid (AMG) solvers are an essential component of many
large-scale scientific simulation codes. Their continued numerical scalability and
efficient implementation is critical for preparing these codes for exascale. Our ex-
periences on modern multi-core machines show that significant challenges must be
addressed for AMG to perform well on such machines. We discuss our experiences
and describe the techniques we have used to overcome scalability challenges for
AMG on hybrid architectures in preparation for exascale.

1 Introduction

Sparse iterative linear solvers are critical for large-scale scientific simulations, many
of which spend the majority of their run time in solvers. Algebraic Multigrid (AMG)
is a popular solver because of its linear run-time complexity and its proven scalabil-
ity in distributed-memory environments. However, changing supercomputer archi-
tectures present challenges to AMG’s continued scalability.

Multi-core processors are now standard on commodity clusters and high-end su-
percomputers alike, and core counts are increasing rapidly. However, distributed-
memory message passing implementations, such as MPI, are not expected to work
efficiently with more than hundreds of thousands of tasks. With exascale machines
expected to have hundreds of millions or billions of tasks and hundreds of tasks
per node, programming models will necessarily be hierarchical, with local shared-
memory nodes in a larger distributed-memory message-passing environment.

With exascale in mind, we have begun to focus on a hybrid programming model
for BoomerAMG [11], the AMG solver in the hypre [12] library. BoomerAMG
has demonstrated good weak scalability in distributed-memory environments, such
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as on 125,000 processors of BG/L [8], but our preliminary study [4] has shown
that non-uniform memory access (NUMA) latency between sockets, deep cache
hierarchies, multiple memory controllers, and reduced on-node bandwidth can be
detrimental to AMG’s performance.

To achieve high performance on exascale machines, we will need to ensure nu-
merical scalability and an efficient implementation as core counts increase, memory
capacity per core decreases, and on-node cache architectures become more com-
plex. Some components of AMG that lead to very good convergence do not paral-
lelize well or depend on the number of processors. We examine the effect of high
level parallelism involving large numbers of cores on one of AMG’s most impor-
tant components, smoothers. We also investigate an OpenMP/MPI implementation
of AMG, and its performance on three supercomputers with different node architec-
tures: a cluster with four quad-core AMD Opteron processors, a Cray XT5 machine
with two hex-core AMD Opteron processors, and a BlueGene/P system with a single
quad-core PowerPC processor per node. The techniques used in these environments
have broad applicability beyond AMG and will enable other solvers and simulation
codes to prepare for exascale.

The remainder of this paper is organized as follows. In Section 2, we give an
overview of the AMG method and detail our strategy to run efficiently at exas-
cale. Section 3 describes mathematical and computational challenges of exascale for
AMG smoothers. We describe the necessary steps to achieve good OpenMP perfor-
mance on a multi-core node in Section 4. Finally, we demonstrate the performance
of our hybrid BoomerAMG implementation on the three multi-core architectures in
Section 5. Section 6 presents our conclusions.

2 The Algebraic Multigrid Solver

Multigrid (MG) linear solvers are particularly well-suited to parallel computing be-
cause their computational cost is linearly dependent on the problem size. This op-
timal property, also referred to as algorithmic scalability, means that proportionally
increasing both the problem size and the number of processor (i.e., weak scaling),
results in a roughly constant number of iterations to solution. Therefore, unsurpris-
ingly, multigrid methods are currently quite popular for large-scale scientific com-
puting and will play a critical role in enabling simulation codes to perform well at
exascale.

2.1 Overview

An MG method’s low computational cost results from restricting the original linear
system to increasingly coarser grids, which require fewer operations than the fine
grid. An approximate solution is determined on the coarsest grid, typically with
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a direct solver, and is then interpolated back up to the finest grid. On each grid
level an inexpensive smoother (e.g., a simple iterative method like Gauss-Seidel) is
applied. The process of starting on the fine grid, restricting to the coarse grid, and
interpolating back to fine grid again is called a “V-cycle”, which corresponds to a
single MG iteration.

MG has two phases: setup and solve. The primary computational kernels in the
setup phase are the selection of the coarse grids, creation of the interpolation op-
erators, and the representation of the fine grid matrix operator on each coarse grid.
The primary computational kernels in the solve phase are a matrix-vector multiply
(MatVec) and the smoothing operator, which may closely resemble a MatVec.

