
Scaling Analysis of the Screening Length in Concentrated Electrolytes

Alpha A. Lee,1,* Carla S. Perez-Martinez,2 Alexander M. Smith,2,3 and Susan Perkin2,†
1John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

2Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
3Department of Inorganic and Analytical Chemistry, University of Geneva, 1205 Geneva, Switzerland

(Received 11 February 2017; published 14 July 2017)

The interaction between charged objects in an electrolyte solution is a fundamental question in soft
matter physics. It is well known that the electrostatic contribution to the interaction energy decays
exponentially with object separation. Recent measurements reveal that, contrary to the conventional
wisdom given by the classic Poisson-Boltzmann theory, the decay length increases with the ion
concentration for concentrated electrolytes and can be an order of magnitude larger than the ion diameter
in ionic liquids. We derive a simple scaling theory that explains this anomalous dependence of the decay
length on the ion concentration. Our theory successfully collapses the decay lengths of a wide class of salts
onto a single curve. A novel prediction of our theory is that the decay length increases linearly with the
Bjerrum length, which we experimentally verify by surface force measurements. Moreover, we
quantitatively relate the measured decay length to classic measurements of the activity coefficient in
concentrated electrolytes, thus showing that the measured decay length is indeed a bulk property of the
concentrated electrolyte as well as contributing a mechanistic insight into empirical activity coefficients.
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The structure of electrolytes near a charged surface and
the resulting force between charged surfaces in an electro-
lyte solution is a fundamental question in soft matter
physics. This question also underpins a plethora of appli-
cations, from supercapacitors [1] to colloidal self-assembly
[2]. The classic Debye-Hückel theory [3], valid only for
dilute electrolytes, predicts that the interaction between two
charged surfaces in an electrolyte decays exponentially
with the surface separation [4] with a decay length, called
the Debye length, given by

λD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵkBT

4πq2cion

s
≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πlBcion
p ; ð1Þ

where ϵ is the dielectric constant of themedium (which is ion
concentration dependent), kB the Boltzmann constant, T the
temperature, q the ion charge, cion the ion concentration, and

lB ¼ q2

ϵkBT
ð2Þ

the Bjerrum length. The Bjerrum length is the distance at
which the interaction energy between two ions in a dielectric
medium with dielectric constant ϵ equals the thermal energy
unit kBT. TheDebye-Hückel theory is amean-field theory for
asymptotically dilute electrolytes, i.e., where l3Bcion ≪ 1, so
that the average ion-ion separation is far greater than the
Bjerrum length, and thus the Coulomb interactions can be
treated as a perturbation to ideal gas behavior.
The physical picture is less clear for concentrated electro-

lytes: Recent surface force balance (SFB) studies show
that the interaction force between charged surfaces in an
ionic liquid (molten salt at room temperature) decays

exponentially but with a decay length that is orders of
magnitude longer than the Debye length or the ion diameter
[5–8]. The screening lengths in concentrated inorganic salts
are also long and increase with the electrolyte concentration
[8], in direct opposition to the prediction of the Debye-
Hückel theory. Therefore, the anomalously long screening
length is not a curiosity associated with ionic liquid chem-
istry but appears to be a universal feature of Coulomb
interactions between ions. Rigorous perturbative extensions
of the mean-field Poisson-Boltzmann equation have been
developed (see Refs. [9–12] for comprehensive reviews).
However, although those theories predict an increase in the
screening length for an increasing ion concentration, the
magnitude of the screening length and its dependence on
the ion concentration cannot be explained by those pioneer-
ing works.
In this Letter, we will first motivate the scaling theory by

showing that the screening length measurements reported
in the literature for diverse classes of electrolytes can be
collapsed onto a single curve and verify the scaling
relationship with a new set of SFB measurements where
the Bjerrum length is varied by changing the solvent but
fixing other variables. We will then relate the measured
screening length with classic measurements of the activity
coefficient as a function of the ion concentration to show
that the screening length is a property of the bulk
electrolyte. Finally, we will derive a simple scaling theory
that explains the dependence of the screening length on the
ion concentration and the Bjerrum length.
We begin with a simple exercise in dimensional analysis.

