
The VLDB Journal

DOI 10.1007/s00778-006-0040-z

REGULAR PAPER

Scaling and time warping in time series querying

Ada Wai-Chee Fu · Eamonn Keogh ·

Leo Yung Hang Lau · Chotirat Ann Ratanamahatana ·

Raymond Chi-Wing Wong

Received: 10 October 2005 / Revised: 27 February 2006 / Accepted: 22 August 2006
© Springer-Verlag 2007

Abstract The last few years have seen an increasing

understanding that dynamic time warping (DTW), a

technique that allows local flexibility in aligning time

series, is superior to the ubiquitous Euclidean distance

for time series classification, clustering, and indexing.

More recently, it has been shown that for some problems,

uniform scaling (US), a technique that allows global scal-

ing of time series, may just be as important for some

problems. In this work, we note that for many real

world problems, it is necessary to combine both DTW

and US to achieve meaningful results. This is particu-

larly true in domains where we must account for the

natural variability of human actions, including biomet-

rics, query by humming, motion-capture/animation, and

handwriting recognition. We introduce the first tech-

nique which can handle both DTW and US simulta-

neously, our techniques involve search pruning by means

of a lower bounding technique and multi-dimensional

A. W. -C. Fu(B) · L. Y. H. Lau · R. C. -W. Wong
The Chinese University of Hong Kong,
Shatin, Hong Kong
e-mail: adafu@cse.cuhk.edu.hk

L. Y. H. Lau
e-mail: yhlau@cse.cuhk.edu.hk

R. C. -W. Wong
e-mail: cwwong@cse.cuhk.edu.hk

E. Keogh
University of California, Riverside, USA
e-mail: eamonn@cs.ucr.edu

C. A. Ratanamahatana
Computer Engineering Department,
Chulalongkorn University,
Bangkok, Thailand
e-mail: ann@cp.eng.chula.ac.th

indexing to speed up the search. We demonstrate the

utility and effectiveness of our method on a wide range

of problems in industry, medicine, and entertainment.

Keywords Dynamic time warping · Nearest neighbor

search · Scaled and warped matching · Subsequence

matching · Uniform scaling

1 Introduction

We propose to query time series with both the accommo-

dation of a scaling factor and the consideration of time

warping effects. In this section we justify our proposal

with some examples.

1.1 Justifying the need for uniform scaling and DTW

Because time series are near ubiquitous, and are becom-

ing increasingly prevalent as our ability to capture and

store them improves, there is increasing interest in the

database community in techniques for efficiently index-

ing large time series collections [9,27]. It is found that in

most domains, it is necessary to match sequences with

tolerance of small local misalignments, and dynamic

time warping has been shown to be the right tool for

this [6,17,35,38,29]. For example, in speech comparison,

small fluctuation of the tempo of the speakers should

be allowed in order to identify similar contents. More

recently, it has been shown that in many domains it is

also necessary to match sequences with the allowance of

a global scaling factor [20]. In this work, we argue that

for most real world problems, it is necessary to be able

to handle both types of distortions simultaneously. In

A. W. -C. Fu et al.

fact, even a casual glance of existing literature confirms

this. For example, in query-by-humming systems, it is

well-understood that we must allow for uniform scal-

ing in addition to DTW. The current solution is to sim-

ply do DTW at many resolutions that span the possible

range of tempos. For example, Meek and Birmingham

[24] reports “We account for the phenomenon of per-

sons reproducing the same tune at different speeds …

allow(ing) for nine tempo mappings.” However, repeat-

ing the query nine times clearly slows the system down.

Furthermore, it is possible that the best match occurs

somewhere in-between the nine discrete scalings. In [22],

the authors also note that in addition to the local prob-

lems handled by DTW, “(people can) perform faster or

slower than usual.” They again deal with this with mul-

tiple scaled queries, achieving reasonable performance

only by the use of parallel processing.

Dynamic time warping is frequently used as the basis

of gait recognition algorithms, but even in this highly

structured domain, it is recognized that uniform scaling

is also needed. For example, [16] notes “different gait

cycles tend to have unequal lengths.” In fact, even if

we discount human variability, it is well-understood that

parallax effects from cameras (static or pan-and-tilt) can

produce apparent changes in uniform scaling [15].

The need for uniform scaling has been noted in bioin-

formatics. Moeller-Levet et al. [25] noted that previous

work that addressed only local scaling (with DTW) is

inadequate, and they stressed that “(uniform) scaling

factors in the expression level hide similar expressions

and have to be eliminated or not considered when assess-

ing the similarity between expression profiles” [16].

Finally, the simultaneous need for both uniform scal-

ing and DTW is well understood in the motion-capture

and animation community. For example, Pullen and

Bregler [28], explaining their motion-capture editing

system, noted “we stretch or compress the real data frag-

ments in time by linearly resampling them to make them

the same length as the keyframed fragment …(then do

DTW).” The computational difficulty of dealing with

both uniform scaling and DTW at the same time has

even led to practitioners abandoning temporal infor-

mation altogether! Campbell and Bobick [4] used a

phase space representation in which the velocity dimen-

sions are removed, thus completely disregarding the

time component of the data. This makes the learning

and matching of motion patterns simpler and faster,

but only at the cost of a massive increase in false

positives.

Let us call “DTW with Uniform Scaling” SWM, which

stands for Scaled and Warped Matching. In this paper, we

study the combined effects of scaling and time warping

in time series querying.

0 10 20 30 40 50 60 70 800 10 20 30 40 50 60 70 800 10 20 30 40 50 60 70 80

Euclidean

DTW

Uniform Scaling

SWM

Fig. 1 Two examples of an athlete’s trajectories aligned with var-
ious measures

1.2 Motivating examples

We present two concrete examples that require SWM to

produce meaningful and intuitive results.

Example 1 (Indexing video) There is increasing inter-

est in indexing sports data, both from sports fans who

may wish to find particular types of shots or moves, and

from coaches who are interested in analyzing their athe-

letes’ performance over time. As a concrete example,

we consider high jump. We can automatically collect the

athlete’s center of mass information from video and con-

vert the data into a time series (It is possible to correct

for the cameras pan and tilt; see [8]). We found that

when we issued queries to a database of high jumps, we

got intuitive answers only when doing SWM. It is easy to

see why if we look at two particular examples from the

same athlete and consider all possible matching options,

as shown in Fig. 1. In this figure, we show four differ-

ent ways to match two time series, the horizontal axis is

the time axis. In each case, we have shifted one of the

two series upward to show the way the points in the two

series are matched. Each vertical line in the diagrams

shows the matching of two points. Visually, we can say

that the two time series are similar, and hence the dis-

tance between them should be small. We want to see

which of the four measurements can generate a result

that gives a small distance as expected. From top to bot-

tom:

Scaling and time warping in time series querying

• If we attempt simple Euclidean matching (after trun-

cating the longer sequence), we get a large distance

(which we can consider as error) because we are

mapping part of the flight of one sequence to the

takeoff drive in the other.

• If we simply use DTW to match the entire sequences,

we get a large error because we are trying to explain

part of the sequence in one attempt (the bounce

from the mat) that simply does not exist in the other

sequence. This problem can be corrected by con-

straints such as the Sakoe-Chiba Band, but without

scaling, the matching will be poor.

• If we attempt just uniform scaling, we get the best

match when we stretch the shorter sequence by

112%. However, the local alignment, particularly the

takeoff drive and up-flight, is quite poor.

• Finally, when we match the two sequences with

SWM, we get an intuitive alignment between the

two sequences. The global stretching (once again at

112%) allows DTW to align the small local differ-

ences. In this case, the fact that DTW needed to map

a single point in a time series onto 4 points in the

other time series suggests an important local differ-

ence in one of these sequences. Inspection of the

original videos by a professional coach suggests that

the athlete misjudged his approach and attempted a

clumsy correction just before his takeoff drive.

Example 2 (Query by Humming) The need for both

local and global alignment when working with music has

been extensively demonstrated [5,23,24,38]. For com-

pleteness, we will briefly review it here. Finding sim-

ilar sequences of music has applications in copyright

infringement detection, analyzing the evolution of music

styles [5], automatic annotation, etc. (It is interesting

to note that these studies are not confined to human

endeavors; similar techniques have been used in animal

“music” such as humpback whales and songbirds [23]).

However, the vast majority of research in this area is

used to support query by humming.

The basic idea of query by humming is to allow users

to search large music collections by providing an exam-

ple of the desired content, by humming (or singing, or

tapping) a snippet. Clearly, humans cannot be expected

to reproduce an exact fragment of a song, so the system

must be invariant to certain distortions. Some of these

are trivial to deal with. For example, the query can be

made invariant to key by normalizing both the query

and the database to a standard key. However, two types

of errors are more difficult to deal with; users may per-

form the query at the wrong tempo, and users may insert

or delete notes. The former corresponds with uniform

C = candidate
match

Q = query

C

Q (rescaled 1.54)

h
a

p
p

y

h
a

p
p

y

h
a

p
p

y

h
a

p
p

y

b
ir

th

b
ir

th

b
ir

thb
ir

th

- d
a

y - d
a

y

- d
a

y

-d
a

y

to

to

to yo
u

yo
u yo

u

d
e

a
r

--
--

- C

Q (rescaled 1.40)

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

C =

Q = query

C

Q (rescaled 1.54)

h
a

p
p

y

h
a

p
p

y

h
a

p
p

y

h
a

p
p

y

b
ir

th

b
ir

th

b
ir

thb
ir

th

- d
a

y - d
a

y

- d
a

y

-d
a

y

to

to

to yo
u

yo
u yo

u

d
e

a
r

--
--

- C

Q (rescaled 1.40)

Fig. 2 Two performances of Happy Birthday to You aligned with
different metrics. Both performances were performed in the same
key, but are shifted in the Y-axis for visual clarity

scaling, the latter with DTW. The music retrieval com-

munity has traditionally dealt with these two problems

in two ways. The first is to do DTW multiple times, at

different scalings [24]. However, this clearly produces

scalability problems. The other common approach is to

only do DTW with relatively short song snippets as que-

ries believing that short sequences are less sensitive to

uniform scaling problems than long sequences. While

this is undoubtedly true, short snippets also have less

discriminating power.

