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Granular surfaces subjected to forces due to rolling wheels develop ripples above a critical speed. The

resulting pattern, known as washboard or corrugated road, is common on dry unpaved roads. We investigated

this phenomenon theoretically and experimentally using laboratory-scale apparatus and beds of dry sand. A

thick layer of sand on a circular track was forced by a rolling wheel on an arm whose weight and moment of

inertia could be varied. We compared the ripples made by the rolling wheel to those made using a simple

inclined plow blade. We investigated the dependence of the critical speed on various parameters and described

a scaling argument that leads to a dimensionless ratio, analogous to the hydrodynamic Froude number, which

controls the instability. This represents the crossover between conservative dynamic forces and dissipative

static forces. Above onset wheel-driven ripples move in the direction of motion of the wheel, but plow-driven

ripples move in the reverse direction for a narrow range of Froude numbers.
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I. INTRODUCTION

The spontaneous rippling of gravel roads after the passage

of many vehicles is annoyingly familiar to drivers of un-

paved roads around the world. Avoiding or mitigating the

rippling effect, known as washboard or corrugated road, is a

significant engineering challenge �1–7�. We have argued re-

cently �8� that the rippling can be regarded as a type of

nonlinear pattern-forming instability �9� of the flat road

�10,11�. This nonlinear physics point of view is in many

ways complementary to the engineering one and leads to

new insights. We present here an experimental and theoreti-

cal study of the region near the onset of the instability, which

appears only above a critical threshold speed. We focus on

how this critical speed scales with various parameters. We

also survey some of the complex dynamics that occur above

onset �10�.
Washboard road is commonly and incorrectly assumed to

require the forced oscillation of the suspension of the vehicle

�7�. Although a suspension system does change the quantita-

tive details, ripple frequencies are generally quite far from

the free resonant frequencies of the suspension �2,7� and

ripples can appear even with no suspension present �8�. Here,

we consider a simplified experimental system in which a

wheel merely returns to the road surface under gravity. We

also study the even simpler case of a nonrotating angled

“plow” blade in place of the rolling wheel. In both cases,

well above onset, we find that the ripples travel down the

road in the direction of driving and that the wheel or plow is

thrown free of the roadbed between ripples. In the case of the

plow, there also exists a range just above onset where the

blade remains in contact with the surface and the ripples

travel in the reverse direction, against the direction of driv-

ing.

The rippling instability is quite robust and has analogs in

other similar effects on granular surfaces, such as wind �12�
and water-driven �13� ripple patterns. Other related phenom-

ena are, for example, periodic wear patterns on railroad

tracks �14�, mogul formation on ski slopes �15�, skipping

stones over water �16�, and certain failure modes of

computer hard disks �17,18�. What all these phenomena

have in common is a repeated nonlinear interaction between

a moving source of lateral and vertical contact stresses act-

ing on a deformable or erodible surface. The interaction in-

cludes the case when the source of stress, which both de-

forms and responds to the shape of the surface, complete-

ly leaves the surface so that the stresses go to zero. We pro-

pose a very general picture of the key mechanism of the

washboard instability in terms of a dimensionless group,

analogous to the hydrodynamic Froude number, which we

show controls the scaling of the onset speed. This analysis

may be broadly generalizable to the diverse situations cited

above.

Previous experimental work and soft sphere molecular

dynamics simulations �8� have shown that neither compac-

tion nor size segregation processes in the granular bed are

essential for the instability, contrary to some theories �11�.
Engineering studies �1–6� have mainly concentrated on op-

timizing the response of a suspension system to fully devel-

oped ripples and have not typically considered the threshold

of the instability. Using our approach, it may be possible to

suppress or delay the onset of this threshold by using appro-

priate control strategies based on the nonlinear dynamics of

the coupled wheel-roadbed system, which behaves in some

respect like an impact oscillator �19,20�.
This paper is organized as follows: in Sec. II, we describe

the experimental apparatus. This is followed �Sec. III� by a

qualitative discussion of the rippling phenomena that are ob-

served for both wheels and plow blades. In Sec. IV, we con-

sider the theory of the basic scaling of the onset speed, which

we then examine experimentally in Sec. V. Next, in Sec. VI

we discuss the regime of backward traveling ripples and in

Sec. VII we describe some of the rich variety of ripple states

that appear above onset. Finally, Sec. VIII is a brief conclu-

sion.
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II. EXPERIMENTAL METHOD

Two versions of the experimental apparatus were used in

this study, as shown in Fig. 1. The first was essentially that in

Ref. �8� and consisted of a 1 m diameter rotating table, with

a maximum rotation speed of 0.8 Hz, holding a 200 mm deep

layer of rough sand, producing a moving roadbed. This

passed under an arm that could hold either a rolling wheel or

a plow blade, which was stationary in the laboratory frame.

