
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

SCALING AN OPTIMISTIC PARALLEL SIMULATION OF
LARGE-SCALE INTERCONNECTION NETWORKS

Nilesh Choudhury
Yogesh Mehta

Terry L. Wilmarth
Eric J. Bohm

Laxmikant V. Kalé

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801, U.S.A.

ber
cale
to
the
-

ob-
ng
ead
ing
us
In
et-
ent
g i
fic
ads
a

and

of
of

ue-
e
s a

ting
ing
ds
of

the
t of
d-
on
at
they
es,
as
ery
so
g-
an
lar
to
ilt

to
ge
en-
ns
of
all
le
u-
for
ks
es
ith
ns.
ited

r-
r.
ac-
ABSTRACT

Parallel computers today are designed with larger num
of processors than ever before, connected by large s
Interconnection Networks. Communication is the key
achieving high performance on such machines, making
study of Interconnection Networks important. Parallel sim
ulations of Interconnection Networks present a unique pr
lem characterized by fine-grained computation and stro
dependence among events. The absence of large lookah
makes it unsuitable to use a conservative simulation. Us
an optimistic Parallel Discrete Event Simulation allows
to extract reasonable parallelism from this simulation.
this paper we present BigNetSim, an Interconnection N
work simulator. We analyze its performance and pres
techniques related to enhancing performance and scalin
to a large number of processors on different artificial traf
patterns and real application logs. Inspite of the overhe
of a parallel optimistic simulation, we have achieved
breakeven with sequential simulation at four processors
demonstrate perfect scaling to 128 processors.

1 INTRODUCTION

New parallel computers with hundreds of thousands
processors, capable of achieving hundreds of teraflops
peak speed have been built recently. For example, Bl
Gene (BG/L) developed by IBM, when completed will hav
128K processors and is expected to achieve 360 teraflop
peak speed. Development of new applications and por
existing applications to such large machines is a challeng
task. Few applications today efficiently scale to thousan
of processors. Increasing machine size by an order
magnitude presents greater challenges.
ds

591
s

t

t

Recent history has shown years of lag time between
appearance of new parallel hardware and the deploymen
scientific applications which can efficiently use such har
ware. Performance prediction of applications via simulati
can provide insights to help optimize applications so th
they are ready to be run on actual machines as soon as
become available. Even for existing large parallel machin
time for tuning applications on large machines as well
the queueing time before allocation of nodes can be v
long. A simulator presents a more available alternative
that minimal supercomputing time is consumed by debu
ging and performance optimization. Furthermore, if we c
forecast the behavior of target applications on a particu
hypothetical machine design, we can use the simulation
inform the development process of future machines bu
from that design.

The BigSim project aims at developing techniques
help develop efficient scalable applications on very lar
parallel machines via accurate parallel simulation. Sequ
tial simulation is inadequate for extreme scale applicatio
as the data involved is too large to fit in the memory
a single machine. An important component of the over
simulation is BigNetSim, a parallel simulator for large-sca
interconnection networks. It simulates packet level comm
nication on detailed contention-based network models
large parallel computers. Parallel simulation of networ
with standard traffic patterns is a difficult task. It becom
even more challenging when the network is loaded w
communication transactions generated by real applicatio
The strong dependencies between events can result in lim
available work in segments of the network.

InBigNetSim, simulatedapplication computation is pe
formed by running the application on the BigSim emulato
The application’s event dependency and communication
tivities are recorded and stored in log files. BigNetSim rea



Choudhury, Mehta, Wilmarth, Bohm, and Kal´e

the
ed
ng
la-
h
a-
ic

o

in
c-
5

h a
n,
e-
nce
a-

ion
nt
in
im

et-
)

or
la-
l-

et-
le

re-
S
nt
-
tS
n
es
im
e-

R-
ch

nt
re-
ut-
l

ted
in
n

a

k

-
m-
2)
e
ves
n

ic
e

t,
ed
s a
.

ES
a-

ld
ce
ex-
s
ail

n
all
p-

ue

u-
the
are
on
these log files and models the communication load on
interconnection network model. This results in fine-grain
simulation since the computational overhead of modeli
packet transmission is negligible. The nature of the simu
tion makes event safety extremely difficult to predict wit
sufficiently large lookahead to utilize conservative simul
tion strategies efficiently. Thus, it is useful to use optimist
synchronization for such a network simulation. We usePose
(Wilmarth and Kalé 2004) as the simulation environment t
develop BigNetSim.

The paper is organized as follows. Related work
parallel network simulation is reviewed in Section 2. Se
tion 4 discusses the modelling of the network. Section
presents some performance optimization techniques suc
more fine-grained decomposition, increased virtualizatio
immediate GVT calculation and breaking application dep
dencies to avoid transient load imbalance. The performa
results with the standard traffic patterns and with applic
tion work loads are discussed in Section 6. This sect
also illustrates the impact of the performance enhanceme
in the network simulator. We present our conclusions
Section 7 and discuss our plans for augmenting BigNetS
in near future.