There are four salient length scales in the system: the
experimentally measured screening length λS, λD, and lB
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and the ion diameter a. We emphasize that the experimen-
tally measured screening length λS is extracted by fitting the
interaction force between charged surfaces as a function of
the surface separation to an exponential decay; the fact that
λS can be orders of magnitude larger than λD is a key result
of this Letter. Motivated by the seminal works by Kirkwood
[13,14] and subsequent molecular dynamics simulations
[15], a reasonable choice of dimensionless quantities is
λS=λD and a=λD, as the Bjerrum length is already in the
Debye length. Figure 1 shows that the screening lengths λS
of different electrolyte solutions agree with the Debye-
Hückel result [Eq. (1)] when a=λD ≪ 1 but follow a
universal scaling relationship

λS
λD

∼
�
a
λD

�
3

ð3Þ

in the concentrated regime a=λD > 1. The dielectric con-
stants of alkali halide solutions are taken from dielectric
spectroscopy studies [16–18], and the dielectric constants
of ionic liquid-solvent mixtures are estimated using the
effective medium theory [19]. For ion size estimates, we
take the mean ion diameter of alkali halides [20]. The
complex geometry of ionic liquid ions precludes a clear-cut
definition of the ion diameter, and we estimate the ion
diameter as c−1=3pair =2 of the pure ionic liquid, where cpair ¼
cion=2 is the ion pair concentration. We note that the salts
considered here are univalent and thus q ¼ 1.
The data in Fig. 1 cover a wide range of ion sizes and

chemical functional groups; thus, the scaling relationship is
a result of electrostatic interactions rather than specific ion
chemistry. The physical significance of Eq. (3) is perhaps
more transparent when rearranged as

λS ∼ lBa3cion: ð4Þ
The dependence of the screening length on the ion
concentration and the Bjerrum length is the opposite of
that predicted by the mean-field Debye-Hückel theory.
The data points in Fig. 1 differ in ion diameter, con-

centration and Bjerrum length. To provide a clean test of
the scaling relationship, Eq. (4), we perform a new set of
SFB measurements where the Bjerrum length is varied by
changing the solvent polarity and thus the dielectric
constant, but other variables are fixed by choosing the
same salt and the same concentration. The SFB technique
and detailed experimental procedures have been described
elsewhere [24,28]. For the reason of solubility, we used 2M
solutions of 1-butyl-1-methylpyrrolidinium bis[(trifluoro-
methyl)sulfonyl]imide (abbreviated ½C4C1Pyrr�½NTf2�,
Iolitec 99.5%) in propylene carbonate (Sigma-Aldrich,
anhydrous 99.7%), dimethyl sulfoxide (Sigma-Aldrich,
anhydrous 99.9%), acetonitrile (Sigma Aldrich, anhydrous
99.8%), benzonitrile (Sigma-Aldrich, anhydrous 99%), and
butyronitrile (Fluka, purity ≥ 99%).
Figure 2(a) shows that the measured screening lengths

are consistent with a linear increase with the Bjerrum

length, in agreement with Eq. (4). The dielectric constant of
the electrolyte solution is calculated using the effective
medium theory [19]. Another way to vary the Bjerrum
length is by changing the temperature. Figure 2(b) rean-
alyses SFB data from Ref. [7] for pure ionic liquids
½C2mim�½NTf2� and ½C3mim�½NTf2�. The screening length
increases linearly with 1=T, thus showing once again the
linear relationship between the Bjerrum length and the
screening length for concentrated electrolytes (assuming
that the dielectric constant is independent of the temper-
ature). In Supplemental Material [25], we estimate the
temperature-dependent dielectric constant and show that
the scaling is robust.
Thus far, we showed that the screening length follows

the scaling relationship Eq. (4) and is independent of the
ion chemistry. A lingering question is whether the screen-
ing length is a surface effect. To address this question, we
turn to inspect the relation between the screening length
and the activity coefficient, a bulk electrolyte quantity. If λS
is a bulk quantity, it is reasonable to posit, by analogy with
the Debye-Hückel theory, that the potential of mean force
between ions, vðrÞ, decays exponentially with λS as the
decay length [24], i.e.,

vðrÞ ¼
(
− 1

ϵr
ea=λS

1þa=λS
e−r=λS a < r;

− 1
ϵa

1
1þa=λS

0 < r < a:
ð5Þ

Assuming Eq. (5) holds, the electrostatic contribution to the
excess chemical potential is
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FIG. 1. Experimentally measured screening length λS [8,21–
24], normalized by λD, plotted against a=λD for a range of pure
ionic liquids (ILs), ionic liquid mixed with propylene carbonate
(PC) molecular solvent, and various 1∶1 inorganic salts in water.
One point for a pure protic ionic liquid, ethylammonium nitrate,
arises from a new surface force balance measurement by us. See
Supplemental Material [25] for a linear-linear plot.
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μex
kBT