This arrangement has some advantages for visualization and

also the large moment of inertia of the table helps maintain a

constant speed. In the second version of the apparatus, the

arm holding the wheel or plow hangs from a rotating axle

over a 1.80 m diameter roadbed, which is stationary in the

laboratory frame. This version is larger and can reach higher

speeds, with a maximum axle rotation frequency of up to 1

Hz. In both versions, we used rough sand with a grain diam-

eter of 300�100 �m. We have previously shown �8� that

the shape and size of the grains is unimportant to the rippling

phenomenon. The density of the grains, which was not var-

ied in the present study, is however a crucial parameter, as

discussed in Sec. IV below.

Figure 2 shows the arm with the wheel and plow blade

configuration in detail. A light 330 mm long arm pivoted

around a point of support. An optional counterweight could

be added to the end opposite the wheel or plow. The weight

and transverse width of the wheel or plow can be varied, and,

in the case of the plow, the angle of attack � was also ad-

justable. The wheel used was smaller and lighter than that
described in Ref. �8�, having a diameter of 65 mm and a
typical width of 25 mm. The plow blade was typically 120

mm wide and inclined at an angle of �=40°.

The masses of the wheel or plow and counterweight could

be varied between 0.045 and 3 kg. As discussed in Sec. IV

below, these arrangements are dynamically equivalent to a

physical pendulum, as shown in Fig. 2�c�. Since the angle of

the arm � was small, the physical pendulum was always

nearly horizontal. Thus, the wheel or plow behaved as if it

was a freely falling object and the natural frequency of the

pendulum played no role. No spring or dashpot was used, so

this arrangement constitutes a minimal suspension having no

resonant or natural frequencies and only rather weak damp-

ing.

The wheel rolled freely and no torques were applied to it

other than that produced by contact with the surface. The

plow was simply dragged over the surface. The speeds were

inferred from measurements of the rotation rate of the table

and spanned the range of 0–6 m s−1. A magnetic angle sen-

sor �21� was attached to the pivot supporting the arm, and its

angle � was digitized and used to find the vertical position z
of the wheel or plow blade. z was measured with a vertical

accuracy of 0.2 mm at a rate of 2000 Hz. The position data

were acquired continuously along with data from an optical

encoder that generated a pulse in each table rotation.

The dynamics of the ripple pattern evolved rather slowly,

especially near the critical speed vc for the onset of the in-

stability. It was thus necessary to increase and decrease the

speed over periods of many hours to achieve quasistatic

steady state patterns. In some runs, the speed was ramped up

quickly from a standing start, beginning with a flat sand bed.

This protocol is analogous to making a rapid “quench” into

FIG. 1. The two versions of the experimental apparatus. The top

photo shows the setup in Cambridge, where the table carrying the

sand roadbed rotates beneath an arm holding a wheel or plow,

which is stationary in the laboratory frame. The bottom photo

shows the setup in Lyon, where the roadbed is stationary beneath an

arm that rotates. In both experiments the moving parts rotate coun-

terclockwise, as seen from above.

FIG. 2. Schematic views of �a� the wheel and �b� the plow

blade. �c� shows the geometry of the equivalent physical pendulum.

The plow is rigidly fixed to the arm and makes an angle of attack �

with respect to the horizontal.
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the rippled state. In other runs, a small perturbation was

made in the bed to act as a nucleation site for ripples.

III. QUALITATIVE RESULTS

In this section, we discuss some of the phenomena ob-

served before focusing on the scaling of the critical speed for

the onset of rippling in Sec. V. Initially, we tried preparing

the roadbed by running a comb through it to make a loose,

flat, granular assembly. However, if the experiment is run

continuously over a period of around 1 week ��100 000

rotations�, the bed gradually compacts and the thresholds and

amplitudes slowly change. We therefore used a different pro-

tocol where the sand was disturbed as little as possible. To

prepare a flat bed, the experiment was run at a speed below

the onset for many rotations. The results were then repeat-

able.