2 RELATED WORK

Simulation has proved to be a useful technique for n
work analysis over the years. Network simulator(NS
(Information Sciences Institute ) is a widely used simulat
which uses packet-level simulation and supports simu
tion of TCP, routing, and multicast protocols over genera
purpose wired networks like the Internet and wireless n
works. However, sequential simulation does not sca
for large-scale networks due to increasing memory
quirements and simulation time. Parallel/Distributed N
(COMPASS group ) includes extensions and enhanceme
to the original NS to allow it to run in parallel and ben
efit from the advantages of parallel simulation. GTSNe
(Fujimoto et al. 2003), a parallel packet-level simulatio
of a general-purpose network like the Internet, achiev
millions of packet transmissions per second. GloMoS
(Zeng, Bagrodia, and Gerla ) is a scalable simulation fram
work for wireless networks and is based on the PA
SEC (Bagrodia et al. 1998) simulation environment whi
adopts the process interaction approach to PDES.

High performance interconnection networks prese
certain unique issues. Achieving such performance
quires highly connected topologies, carefully chosen ro
ing algorithms, and particular buffering and flow contro
decisions. Diverse traffic patterns have been simula
to study and analyze different network architectures
SMART (Petrini and Vanneschi 1997). Recent simulatio
efforts involve parallel simulation for better scalability,
les

592
s

s

s

conservative parallel simulation of the IBM SP2 networ
(Benveniste and Heidelberger 1995).

Á la carte (Berkbigler et al. 2003) is aLosAlamoscom
puter architecture toolkit for extreme-scale architecture si
ulation which is based on the DaSSF (Liu and Nicol 200
framework. Another simulation (Nicol et al. 2003) of larg
scale communication networks based on DaSSF achie
faster than real-timesimulation. Ourwork in interconnectio
network simulation differs in the fact that we use optimist
strategies and virtualization for simulation. We use th
Pose (Wilmarth and Kalé 2004) simulation environmen
an optimistically-synchronized PDES environment bas
on the Time Warp (Das et al. 1994) mechanism that use
variety of adaptive (Das 1996) synchronization protocols

3 SIMULATION ENVIRONMENT

Pose is a general-purposeoptimistically-synchronizedPD
environment designed for simulations with fine comput
tion granularity and a low degree of parallelism.Pose
(Wilmarth and Kalé 2004) is implemented inCharm++
(Kalé and Krishnan 1993), aC++-based parallel program-
ming system that supportsvirtualization. Virtualization in-
volves the decomposition of a problem intoN asynchronous
chares or objects that execute onP processors (Kal´e 2004).
For best performance,N should be much greater thanP .
An advantage of this approach is that no object can ho
a processor idle while it is waiting for a message. Sin
N>>P , there are other chares on a processor that can
ecute in the interim. Thus, using virtualization maximize
the degree of parallelism. This is discussed in further det
in Wilmarth et al. (2005).

Posers represent sequential entities in the simulatio
model, behaving as tiny LPs which encapsulate very sm
portions of state as illustrated in Figure 1. A poser enca
sulates anobject virtual time (OVT), event methods which
receivetimestamped messages, a state, a local event que
and a synchronization strategy instance.

STATE

OVT
Data Fields

Event Methods

Event Queue

Strategy
Synchronization

Event Methods

Figure 1: Components of a Poser

Pose requires the programmer to decompose the sim
lation model into the smallest posers possible to achieve
best performance. The benefits of this decomposition
many. The local event queue limits the scope of simulati
overhead to the poser itself. A finer decomposition enab



Choudhury, Mehta, Wilmarth, Bohm, and Kal´e

th
ity
ive
P’s
on
nd
ti-
tai
e-
d
er-
he
to

.

ap
es
rt
h, a

,

er-
fo
n-

ors
as
e
l in

se
s.
and
c
).
o-
un

it
so
re-
m

-
ns

on-
s-
ur
e

The
of

-
et
ks
er
and
are
amp
ad
al
wn-
iled
es

nce

n-
ts
le-
de

n

g

tor,
ec-
n
a-
int
col-

t-
se
real
de-

ard
de,
IC

ges
.

ge
es.

n
ts

s
o the
te
be
t

less frequent checkpointing on smaller states, reduces
likelihood and effects of rollbacks, reduces the complex
of object migrations, and makes it possible to use adapt
synchronization strategies that are fine-tuned to an L
behavior. The drawbacks of a high degree of virtualizati
are the costs of management of per-object information a
the cost of more frequent context-switching between en
ties for each event. These trade-offs are studied in de
in Wilmarth et al. (2005) where we found that the ben
fits of higher degrees of virtualization strongly outweighe
these costs, with finer decompositions consistently outp
forming coarser ones as problem size increases. Hig
degrees of virtualization also enable programs to scale
more processors than do lower degrees of virtualization

Pose uses anadaptive synchronization strategy to con-
trol how events are executed on posers. The strategy ad
to a poser’s behavior and ranges from cautiously to aggr
sively optimistic. Traditionally, optimistic approaches so
arriving events and execute the earliest. In our approac
speculative window governs how far into the virtual time
future a poser may proceed. When a poser has controlall
the events within its window are executed as amulti-event.
Multi-events reduce scheduling and context switching ov
head and benefit from a warmed cache, compensating
some of the drawbacks like the startup time taken to co
struct the additional objects on the additional process
and a small additional overhead for object management
sociated with the high degree of virtualization. Adaptiv
synchronization and multi-events are discussed in detai
Wilmarth (2005).