In Fig. 2, we demonstrate the problems with the uni-

versally familiar piece of music, Happy Birthday to You.

For clarity of illustration, the music was produced by the

fourth author on a keyboard and converted into a pitch

contour; however, similar remarks apply to other music

representations. From top to bottom:

• Because the query sequence was performed at a

much faster tempo, direct application of DTW fails

to produce an intuitive alignment.

• Rescaling the shorter performance by a scaling fac-

tor of 1.54 seems to improve the alignment, but note

for example that the higher pitched note produced

on the third “birth…” of the candidate is forced to

A. W. -C. Fu et al.

align with the lower note of the third “happy…” in

the query.

• Only the application of both uniform scaling and

DTW produces the correct alignment.

1.3 Contributions

This subsection summarizes the main contributions of

our research.

1. We reviewed existing time series similarity mea-

sures, including Euclidean distance, dynamic time

warping (DTW), and uniform scaling (US). We

showed that these measures are inappropriate or

insufficient for many applications.

2. We proposed a new time series similarity measure,

scaled and warped matching (SWM), that combines

the power of DTW and US to solve these real world

problems.

3. We derived a lower bounding function for SWM

that speed up time series matching, based on previ-

ous work in lower bounding DTW and US.

4. We experimentally showed the lower bounding

function was effective in pruning most of the data in

processing SWM query.

5. We proposed an optimization on the lower bound-

ing function that further reduced query time. We

showed the reduction in query time after apply-

ing the proposed optimization by extensive experi-

ments.

6. We proposed the use of index to further improve

the performance of time series matching under the

proposed SWM distance.

7. We evaluated the usefulness and performance of the

index in handling both one-nearest neighbor queries

and k-nearest neighbor queries.

1.4 Organization

The rest of this article is organized as follow. Having

developed the intuition for DTW and US, and having

demonstrated the need to handle both types of distor-

tions simultaneously, we will next define the problem

of similarity measurement under SWM more formally

in the following section. Section 3 explains dynamic

time warping (DTW), uniform scaling (US), as well as

the lower bounding distances (LB), on which this work

was built. Section 4 introduces our work on scaled and

warped matching (SWM). Section 5 suggests an optimi-

zation to speed up the computation of SWM. Section 6

explains the use of an index to further shorten query

time. Section 7 reports on the empirical study on the

proposed mechanisms. Section 8 concludes this work

and suggests possible future work.

2 Problem definition

Assume that we are given a database D which contains N

time series (note that this formulation does not preclude

the subsequence matching case, since it may be trivially

transformed into this formulation). Further, assume that

we are given a query Q, and a scaling factor l, where

l ≥ 1, which represents the maximum allowable stretch-

ing of the time series. The maximum allowable shrink-

ing is implicitly set to 1/l.1 Hence when we compare a

query sequence with a data sequence, either the query

or the data can be shortened by a factor of up to 1/l

or lengthened by a factor of up to l.2 Note that while

1/l is bounded below by zero, and l is bounded from

above by infinity, such loose bounds would allow path-

ological solutions to certain problems, and in any case

are surely impossible to support efficiently. We there-

fore restrict our attention to scaling factors in the range

0.5 ≤ 1/l ≤ 1 ≤ l ≤ 2. Note that this range encom-

passes the necessary flexibility documented in virtually

every domain we are aware of. For instance, in [24],

the authors reported excellent results with a query-by-

humming system that allows “a (maximum) tempo scal-

ing of 1.25.” Ref. [24] notes that in their experience,

amateur singers can speed up their rendition of a song

by as much as 200% or slow down to as little as 50%.

Recently, it has been shown that for nearly all types

of time series data, using appropriate global constraints

always improves the classification or clustering accuracy

and the precision and recall of indexing [29]. Therefore a

global constraint is typically enforced to limit the warp-

ing path to a roughly diagonal portion of the warping

matrix.

Given N variable-length data sequences and a query

sequence Q, we would like to find all data sequences

that are “similar” to Q. Suppose the query sequence is

Q = Q1, Q2, . . . , Qm, where Qi is a numerical value. We

are interested in tackling the following problem.

Problem Assume the data sequences can be longer than

the query sequence Q. Find the best match to Q in

database, for any rescaling in a given range, under the

dynamic time warping distance with a global constraint.

1 Such formulation assumes the maximum allowable stretching
and shrinking is symmetric. If this is not the case for a specific
application, it is trivial to add as an extra parameter: the maxi-
mum allowable shrinking s.
2 In our remaining discussions we sometimes talk about scaling
the data, while at other times we talk about scaling the query.

Scaling and time warping in time series querying

By best match we mean the data sequence with the

smallest distance from Q.

This problem has never been considered in the litera-

ture before. This problem is realistic in applications such

as query by humming.

Before proceeding to review the existing distance

measures, we note that, in some literature, uniform scal-

ing may also refer to scaling of the values of a time series

(scaling of the amplitude axis) [1,34]. However, this is

not the focus of this research.

3 Preliminaries

In this section, we review separately time series query-

ing with time warping distance and also querying with

the scaling effect. For each case, we can apply a lower

bounding technique for pruning the search space.

3.1 Time warping distance

Intuitively, dynamic time warping is a distance measure

that allows time series to be locally stretched or shrunk

before applying the base distance measure. Definition 1

formally defines time warping distance.

Definition 1 [Time warping distance (DTW)] Given two

sequences C = C1, C2, . . . , Cn and Q = Q1, Q2, . . . , Qm,

the time warping distance DTW is defined recursively

as follows:

DTW(φ, φ) = 0

DTW(C, φ) = DTW(φ, Q) = ∞
DTW(C, Q) = Dbase(First(C), First(Q))

+ min

⎧

⎨

⎩

DTW(C, Rest(Q))

DTW(Rest(C), Q)

DTW(Rest(C), Rest(Q))

where φ is the empty sequence, First(C) = C1, Rest(C)

= C2, C3, . . . , Cn, and Dbase denotes the distance

between two entries.

Several metrics were used as the Dbase distance in

previous literature, such as Manhattan distance [37] and

squared Euclidean distance [17,32]. We will use squared

Euclidean distance as the Dbase measure. That is,

Dbase(Ci, Qj) = (Ci − Qj)
2

Note, we deliberately omit the final square root func-

tion in our distance definitions. Such optimization speeds

up computations without altering the relative ranking

given by these distances, which is more important than

the actual value in most applications. The same optimi-

zation has been used before in [20]. However, if such

Table 1 An example warping matrix aligning the time series
{1, 2, 2, 4, 5} and {1, 1, 2, 3, 5, 6}

5 27 27 13 5 1 2

4 11 11 4 1 2 6

2 2 2 0 1 10 26

2 1 1 0 1 10 26

1 0 0 1 5 21 46
1 1 2 3 5 6

The warping path is highlighted in bold

Table 2 An illustration of the relationship between each element
and its adjacent elements in a warping matrix

DTW(C, Rest(Q)) DTW(C, Q)

DTW(Rest(C), Rest(Q)) DTW(Rest(C), Q)

The top right element DTW(C, Q) can be computed by looking up
the values of the top left, bottom left and bottom right elements,
which would have been computed already before the top right
element

optimization is not desired, we can also consistently

insert the final square root function without altering the

essence of this work.

It is well-known that dynamic time warping distance

can be computed by filling a warping matrix using a

dynamic programming algorithm directly derived from

the definition of time warping distance.

Table 1 shows an example warping matrix aligning

the time series {1, 2, 2, 4, 5} and {1, 1, 2, 3, 5, 6}. Table 2

illustrates the relationship between each element and

its adjacent elements. A warping path can be identi-

fied by tracing the elements in the warping matrix that

were used to compute the time warping distance. For-

mally, a warping path W for two sequences Q and C is a

sequence of elements w1, w2, . . . , wp so that wk = (ik, jk)

is an entry in the warping matrix, where ik ≥ ik−1 and

jk ≥ jk−1, max(|Q|, |C|) ≤ |W| ≤ |Q| + |C| − 1.3

3.2 Constraints and lower bounding

In the previous section we have explained with exam-

ples the importance of having global constraints on time

warping in order to give meaningful results. Ref. [17]

suggested a lower bounding measure based on such

global constraints on time warping. Two commonly used

global constraints exist. The Sakoe–Chiba Band limits

the warping path to a band enclosed by two straight

lines that are parallel to the diagonal of the warping

matrix [32]. The Itakura Parallelogram [14] limits the

warping path to be within a parallelogram whose major

diagonal is the diagonal of the warping matrix.

3 |X| denotes the length of a sequence X.

A. W. -C. Fu et al.

Ref. [17] viewed a global constraint as a constraint on

the warping path entry wk = (i, j)k and gave a general

form of global constraints in terms of inequalities on the

indices to the elements in the warping matrix

j − r ≤ i ≤ j + r

where r is a constant for the Sakoe–Chiba Band and r is

a function of i for the Itakura Parallelogram.

Incorporating the global constraint into the definition

of dynamic time warping distance, Definition 1 can be

modified as follows.