Ripples driven by either the wheel or the plow only ap-

pear above a well-defined critical speed vc. Below this speed,

perturbations made in the roadbed are observed to be

smoothed away by the action of the wheel or plow. For

speeds near vc, the growth rate of perturbations is nearly

zero, and it can take many thousands of rotations of the

experiment before ripples build up. The quasisteady state

ripples that develop after the initial transient have a very

small amplitude just above vc. For all cases, speeds well

above vc result in regimes where the wheel or plow is thrown

completely off the roadbed near the crest of a ripple before

landing again on the front face of the next ripple. The result-

ing large amplitude ripples are strongly asymmetric, with a

gradual rise on their front faces, and an abrupt slip face on

the back side. Nearer to vc, the ripples are more symmetrical.

The plow is observed to remain in contact with the sur-

face at all times near vc. The ripples move in the direction of

driving for wheels but may move in the reverse direction for

plows if v is close to critical. At larger speeds, ripples move

in the direction of driving in both cases. We discuss this

curious reversing behavior in Sec. VI below. Figure 3 shows

some representative space-time plots of ripple evolution after

a quench into the strongly unstable regime. During the tran-

sient, numerous ripple creation and annihilation events are

observed, resulting in adjustments of the pattern that tend to

propagate in the direction of driving. Figure 4�a� shows a

quench close to the threshold with the plow showing back-

ward ripples. Eventually, a quasisteady state of traveling

ripples is established. For sufficiently deep quenches, the

pattern can display multimodal behavior or persistent time

dependence, as discussed in Sec. VI. The final saturated am-

plitude of the ripples increases with the driving speed near

the threshold but shows nonmonotonic behavior far above.

It is easy to observe experimentally that vc depends on the

mass of the wheel or plow and the moment of inertia of the

arm. By changing the granular material, it was apparent �8�
that only the density of the roadbed material matters and not

the size or shape of the grains. These dependencies can be

accounted for by the scaling analysis discussed in Sec. IV.

IV. SCALING THEORY

In this section, we consider the dynamics of the arm as-

sembly and its interaction with the sand bed. We seek to

identify the essential physical parameters that govern the

scaling of the critical onset speed vc. To simplify the prob-

lem, we consider a strictly two-dimensional model in which

the transverse width of the wheel or plow is assumed to be

large compared to its penetration into the bed. This assump-

tion was exactly true for the soft sphere molecular dynamics

simulations discussed in Ref. �8�, which qualitatively repro-

duced all of the essential features of the experiment. The

validity of this simplifying assumption for the real experi-

ment will be discussed in Sec. V.

The geometry of the arm and plow assembly is shown in

Fig. 2�c�. The position of the assembly is completely speci-

fied by three points: the contact point with the bed, the pivot

position, and the location of the center of mass. These three

positions define two intrinsic lengths, the distance from the

pivot point to the center of mass � and the distance from the

pivot point to the contact point with the bed L. The angle �
between these lines is constant. The angle �-� between the

plow and the line to the pivot point is also fixed, whereas �
will vary as the bed deforms.

Dynamically, the system can be described as a forced

physical pendulum of length �, mass m, and moment of in-

ertia about the center of mass I. The latter two quantities

define another length �I /m. There is one additional length,

the transverse width of the plow or wheel w. Thus, to de-

scribe the whole assembly requires three angles ��, �, and ��
�which are of course nondimensional�, four lengths ��, L,
�I /m, and w�, the mass m, and the acceleration due to grav-

ity g. The properties of the bed involve only one additional

parameter, the sand density �, as will be discussed below.
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FIG. 3. �Color online� Typical space-time plots showing the

development of ripples from a flat bed, with red indicating a higher

arm position and blue indicating a lower arm position. Both parts

show 1000 rotations and have the same scale. The driving direction

is to the right. �a� A free wheel just above the critical velocity. �b�
The plow with v below the critical velocity for the first 300 rota-

tions and well above critical for the next 700 rotations.
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The gravitational force mg acts through the center of mass

and exerts a torque mg� cos��−�� about the pivot point. The

force of the bed on the arm is assumed to act entirely at the

contact point. It exerts a torque about the pivot point of

−L�N cos �+T sin ��, where N is the vertical �normal� force

from the bed and T is the horizontal �tangential� force. Since

the moment of inertia about the pivot point is I+m�
2, con-

servation of angular momentum gives

�I + m�
2��̈ = mg� cos�� − �� − L�N cos � + T sin �� . �1�

The vertical height of the contact point relative to the pivot

point is z=−L sin �. To determine how the onset speed vc
scales, we consider small displacements about a flat bed so

that � is small. This is sufficient since the transition to rip-

pling occurs at zero amplitude. We treat � as constant except

in the �̈ term where z̈=−L�̈. After dividing Eq. �1� by L and

substituting for z we get approximately

MI

cos �
z̈ = �N cos � + T sin �� − MGg cos�� − �� , �2�

where MI= �I+m�
2� /L2 is the effective inertial mass and

MG=m� /L is the effective gravitational mass.