Pose’s current strategy, Adept, is a general-purpo
strategy flexible enough to apply to a variety of simulation
Adept adapts a poser’s speculation to its past, current
likely future behavior. It outperforms traditional optimisti
strategies as described in detail in Wilmarth et al. (2005

Pose makes use of a fully asynchronous GVT alg
rithm invoked in a distributed fashion as processors r
out of sufficiently early events to execute and then transm
processor-level data via a reduction to a central proces
which computes the latest GVT. Should idle processors
ceive additional work, they may execute it in the interi
while waiting for the GVT to complete.

4 SIMULATION MODEL

BigNetSim is an effort to simulate large current and fu
ture computer systems to study the behavior of applicatio
developed for those systems. It simulates with reas
able detail an integrated model for computation (proce
sors) and communication (interconnection networks). O
earlier work on computation simulation for performanc
prediction, BigSim, assumed fixed message latencies.
BigSim emulator (Saboo et al. 2001) was the first phase
our performance prediction system.Charm++ andAMPI
593
e

l

r

ts
-

r

-

r

(Huang, Lawlor, and Kal´e 2003) applications can be com
piled to run on this emulator as though it were the targ
architecture. The emulator captures a collection of tas
(blocks of computation and communication) on a numb
of processors (objects) along with their dependencies
writes these tasks to log files. These application tasks
translated into discrete events. Each event has a timest
and originating and destination objects. The logs are re
by BigNetSim which simulates the execution of the origin
tasks by elapsing time, satisfying dependencies, and spa
ing additional tasks by passing messages through a deta
network contention model. This generates corrected tim
for each event which can be used to analyze its performa
on the target machine.

In this paper, we focus on the simulation of interco
nection networks in BigNetSim. The logical componen
of our abstract interconnection network model are imp
mented with posers. The hardware modelling of each no
has two posers:

• A computation unit which manages the executio
of computational tasks on the node

• A communication unit which manages incomin
and outgoing messages of the node

Each node has an additional virtual unit, a traffic genera
which generates artificial message traffic on the Interconn
tion Network. This allows us to study the interconnectio
network under a variety of conditions without using applic
tion task logs. The traffic generator can send point-to-po
messages, reductions, multicasts, broadcasts and other
lective traffic. It supports k-shift, ring, bit-transpose, bi
reversal, bit-complement and uniform random traffic. The
are based on common communication patterns found in
applications. The frequency of message generation is
termined by a uniform or Poisson distribution.

Each computation node has a network interface c
(NIC) that collects messages from the computation no
packetizes and puts them out onto the network. The N
is modeled with two posers:

• A send NIC which packetizes and sends messa
as packets. It models DMA and HCA delays
The delays are categorized for small and lar
messages and added to the message send tim
It responds to excessive load with an injectio
threshold that models deteriorating caching effec
as it gets overloaded.

• A receive NIC which receives packets, combine
them into messages and passes the messages t
node. Similar delay modeling is done to simula
precise NIC behaviour. These parameters can
set at runtime, allowing us to simulate differen
types of NICs.



Choudhury, Mehta, Wilmarth, Bohm, and Kal´e

ers
nne
er-
d by

d
he

red
he

es,
We
ns.
nd
ng
the
tive
be

also
al

The
n,
ks.
ar.
ed

ing
ts

for
ee

es
nd

al
re
ad,
for
as
e

ze
on
ins
r a

ues
n.
:

e
y
-

k

n
ly
e

h
ce

rs.
of
s,
to

d
it
-

a-
ing

-
ll-

age
of
ll

ion
m-
a

Channels in the InterconnectionNetwork, modeledaspos
are duplex channels. They model channel delays. A cha
connects a switch and a NIC or two switches. The Int
connection Network has switches connected as specifie
the topology. Switches can be distinguished as:

• Input Buffered (IB):A packet in a switch is stored
at the input port until its next route is decided an
leaves the switch if it finds available space on t
next switch in the route.

• Output Buffered (OB):A packet in a switch decides
beforehand on the next route to take and is buffe
at the output port until space is available on t
next switch along the route.

Figure 2: BigNetSim Conceptual Model

IB switches are mostly popular in current architectur
but research shows the potential that OB switches offer.
believe that OB can be the choice for future switch desig
Switches are modeled in much detail. Ports, buffers a
virtual channels at ports to avoid head-of-the-line blocki
are modeled. Hardware collectives are implemented on
switch to enable broadcasts, multicasts and other collec
operations efficiently. These are configurable and can
used if the system being simulated supports them. We
support configurable strategies for arbitration, input virtu
channel selection and output virtual channel selection.
configurability of the switch provides a flexible desig
satisfying the requirements of a large number of networ

At a higher level the entire design is extremely modul
New topologies and routing algorithms can be easily plugg
into the system. We use virtual cut-through packet switch
with a credit-based flow control to keep track of packe
in the network. The system supports virtual topologies
virtual channel routing which is essential for deadlock-fr
routing algorithms on most topologies.