Definition 2 [Constrained DTW (cDTW)] Given two

sequences C = C1, C2, . . . , Cn and Q = Q1, Q2, . . . , Qm,

and the time warping constraint r, the constrained time

warping distance cDTW is defined recursively as fol-

lows:

Distr(Ci, Qj) =
{

Dbase(Ci, Qj) if |i − j| ≤ r

∞ otherwise

cDTW(φ, φ, r) = 0

cDTW(C, φ, r) = cDTW(φ, Q, r) = ∞
cDTW(C, Q, r) = Distr(First(C), First(Q))

+ min

⎧

⎨

⎩

cDTW(C, Rest(Q), r)

cDTW(Rest(C), Q, r)

cDTW(Rest(C), Rest(Q), r)

where φ is the empty sequence, First(C) = C1, Rest(C)=
C2, C3, . . . , Cn, and Dbase denotes the distance between

two entries.

The upper bounding sequence UW and the lower

bounding sequence LW of a sequence C of size m are

defined using the time warping constraint r as follows.

Definition 3 [Enveloping sequences by Keogh [17]] Let

UW = UW1, UW2, . . . , UWm and

LW = LW1, LW2, . . . , LWm,

UWi = max (Ci−r, . . . , Ci+r) and

LWi = min (Ci−r, . . . , Ci+r)

Considering the boundary cases, the above can be rewrit-

ten as

UWi = max
(

Cmax(1,i−r), . . . , Cmin(i+r,n)

)

and

LWi = min
(

Cmax(1,i−r), . . . , Cmin(i+r,n)

)

These two sequences form an envelope which encloses

the sequence C, as shown in Fig. 3.

The lower bounding measure by Keogh [17] bounds

the time warping distance between two sequences Q

and C by the Euclidean distance between Q and the

envelope of C (Dbase being the Euclidean distance).

Equation (1) below formally defines the lower bounding

distance:

LBW(Q, C) =
m

∑

i=1

⎧

⎨

⎩

(Qi − UWi)
2 if Qi > UWi

(Qi − LWi)
2 if Qi < LWi

0 otherwise

(1)

3.3 Uniform scaling

Consider a query sequence Q = Q1, . . . , Qm and a can-

didate sequence C = C1, . . . , Cn.

We assume that m is not greater than n (m ≤ n);

hence, the query is typically shorter than the candidate

sequence. We assume that the data can scale up or down

by a factor of at most l, where l ≥ 1. The entry Qm

may be matched to Clm when the data is expanded by

a factor of l. To simplify our discussion we shall assume

that lm ≤ n.

In order to scale time series C = C1, . . . , Cq to pro-

duce a new time series C′ = C′
1, . . . , C′

m of length m, we

use the formula

C′
j = C⌈j·q/m⌉ where 1 ≤ j ≤ m

This is similar to the formula used in [20]. We target

to find a scaled prefix in C to compare with Q. With a

scaling factor of l, q can range from ⌈m/l⌉ to lm.

Definition 4 [Uniform scaling (US)] Given two sequ-

ences Q = Q1, . . . , Qm and C = C1, · · · , Cn and a scaling

factor bound l, where l ≥ 1. Let C(q) be the prefix of

C of length q, where ⌈m/l⌉ ≤ q ≤ lm and C(m, q) be a

rescaled version of C(q) of length m,

C(m, q)i = C(q)⌈i·q/m⌉ where 1 ≤ i ≤ m

US(C, Q, l) =
min(lm,n)

min
q=⌈m/l⌉

D(C(m, q), Q)

where D(X, Y) denotes the Euclidean distance between

two sequences X and Y.

Note that the ceiling function in the definition of C(p, q)

may be replaced by the floor function. The whole defin-

ition of C(p, q) may also be replaced by some interpola-

tion on the values of C(q)�·q/p� and C(q)�·q/p�

3.4 Lower bounding uniform scaling

We create two sequences UC = UC1, . . . , UCm and

LC = LC1, . . . , LCm, such that

UCi = max
(

C⌈i/l⌉, . . . , C⌈il⌉
)

LCi = max
(

C⌈i/l⌉, . . . , C⌈il⌉
)

These sequences bound the points of the time series

C that can be matched with Q.

Scaling and time warping in time series querying

Fig. 3 Enveloping sequences
derived from two different
constraints

0 8 16 24 32 40 48 56 64

Sakoe−Chiba Band

Data Sequence
Sakoe−Chiba Band

0 8 16 24 32 40 48 56 64

Itakura Parallelogram

Data Sequence
Itakura Parallelogram

The lower bounding function, which lower bounds

the distance between Q and C for any scaling ρ, where

1 ≤ ρ ≤ l, can now be defined as

LBS(Q, C) =
m

∑

i=1

⎧

⎨

⎩

(Qi − UCi)
2 if Qi > UCi

(Qi − LCi)
2 if Qi < LCi

0 otherwise

(2)

Lemma 1 For any two sequences Q and C of length m

and n, respectively, for any scaling constraint on the warp-

ing path wk = (i, j)k of the form j/l ≤ i ≤ lj, the value of

LBS(Q, C) lower bounds the distance between C and Q

under a scaling of C between 1/l and l, where l ≥ 1.

Proof We can assume a matching path wk = (i, j)k which

defines a mapping between the indices i and j, so that

each such mapping constitutes a term (Qi − Cj)
2 to the

required distance. We will show that each term tlb in the

square root of our lower bounding distance LBS(Q, C)

can be matched with a term t resulted from the one-to-

one mapping, with tlb ≤ t.

Based on the constraints on the scaling factor, we have

the constraint j/l ≤ i ≤ lj between i and j in wk = (i, j)k.

From this, we have i/l ≤ j ≤ il and by definition

UCi = max
(

C⌈i/l⌉), . . . , C⌈il⌉
)

LCi = min
(

C⌈i/l⌉), . . . , C⌈il⌉
)

thus UCi = max(C⌈i/l⌉, . . . , Cj, . . . , C⌈il⌉) ≥ Cj, or

Qi − UCi ≤ Qi − Cj

If Qi > UCi then Qi − UCi > 0, hence

(Qi − UCi)
2 ≤ (Qi − Cj)

2

Similarly, we can show that if Qi < LCi then

(Qi − LCi)
2 ≤ (Qi − Cj)

2

⊓⊔

4 Scaling and time warping

Having reviewed time warping, uniform scaling, and

lower bounding, this section introduces scaling and time

warping (SWM)[11].

Definition 5 [Scaling and time warping (SWM)] Given

two sequences Q = Q1, . . . , Qm and C = C1, . . . , Cn,

a bound on the scaling factor l, where l ≥ 1, and the

Sakoe–Chiba Band time warping constraint r which

applies to a sequence of length m. Let C(q) be the prefix

of C of length q, where ⌈m/l⌉ ≤ q ≤ min(lm, n) and

C(m, q) be a rescaled version of C(q) of length m,

C(m, q)i = C(q)⌈i·q/m⌉ where 1 ≤ i ≤ m

SWM(C, Q, l, r) =
min(lm,n)

min
q=⌈m/l⌉

cDTW(C(m, q), Q, r)

To simplify our discussion we shall assume that lm ≤
n. We are interested in being able to scale the sequence

and also to find nearest neighbor or evaluate range query

by means of time warping distance. As noted in [20],

a naive search for the uniform scaling problem alone

requires O(|D| · (a−b)) time, where [b, a) is the range of

lengths resulting from scaling. Time warping computa-

tion alone requires O(n2) time for time series of length

n. Hence we need to find a more efficient technique for

the SWM problem.

In previous sections, we reviewed the lower bound-

ing technique for each sub-problem. Here, we propose

to combine these lower bounds to form overall lower

bounds for the querying problem. Figure 4 illustrates

this graphically.4

We apply time warping on top of scaling, i.e., we scale

the sequence first, and then measure the time warping

distance of the scaled sequence with the query. Typi-

cally, time warping with Sakoe–Chiba Band constrains

the warping path by a fraction of the data length, which

4 In this example, the scaling factor is l = 1.5, the time warping
constraint is r′ = 10% of the length of C.

A. W. -C. Fu et al.

Time Series C

Query Q

UC

LC

U

L

← LB(C, Q)

0 100 200 300

Fig. 4 An illustration of the SWM envelopes. From top to bottom:
A time series C and a query Q; the series C bounded from above
and below, respectively, by UC and LC, the envelope for scaling;
the series UC bounded above by U and LC bounded below by L,
forming the overall envelope for scaling and time warping; and the
lower bounding distance LB derived from the overall envelope

is translated into a constant r. Hence, if the fraction is

10%, then r = 0.1|C|. If the length of C is changed

according to the scaling fraction ρ, that is, C is changed

to ρC, then the Sakoe–Chiba Band time warping con-

straint is r = 0.1|ρC|. Hence, we have r = r′ρ, where r′

is the Sakoe-Chiba Band time warping constraint on the

unscaled sequence, and ρ is the scaling factor.