¼ −
1

2

lB
λS þ a

: ð6Þ

We note that the Yukawa form accounts for the spherical
geometry of the ions, and Eq. (5) implies an exponentially
decaying force between two planar surfaces with decay
length λS, as observed in surface force measurements. The
prefactor in Eq. (5) is a simple consequence of charge
neutrality [24], and Eq. (6) is the same as the Debye-Hückel
solution for the excess chemical potential except with the

Debye length replaced by λS [43]. The excess chemical
potential (or the activity coefficient γ ¼ eμex=kBT) of simple
inorganic salts has been extensively tabulated in the classic
electrochemistry literature [29] using bulk measurements.
Therefore, comparing the excess chemical potential pre-
dicted by the measured screening length λS and Eq. (6) and
the excess chemical potential that is independently mea-
sured allows us to determine whether the measured screen-
ing length is a bulk quantity.
Figure 3 shows that the measured screening length

predicts the concentration dependence of the excess chemi-
cal potential of aqueous NaCl, supporting the hypothesis
that the measured screening length is indeed a bulk
quantity. We focus on NaCl, as screening length measure-
ments in the literature for other inorganic salts are scarce.
The upturn in the excess chemical potential is commonly
attributed to excluded-volume interactions [29] or the
combined effects of ion-solvent interactions and ion-ion
correlations [30–35]. Here, we show that the upturn can be
related to experimental measurements of the screening
length as a function of the ion concentration. Our model
is conceptually consistent with previous theoretical
approaches, as the screening length reflects both ion-ion
and ion-solvent correlations.
We finally turn to deriving a scaling theory for the

screening length. We first consider a thought experiment:
Suppose we put a grain of table salt, an ionic crystal,
between two charged surfaces and ask whether the salt
crystal screens the electric field. The answer is evidently
no, because the ions are immobile and thus the crystal
behaves as a dielectric slab. Now, suppose the crystal
contains Schottky defects. Charge transport in such a
defect-laden ionic crystal occurs via ions hopping onto
defect sites. Alternatively, reminiscent of particle-hole
symmetry, one could view the defect itself as the charge
carrier [37–39]. Defects in the sublattice of the cations
behave as negative charges, and defects in the sublattice of

(a)

(b)

FIG. 2. The measured screening length λS increases linearly
with lB: (a) Each data point corresponds to a 2M solution of
½C4C1Pyrr� ½NTf2� in a different solvent and therefore different
dielectric constant. Dielectric constants for the 2M solutions are
calculated using the effective medium theory [19]. The vertical
error bars arise from scatter between the experimental decay
length measured in different experiments and different force
profiles in the same experiment. The horizontal error bars
correspond to scatter in the literature values of the dielectric
constants. See Ref. [24] for an expanded discussion. (b) λS ∼ 1=T
for pure ionic liquids ½C2mim�½NTf2� and ½C3mim�½NTf2�. The
data (open circles and squares) are taken from Ref. [7]. The dotted
lines are the lines of best fit.

FIG. 3. The excess chemical potential of aqueous sodium
chloride solutions predicted using Eq. (6) and the experimentally
measured screening length agrees with direct measurements [36].
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the anions behave as positive charges [40]. The system
would be able to screen an external electric field, but the
charge carrier density that enters into the Debye length is
the defect concentration rather than the ion concentration.
An ionic crystal is an extreme example of a correlated

Coulombmeltwhere the ions are translationally immobile.A
concentrated electrolyte behaves similarly to an ionic crystal,
in the sense that the electric potential felt by an ion due to all
other ions is significantly greater than thermal fluctuations.
The role of Schottky defects is played by the solvent
molecules. Although solvents are charge-neutral molecules,
they disrupt ion-ion correlationby freeing upa site thatwould
have been occupied by an ion. Therefore, solvent molecules
acquire an effective charge analogous to a defect in an ionic
crystal. Indeed, the coupling between solvent concentration
fluctuations and charge fluctuations is observed inmolecular
dynamics simulations of ionic liquid capacitors [41].
We can put the physical intuition suggested above in a

more quantitative footing by rewriting the Debye length in
terms of “defect” concentration