AMG is a flexible and unique type of MG method because it does not require
geometric grid information. In AMG, coarse “grids” are simply subsets of the fine
grid variables, and the coarsening and interpolation algorithms make use of the ma-
trix entries to select variables and determine weights. These algorithms can be quite
complex, particularly in parallel. More detailed information on AMG may be found
in either [8] or [14].

2.2 Scaling Strategy for AMG

A well-designed AMG method is algorithmically scalable in that the number of iter-
ations should stay fixed with increasing problem size. However, an effective AMG
code must also be computationally scalable: the run times should stay constant with
weak scaling. Therefore, both the algorithmic details related to the underlying math-
ematics (which impact the convergence rate) and the implementation details of the
algorithm are important. To prepare our code for exascale computing, we have be-
gun to examine the primary components of AMG, beginning with the solve phase,
to determine what issues will need to be addressed.

The BoomerAMG code was originally developed with MPI in mind (as OpenMP
was not competitive at the time). As a first step towards exascale, we have focused
on incorporating OpenMP more fully into the code because we found performance
on multi-core clusters using only MPI to be poor [4]. As discussed in Section 4,
the initial OpenMP results were disappointing and required careful management of
memory and threads to achieve good performance. Because of its simplicity and
importance, the MatVec kernel was a natural focus for these initial efforts into in-
vestigating hybrid MPI + OpenMP performance. MatVec dominates the solve phase
time (approximately 60%) as it is used for both restricting and interpolating the er-
ror, computing the residual, and, if AMG is used as a preconditioner, for the Conju-
gate Gradient (CG) or GMRES iteration step. From an implementation perspective,
the matrix is stored in a compressed sparse row (CSR) parallel data structure [7].
MatVec is threaded at the loop level such that each thread operates on a subset of its
process’ rows.

The other key component of the solve phase is the application of the smoother,
which typically constitutes about 30% of the solve time. The smoother is critical
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because its effectiveness in reducing the error impacts the overall MG convergence
rate, directly impacting the solution time. The challenge in designing a good par-
allel smoother is that Gauss-Seidel, the most popular MG smoother, is inherently
sequential. Therefore in parallel AMG, a so-called hybrid Gauss-Seidel, which per-
forms Gauss-Seidel within each task and delays updates across tasks, is typically
employed. The convergence of hybrid Gauss-Seidel may be impacted by exascale
computing due to the use of millions of concurrent tasks, as well as memory limita-
tions requiring smaller problem sizes per processor. In addition, the use of OpenMP
could affect convergence as loop-level threading in the smoother further partitions
each process’ domains. We discuss these concerns in detail in Section 3.

The AMG setup phase time is non-negligible and problem dependent; in some
cases, depending on the number of iterations required for convergence, it can rival
the time of the solve phase. Our preparation of the AMG setup phase for exascale
computing is a work in progress. In particular, the coarsening and interpolation al-
gorithms may be quite complicated in parallel [5], and the long-distance variety [6]
require a sizable amount of point-to-point communications. At this point, the inter-
polation routines in BoomerAMG are only partially threaded due to complexity, and
none of the coarsening routines use any threading at all. The third setup phase com-
ponent, determining coarse grid operators via a triple matrix product, is completely
threaded. However these coarse grid operators become far less-sparse than the fine
grid matrix. The increasing operator density increases the number of communication
pairs, which significantly impacts the MatVec time on the coarsest levels [4]. Future
work for the setup phase will include the development of more thread-friendly data
structures for the interpolation and coarsening routines and the investigation into
ways to reduce communication on coarser grid levels, including the storage of re-
dundant data when coarsening or the use of coarse grid operators that are not the
result of a triple matrix product (i.e., non-Galerkin).

3 Smoothers

The smoothing process is at the heart of the AMG algorithm, and the quality of the
smoother directly affects the design and the scalability of the multigrid solver. For a
linear system with a symmetric and positive definite (SPD) matrix A, a smoother is
another matrix M such that the iteration

e0 = e , en+1 = (I−M−1A)en for n = 1,2, . . .

reduces the high-frequency components of an initial error vector e. This makes the
remaining error smooth, so it can be handled by the coarse grid corrections. The
smoother should also be convergent, so that the above iteration does not increase
the low-frequency components of the error. When M is not symmetric, one can
consider the symmetrized smoother M̃ = MT (MT +M−A)−1M, which corresponds
to a smoothing iteration with M, followed by a pass with MT . The symmetrized
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smoother is often used when preconditioning CG with AMG, since CG requires a
symmetric preconditioner.