Topologies implemented include N-dimensional mesh
and Tori, N-dimensional Hypercubes and K-ary N-trees a
594
,
l
Hybrid topologies. All topologies have physical and virtu
channel routing algorithms. Most routing algorithms a
adaptive. To support adaptivity based on the network lo
we developed a contention model and a load model
the Interconnection Network. Each port of a switch h
information which is dynamically updated and fed to th
routing engine to make informed decisions to minimi
contention. The load model maintains load information
each of the neighbors while the contention model mainta
information about the number of packets contending fo
particular output port of a switch.

5 PERFORMANCE OPTIMIZATION
AND SCALING

This section discusses performance optimization techniq
to enhance performance and scalability of the simulatio

Some important factors related to performance are

• Number of GVT synchronizations:This metric
gives an estimate of how much parallelism th
simulation has within the threshold controlled b
the simulation. A large number of synchroniza
tions implies there is very little speculative wor
within allowable limits.

• Phase time:This is the real time elapsed betwee
two GVT synchronizations. Phase time is direct
proportional to the amount of parallelism in th
simulation.

• Rollback fraction: The proportion of total time
taken for undoing speculative execution whic
could not be committed due to some dependen
violation.

• Communication fraction:The fraction of the to-
tal time spent communicating between processo
Since this application involves a large amount
communication with very small message size
communication becomes an important factor
consider.

• Speedup:The speedup of the simulation compare
to sequential execution of the same problem, if
fits in the memory of a single node. Sequential sim
ulation is more efficient as it avoids synchroniz
tion. Events are simply executed in non-decreas
timestamp order.

One throttling mechanism used byPose’s adaptive syn
chronization strategy is the speculative window. When ro
backs occur, the window size is reduced to the aver
rollback offset from the current GVT. In the absence
rollbacks, this window is allowed to expand. In almost a
runs the rollback fraction is under control and speculat
remains below 20%. Problems arise with ill-designed si
ulations which exhibit a high rollback fraction in spite of



Choudhury, Mehta, Wilmarth, Bohm, and Kal´e

the
uce
nd

ery
lem
(the
per-
lve
es-
grew
d a
on

it for
n’s

05)
sso
er
the

nts

nst
za-
a

p-
ks,
or.
eal
is
s

n.
olor
re-
ents
ith
ss

tch
lly
ject
any
ly
te-
as
.

h
ains
he
e,
as

low,
the
a
n
n
to
he

sed
oll-
a
e
ith
the
e

lcu-
s
d
i-

sor
out
rs
til
tightly constrained speculative window. This motivates
need for a finely decomposed simulation model to red
the likelihood of rollbacks and maximize computation a
communication overlap.

Initial analysis revealed that the phase time was v
small, at 5ms, and that it decreased with larger prob
size. Real speedup was poor, with a breakeven point
number of parallel processors needed to equal the
formance of a sequential execution) at close to twe
(Wilmarth et al. 2005). Increasing the number of proc
sors worsened the problem as each synchronization
more expensive. Idle time on each processor increase
there was a greater probability of a small load imbalance
any one of the processors causing all processors to wa
the last processor to finish its work. Thus, the simulatio
ability to scale was also limited.

Figures 3, 4, 5 and 6 are projections (Kale et al. 20
generated graphs for a 100ms time interval for a 16 proce
simulation of a 2048 node hypercube network. The form
two graphs cater to the analysis of the simulation before
optimizations, while the latter two depict the improveme
to the simulation that we finally achieved.

Figure 3: Usage Profile Before Optimization

Figure 4: Overview Before Optimization
595
s

r

Figure 3 presents a plot of processor utilization agai
the processors. The first bar shows the average utili
tion. Each entry method (function call) is represented by
different color on the plot, with the pink and red colors re
resenting the simulation environment book-keeping tas
while the white region represents idle time on a process
The other colors are the entry methods which do the r
work. It should be noted that not all the work here
forward execution, a significant part of it is work that i
later cancelled.

Figure 4 shows an overview of the actual executio
Each horizontal bar represents a processor. The green c
represents the work done by POSE while the yellow rep
sents actual simulation methods. The black area repres
idle time on a processor. Each phase is clearly visible w
a reduction followed by broadcasting the new GVT acro
all processors at the end of every phase.

Frequent synchronizations were caused by the swi
poser, which was large and complex with many loca
parallel events. Tracing the number of events on each ob
revealed that the switch handled many more events than
other poser. This caused it to rollback more often, rare
allowing the GVT to advance. It also had the largest sta
size, making each checkpoint expensive. The solution w
to decompose the switch into more fine-grained posers
Each poser representing a parallel entity in the switch.

Ports are logical parallel entities in a switch. Eac
port can be modelled as a separate poser that maint
its own state and is connected to channels or NICs. T
refactoring of the switch into ports was meticulously don
so as to avoid adding new events to the simulation. It w
essential to keep the number of events per packet hop
so that the refactoring does not degrade the speed of
interconnection network simulation. Currently, we have
refactored version for an Output Buffered (OB) switch. A
Input Buffered (IB) switch shares much more informatio
between ports at each arbitration, making it difficult
decompose. We hope to find efficient ways to refactor t
IB switch without stripping it of functionality.