MI and MG can be changed independently by adjusting �,

L, and m. They are equal if all the mass is located at the end

of the arm. If the angular dependencies are absorbed into the

definitions, that is, with MI�=MI /cos �, MG� =cos��−��MG,

and N�=N cos �+T sin �, then for small displacements �i.e.,

small changes in �� we have the equation of motion

MI�z̈ = N� − MG� g , �3�

which is simply that of a falling mass interacting with a

surface via a normal force N�. This equation holds for small

�, but for larger �, the coupling of the resistive force T to the

vertical motion becomes important. Our experiments concen-

trated on small �, but in Sec. V C, we discuss the results of

experiments where this condition is relaxed.

The mechanics of the granular road bed are not so

straightforward to model as those of the arm. We aim for a

minimal description that leads to the correct scaling of the

fully coupled problem. Much more detailed analyzes of the

rheology of the granular material would be required for a

very realistic description �3�.
We consider the case where the depth of penetration into

the bed is small compared to the width of the object, so that

we may assume that the induced flow in the sand will be

essentially two dimensional and that edge effects are small.

This assumption is probably violated in our experiments with

the narrowest wheels and plows.

The sand grains were dry and sufficiently large so that

they were noncohesive. Previous work �8� has shown that

changing the grain size does not change the wavelength, am-

plitude, or critical velocity of the ripples. Therefore, the

granular medium can be described by only its three-

dimensional density � and possibly by some other nondimen-

sional parameters. The shallowness assumption and two di-

mensionality mean that the density � of the sand and the

width w will only occur in the form of a two-dimensional

density �w and that the width should have no further role. It

may be possible to allow for some three-dimensional effects

by allowing a virtual origin correction in the width, though

we have not tested this.

To arrive at a plausible scaling, we examine the balance of

forces for a plow or wheel moving over and penetrating the

sand surface. Forces between the bed and the plow or wheel

arise in two distinct ways that scale differently with v—one

of these is almost entirely dissipative and the other of these is

almost entirely conservative. We postulate that the onset of

washboard ripples occurs when the relative sizes of these

forces cross over as a function of v. We consider the geo-

metrically simpler case of the plow first.

Static, buoyancy, or frictional forces must be proportional

to A�wg, where A is the displaced area of granular material.

For a plow penetrating a distance h=z0−z, where z0 is the

free surface position, they will be proportional to h2�wg.

These forces will be almost entirely dissipative. On the other

hand, dynamic forces, those arising from the inertia of the

sand, will be proportional to h�wv
2. These forces are mostly

conservative. We neglect the vertical velocity ḣ as small

compared to v. Ignoring constants and angular dependence,

we separately balance these two penetration forces against

the effective weight of the arm MGg. This gives the static

and dynamic equilibrium penetration depths,

hs =�MG

�w
, �4�
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FIG. 4. �Color online� Parts �a� and �b� show different segments

of a ten day experiment during which the speed was decreased in

steps of 0.0021 m s−1 every 500 rotations. The driving direction is

to the right. In part �a�, the speed is increasing from 0.684 to

0.691 m s−1 �Fr: 2.04–2.09�, triggering a transition from flat bed to

backward traveling ripples. In �b�, the speed is decreasing from

0.694 to 0.687 m s−1 �Fr: 2.10–2.06�, triggering a transition from

21 to 20 ripples. Here MG=0.0785 kg, w=0.120 m, �

=1201 kg m3, and the angle of attack � was 36.8°.
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hd =
MGg

v
2�w

. �5�

As v increases, the dynamic forces increase and the dynamic
penetration depth hd needed to support the weight decreases,
whereas the static forces are unaffected. Since the static
forces are almost completely dissipative and the dynamic
forces almost completely conservative, the switch between
the two that occurs as v increases explains the transition
from a highly dissipative furrow-plowing mode to one in
which the plow spends some of the time in nondissipative

ballistic flight. For low speeds v, the normal forces between

the plow and the sand do only dissipated work against fric-

tion, while for larger v, the normal force is sufficient to

throw the plow off the surface and into free flight. Ripples

are then formed and maintained by the periodic dissipative

collisions with the surface. The onset of washboard ripples in

this picture is thus somewhat analogous to the onset of skip-

ping for a stone projected over a water surface �16�. A key

difference, of course, is that the granular ripple pattern is

built up by many passes of the plow, each of which contrib-

utes only a small, but persistent, deformation of the surface.