The lower envelope Li and upper envelope Ui on C

can be deduced as follows. Recall that the upper and

lower bounds for uniform scaling between 1/l and l are

given by the following:

UCi = max
(

C⌈i/l⌉, . . . , C⌈il⌉
)

LCi = min
(

C⌈i/l⌉, . . . , C⌈il⌉
)

and the upper and lower bounds for a Sakoe–Chiba

Band time warping constraint factor of r for a point Ci

are given by

UWi = max
(

Cmax(1,i−r), . . . , Cmin(i+r,n)

)

LWi = min
(

Cmax(1,i−r), . . . , Cmin(i+r,n)

)

Therefore, when we apply time warping on top of

scaling the upper and lower bounds will be

j= ilj = i/l

C’

C

C’

C

e.g. l = 2

ii

Fig. 5 An illustration of the scaling effect, given a sequence C, C′

is the result after scaling. Note that the Sakoe–Chiba Band time
warping constraint r′ applies to C. Hence the range of j is given by
[⌈i/l⌉ − r′, ⌈il⌉ + r′]

Ui = max
(

UW⌈i/l⌉, . . . , UW⌈il⌉
)

= max(Cmax(1,⌈i/l⌉−r′), . . . , Cmin(⌈i/l⌉+r′,n), . . . ,

Cmax(1,⌈il⌉−r′), . . . , Cmin(⌈il⌉+r′,n))

= max
(

Cmax(1,⌈i/l⌉−r′), . . . , Cmin(⌈il⌉+r′,n)

)

(3)

Li = min
(

LW⌈i/l⌉, . . . , LW⌈il⌉
)

= min(Cmax(1,⌈i/l⌉−r′), . . . , Cmin(⌈i/l⌉+r′,n), . . . ,

Cmax(1,⌈il⌉−r′), . . . , Cmin(⌈il⌉+r′,n))

= min
(

Cmax(1,⌈i/l⌉−r′), . . . , Cmin(⌈il⌉+r′,n)

)

(4)

The lower bound function which lower bounds the

distance between Q and C for any scaling in the range

of {1/l, l} and time warping with the Sakoe–Chiba Band

constraint factor of r′ on C is given by

LB(Q, C) =
m

∑

i=1

⎧

⎨

⎩

(Qi − Ui)
2 if Qi > Ui

(Qi − Li)
2 if Qi < Li

0 otherwise

(5)

Lemma 2 For any two sequences Q and C of length m

and n, respectively, given a scaling constraint of {1/l, l}
(see Sect. 2 on problem definition), where l ≥ 1, and a

Sakoe–Chiba Band time warping constraint of r′ on the

original (unscaled) sequence C, the value of LB(Q, C)

lower bounds the distance of SWM(C, Q, l, r′).

Proof The matching warping path wk = (i, j)k defines

a mapping between the indices i and j. Each such map-

ping constitutes a term t = (Qi − Cj)
2 to the required

distance. We will show that the i-th term tlb in our lower

bounding distance LB(Q, C) can be matched with the

term t resulting in a one-to-one mapping, with tlb ≤ t.

For the i-th term tlb, if Qi > Ui, then tlb = (Qi − Ui)
2; if

Qi < Li, then tlb = (Qi − Li)
2, otherwise tlb = 0, which

is always ≤ t.

For scaling plus time warping, as illustrated in Fig. 5,

the effective constraint on the range of j is given by:

⌈i/l⌉ − r′ ≤ j ≤ ⌈il⌉ + r′

Scaling and time warping in time series querying

By Eq. (3) and (4),

Ui = max
(

Cmax(1,⌈i/l⌉−r′), . . . , Cmin(⌈il⌉+r′,n)

)

Li = min
(

Cmax(1,⌈i/l⌉−r′), . . . , Cmin(⌈il⌉+r′,n)

)

thus Ui ≥ Cj, or Qi − Ui ≤ Qi − Cj

Hence if (Qi > Ui) then Qi − Ui > 0 and we have

(Qi − Ui)
2 ≤ (Qi − Cj)

2

Similarly, we can show that when (Qi < Li)

(Qi − Li)
2 ≤ (Qi − Cj)

2

⊓⊔

4.1 Tightness of lower bounds

In this section, we show that the lower bounds we have

described are tight. In general, to show that a lower

bound is tight, we need to only find a case where the

exact value is equal to the lower bound value. How-

ever, this is not exactly applicable in our scenario. For

the three lower bounds LBW(Q, C), LBS(Q, C), and

LB(Q, C) we have discussed so far, the formulae have a

similar pattern:

LB(Q, C) =
m

∑

i=1

⎧

⎨

⎩

(Qi − Ui)
2 if Qi > Ui

(Qi − Li)
2 if Qi < Li

0 otherwise

For each point in the query sequence, we have a lower

envelope value, e.g., Li and an upper envelope value,

e.g., Ui, so that the sequence Q can compare in order

to calculate the lower bounds. The values of Li and Ui

determine the lower bound value. We want to show that

both Li and Ui are “tight”. It can happen that for cer-

tain pairs of Q, C, the exact distance is equal to LB(Q, C)

but in the computation of LB(Q, C) not both of Li and

Ui are used, and hence we cannot be sure that both Li

and Ui are set as tight as possible.5 Hence we have the

following definition for tightness.

Definition 6 Consider a lower bound LB(Q, C) for a

distance D(Q, C) of the form

LB(Q, C) =
m

∑

i=1

⎧

⎨

⎩

(Qi − Ui)
2 if Qi > Ui

(Qi − Li)
2 if Qi < Li

0 otherwise

5 As an example, suppose Li is set to be the smallest possible
value, so that Qi < Li is always false, the corresponding LB(Q, C)

is still an lower bound, but obviously Li is not set tightly. Yet we
can have a pair of Q, C, where Q = C so that LB(Q, C) = D(Q, C).
Similarly, we can set Ui to be the greatest possible value so that
Qi > Ui is always false and similarly we can find Q = C so that
LB(Q, C) = D(Q, C). We can even set both Li to be small and Ui

to be big so that neither is tight but Q = C so that LB(Q, C) =
D(Q, C).

0

1

2

3

4

0

1

2

3

4

Q1 Q2

Q3

Q4

Q5

C1

C2 C3

C4

C5

Q1

Q2

Q3

Q4 Q5

C1

C2

C3 C4

C5

Fig. 6 Example sequence pairs (Q, C) in Lemma 3

0

1

2

3

4

5

0

1

2

3

4

5

Q1

Q2

Q3

Q4

C1

C3

C5

C7

C2

C4

C6

C8
Q1

Q2

Q3

C1

C3

C5

C2

C4

C6

Fig. 7 Example sequence pairs (Q, C) in Lemma 4

We say that the lower bound is tight, if there exists a set

of sequence pairs so that for each pair {Q, C} in the set,

D(Q, C) = LB(Q, C), and the Ui and Lj values for some

i, j are used [in the (Qi −Ui)
2 or (Qj −Lj)

2 term] at least

once in computing the lower bounds in the set.

Lemma 3 The lower bound LBW(Q, C) for the DTW

distance with the Sakoe–Chiba Band constraint is tight.

Proof Consider DTW with a Sakoe–Chiba Band con-

straint of r = 1. Hence in the warping path entry (i, j),

j − 1 ≤ i ≤ j + 1.

Select two pairs of {Q, C} as follows (illustrated in

Fig. 6):

Q = {1, 0.9, 2, 3, 4}, C = {1, 2, 2, 3, 4}
Q′ = {1, 2, 3, 4.1, 4}, C′ = {1, 2, 3, 3, 4}

It is easy to see that D(Q, C) = LBW(Q, C), and

D(Q′, C′) = LBW(Q′, C′).
For Q, C, Q2 < LW2 and hence LW2 is used in the

computation of LBW(Q, C).

For Q′, C′, Q′
4 > UW′

4, hence UW′
4 is used in the

computation of LBW(Q′, C′). ⊓⊔

Lemma 4 The lower bound LBS(Q, C) for the distance

between Q, C with a scaling factor between 1/l and l is

tight.

Proof Consider scaling between 0.5 and 2. Hence l = 2.

Select two pairs of {Q, C} as follows (illustrated in

Fig. 7):

Q = {4, 3, 2, 1}, C = {4.1, 4.1, 3.1, 3.1, 2.1, 2.1, 1.1, 1.1}
Q′ = {1.1, 3.1, 5.1}, C′ = {1, 1, 3, 3, 5, 5}

A. W. -C. Fu et al.

0

1

2

3

0

1

2

3

Q1

Q2 Q3

Q4

C1 C2 C3 C4

C5 C6

C7 C8
Q1

Q2

Q3 Q4

C1 C2

C3 C4 C5 C6

C7 C8

Fig. 8 Example sequence pairs (Q, C) in Lemma 5

It is easy to see that D(Q, C) = LBS(Q, C), and

D(Q′, C′) = LBS(Q′, C′).
For Q, C, LCi > Qi and all LCi are used in the com-

putation of LBS(Q, C).

For Q′, C′, UC′
i < Q′

i and all UC′
i are used in the

computation of LBS(Q′, C′). ⊓⊔

Lemma 5 The lower bound LB(Q, C) for the distance

between Q, C with a scaling factor bound l and time warp-

ing with the Sakoe–Chiba Band constraint r′ is tight.

Proof Consider a Sakoe–Chiba Band constraint of r′ =
1 and a scaling factor between 0.5 and 2. Hence l = 2.

Select two pairs of {Q, C} as follows (illustrated in

Fig. 8):

Q = {3, 1.9, 2, 1}, C = {3, 3, 3, 3, 2, 2, 1, 1}
Q′ = {1, 2, 3.1, 3}, C′ = {1, 1, 2, 2, 2, 2, 3, 3}

It is easy to see that SWM(Q, C, l, r′) = LB(Q, C),

and SWM(Q′, C′, l, r′) = LB(Q′, C′).
For Q, C, Q2 < L2 and L2 is used in the computation

of LB(Q, C).

For Q′, C′, Q′
3 > U′

3 and U′
3 is used in the computation

of LB(Q′, C′). ⊓⊔

5 A faster and more flexible approach

This section suggests an optimization that both speeds

up the lower bounding distance computation and incre-

ases the flexibility of the index built on top of this opti-

mization. As reported in Sect. 7, this optimization can

achieve considerable speed up compared to the original

method.

5.1 The enveloping sequences revisited

The use of enveloping sequences to define lower bound-

ing distances has been an increasingly popular technique

in speeding up time series query processing. However,

previous work that used this technique [17,20,38] were

inconsistent when choosing whether to envelope the

query sequence or the data sequence. To the best of

our knowledge, previous literature did not compare the

relative merits and demerits of enveloping the query

sequence or the data sequence. This may be partly

because authors tend to assume that the query sequence

and the data sequence take similar roles in the consid-

eration of the distances.