Our results showed that the phase time had increa
and the number of GVT iterations had decreased. The r
back fraction remained within tolerable limits even for
large speculative window, On average the simulation tim
was reduced by half, however, good scaling eluded us. W
larger problem sizes on a large number of processors,
CPU utilization was low. The problem manifested as fin
load imbalances in the phases between each GVT ca
lation. ThePose GVT algorithm was fully asynchronou
(i.e. GVT calculation proceeds concurrently with forwar
execution of events), but relied on idling processors for in
tiation of the GVT reduction and the most loaded proces
for the completion of a phase. When a processor ran
of work, it would start a GVT update, but other processo
were not required to send their updated information un



Choudhury, Mehta, Wilmarth, Bohm, and Kal´e

ied
e-
le

was

ide
ld
is
um
e
at
tte

sors
VT
t fo
ed
m-
load
ore

d
dif-
lar

he
ad

ob-
ion
he
-

o be
enc

ther
e

ak

sed
nt
.
er
it

he
in
es
nd
nt
ce
m

o-
an

its
ally
ro-

ith
ge

sible
er

on

fic
net-
ely
a-

n of
tric
92
ork
they too ran out of work to do. Once all processors suppl
this information, the GVT reduction could reach compl
tion. Thus, subtle variations in available work caused id
time for some processors during a phase. The solution
expedited GVT calculation.

The first idle processor triggers all processors to prov
updated information immediately, after which they cou
continue with forward execution of available work. Th
reduced the transient load imbalance but increased the n
ber of GVT calculations. This is evident if we compare th
figure 4 with figure 5. The former shows a green line
the end of each phase for each processor, while the la
shows a synchronized thin green line across all proces
at the same time. This represents a new calculation of G
so that the least loaded processor does not have to wai
long before the phase ends. This optimization improv
the performance of larger sized problems on a large nu
bers of processors by another 50% where these subtle
imbalances between processors within phases were m
likely to occur.

Figure 5: Overview After Optimization

There still remained a wide load imbalance. Loa
seemed to be shifting from one processor to another in
ferent phases following a fixed pattern based on a particu
traffic pattern on a particular network. This hinted at t
existence of application specific dependencies in worklo
on the posers. We had been partitioning the input pr
lem based on the communication graph of the applicat
to minimize communication. This seemed logical as t
application is largely dominated by communication. How
ever, this caused posers that communicate more often t
placed on the same processor, causing a strong depend
relation. Work from one processor was passed to ano
in a fixed pattern in spite of randomness in the input. W
used various initial placements of objects to try to bre
596
-

r

r

e

the dependencies. Partial random, partially METIS-ba
(Karypis and Kumar 1996), and fully random placeme
were used, while maintaining computation load balance

Fully random initial placement was substantially bett
than all other placements. This could be attributed to
being able tobreak all control dependencesin the problem
more effectively and use virtualization to the maximum. T
improvement provided was substantial. This solution,
spite of being counter-intuitive, as it inherently increas
communication, minimizes the overall runtime. We inte
to perform further studies to find a better initial placeme
of objects, if possible, as this would be important to redu
communication, which is the bottleneck for large proble
sizes.

The final version with all the above techniques incorp
rated in the simulation performed nearly 3 times better th
what we started with (Wilmarth et al. 2005) and exhib
very good scaling to large problem sizes and substanti
large number of processors. Figure 6 shows that the p
cessor utilization is now much higher than previously, w
little idle time on each processor. In addition, the percenta
of rollbacks decreased as the large switch poser respon
for most rollbacks was taken out. This results in a larg
proportion of forward execution in the simulation.

Figure 6: Usage Profile After Optimization

6 RESULTS

This section presents performance results for BigNetSim
artificial and application generated traffic loads.

6.1 Standard Traffic Patterns

A uniform random traffic pattern using a Poisson traf
generation frequency is used to generate packets in the
work. This pattern was selected because it would clos
resemble the behavior of an arbitrary collection of applic
tions running on a supercomputer. The random selectio
destinations result in a repeatable but random asymme
load on the network. Network sizes range from 256 to 81
nodes. Each run has each node in the simulated netw



Choudhury, Mehta, Wilmarth, Bohm, and Kal´e

ng,
B

nal
nts
tion
m

ous
late
he
ase
on
ugh
of

zes
ory
ints
of

ws.
xe-
ith
n a
rn.

on.
er-

the
ssors

ops
to

o 4
ove.
ize.

rs

ar-
28
m-
ost
ween
for

ges.
ol-
the
kets
the

ses
u-
tion

of
li-
c-
m-
ing
generating 1000 packets. All runs were made on Turi
which is a cluster of 640 dual 2GHz G5 processors 4 G
RAM Apple Xserves connected by Myrinet.

We present some runs on Turing for the N-dimensio
Hypercube mentioned earlier in this section. We plot eve
per second, time of simulation and real speedup as a func
of the number of processors for input network sizes fro
256 nodes to 8192 nodes. Figure 7 shows that for vari
problem sizes the number of events/sec it can simu
is nearly constant for a fixed number of processors. T
simulation scales well as the number of processors incre
For smaller problem sizes, the performance dips down
large number of processors because there is not eno
work per processor to maintain a reasonable overlap
communication and computation. Very large problem si
on small numbers of processors run out of virtual mem
and physical memory, leading to poor performance. Po
in the graphs for large problem sizes on small number
processors are missing for this reason.