One classical example of a convergent smoother is the Gauss-Seidel (GS) method,
which is obtained by setting MGS = L+D, where L is the lower triangular part and D
is the diagonal part of A. Note that MGS is not symmetric, so GS is frequently sym-
metrized in practice. Another class of general smoothers are the polynomial meth-
ods, where M is defined implicitly from I−M−1A = p(A) where p is a polynomial
satisfying p(0) = 1. Both of these smoothing approaches have been essential in the
development of serial algebraic multigrid and have excellent smoothing properties.

Parallel architectures, however, present serious challenges for these algorithms;
GS is sequential in nature, while polynomial smoothers need knowledge of the spec-
trum of the matrix. Thus, a major concern for extending AMG for massively par-
allel machines has been the development of parallel smoothers that can maintain
both scalability and good smoothing properties. In this section we summarize the
theoretical and numerical results from [2] for several promising smoothers in the
BoomerAMG code. Previous research in parallel smoothers can be found in [1, 15].

3.1 Hybrid Gauss-Seidel

The default smoother in BoomerAMG is a parallel version of GS known as hy-
brid Gauss-Seidel (hybrid-GS), which can be viewed as an inexact block-diagonal
(Jacobi) smoother with GS sweeps inside each process. In other words, hybrid-GS
corresponds to the block-diagonal matrix MHGS, each block of which equals the
process-owned L+D part of A (BoomerAMG matrix storage is row-wise parallel).

Even though hybrid-GS has been successful in many applications, its scalability
is not guaranteed, since it approaches Jacobi when the number of processors is large,
or when the problem size per processor is small. Our strategy for addressing this
issue is to investigate different variants of hybrid-GS through a qualitative smoother
analysis based on the two-grid theory from [9, 10]. In particular, we proposed [2]
the following criterion for smoother evaluation: if there is a constant C, independent
of the problem size and the parallelization, such that 〈M̃x,x〉 ≤C〈M̃GSx,x〉 for any
vector x, then the smoother given by M will have multigrid smoothing properties
comparable to (sequential) GS. This theoretical tool is important, because it allows
us to predict the scalability of various approximations of MGS on current and future
parallel architectures.

As one application of the theory, we showed [2] that hybrid-GS will be a good
smoother when the off-processor part of the matrix rows is smaller than the diagonal
in each processor. This is the case, for example, when A is diagonally dominant and
each diagonal processor block has at least two non-zero entries per row. However,
there are practical cases where the off-processor part of the matrix is significant, due
to the problem being solved (e.g., definite Maxwell discretizations) or due to the
parallel partitioning of A (e.g., due to the use of threading). In these cases, hybrid-
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GS will behave much worse than GS and can be divergent, even for large problem
sizes per processor.

To improve the robustness of hybrid-GS, we proposed [13] and analyzed [2]
the `1 Gauss-Seidel smoother (`1-GS), which corresponds to M`1GS = MHGS +D`1 ,
where D`1 is a diagonal matrix containing the `1 norms of the off-processor part
of each matrix row. This smoother has the nice property that it is convergent for
any SPD matrix A. It was also shown [2] that M`1GS is comparable to MGS with a
constant C = (1+4/θ)2 where θ satisfies D ≥ θD`1 . Since θ depends only on the
discretization stencil, for many practical problems it will be bounded away from
zero, and thus M`1GS will result in a scalable AMG solver. To improve the perfor-
mance, it is advantageous to consider parallel partitioning that lower the constant
C, e.g., by using knowledge from the application in order to reduce the number and
magnitude of the off-diagonal entries.

3.2 Chebyshev

As a second part of our strategy for scalable multigrid smoothers, we also explore
polynomial methods where the high end of the spectrum of A is approximated with
several CG iterations and a fixed scaling for the lower bound.

The theory from [9] can be applied also in this case to conclude that the best poly-
nomial smoothers are given by shifted and scaled Chebyshev polynomials. To bal-
ance cost and performance, in practice we usually use the second order Chebyshev
polynomial for D−1/2AD−1/2 (Cheby(2)). The cost of this method is comparable
with the symmetrized hybrid-GS smoother.