λS ¼ ð4π ~q2solvlBcsolvÞ−1=2; ð7Þ

where csolv is the concentration of solvent molecules and
~q2solv is the mean-squared effective charge of a solvent
molecule relative to the charge of an ion; the mean charge
of a “defect” is zero in a symmetric electrolyte, because
it is as likely for a solvent molecule to be in the “cation
sublattice” as in the “anion sublattice.” Assuming the
system is incompressible, csolv ¼ ctot − cion, where ctot is
the total concentration of the system which is assumed to
be independent of the ion concentration.
The next step is to estimate the effective mean-squared

charge of a solvent molecule, or defect, in this concentrated
ionic system. Qualitatively, the defect takes the position of
an ion in this correlated ionic system, and as such the energy
of creating a defect must be comparable to the fluctuation
energy of the ionic system per ion. The energy of a defect
scales as Edefect ∼ ~q2solv. This can be seen via symmetry
(the defect energy is symmetric with respect to the charge
of the defect) or by noting that a uniformly charged sphere
of net charge q has a self-energy that scales as ∼q2.
The energy density of the ion system can be derived

using a dimensional analysis: The only relevant electro-
static length scale in a system where Debye-Hückel screen-
ing is negligible is the Bjerrum length. Therefore, one
would expect the energy density eion ∼ l−3B from a dimen-
sional analysis. This estimate is analogous to the fluctuation
energy for a dilute electrolyte, which is known to scale as
∼λ−3D [42], except the role of the Debye length in dilute
electrolytes is replaced by the Bjerrum length in concen-
trated electrolytes, because Debye screening is suppressed
by strong ion-ion correlation. The electrostatic energy per
ion is therefore Eion ∼ a3eele ∼ ða=lBÞ3. Equating Eion with
Edefect gives the scaling relationship

~q2solv ∼
�
a
lB

�
3

: ð8Þ

This charge scaling shows the important physics that strong
ionic correlations (large Bjerrum length) suppress thermal
fluctuations in the system and, therefore, the mean-squared
charge of a defect which is acquired through fluctuations.
Substituting (8) and the incompressibility constraint into

Eq. (7), we obtain

λS
λD

∼
½4πðctot − cionÞa3=l2B�−1=2

ð4πcionlBÞ−1=2
¼ C

�
a
λD

�
3

; ð9Þ

where C ¼ ðϕion
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕtot − ϕion

p Þ−1 and ϕion=tot ¼ cion=tota3.
Noting that the prefactor C is approximately constant for
concentrated electrolytes 2ctot=3 ≪ cion ≪ ctot, Eq. (9)
shows that the scaling obtained from this simple physical
picture agrees with the empirically observed scaling rela-
tionship, Eq. (3). For ionic liquids, although there is no
solvent molecule per se, the internal degrees of freedom in
the ions, in particular, the alkyl chains on the cation, could
perform the role of the solvent by disrupting order in the
strongly correlated ionic melt.
We next consider the ion concentration at which this

“ionic crystal” analogy becomes appropriate. The discus-
sion above suggests that the ionic crystal regime is reached
when the typical ion-ion electrostatic interaction energy is
greater than kBT. We can put this intuition in a more
quantitative footing: Consider a spherical blob of electro-
lyte of radius R in the bulk electrolyte. Modeling the blob
as a uniformly charged sphere, the fluctuation energy of the
blob is given by

Efluct ∼ kBTlB
hQ2i
R

; ð10Þ

where Q is the charge of the blob. If charge fluctuations in
the blob follow Gaussian statistics, then hQ2i ∼ Nion, where
Nion is the number of ions in the blob, which in turn is
related to the bulk density via Nion ∼ cionR3. Therefore,
Efluct ∼ kBTlBcionR2, and the fluctuation energy increases
with the blob size. The minimal blob size is obviously the
ion diameter, and the strong correlation regime is reached
when the fluctuation energy of even this minimal blob is
above kBT. In other words,

lBciona2 ∼ 1: ð11Þ
Equation (11) can be rewritten as a=λD ∼ 1, agreeing with
the experimental results (cf. Fig. 1).
In summary, we presented a series of experimental

results showing that the interaction between charged
surfaces in a concentrated electrolyte decays exponentially
with a decay length that follows the scaling relationship
λS ∼ lBciona3, where lB is the Bjerrum length, cion the ion
concentration, and a the ion diameter. This scaling relation-
ship is robust to varying the chemical functionalities and
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molecular features of the ions and holds for both ionic
liquid solutions and alkali halide solutions. We show that
the screening length is a bulk property of the electrolyte by
relating the screening length to the independently measured
excess chemical potential of electrolyte solutions. The
scaling relationship between the screening length, ion
concentration and the Bjerrum length supports a novel
physical picture: In a concentrated electrolyte, ions are
strongly correlated, and it is the neutral solvent molecules
that act as charge carriers; the solvent molecules acquire an
effective charge through thermal fluctuations. We show that
the empirically observed scaling relationship λS ∼ lBciona3

follows naturally from this physical picture.
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