The important nonlinearity in the problem is the highly non-

linear nature of the normal force, which abruptly goes to zero

when the plow leaves the surface, as is the case for impact

oscillators �19,20�.
The dimensionless ratio of the two penetration depths,

Fr =
hs

hd
=

v
2

g
� �w

MG
, �6�

is analogous to the Froude number used in similar hydrody-

namic arguments �16�. We propose �8� that this dimension-

less group controls the onset of the instability, with ripples

setting in above a critical threshold value of Fr=Frc. Our

scaling argument does not furnish any estimate of the value

of Frc beyond the general expectation that Frc�O�1�. We

establish experimental values of Frc in Sec. V below. We will

also show cases where the plow does not actually leave the

surface but still forms backward traveling ripples for Fr

�Frc.

We have physically motivated the identification of the

Froude number in terms of a crossover between dissipative

and conservative forces �22�, but it can also be deduced from

straightforward dimensional analysis. If the only relevant di-

mensional quantities of the arm that determine the transition

are its effective gravitational mass MG and its width w and if

we assume the two-dimensional model such that w and � can

only appear as the product �w, then Fr is the only dimen-

sionless group that can be formed from a combination of

MG, �w, v, and g.

The critical Froude number Frc will also depend on �, �,

� and possibly on other dimensionless properties of the bed.

If these are held constant, Eq. �6� implies that the critical

speed vc is given by

vc = �Frcg�1/2�MG

�w
	1/4

. �7�

In Sec. V A, we will show experimentally that vc, for the

plow, does indeed exhibit an MG
1/4 scaling. In Secs. V B and

V C, we consider the dependence of vc on w, �, and �.

The wheel is more complicated than the plow in some

ways as there is an additional length scale, the wheel radius

R. The displaced volume for a cylinder length w that pen-

etrates to depth h is

w�R2 cos−1�1 − h/R� − �R − h��2Rh − h2�

=
4

3wh�2Rh�1 + O�h/R�� . �8�

Thus the scaling is now A�h3/2 instead of A�h2, so that the

static depth is modified. For the wheel,

hs
wheel = R−1/3�MG

�w
	2/3

. �9�

The dynamic depth is the same thus the scaling of the Froude

number is changed to

Frwheel =
hs

wheel

hd
=

v
2

g
� �w

MGR
	1/3

. �10�

Thus, we predict the following relation for the critical speed:

vc
wheel = �Frc

wheel�g3MGR

�w
	1/6

, �11�

where numerical coefficients have been ignored.

To experimentally determine the relevant parameters of

the model, it suffices to determine the three constant quanti-

ties that appear in Eq. �2�, namely, MI, MG, and �. We sup-

ported the arm on a balance so that the bottom of the plow

was exactly level with the pivot point and �=0. Then the

force measured by the balance was N=MGg cos �. The

angle � was determined by suspending the arm from the

pivot point and measuring �. Then MGg cos��−��=0 and

�= �	 /2+�. Equation �2� for the suspended arm is simply

the equation of a free physical pendulum,

MIL�̈ = MGg cos�� − �� , �12�

which, for small amplitudes, oscillates with angular fre-

quency 
=�MGg /MIL. The length L was directly measured

with a ruler, while 
 was measured by triggering small os-

cillations, and then � was measured by using the magnetic

sensor. In this way, all the parameters in Eq. �2� were deter-

mined. All these quantities vary slightly with the angle of

attack � of the plow and so were measured for a range of �.

The plows of different width were carefully chosen so as not

to alter any of the properties.