Polynomial smoothers have the major advantage that their iterations are indepen-
dent of the ordering of the unknowns or the parallel partitioning of the matrix. They
also need only a matrix-vector multiply routine, which is typically finely tuned on
parallel machines. These advantages, however, need to be balanced with the cost of
estimating the high end of the spectrum of A. In our experience so far, this cost has
not affected the scalability of Cheby(2).

3.3 Numerical Results

We illustrate the numerical performance of Cheby(2) and the symmetrized version
of hybrid-GS and `1-GS with several results from [2]. The test problem describes a
variable coefficient diffusion which is posed on the unit square and discretized with
unstructured linear triangular finite elements, see Figure 1. We report the iteration
counts for BoomerAMG used as a two-grid solver (AMG) or a preconditioner in
CG (AMG-CG) with a relative convergence tolerance of 10−6.

We first investigate the impact of threading through several weak scaling runs
which alternate between the use of MPI and OpenMP on compute nodes with four
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Fig. 1 Coarse mesh for the model problem with indicated material subdomains (left). The diffusion
coefficient has 3 orders of magnitude jumps between the interior/exterior materials. Comparison
of the scalability of AMG-CG with the different smoothing options when using threading (right).
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Fig. 2 Strong scaling of a two-level AMG solver with a very small problem sizes per processor
(left), and weak scalability of AMG-CG with sufficiently large problem sizes per processor (right).

quad core processors each for a total of 16 cores per node. In this particular appli-
cation, the numbering of the unknowns inside each processor is not guaranteed to
have good locality, so the straightforward (not application-assisted) use of OpenMP
introduces a bad partitioning onto the cores. As suggested by the theory, the per-
formance of hybrid-SGS deteriorates significantly in this case, while `1-SGS and
Cheby(2) remain robust. In contrast, in the MPI case the application provides paral-
lel partitioning with a good constant θ , so all methods scale well. Note that the MPI
weak scaling results on the right in Figure 2 indicate that with application-assisted
parallel partitioning, all smoothers can lead to good weak scalability on very large
number of processors.

Finally, we demonstrate the impact of small problem sizes per processor through
the strong scaling runs presented on the left in Figure 2. This is an important test
case, given the expected memory availability on future architectures. Since small
problem sizes per processor are correlated with a large off-processor part of the ma-
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trix rows, the hybrid-SGS method deteriorates, as the smoothing analysis indicates
is possible. In contrast, the effect on both `1-SGS and Cheby(2) is minimal, which
is reassuring for their use on multi-core machines with small amounts of node mem-
ory.

4 On-node Threading and Memory Management

Modern High Performance Computing (HPC) systems feature increasingly com-
plex node architectures with a rising number of compute cores per node, while the
total amount of memory per node remains constant. Under such scenarios, flat pro-
gramming models such as pure MPI will fail. We must provide programmers with
multiple levels of concurrency, and the most common approach is a combination of
MPI for cross-node communication with OpenMP for intra-node threading.

We study this setup on the Hera cluster at LLNL, a Linux cluster with 864 nodes
connected by Infiniband. Each node has 16 cores distributed among four proces-
sors or sockets. Each socket features its own 8GB memory (2 GB per core), for a
total node memory of 32GB. Any processor can access any memory location, but
accesses to locations that belong to another processor’s memory system incur an ad-
ditional penalty. Systems such as Hera with Non-Uniform Memory Access latencies
are called NUMA systems.

Figure 3 shows the speedup for two central kernels in AMG. The black line rep-
resents the MPI only version executed on a single node with varying numbers of
cores after some minor scheduling and affinity optimizations (dotted line). Com-
pared to this performance, the OpenMP-only version of the code (the gray solid
line) performs significantly worse for all but the smallest number of cores.

On closer examination we found that the observed performance penalty is caused
by the memory layout of the matrix structures in combination with the NUMA prop-
erties of the Hera nodes. Memory is allocated by the master thread and later used by
all threads in the program. Since the underlying system aims to allocate all memory
close to the core from which the memory is requested, all data was allocated on
the memory of processor 0 leading to a large number of costly remote memory ac-
cesses from all threads running on cores in different processors as well as memory
contention on processor 0.

To compensate for these problems, we developed the MCSup Multi-Core Support
library. It provides the user with an API to allocate memory in a distributed man-
ner across all processors in a way that matches the implicit thread distribution of
OpenMP. Combined with a proactive per processor thread pinning, which is implic-
itly provided by MCSup, this technique can eliminate most remote memory accesses
and reduce contention. This helps reduce the execution significantly and, as the gray
dashed line in the figure shows, leads to execution times and overheads comparable
to the pure MPI version.
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Fig. 3 Speedup for the MatVec kernel and a cycle of AMG-GMRES(10) on a single node of Hera.