PEs
1 2 4 8 16 32 64 128

E
ve

nt
s/

s 
(x

 1
00

00
)

4

8

16

32

64

128

256
256 node HCube
512 node HCube
1024 node HCube
2048 node HCube
4096 node HCube
8192 node HCube

Figure 7: BigNetSim Events/Sec with TrafficGen

Figure 8 reiterates the same facts that Figure 7 sho
The simulation demonstrates good self scaling. The e
cution time for most problem sizes decreases linearly w
increasing number of processors. The same explanatio
above explains the points which do not follow this patte

PEs
1 2 4 8 16 32 64 128

T
im

e 
(in

 1
0 

se
c)

1

2

4

8

16

32

64

128

256
256 node HCube
512 node HCube
1024 node HCube
2048 node HCube
4096 node HCube
8192 node HCube

Figure 8: BigNetSim Time with TrafficGen

Figure 9 is a plot of speedup over sequential simulati
The breakeven point is approximately 4, when parallel p
597
.

s

formance executes faster than sequential simulation and
scaling seems to be near perfect as the number of proce
increases.

PEs
1 2 4 8 16 32 64 128

S
pe

ed
up

1

2

4

8

16

32
256 node HCube
512 node HCube
1024 node HCube
2048 node HCube
4096 node HCube
8192 node HCube

Figure 9: BigNetSim Speedup with TrafficGen

Table 1 gives an estimate of the number of packet h
in the simulated networks. The average ratio of events
packet hops varies from 4.5 for small networks to closer t
events per packet hop for larger networks simulated ab
It also presents the number of posers for each network s

Table 1: Interconnection NetworkSimulation Paramete
Network size

256 512 1024 2048 4096 8192

Packet Hops 1.2 2.82 6.15 13.3 28.7 61.5
(in millions)
Posers 5.1 11.3 24.6 53.3 115 246
(in thousands)

We analyze the communication requirements of the p
allel simulation next. For the 8192 node simulation on 1
processors, the problem fits in memory comfortably but co
munication reaches close to 50MB/s per processor. M
of these are small messages, with message sizes bet
250 and 300 bytes. Communication performance is poor
most interconnection networks for frequent small messa
The Myrinet communication layer handles this huge v
ume of communication, but for a 16384 node network,
communication layer starts dropping and resending pac
at an alarming rate, freezing the network cards, causing
simulation to slow down considerably and in most ca
not ending within the specified time. Thus, tuning comm
nication strategies to handle small message communica
on this scale is our next challenge.

6.2 Application Generated Traffic

Next we evaluate the communication requirements
real applications using BigNetSim. One such app
cation is the simulation of biomolecules using mole
ular dynamics. Molecular dynamics simulations co
prise a substantial fraction of current supercomput



Choudhury, Mehta, Wilmarth, Bohm, and Kal´e

ad
D
t
for
the

est
the
m-
gle
s of
on
ec-
e
en
ill

D
or
e
g
nts
File
im-

tes
ory
red
s a
ich
ility
d
es.
to

ve
ors,
ike
on,
s,
rge
ed
ion
at
ion

et-
ill
he
of
ss a
tive
m
ite
ghs
eve
ors

-
ous
ents
rate
ce.

ons,
on,
nd
ec
ors.
ing
ng a

ze
or-
tem
t-
gh
pes,
ag-
SE
all

oad

r
s

ign
ly
d-

ling

ce
lth
time, and therefore represent a highly typical worklo
for a high performance interconnection network. NAM
(Phillips, Zheng, Kumar, and Kal´e 2002), a state of the ar
parallel molecular dynamics application, was chosen
its unprecedented scalability and widespread usage in
molecular dynamics community.

To demonstrate BigNetSim performance at a mod
scale, representing a more typical application use than
extreme scale example in Wilmarth et al. (2005), we si
ulated a small 64 node run for 1000 timesteps of a sin
GlpF aquaporin channel (4210 atoms) on 32 real node
Turing. BigNetSim was then run using those applicati
trace files to simulate runs with a hypercube interconn
tion network with contention modelling on and off. Th
running time prediction accuracy of this simulator has be
presented earlier in Wilmarth et al. (2005). Here we w
evaluate the performance of the simulator.

Table 2 presents a scaling set of runs for the NAM
GlpF simulation. It shows simulation execution time f
BigNetSim with NAMD from 1 to 32 processors. Th
current simulation model for application simulations is lo
file based. Log file based post mortem simulation prese
additional constraints as the log size becomes large.
system and memory constraints can dominate overall s
ulation performance.

Table 2: Namd Simulation Performance Scaling
Number of processors

Seq 1 2 4 8 16 32

with IN 35.8 135 69.9 33.4 19.9 15 22
w/o IN 12.2 23.2 16.7 8.48 5.97 5 6.1

The above experiment is on a small log size (megaby
per simulated processor) which easily fits in the mem
of each processor. With file performance thereby facto
out, we achieve good performance scaling as well a
breakeven with sequential simulation at 4 processors, wh
reiterates our earlier results. This demonstrates the ab
of BigNetSim to perform with sufficient accuracy and goo
performance for real applications as well as simulated on
But as the logs are small, the problem size we are trying
simulate is also small, not allowing the simulation to ha
enough parallelism to scale to a large number of process
as there is not enough work. Some optimizations, l
replicating data on all the nodes performing the simulati
improve the simulation performance for small log size
however, these simple optimizations are not scalable to la
log sizes. To scale this, we need to get rid of log-bas
simulations and integrate BigSim and the Interconnect
Network Simulator more tightly, so that they interact
runtime. There are a number of issues with this integrat
which we are analyzing carefully.
arch