V. SCALING OF THE THRESHOLD SPEED

To test the scaling theory outlined in Sec. IV, we mea-

sured the critical speed vc for a variety of plow and wheel

configurations. The transition speed is most accurately deter-

mined by running the system at a constant speed above vc
until a steady state has developed. The speed is then de-

creased by steps of 0.0016 m s−1 and kept at each speed for

1000 rotations. This is more accurate and quicker than start-

ing with an initial perturbation or flat bed and observing the

subsequent behavior as a very large number of rotations are
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necessary for the ripples to develop near vc. We also re-

corded the long-term dynamical states for a range of speeds

from below to well above onset.

As discussed in Secs. V A–V C, we added various masses

and counterweights to the arm, which has the effect of vary-

ing MI and MG, as well as varying the width of the plow w,

its angle of attack �, and the mean support angle �.

A. Variation with gravitational mass MG

Figure 5 shows the variation in vc with the gravitational

mass MG for the plow. The frontier between the flat bed and

the appearance of washboard ripples is well described by an

MG
1/4 scaling, corresponding to a critical Froude number of

Fr=2.58. This result clearly validates the theory presented in

Sec. V and indicates that the instability is controlled by Fr. It

is interesting to note that the first patterns encountered above

onset are backward traveling ripples for which the plow does

not lift off the surface. These are discussed in more detail in

Sec. VI below.

The scaling theory is less successful for the case of the

rolling wheel; Fig. 6 shows vc vs MG for the wheel. To

isolate the effects of rolling from the purely geometrical de-

pendence, we measured vc both for wheels that were free to

roll and for otherwise identical wheels that were “blocked”—

i.e., prevented from rotating. A blocked wheel behaves much

like a differently shaped plow.

Figure 6�a� shows that the predicted MG
1/6 scaling is con-

sistent with the blocked wheel data. However, experimental

limitations only allowed us to vary vc over a range of 20%,

so the correctness of this scaling is not conclusively demon-

strated. It is clear however that this scaling fails for the case

of a rolling wheel, as shown in Fig. 6�b�. This is perhaps not

surprising since arguments presented in Sec. IV were based

only on the geometry of the wheel and completely ignored

its rotation. Evidently, the rolling component of the motion

affects the surface penetration properties of the wheel, invali-

dating the scaling based only on geometry. The contact

forces for a rolling wheel and their effects on the deforma-

tion of the granular surface presumably scale with additional

powers of R /h and perhaps also depend on the moment of

inertia of the wheel. In any case, Fig. 6 shows that the gravi-

tational mass dependence of vc is extremely weak for

wheels, rolling or otherwise.

B. Variation with plow width w

The scaling argument presented in Sec. V depended on

the assumption that the motion was essentially two dimen-

sional so that only the two-dimensional density �w matters.

This is probably the most drastic approximation in the scal-

ing theory. Figure 7 shows how vc scales with w for the plow

for constant � and MG. The data are well fitted by a w−1/4

dependence, as predicted by Eq. �7�, and we do find that the

critical value of Fr remains constant even when w is varied

by a factor of 4. However, the w scaling can only hold for a

relatively small range of plow widths. For very narrow

plows, w�h and the two-dimensional scaling will break

down. On the other hand, for very wide plows w becomes a

significant fraction of the radius of the circular bed and thus

FIG. 5. �Color online� The domain of existence of the ripple

pattern for the plow as a function of the speed v and the gravita-

tional mass MG. The solid line corresponds to a constant Froude

number Fr=2.58. The inset shows v
2
/g vs �MG /�w�1/2, a scaling

for which Eq. �6� predicts the boundary to be a straight line.

FIG. 6. �Color online� The critical speed vc for the onset of the

ripple pattern for wheels. Part �a� shows vc vs MG for blocked or

nonrolling wheels, while �b� shows the same data for freely rolling

wheels. The solid line corresponds to a constant Froude number,

according to Eq. �11�, i.e., to an MG
1/6 power law dependence. It is

evident that the predicted scaling is not obtained for rolling wheels.
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there is a significant variation in v across the width. Figure 7

spans the intermediate range of w where a reasonable agree-

ment is obtained.

C. Variation with the angles � and �

The onset of the washboard ripples depended strongly on

the angle of attack of the plow � and on the arm angle �, as

defined in Fig. 2. � could be varied while keeping all other

parameters constant. � depended on the height of the sup-

porting structure and could be adjusted independently of �.

Due to experimental limitations, � could only be varied over

a range of about 15°. The two angles were, in fact, somewhat

interdependent, as the mean height of the bed could slowly

change over time due to compaction or to sand moving to

other parts of the table. In such cases, � and � both drifted

upward by a few degrees over the course of an experiment.