5 Scaling of AMG

In this section we present scaling results for BoomerAMG on three different multi-
core architectures: the quad-core/quad-socket Opteron cluster Hera at Lawrence
Livermore National Laboratory (up to 11,664 cores), the dual hex-core Cray XT-
5 Jaguar at Oak Ridge National Laboratory (up to 196,608 cores), and the quad-
core Blue Gene/P system at Argonne National Laboratory (up to 128,000 cores).
On each machine, we investigate an MPI-only version of AMG, as well as hybrid
versions that use a mix of MPI and OpenMP on node. For each experiment, we
utilize all available cores per node on the respective machine. We investigate the
performance of AMG-GMRES(10) applied to a Laplace problem on a domain of
size N×N×αN, where α = 1 on Hera and Intrepid, and α = 0.9 on Jaguar. The
domain is decomposed in such a way that each processor has 50×50×25 unknowns
on Hera and Intrepid and 50× 50× 30 on Jaguar. We consider both MPI-only and
hybrid MPI/OpenMP runs and use the notation described in Figure 4. In addition,
for Hera, we include a version, labeled “HmxnMC”, that uses the MCSup library
described in Section 4.

We use hybrid-GS as a smoother. The number of iterations to convergence varies
across experimental setups from 17 to 44. Note that, since both the coarsening al-
gorithm and the smoother are dependent on the number of tasks and the domain
partitioning among MPI tasks and OpenMP threads, the number of iterations can
vary for different combination of MPI tasks and OpenMP threads, even when using
the same problem size and number of cores. We present total times in Figure 4. Sep-
arate setup and cycle times for this problem on the three architectures are described
in the original paper [3].

It is immediately apparent that on the two NUMA architectures, Hera and Jaguar,
the MPI-only versions as well as H12x1 on Jaguar, perform significantly worse than
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HmxnMC denotes the use of MCSup
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the other versions, whereas on Intrepid the MPI-only version generally performs
best, with the exception of the less optimal processor geometries of 27,648 and
128,000 cores, where H2x2 is somewhat better. The worst performance on Intrepid
is observed when using 4 threads per MPI task. Note that not all of the setup phase
is threaded, leading to less parallelism when OpenMP is used, causing the lower
performance of H1x4 on Intrepid, which has significantly slower cores than Jaguar
or Hera. Interestingly enough this effect is not notable on Hera and Jaguar, which
are however severely effected by the fact that the algorithms in the setup phase are
complex and contain a large amount of non-collective communication leading to a
large communication overhead and network contention. This effect is still visible,
but less pronounced in the solve phase, which has a smaller amount of communi-
cation. On Hera, the worst performance for the solve phase is obtained for H1x16
(see [3, 4]), and is caused by the NUMA architecture. Using the MCSup library, see
H1x16MC, performance is significantly improved. In the setup phase there is no
NUMA effect for H1x16, since it mainly uses temporary storage, which is allocated
within an OpenMP thread and therefore placed into the right memory module. For
Hera and Jaguar initially the best times are obtained for the version that maps best to
the architecture (H4x4 for Hera and H2x6 for Jaguar), to be then surpassed by H2x8
for Hera and H1x12 for Jaguar, versions with smaller network contention. Note that
for the largest run on Jaguar, H1x12 takes more iterations than H2x6, causing H2x6
to be faster.

6 Conclusions

We investigated algebraic multigrid for exascale machines and considered both
mathematical as well as computer science aspects to achieving scalability. Our in-
vestigation of smoothers showed that hybrid-GS promises to work well for certain
problems even when we are dealing with millions or billions of cores. For more
complicated problems `1-GS and polynomial smoothers are a viable fully paral-
lel alternative to hybrid-GS because their convergence is not affected by the high
level of parallelism needed for efficient implementations on exascale machines. Our
tests showed that the performance of AMG varied across the three different multi-
core architectures considered. A general solution is not possible without taking into
account the specific target architecture. With the right settings we can achieve a
performance level using a hybrid OpenMP/MPI programming model that is at least
equivalent to the existing MPI model, yet has the promise to scale to core counts
that prohibit the use of MPI-only applications.
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