Ref. [17] and [38] chose to envelope the query sequ-

ence. This has the advantage that, since the construc-

tion of the enveloping sequences is defered until the

actual processing of a query, the index construction algo-

rithm and the index constructed are independent of the

parameters controlling the envelopes, such as the time

warping constraint in DTW and the scaling factor in

uniform scaling. A single index can be built to support

any queries that specify possibly different time warp-

ing constraint and scaling factor. The drawback of this

approach is that the enveloping sequences are specific to

individual query and must be rebuilt each time a query is

processed.

Ref. [20] chose to envelope the data sequence, instead.

One obvious reason is that they considered the length

of the data sequence to be longer than the length of

the query sequence, and the enveloping sequences are

made of the same length as the query sequence. The

immediate advantage of enveloping the data is that the

enveloping sequences can be pre-computed. Instead of

indexing the data sequences, these envelopes can also be

indexed in any spatial index as MBRs. However, using

this approach, the index is bounded to a particular enve-

lope for each data sequence. Multiple index structures

are required to answer queries specifying different time

warping constraint or scaling factor.

5.2 Speeding up lower bounding distance computation

Following [20], the original approach to solving the

SWM problem involves enveloping the data sequences.

From the above discussion, it is also possible to enve-

lope the query sequence, and as shown in [17] and [38],

there can be considerable benefits. However, in the defi-

nition of SWM, the roles of Q and C are interchanged,

instead of SWM(C, Q, l, r), we compute SWM(Q, C, l, r).

The definition of the lower bounding distance based on

this envelope is also slightly different.

Given the enveloping sequences, U, L of Q,

Ui = max
(

Qmax(1,⌈i/l⌉−r′), . . . , Qmin(⌈il⌉+r′,m)

)

(6)

Li = min
(

Qmax(1,⌈i/l⌉−r′), . . . , Qmin(⌈il⌉+r′,m)

)

(7)

The lower bound function which lower bounds the dis-

tance between Q and C for any scaling factor in SF =
1/l, l and time warping with the Sakoe–Chiba Band

Scaling and time warping in time series querying

constraint factor of r′ on C is given by

LB(Q, C) =
⌈m/l⌉
∑

i=1

⎧

⎨

⎩

(Ci − Ui)
2 if Ci > Ui

(Ci − Li)
2 if Ci < Li

0 otherwise

(8)

Note that in the above equation, instead of comput-

ing the sum of squared differences from i = 1 up to

i = m, the sum is computed only up to i = ⌈m/l⌉. This

modification is necessary because, in the extreme case,

the query sequence can best match with the data subse-

quence C1, . . . , C⌈m/l⌉ (after stretching of the query by a

factor of l).

We next show that this lower bound is tight by the

two sets of sequences (Q, C), (Q′, C′):
Q = {3, 2, 2, 2, 2, 2}, C = {3, 1.9, 2, 2, 2, 2} where m =

6, l = 2, r = 1. Obviously, LB(Q, C) = D(Q, C) and

C2 < L2, so that L2 is used in the term of (Ci − Li)
2 in

the computation.

Q′ = {1, 1, 3, 3, 3, 3}, C′ = {1, 1, 3.1, 3, 3, 3}, where m =
6, l = 2, r = 1. LB(Q′, C′) = D(Q′, C′) and C′

3 > U′
3, so

that U′
3 appears in the term of (C′

i − U′
i)

2 in the compu-

tation.

Since the number of terms in the summation in LB

(Q, C) have been reduced from m to ⌈m/l⌉, we may

expect that this lower bound is not as selective as the

lower bound for enveloping the data sequences. In gen-

eral, the best match between Q and C may make use

of more than m/l entries of C and the entries that are

not included in the summation introduce more inac-

curacy. From our experiments this modification affects

the pruning power of the lower bounding distance, but it

also reduces the computation time significantly. This can

be justified because m − ⌈m/l⌉ additions, subtractions,

and multiplications have been saved from each lower

bound function computation. Since the computation is

performed for each and every sequence, the aggregate

saving is more than enough to compensate for the time

required to process the increased false alarms. Further-

more, as the nearest neighbor search proceeds, the dis-

tance to the current nearest neighbor converges quickly

as soon as a few actual SWM distances, which are much

better estimates to the actual nearest neighbor distance,

are computed. In fact, similar results on DTW have been

reported in the literature [29,30].

6 Indexing for SWM

Next, we investigate the use of an index in speeding

up the computation of SWM queries. Both scaling and

time warping are to be handled at the same time. Fur-

thermore, we would like our index to be able to support

subsequence matching, in additional to whole sequence

matching. That is, we would like to find the best match-

ing time series subsequences in the database for a given

query.

6.1 Related work

The following subsections review existing subsequence

matching algorithms. These algorithms worked under

the Euclidean distance metric.

6.1.1 Fast subsequence matching

Faloutsos et al. [9] proposed the now ubiquitous method

of indexing time-series subsequences under the Euclid-

ean distance metric. The idea is to place a sliding win-

dow on every possible position of every data sequence.

For each such placement, a subsequence is extracted.

Dimensionality reduction technique such as Discrete

Fourier Transform is applied to reduce the subsequence

to a feature point in the f -dimensional space. Feature

points from nearby windows are grouped together to

span a minimum bounding rectangle (MBR). These

MBRs are stored in an ordinary spatial index such as

the R-Tree [12] and the R*-Tree [2]. MBRs are stored

instead of individual feature points because the number

of feature points can be as high as O(nl) where n is the

number of original data sequence and l is the length of

each data sequence.

To process a range query with range being ǫ, the

query sequence is divided into consecutive disjoint sub-

sequences. Each subsequence is again transformed to a

feature point in the f -dimensional space. A range query

is performed for each feature point. The union of the

results from these range queries form the candidate set.

It is proven that if the original tolerance (range) is ǫ

and the query is divided into p subsequences, no false

dismissal is generated even if each range query has a

tolerance as low as ǫ/
√

p.

6.1.2 Duality-based subsequence matching

More recently, Moon et al. [27] proposed another

approach for subsequence indexing that is a dual app-

roach to the one described above. This is a dual approach

because the roles of the data sequence and the query

sequence are exchanged. Each data sequence is divided

into consecutive disjoint subsequences. Each subse-

quence can be indexed using a spatial index.

In order to guarantee no false dismissal, a sliding

window must be placed on a query sequence. Naively,

a range query can be performed on each subsequence

obtained. However, this requires repeated accessing of

the index structure, incuring extra page accesses.

A. W. -C. Fu et al.

Query region
MBRs

Feature points

Fig. 9 It is less likely that a query region will overlap with the
feature points (compared to overlapping with an MBR)

Q1

C

Q2

Fig. 10 Query must be sufficiently long to include at least one
disjoint subsequence at every alignment with the data sequence
C − Q1 is long enough but Q2 is too short

Consequently, instead of performing range query indi-

vidually, several subsequences can be grouped together

to span an MBR. These MBRs are appropriately

enlarged by the user specified tolerance at each dimen-

sion. A query is performed based on each resulting

enlarged MBR. The union of the results form the can-

didate set. The actual sequences corresponded to the

entries in the candidate set are retrieved to compute the

actual distance from the query.

The advantage of Moon’s approach over Faloutsos’

is that individual feature points, instead of MBRs, are

stored. It is anticipated that fewer false alarms will be

generated because it is less likely that a query region will

overlap with the feature points (compared to overlap-

ping with an MBR), as illustrated in Fig. 9. Our envelop-

ing technique on the query translates naturally to query

regions (or query MBRs). It is intuitive that enclosing

the query regions in an MBR would produce fewer false

alarms than enclosing the data with another MBR.

However, since a query may match a data subse-

quence at any offset but only disjoint subsequences are

stored in the database, a query matching a data subse-

quence may not necessarily contain a subsequence cor-

responding to the disjoint subsequence. To guarantee

the correctness of Moon’s approach, a query must be

sufficiently long to include at least one disjoint subse-

quence at every alignment with the data sequences as

shown in Fig. 10.

Formally, Moon et al. [26,27] proved the following

lemma about the number of disjoint subsequences

included by a query of a given length.

Lemma 6 If a sequence C is divided into disjoint sub-

sequences of length ω, the minimum number of disjoint

subsequences p included by a query of length l is given

by p = ⌊(l + 1)/ω⌋ − 1

As a consequence of Lemma 6, Moon et al. [26,27]

also proved the following lemma about the relationship

between the maximum length of a disjoint subsequence

and minimum length of a query holds.

Lemma 7 If the minimum length of a query sequence is

given by min(Q), then the maximum length of a disjoint

subsequence is given by ⌊(min(Q) + 1)/2⌋

6.1.3 Dimension reduction

It is well-known in the database community that most

tree indexing structures suffer from “the curse of dimen-

sionality”, that is, the performance of these tree indices

start to degrades increasingly rapidly as the number of

dimensions of data increases. And, eventually, it

becomes so slow that even a linear scan of data is faster,

rendering the index useless. Fortunately, it is still possi-

ble to make use of indices to speed up query by index-

ing a dimension-reduced version of the data. Previous

work [17,18,21,36] showed promising results that only a

very small dimension was necessary for an index to effec-

tively speed up query computation, making the index

very compact.

Several dimension reduction techniques exist. Among

them, the Piecewise aggregate approximation, other-

wise known as piecewise constant approximation or

segmented means, or PAA in short, was shown to be an

intuitive and extremely fast dimension reduction

method that is especially suitable for time series [18,36,

38]. Zhu and Shasha [38] proved that the lower bound-

ing property for time warping distances is preserved

when defined over the PAA version of the enveloping

sequences. With similar arguments the lower bounding

property is also preserved for SWM with PAA.

6.2 Proposed indexing for SWM

This subsection describes an index that supports scaled

and warped matching of subsequences.