598
7 CONCLUSIONS AND FUTURE RESEARCH

Simulation of detailed contention-based interconnection n
work models for predicting parallel performance is st
quite challenging. This problem is characterized by t
fine granularity of computation and abundant amount
communication, as the entire state is largely shared acro
number of processing units. Furthermore, traces of itera
applications frequently evince a low degree of parallelis
when only their network load is being modeled. Desp
these challenges, we have had significant break-throu
using our performance optimization techniques to achi
a breakeven with sequential simulation at four process
and very good scaling until 128 processors.

Our optimistic simulation environment, POSE, intro
duces a new object model based on virtualization. Judici
use of the advantages this simulation environment pres
fosters the development of applications, which demonst
extremely good scaling and a very good overall performan
We have successfully demonstrated the use of optimizati
such as fine-grained decomposition, greater virtualizati
and immediate GVT calculation to improve performance a
scalability. BigNetSim has achieved 2.5 million events/s
for a 245,000 modelled entities (posers) on 128 process
This translates to approximately 2000 posers, contribut
an average of 20,000 events/sec per processor simulati
total of approximately 0.625 million packet hops/sec.

A challenge that remains to be solved is to optimi
the handling of small messages. Achieving better perf
mance for small messages in the Charm++ runtime sys
is critical for improving the overall performance of BigNe
Sim. We expect to optimize overall communication throu
adaptive message combining, smaller message envelo
and performance optimizations in the Charm++ mess
ing layer. Some improvements are possible with PO
reduction handling to distribute messaging load across
processors. This would balance out the communication l
and allow us to simulate larger networks.

BigNetSim itself will be enhanced to include highe
fidelity NIC modelling. Further performance prediction
for other applications like FEM, CPAIMD, leanMD will be
undertaken in more detail. Performance prediction des
currently involves log based simulations which ultimate
constrains scaling to file system performance with explo
ing log sizes. Tighter integration with BigSim to perform
simultaneous emulation and detailed interconnect model
will also be explored.

ACKNOWLEDGMENTS

This work was supported in part by the National Scien
Foundation (NGS0103645), theNational Institutes ofHea
(PHS 5 P41 RR05969-04), the Defense Advanced Rese



Choudhury, Mehta, Wilmarth, Bohm, and Kal´e

of

,
A
s.

u-

,

s.
t-

s.

ent

nd
r

.
ew

d
w

d
:

nd

tor

le
+.
ng

el

r-

al-
ng

ale

V.
k-

,

.
of

,

of

ro-
m

-

al

g
n.

r-
-
t

d-

in-

n

: a
s
d

l-
ent
e-
for
Project Agency (NBCH30390004) and the Department
Energy (B341494).

REFERENCES

Bagrodia, R., R. Meyer, M. Takai, Y. Chen, X. Zeng
J. Martin, B. Park, and H. Song. 1998. Parsec:
parallel simulation environment for complex system
Computer, Vol. 31(10):77-85.

Benveniste, C., and P. Heidelberger. 1995. Parallel sim
lation of the IBM SP2 interconnection network.Proc.
of Winter Simulation Conference, 584-589. Piscataway
New Jersey: IEEE.

Berkbigler, K., G. Booker, B. Bush, K. Davis, and N. Mos
2003. Simulating the Quadrics Interconnection Ne
work. High Performance Computing Symposium. Pis-
cataway, New Jersey: IEEE.

COMPASS group, G. T. Parallel/distributed n
<www.cc.gatech.edu/computing/compass/
pdns> .

Das, S.R. 1996.Adaptive protocols for parallel discrete ev
simulation.Proc. ofWinter SimulationConference, 186-
193. Piscataway, New Jersey: IEEE.

Das, S. R., R. Fujimoto, K. S. Panesar, D. Allison, a
M. Hybinette. 1994. GTW: a time warp system fo
shared memory multiprocessors.Proc. of Winter Simu-
lation Conference, ed. J.D. Tew, S. Manivannan, D.A
Sadowski and A.F. Seila, 1332-1339. Piscataway, N
Jersey: IEEE.

Fujimoto, R., K. Perumalla, A. Park, H. Wu, M.Ammar, an
G. Riley. 2003. Large-scale network simulation – ho
big? how fast?Proc. of 11th InternationalWorkshop on
Modelling, Analysis and Simulation of Computer an
Telecommunication Systems. Piscataway, New Jersey
IEEE.

Huang, C., O. Lawlor, and L. V. Kal´e. 2003. Adaptive MPI.
Proc. of 16th InternationalWorkshop on Languages a
Compilers for Parallel Computing. NewYork: Springer.

Information Sciences Institute, U. o. S. C. Network simula
NS-2. <www.isi.edu/nsnam/ns> .

Kalé, L., and S. Krishnan. 1993. CHARM++: A Portab
Concurrent Object Oriented System Based on C+
Proc. of Conference on Object-Oriented Programmi
Systems, Languages and Applications, ed. A. Paepcke,
91-108. New York: ACM.