The simple scaling theory of Eq. �7� does not explicitly

predict the � and � dependences of the critical speed vc,

which would be expected to show up as a variation in the

critical Froude number Frc. Figure 8 shows how Frc de-

pended on �. We found that vc and hence Frc strongly de-

creased as � increased. This can be explained by the obser-

vation that the transport of sand along the bed increases

when � is increased. It is not a surprise, therefore, that the

velocity needed to trigger the washboard instability should

decrease with increasing �. The case of ��90°, a nearly

vertical plow, is somewhat peculiar. At this point, the transi-

tion becomes poorly defined and the amplitude noise near

onset greatly increases. At ��90°, it appears that other pa-

rameters such as the thickness of the plow may play an im-

portant role.

The systematic interdependence of � and � makes it quite

difficult to exactly repeat the experimental conditions. The

error bars in Fig. 8 are the precision that the transition can be

identified within a particular experimental run rather than the

somewhat larger error bars that would be obtained from try-

ing to achieve exactly the same � over many runs.

The critical speed vc also shows a strong dependence on

�. Figure 9 shows how the critical Froude number scales

with variations in �, with �=45° �3°. If we directly apply

Eq. �1� and make a naive model of the friction forces, we

would guess that

vc � 
g2MG

�w
�1/4� cos�� − ��

cos � + � sin �
	1/4

, �13�

where � is the unknown ratio between the normal force N
and the tangential force T. For O�1� values of � and small �,

this predicts that the critical Froude number should decrease

weakly with increasing �. This is the opposite of what is

observed. Clearly, the � dependence of the critical Froude

number is not so easily explained and a more detailed study

is required to account for it.
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FIG. 7. The dependence of the critical velocity vc on the width

w of the plow. The Froude numbers of the three points shown were

1.84, 1.86, and 1.99, and hence the critical Froude number Frc re-

mained approximately constant while w was varied. The solid line

shows a satisfactory fit to the w1/4 scaling expected from Eq. �7�.
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VI. BACKWARD-TRAVELING RIPPLES

In all experiments using wheels, including our previous

studies �8�, the ripples that appear just above onset were

observed to travel in the direction of driving. This agrees

with most, but not all, observations in previous engineering

studies �1�. However, ripples produced by a plow just above

onset always travel in the reverse direction, i.e., opposite to

the direction of driving, as shown in Fig. 4. The backward

travel reverses at higher driving speeds, but there is no

smooth transition from backward to forward ripples; there is

no speed where the ripples are stationary. If the speed is

rapidly stepped from below to well above vc, as in Fig. 3�b�,
the threshold speed above which backward ripples are ob-

served in the steady state appears to scale in the same way as

vc, as shown in Fig. 10. Backward traveling ripples only

exist for a narrow range of parameter values just above on-

set.

Another distinguishing feature of backward traveling

ripples is that ripple merger events, which are common near

onset for forward traveling ripples, generally do not occur.

This is because the backward ripples appear at the same

wavelength as in their amplitude-saturated state, whereas

there is a strong relationship between the wavelength and

amplitude for the forward ripples. This is related to another

difference: that the plow does not leave the granular surface

during backward ripple motion, while such ballistic motion

is always present for forward traveling ripples using the

plow.

The formation of backward traveling ripples is fundamen-

tally different from the inertial mechanism of forward trav-

eling ripples. Ripples can move backward even though the

sand is only transported forward. The surface flux of grains

in the driving direction depends not only on the normal force

but also on the geometry of the contact region. It is plausible

to suppose that the surface flux increases with the angle �
between the plow and the granular surface. Initially, �=�,

the fixed angle of attack of the plow, but as the ripples de-

velop, � is modulated by the ripples as the plow remains in

contact with the surface, as shown in Fig. 11. The result of

this modulation is that �, and hence the surface flux, is

smaller on the upward face of the ripple than on the down-

ward one. The upward face is therefore less eroded, while the

sand that is preferentially eroded from the downward face is

deposited on the upward face of the following ripple. Thus,

the net motion of the ripple is backward, while the grains are

still transported forward. A similar mechanism has been pro-

posed for the uphill motion of moguls on ski slopes �23�.
Conversely, in the case of forward traveling ripples, iner-

tial effects dominate and the plow leaves the surface and

goes into ballistic motion near the crest of the ripple. The

erosion is therefore on the upward face, while the downward

one forms a slip face that is added to by small avalanches

consisting of material transported from the upward face.