In essence, the enveloping technique enables the con-

struction of indices supporting scaled and warped match-

ing (and in general, any measures that do not follow the

triangular inequality) by introducing a lower bounding

distance that satisfies the triangular inequality. Conse-

quently, almost any spatial access methods such as the

R-Tree [12], the R∗-Tree [2], and the X-Tree [3] can

be used as the underlying indexing structure. Applying

different envelopes on the query sequence allows the

Scaling and time warping in time series querying

index to support arbitrarily-defined measures for which

the enveloping technique is applicable, such as scaled

and warped matching.

6.2.1 Index construction algorithm

Algorithm 1 shows the index construction algorithm.

Each data sequence is divided into ⌊|C|/ω⌋ disjoint sub-

sequences each of length ω, where |C| denotes the length

of a sequence C. Piecewise aggregate approximation is

used to reduce the dimension of these subsequences by

constructing the PAA representation for each subse-

quence. The PAA representation of these subsequences

is inserted into the index structure, together with its ID.

Note that only disjoint subsequences are stored, so the

index can be kept to a reasonable size. However, these

subsequences are stored directly into the index; no extra

MBRs are created, leaving the responsibility of group-

ing feature points back to the underlying spatial access

method.

We assume that the index is a tree structure, and that

non-leaf nodes keep pointers and bounding rectangles

for child nodes, while a leaf node contains the raw data,

which is a set of subsequences. Typically, a leaf node

is not designed to hold a single subsequence since it is

preferred to utilize a page for each node.

Algorithm 1 Index construction

1: Initialize the index
2: for all data sequences C do
3: Divide C into ⌊|C|/ω⌋ disjoint subsequences, each of length

ω

4: for all disjoint subsequences do
5: Construct the PAA representation of the subsequence
6: Insert the PAA representation of the subsequence into

the index, together with its ID
7: end for
8: end for

6.2.2 Utilizing the index for range queries

The key to the index for scaled and warped matching

lies mostly on the query processing algorithm, as shown

in Algorithm 2.

Given a range query sequence Q with tolerance ǫ, the

minimum number of disjoint subsequences p included

by Q is computed. The lower and upper bounding

sequences are constructed from Q. Lower and upper

bounding subsequence pairs are then extracted by plac-

ing a sliding window on every possible position of the

lower and upper bounding sequences. The PAA repre-

sentation for each subsequence is constructed.

Each pair of subsequences spans an MBR. Enlarge

the MBRs by the tolerance ǫ/
√

p (see Sect. 7.3, p 18).

Range queries6 are performed using the enlarged MBRs

and the results are stored in the candidate set. For each

resulting candidate, the actual sequence C is retrieved

to perform post-processing step. For each data suffix of

C, find the best match by trying all possible scalings. The

sequence together with the offset and the best scaling

factor is returned if the actual distance lies within the

given tolerance ǫ.

Algorithm 2 Query utilizing the index for range query

Require: |Q| ≥ 2ω − 1
1: Compute the minimum number of disjoint subsequences p

included by Q
2: Construct the lower and upper enveloping sequences from the

query sequence Q
3: Extract lower and upper bounding subsequences by placing

a sliding window on every possible position of the sequences.
Each pair of lower and upper bounding subsequences spans
an MBR

4: Construct the PAA representation for each subsequence
5: Enlarge the MBRs by the tolerance ǫ/

√
p

6: for all enlarged MBRs do
7: Perform range query on the index using the enlarged MBR
8: Store the query result in the candidate set
9: end for

10: for all candidate in the candidate set do
11: Retrieve the actual sequence C
12: for offset = 0 to (|C| − |Q|)/maximum scaling factor do
13: Find the best match by trying all possible scalings
14: Return the sequence together with the offset and best

scaling factor lying within the given tolerance ǫ

15: end for
16: end for

Algorithm 2 returns all the sequences that match the

query sequence at a certain offset at a certain scaling

factor. However, a large number of range queries are

required at line 6. This can be reduced by grouping sev-

eral query MBRs to form a larger query MBR.

6.2.3 Nearest neighbor search

It has been noted that nearest neighbor search is more

useful in many occasions [7,13,31,33]. Therefore, we

propose to enhance the query algorithm to also handle

this type of query.

Algorithm 3 shows our proposed k-nearest neigh-

bor query algorithm under the SWM distance. Line 1

constructs the enveloping sequences from the query

sequence. The query regions can then be constructed

from the enveloping sequences at line 2 by placing a

6 The bounding box defines a high-dimensional range in search
space for locating data.

A. W. -C. Fu et al.

sliding window on every possible position of the envel-

oping sequences. For simplicity, the query regions for the

sliding windows are merged into one rectangle, Query

Rect. The number of nearest neighbors reported is then

initialized to zero at line 3.

Next, two priority queues are created at line 4–5.

The first queue Candidate stores subsequences that are

potential k-nearest neighbors while the second queue,

named Queue, stores the non-leaf nodes, the leaf nodes,

and the subsequences stored at the leaf nodes during the

tree traversal. Queue is the same priority queue used

in [13]. The queues are sorted by the stored SWM or

lower bounding distances of the elements.

The root node is first enqueued into the queue Queue

at line 6 before entering the main loop between line 7

and line 29. At line 8–19, the best-first search strat-

egy is used to traverse the tree while enqueuing non-

leaf nodes, leaf nodes, and subsequences into the queue

Queue. However, when a subsequence is encountered

at line 9, it is enqueued into the Candidate queue for

processing at line 20–28. The value of LB (QueryRect,

Subsequence) is computed for non-leaf nodes. This LB

is the minimum distance between the two rectangles,

which is defined as follows. Let A and B be two

n-dimensional rectangles. Let the range of A at dimen-

sion i be [lAi, uAi], and the range for B be [lBi, uBi],
then

LB(A, B) =
n

∑

i

|ri|2 where

if uAi < lBi then ri = lBi − uAi

if uBi < lAi then ri = lAi − uBi

otherwise, ri = 0.

At line 23, the SWM distance between the Query and

the Sequence is computed to replace the lower bound-

ing estimate and the Sequence is re-enqueued into the

Candidate queue with the SWM distance, which is also

called the key in the algorithm. Therefore, when an

element is inserted in the Candidate queue, we mark

whether the distance (key) is Estimated or NotEstimated

(meaning the actual SWM distance).

After this re-enqueuing, if the weighted distance (key)

comparison between the first elements of the two queues

says that the Candidate queue has a smaller distance, we

are certain that there are no other subsequences that

are nearer to the Query sequence than the first element

of the Candidate queue. And the element is output at

line 25 and the corresponding nearest neighbor count is

incremented at line 26.

In most other k nearest neighbor search algorithms

such as [10,31,33], the actual distance dmax of the current

k-th nearest neighbor is used to prune other candidates.

Algorithm 3 k-nearest neighbor query under SWM

1: Envelope ← ConstructEnvelopingSequences(Query)

2: QueryRect ← MakeQueryRect(Envelope)
3: NNcount ← 0
4: Candidate ← NewPriorityQueue()
5: Queue ← NewPriorityQueue()
6: Enqueue(Queue, R-tree.RootNode, 0)
7: while not IsEmpty(Queue) and NNcount < k do
8: Element ← Dequeue(Queue)
9: if Element is a Subsequence of Sequence then

10: Enqueue(Candidate, Subsequence, LB(QueryRect,
Subsequence), Estimated)

11: else if Element is a leaf node then
12: for all entry (Subsequence) in leaf node Element do
13: Enqueue(Queue, [Subsequence], LB(QueryRect,

Subsequence))
14: end for
15: else {Element is a non-leaf node}
16: for all entry (Node, Rect) in node Element do
17: Enqueue(Queue, Node, LB(QueryRect, Rect))
18: end for
19: end if
20: while not(IsEmpty(Candidate)) and NNcount < k and

First(Candidate).Key ≤ First(Queue).Key · |Query|/ω do
21: Element ← Dequeue(Candidate)
22: if Estimated(Element) then
23: Enqueue(Candidate, Element.subsequence,

SWM(Query, Element.subsequence), NotEstimated)
24: else
25: Report Element as the next nearest object
26: NNcount ← NNcount + 1
27: end if
28: end while
29: end while

dmax is dynamically updated as nearer neighbors are

uncovered and whenever a candidate is dequeued, the

actual distance (SWM in our case) is computed. In our

algorithm, when an element is dequeued, the SWM is

not computed unless it is the smallest in terms of LB. We

do not keep track of dmax and use it for pruning. Instead,

the nearest neighbors are returned from the head of the

Candidate queue one at a time when it satisfies the con-

dition at line 20. In this way we may reduce the number

of SWM computations.

7 Experimental evaluation

This section describes the experiments carried out to

verify the effectiveness of the proposed lower bounding

distance. The experiments were executed on an Intel

Xeon 2.2 GHz Linux PC with 1 GB RAM. The source

code for the experiments was written in C Language.

MATLAB was also used for pre-processing the raw data.

To evaluate the effectiveness of the proposed lower

bounding distance, and thus the proposed solution, an

objective measure of the quality of a lower bounding

Scaling and time warping in time series querying

Fig. 11 Pruning power
versus length of original data

B
a
llb

e
a
m

O
ce

a
n

O
ce

a
n

S
h
e
a
r

P
o
w

e
r
P

la
n
t

C
S

T
R

S
h
u
tt
le

B
u
rs

t
W

o
o
l

D
a
rw

in
S

p
e
e
ch

C
h
a
o
tic

R
e
a
lit

y
C

h
e
ck

A
T

T
A

S
L
e
le

cc
u
m

T
o
n
g
u
e

K
o
sk

i E
C

G
M

e
m

o
ry

G
re

a
t
L
a
ke

s
W

in
d
in

g
T

id
e

S
te

a
m

g
e
n

E
e
g

S
o
il

T
e
m

p
E

a
rt

h
q
u
a
ke

R
o
b
o
t
A

rm

S
ta

n
d
a
rd

a
n
d

P
o
o
r

S
p
o
t
E

xr
a
te

s
E

R
P

D
a
ta

R
a
n
d
o
m

W
a
lk

P
o
w

e
r
D

a
ta

F
o
e
ta

l
E

C
G

G
la

s
s

F
u
rn

a
c
e

E
E

G
B

u
o
y

S
e
n
so

r
E

v
a
p
o
ra

to
r

N
e
tw

o
rk

P
G

T
5
0

A
lp

h
a

P
a
ck

e
t

P
G

T
5
0

C
D

C
1
5

yn
th

e
ti
c

C
o
n
tr

o
l

B
u
rs

tin

32
64
128
256
512
1024

0

0.2

0.4

0.6

0.8

1

P
ru

n
in

g
 p

o
w

e
r

Dataset

Length of

Original

Data

Pruning Power vs. Length of Original Data

distance is required. The Pruning power P is defined

in [17] as follows.