Kalé, L. V. 2004. Performance and productivity in parall
programming via processor virtualization.Proc. of the
First International Workshop on Productivity and Pe
formance in High-End Computing. Piscataway, New
Jersey: IEEE.

Kale, L. V., G. Zheng, C. W. Lee, and S. Kumar. 2005. Sc
ing applications to massively parallel machines usi
projections performance analysis tool.Future Genera-
tion Computer Systems Special Issue on: Large-Sc
599
System Performance Modeling and Analysis. Amster-
dam, Netherlands: Elsevier Science Publishers B.

Karypis, G., and V. Kumar. 1996. Parallel multilevel
way partitioning scheme for irregular graphs.Proc. of
Conference on Supercomputing, 35. New York: ACM.

Liu, J., and D. Nicol. 2002.Dartmouth scalable simulation
framework user’s manual. Dept. of Computer Science
Dartmouth College, Hanover, NH.

Nicol, D. M., J. Liu, M. Liljenstam, and G. Yan. 2003
Simulation of large scale networks i: simulation
large-scale networks using ssf.Proc. of Conference on
Winter simulation, ed. D.M. Ferrin and D.J. Morrice
650-657. Piscataway, New Jersey: IEEE.

Petrini, F., and M. Vanneschi. 1997. SMART: a Simulator
Massive ARchitectures and Topologies.International
Conference on Parallel and Distributed Systems Eu
PDS’97. ed. Emilio Luque, Ali R. Hurson and Hesha
El-Rewini. Anaheim, Calgary, Zurich: IASTED/ACTA
Press.

Phillips, J. C., G. Zheng, S. Kumar, and L. V. Kal´e. 2002.
NAMD: Biomolecular simulation on thousands of pro
cessors.Proc. of Conference on SuperComputing. New
York: ACM.

Saboo, N., A. K. Singla, J. M. Unger, and L. V. Kal´e. 2001.
Emulating petaflops machines and blue gene.Workshop
on Massively Parallel Processing at the Internation
Parallel and Distributed Processing Symposium. Pis-
cataway, New Jersey: IEEE.

Wilmarth, T., and L. V. Kalé. 2004, August. Pose: Gettin
over grainsize in parallel discrete event simulatio
International Conference on Parallel Processing, 12-
19. Piscataway, New Jersey: IEEE.

Wilmarth, T. L. 2005.Pose: Scalable general-purpose pa
allel discrete event simulation. Ph. D. thesis, Depart
ment of Computer Science, University of Illinois a
Urbana-Champaign.

Wilmarth, T. L., G. Zheng, E. J. Bohm,Y. Mehta, N. Chou
hury, P. Jagadishprasad, and L. V. Kal´e. 2005. Perfor-
mance prediction using simulation of large-scale
terconnection networks in pose.Proc. of Workshop on
Principles of Advanced and Distributed Simulatio,
109-118. Piscataway, New Jersey: IEEE.

Zeng, X., R. Bagrodia, and M. Gerla. 1998. Glomosim
library for parallel simulation of large-scale wireles
networks.Proc. ofWorkshop on Principles of Advance
and Distributed Simulation, 154-161. Piscataway, New
Jersey: IEEE.

AUTHOR BIOGRAPHIES

NILESH CHOUDHURY is a PhD student at the Para
lel Programming Lab in the Computer Science Departm
at the University of Illinois, Urbana-Champaign. His r
search interests include communication optimization

<www.cc.gatech.edu/computing/compass/
pdns>
<www.isi.edu/nsnam/ns>


Choudhury, Mehta, Wilmarth, Bohm, and Kal´e

et-
d-

-
at

ch
op-
is

-
the
n-
llel

Her

lel
ent
-
m-
is

rt-
is
ting
ail
large machines, parallel simulations, interconnection n
works and parallel run-time environments. His e-mail a
dress is<nchoudh2@uiuc.edu> .

YOGESH MEHTA is a MS student at the Parallel Pro
gramming Lab in the Computer Science Department
the University of Illinois, Urbana-Champaign. His resear
interests include interconnection networks, performance
timization and parallel simulation. His e-mail address
<ymehta@uiuc.edu> .

TERRY WILMARTH is a Post-doctoral Research As
sociate in Computational Science and Engineering at
University of Illinois, Urbana-Champaign. Her research i
terests include parallel discrete event simulation and para
environments for highly adaptive unstructured meshes.
e-mail address is<wilmarth@uiuc.edu> .

ERIC BOHM is a research programmer at the Paral
Programming Lab in the Computer Science Departm
at the University of Illinois, Urbana-Champaign. His re
search interests include parallel simulation, quantum che
istry and molecular dynamics. His e-mail address
<ebohm@uiuc.edu> .

L.V. KALE is a Professor at the Computer Science Depa
ment at the University of Illinois, Urbana-Champaign. H
research interests span the broad area of parallel compu
and run-time environments and its applications. His e-m
address is<kale@uiuc.edu> and his web address is
<http://charm.cs.uiuc.edu/˜kale> .
600

<nchoudh2@uiuc.edu>
<ymehta@uiuc.edu>
<wilmarth@uiuc.edu>
<ebohm@uiuc.edu>
<kale@uiuc.edu>
<http://charm.cs.uiuc.edu/~kale>