Thus, the ripples in the ballistic regime move forward in the

driving direction.

VII. MORE COMPLEX STATES

In the preceding sections, we have focused on the scaling

of the critical speed vc for the onset of the ripple pattern.

While a complete study of the states above onset is beyond

the scope of this paper, it is interesting to survey some of the

complex states that are encountered above vc. Figure 12

shows a selection of such fully developed ripple states.

Other than the flat bed, the simplest states are pure trav-

eling ripples, which are well described by single Fourier

modes. For wheels, these always travel forward, while for

the plow they travel backward near onset, as in Fig. 12�a�,
and forward for larger speeds, as in Fig. 12�c�. As the driving

speed v of the plow is increased, the backward traveling

ripple speed decreases, but it is never zero. Increasing v re-

sults in a low-dimensional chaotic state, as in Fig. 12�b�, in

which several Fourier modes are excited. Further increasing

v, we enter a regime of steady forward traveling ripples, but

here the plow spends much of the time in a free ballistic

trajectory between impacts. If these impacts are not periodic

around the table, there is some jitter between the phase of the

ripples and that of the table; this is visible in Fig. 12�c�. At

still higher speeds of the plow, a second chaotic regime is

reached, as shown in Fig. 12�d�.
The phenomenology for wheels differs in detail, but it is

similarly complex. For example, Figs. 12�e� and 12�f� show

wheel-driven ripple states consisting of two significant Fou-

rier modes that are not simply related. The two ripple modes

FIG. 10. �Color online� The domain of existence and transitions

for forward and backward traveling ripples using the plow. The data

and solid line show the transition between backward and forward

traveling ripples at Fr=3.80. The dashed line shows the onset of

backward ripples from the flat bed at Fr=2.58, as in Fig. 5.

β

β

FIG. 11. Schematic mechanism for the formation of backward

traveling ripples. The arrow shows the direction of motion of the

plow. If the rate of erosion by the plow increases with the angle �

with the surface, then material is preferentially removed from the

downward face of the ripple and deposited on the upward face of

the following one, giving rise to a net backward ripple motion.

During this process, the plow does not leave the surface.
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propagate with different speeds, producing a beating effect

that persists indefinitely. All of these complex states for

plows and wheels are reminiscent of the multiple dynamical

states of impact oscillators �20� in their strongly nonlinear

regime.

VIII. CONCLUSION

We have studied the rippling instability of a flat granular

surface under the action of a moving source of stress. We

considered both the classic case of a rolling wheel producing

“washboard road” and the simpler case of a flat plow blade.

In both cases, we focused on the region near the onset speed

vc. We developed a scaling theory for vc based on the idea

that the onset of the instability represents a crossover be-

tween conservative dynamic forces proportional to v
2 and

dissipative static forces that are independent of v. We found

that vc did scale with the gravitational mass as MG as pre-

dicted for the plow and for nonrolling wheels. These have

different scalings due to differences in their shape. However,

the predicted mass scaling was not found for rolling wheels,

suggesting that a more detailed theory of the surface penetra-

tion of a rolling wheel is required. We then considered the

dependence of vc on other various geometric parameters.

Finally, we surveyed some of the complex ripple dynam-

ics that are observed above onset, which include both for-

ward and backward traveling ripples, chaotic states, and
states with traveling defects. Clearly, understanding the

above-onset regime of finite amplitude ripples and their in-

teractions will require a fully nonlinear theory of the insta-

bility. Such a theory would need to go well beyond the

simple scaling of the onset speed vc that we have discussed

here.

Throughout this work, we have used the angular position

of the arm to trace the motion of the wheel or plow. To

completely close the feedback loop between the moving

source of stress and the state of the granular bed, we would

also need to measure the shape of the granular surface and

the rotational state of the wheel. This would allow us to

determine the full acceleration of the wheel or plow and

hence the forces on it, as well as the dynamic response of the

granular bed. The bed shape could be determined, for ex-

ample, by a scanning laser profilometer �24�. Another some-

what complementary avenue to the same kind of information

is the soft sphere molecular dynamics simulation �8� in two

dimensions or three dimensions. With these data, a realistic

dynamical model of the wheel-bed interaction could be de-

veloped, leading to a more complete continuum theory of the

washboard instability.
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