P =
Number of objects that do not require full DTW

Number of objects in database

The Pruning power is an objective measure because it

is free of implementation bias and choice of underly-

ing spatial index. This measure has become a common

metric for evaluating the efficiency of lower bounding

distances. Therefore, it was adopted in evaluating the

proposed lower bounding distance, by replacing DTW

by SWM in the above formula.

Extensive experiments were conducted on as many

as 41 different datasets. These datasets, which represent

time series from different domains, were obtained from

“The UCR Time Series Data Mining Archive” [19].

As the datasets came from a wide variety of differ-

ent domains, they differed significantly in size and in the

length of individual data sequences. In order to produce

meaningful results, both parameters must be controlled.

Thus, from each original dataset, we derived six sets of

data, each containing 1,024 data sequences, with variable

lengths of 32, 64, 128, 256, 512 and 1,024, respectively.

Short sequences were produced by using only prefixes

of the original datasets while long sequences were pro-

duced by concatenating original sequences. After that

we also normalized the derived datasets using MAT-

LAB by subtracting the mean value from the entries

of each sequence and dividing them by their standard

deviation, so that each data sequence has a mean zero

and a standard deviation of one. All experiments were

conducted on these derived datasets.

7.1 Enveloping data

To compute the pruning power of the proposed lower

bounding distance, the one-nearest neighbor search was

performed using the linear-scan algorithm. A random

subsequence was chosen from the dataset to act as the

query, and the remaining 1,023 sequences acted as the

data. The search was repeated for 50 trials using a differ-

ent subsequence as query. The actual dynamic time

warping distance did not need to be calculated if the

lower bounding measure gave a value larger than the

time warping distance of the current nearest neighbor.

The fraction of sequences that did not require calcula-

tion of actual time warping distance became the pruning

power of the lower bounding measure in that query. The

average of the 50 queries was reported as the pruning

power of that particular dataset.

Unless stated otherwise, in all experiments, the length

of data was 1,024 data points; the scaling factor was

between 1.5 and its reciprocal; the length of query was

set so that the longest rescaled query is at most as long

as the data, or the length of the query is not longer than

the shortest rescaled data; and the width of the Sakoe–

Chiba Band was set to 10% of the length of the query.

In fact, recent evidence suggests that this is a pessimis-

tic setting, and real world problems benefit from even

tighter constraints [29].

Figure 11 shows how the pruning power of the pro-

posed lower bounding measure varies as the lengths of

data change on different datasets.7 For a majority of

datasets, the pruning power increased with the length

of data, suggesting that the proposed algorithm is likely

to perform well in real-life environment, in which long

sequences of data are collected for a long period of

7 The comprehensiveness of our experiments means that some of
our figures are very dense and somewhat hard to read. To help the
interested reader, we have created webpage which contains large
versions on all the figures in addition to tables of raw numbers.
This additional information will be maintained on the websites of
the first two authors.

A. W. -C. Fu et al.

32 64 128 256 512 1024

0.6

0.7

0.8

0.9

1

Length of Original Data

A
v
e

ra
g

e
 P

ru
n

in
g

 P
o

w
e

r
Average Pruning Power

Fig. 12 Average pruning power versus length of original data

Pruning Power

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

Length of Original Data

P
ru

n
in

g
 P

o
w

e
r

Ocean

CSTR

Shuttle

Wool

Chaotic

Koski ECG

Fig. 13 Some significant applications

time. More than 78% (32 out of 41) of the datasets

obtained a pruning power above 90%. All but three

of the datasets exhibited a pruning power of over 90%

at length 1,024. Even at length 32, over 75% pruning

power was achieved in 80% (33 out of 41) of the data-

sets. Figure 12 shows the pruning power averaged over

all datasets; 97% of data sequences of length 1024 and

80% of data sequences of length 32 did not require com-

putation of the actual time warping distances. Figure 11

may contain too much information so we pick six of

the more significant applications to show the pruning

power for them more clearly in Fig. 13. The applications

include CSTR (speech), ECG, Ocean, Shuttle, Wool and

Chaotic.

The promising pruning power will greatly reduce the

querying time. We conducted experiments to measure

the time required for query evaluation in all the 41 data-

sets. We compare the brute force approach to the prun-

ing approach. In the timing we included both the time

spent on the pruning and the post-processing where

the SWM distances for remaining sequences are actu-

ally computed. Figure 14 shows the results. The time is

consistently reduced, down to about 13% of the time

Query Time of Brute Force Search

0

10

20

30

40

50

60

70

80

90

100

Length of Original Data

Length of Original Data

Q
u

e
ry

T
im

e
(s

e
c
o
n

d
)

Chaotic

CSTR

Koski ECG

Ocean

Shuttle

Wool

Query Time of Search by Pruning

0

2

4

6

8

10

12

14

16

18

20

22

32 64 128 256 512 1024

32 64 128 256 512 1024

Q
u
e

ry
 T

im
e

(s
e
c
o
n
d

)

Chaotic

CSTR

Koski ECG

Ocean

Shuttle

Wool

Fig. 14 Query time comparison

Pruning Power vs . Scaling Factor

0.975

0.98

0.985

0.99

0.995

1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Scaling Factor

P
ru

n
in

g
 P

o
w

e
r

Chaotic

CSTR

Koski ECG

Ocean

Shuttle

Wool

Fig. 15 Varying the scaling factor

required by brute force search. We have repeated this

with some other parameters and the results are similar.

Figure 15 shows the effect of varying the range of

allowed scaling factors on pruning power. Note the

x-axis indicates the upper bound range of allowed scal-

ing factor. The lower bound range of allowed scaling

factor is the reciprocal of the upper bound. For instance,

the label 2 indicates that the range of allowed scaling fac-

tor is between 1/2 = 0.5 and 2. In particular, the label 1

Scaling and time warping in time series querying

Fig. 16 Data giving the
lowest pruning power

0 128 256 384 512 640 768 896 1024

Burstin

0 128 256 384 512 640 768 896 1024

Synthetic Control

Fig. 17 Data giving the
highest pruning power

0 128 256 384 512 640 768 896 1024

Shuttle

0 128 256 384 512 640 768 896 1024

Wool

indicates that the time warping distance was calculated

without scaling. It also implies that the size of the range

was not increasing linearly. Although we show only six

of the significant applications, we have experimented on

all 41 sets of real data, the important observation is that

for all sizes, a pruning power of over 90% was achieved

in nearly 83% (34 out of 41) of the datasets. For all data-

sets (of length 1,024), the pruning powers never dropped

below 80%. The downward trend of the pruning power

as the scaling range (factor) increases can be explained

by the increasing(decreasing) values of Ui(Li), since the

value of Ui(Li) is the maximum(minimum) of a greater

range of Cj’s. This will decrease the value of LB(Q, C)

and hence the pruning power.

A more detailed look into the actual data provided

some insights as to why most datasets give very high

pruning power, and why the few other datasets result in

less pruning power. Figure 16 shows sample sequences

from the two datasets that give the lowest pruning power,

and Fig. 17 shows the sample sequences from the two

datasets that give the highest pruning power. The differ-

ence between them is rather obvious visually. The

sequences giving the lowest pruning power are those

that fluctuate vigorously. The sequences giving the high-

est pruning power are those that are rather smooth. This

is because with vigorous data fluctuation, the lower and

upper bound envelope will be loose, and the pruning

power will be weakened.

Nevertheless, we note that vigorously fluctuating

datasets are far less common than smooth datasets.

Figure 18 illustrates this claim by showing the prun-

ing power averaged over all the datasets, as the range of

allowed scaling factor changes. For all scaling factors, the

average pruning powers are always above 95%. Even

if we allow for one standard deviation margin below

the average, the pruning power is still above 90% in

general.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.85

0.9

0.95

1

1.05

Scaling Factor

A
v
e

ra
g

e
 P

ru
n

in
g

 P
o

w
e

r

Average Pruning Power vs. Scaling Factor

Fig. 18 Average pruning power versus. scaling factor

In conclusion, the result shows that the proposed

lower bounding measure effectively speeds up the query

evaluation process. It also confirms the applicability of

the lower bounding technique, even when a tight lower

bound may not be readily obtainable.

7.2 Enhancement by enveloping query

Next, we experiment with the enhancement described in

Sect. 5 where the query subsequences are being envel-

oped instead of the data subsequences. We measure the

query time and the pruning power.

7.2.1 Query time comparison

The query evaluation time required was measured.

Figure 19 shows the results. Compared to the original

approach, a general speed up can be seen across all data-

sets of any lengths. The proposed approach to envelope

the query is six times faster in the extreme case and is

about twice faster in the average case. Figure 20 shows

six of the more significant applications more clearly.

A. W. -C. Fu et al.

Fig. 19 Query time

P
a
ck

e
t

P
G

T
5
0
 C

D
C

1
5

B
u
rs

tin
P

G
T

5
0
 A

lp
h
a

S
y
n
th

e
tic

 C
o
n
tr

o
l

N
e
tw

o
rk

E
E

G
E

v
a
p
o
ra

to
r

B
u
o
y

S
e
n
so

r
S

o
il

T
e
m

p
G

la
s
s

F
u
rn

a
c
e

E
a
rt

h
q
u
a
ke

E
R

P
 D

a
ta

R
o
b
o
t
A

rm
F

o
e
ta

l E
C

G
P

o
w

e
r

D
a
ta

E
e
g

T
id

e
T

o
n
g
u
e

S
ta

n
d
a
rd

 a
n
d
 P

o
o
r

S
p
o
t
E

x
ra

te
s

W
in

d
in

g
G

re
a
t
L
a
ke

s
R

a
n
d
o
m

 W
a
lk

D
a
rw

in
S

te
a
m

g
e
n

S
p
e
e
ch

L
e
le

cc
u
m

C
h
a
o
tic

K
o
sk

i E
C

G
C

S
T

R
R

e
a
lit

y
 C

h
e
ck

A
T

T
A

S
M

e
m

o
ry

W
o
o
l

P
o
w

e
r

P
la

n
t

S
h
u
tt
le

B
u
rs

t
B

a
llb

e
a
m

O
ce

a
n
 S

h
e
a
r

O
ce

a
n

32
64
128
256
512
1024

0

5

10

15

20

25

30

Q
u

e
ry

 T
im

e
 (

s
e

c
o

n
d

)
Dataset

Length of

Original

Data

Query Time

Query Time

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6

Length of Original Data

Q
u

e
ry

 T
im

e
 (

s
e

c
o

n
d

)

Chaotic

Koski ECG

CSTR

Wool

Shuttle

Ocean

Fig. 20 Query time of selected applications

Only less than half a second was required for these

six applications at length 32. Even at length 1,024, no

more than 9 seconds was required. Figure 21 shows the

average query evaluation time. For the longest data at

length 1,024, about 20 s was required by the original

approach, but only about 12 s was required by the pro-

posed approach, confirming that the proposed approach

speeded up query evaluation by about twice.

7.2.2 Effect on pruning power

Figure 22 shows the pruning power of the lower bound-

ing distance by enveloping query. Despite the antici-

pated reduction in pruning power, 26 of the 41 datasets

keep their pruning power high above 90% at length

1,024. All but two of the datasets exhibited a pruning

power of over 60%. Even at length 32, over 70% prun-

ing power was achieved in three-fourths (30 out of 41) of

the datasets. Figure 23 shows the pruning power for six

of the more significant applications. The pruning power

was above 86% at all lengths. And the pruning power

at length 1,024 is even kept high above 96%. Figure 24

32 64 128 256 512 1024
0

2

4

6

8

10

12

14

16

Length of Original Data

Q
u
e
ry

 T
im

e
 (

s
e
c
o
n
d
)

Average Query Time

Fig. 21 Average query time

shows the pruning power averaged over all datasets.

About 87% of data sequences of length 1,024 and 73%

of data sequences of length 32 did not require computa-

tion of the actual time warping distances.

7.3 Performance of indexing

To investigate the effect of using our proposed index,

indices were built on the datasets and various queries

were issued. In order to handle the high dimensionality,

an X-tree [3], a variant of the R-tree family, was used.

Table 3 summarizes the parameters used in the experi-

ments. Experiments were conducted to study the effect

of varying the dimension of the feature space. Increasing

the dimension would increase computation cost while

decreasing it would decrease the pruning power. The

dimension reported here represented a balance between

the two factors. Figure 25 shows the size of the resulting

index against different lengths of original data. It shows

that the indices are compact at all lengths and fits into

Scaling and time warping in time series querying

Fig. 22 Pruning power
versus length of original data

C
S

T
R

B
a
llb

e
a
m

B
u
rs

t
O

ce
a
n

O
ce

a
n
 S

h
e
a
r

W
o
o
l

M
e
m

o
ry

S
h
u
tt
le

R
e
a
lit

y
C

h
e
ck

C
h
a
o
ti
c

K
o
sk

i E
C

G

S
ta

n
d
a
rd

 a
n
d
 P

o
o
r

E
R

P
 D

a
ta

L
e
le

cc
u
m

P
o
w

e
r

P
la

n
t

S
p
o
t
E

x
ra

te
s

R
a
n
d
o
m

 W
a
lk

W
in

d
in

g
S

te
a
m

g
e
n

G
re

a
t
L
a
ke

s
T

id
e

S
p
e
e
ch

A
T

T
A

S
T

o
n
g
u
e

P
o
w

e
r
D

a
ta

F
o
e
ta

l
E

C
G

G
la

s
s

F
u
rn

a
ce

D
a
rw

in
E

e
g

E
v
a
p
o
ra

to
r

E
a
rt
h
q
u
a
ke

B
u
o
y

S
e
n
so

r
R

o
b
o
t
A

rm
S

o
il

T
e
m

p
P

a
ck

e
t

P
G

T
5
0
 A

lp
h
a

N
e
tw

o
rk

S
y
n
th

e
tic

 C
o
n
tr

o
l

P
G

T
5
0
 C

D
C

1
5

B
u
rs

tin
E

E
G

32
64
128
256
512
1024

0

0.2

0.4

0.6

0.8

1

P
ru

n
in

g
 P

o
w

e
r

Dataset

Length of

Original

Data

Pruning Power vs. Length of Original Data

Table 3 A list of X-tree parameters used in the experiments

Name Value

Dimension of feature space 4
Minimum number of entries per node 29
Maximum number of entries per node 59
Minimum query length 32

Pruning Power

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

32 64 128 256 512 1024

Length of Original Data

P
ru

n
in

g
 P

o
w

e
r Chaotic

CSTR

Koski ECG

Ocean

Shuttle

Wool

Fig. 23 Some significant applications

memory nicely. Note that the index size merely increases

linearly with the length of original data.

7.3.1 One nearest neighbor search

Figure 26 shows the query time using the proposed

index. It shows that the index is very efficient for all

kinds of datasets and all lengths of data we tested. In

particular, the query time required by all datasets of

length 128 or below was always less than a second. For

length 256, the query time was 2.4 s in the worst case. It

was only 2.5 s for length 512 and just above 8 s for length

1,024. Figure 27 shows the average query time, which

32 64 128 256 512 1024

0.6

0.7

0.8

0.9

1

Length of Original Data

A
v
e
ra

g
e
 P

ru
n
in

g
 P

o
w

e
r

Average Pruning Power

Fig. 24 Average pruning power versus length of original data

32 64 128 256 512 1024
0

500

1000

1500

2000

2500

3000

Length of Original Data

In
d
e

x
 S

iz
e

 (
K

B
)

Index Size

Fig. 25 Index size

shows that the query time for most datasets is shorter

than the worst case. At length 1,024, the average query

time was just 0.59 s. That was only less than 0.4 s for all

other lengths.

As a sanity check, we demonstrate that the index

structure, rather than the dimension reduction, is the

underlying cause of the speed up by repeating our near-

A. W. -C. Fu et al.

Fig. 26 Query time using
index

P
G

T
5
0
 C

D
C

1
5

P
G

T
5
0
 A

lp
h
a

E
R

P
 D

a
ta

F
o
e
ta

l
E

C
G

N
e
tw

o
rk

R
o
b
o
t
A

rm
A

T
T

A
S

E
E

G
P

a
ck

e
t

S
o
il

T
e
m

p
B

u
o
y

S
e
n
so

r
T

o
n
g
u
e

B
a
llb

e
a
m

B
u
rs

tin
C

h
a
o
ti
c

S
y
n
th

e
ti
c

C
o
n
tr

o
l

W
in

d
in

g
E

v
a
p
o
ra

to
r

C
S

T
R

P
o
w

e
r

D
a
ta

S
p
e
e
ch

R
e
a
lit

y
 C

h
e
c
k

M
e
m

o
ry

D
a
rw

in
G

la
s
s

F
u
rn

a
c
e

O
ce

a
n
 S

h
e
a
r

B
u
rs

t
O

ce
a
n

R
a
n
d
o
m

 W
a
lk

S
p
o
t
E

x
ra

te
s

P
o
w

e
r

P
la

n
t

T
id

e
S

te
a
m

g
e
n

S
ta

n
d
a
rd

 a
n
d
 P

o
o
r

S
h
u
tt
le

K
o
sk

i E
C

G
G

re
a
t
L
a
ke

s
E

a
rt

h
q
u
a
k
e

W
o
o
l

L
e
le

cc
u
m

E
e
g

32
64
128
256
512
1024

0
1
2
3
4
5

6
7

8

9

Q
u

e
ry

 T
im

e
 (

s
e

c
o

n
d

)

Dataset

32 64 128 256 512 1024
0

0.5

1

1.5

2

Length of Original Data

Q
u

e
ry

 T
im

e
 (

s
e

c
o

n
d

)

Average Query Time

Fig. 27 Average query time using index

est neighbor search, but without employing any index.

That is, we repeated the nearest neighbor search using

linear scan and we pre-computed dimension reduction

for the sequences when computing the lower bounding

distance function.

Figure 28 compares the query time using linear search

with pre-computed PAA with the query time using

index. It shows that the index is effective in reducing the

query time in almost all cases. Depending on the nature

and dimension of the dataset, the query time using index

can be faster by tens to thousands of times, representing

a very huge speed up. On average, an order of magni-

tude speed up can be expected for all lengths of data,

as illustrated in Table 4. The speed up was more nota-

ble at length 32, with an average speed up by 497 times.

But the average speed up of 20 times at length 1,024

was also a big improvement. There was no particular

trend in the level of speed up across different datasets.

This may be because the order of the data sequences

presented to the algorithm is different among the data-

sets (and is controlled by the index). If a match is found

early, it is possible to prune away most of the data. And

Table 4 Average speed up

Length of original data Mean Standard deviation

32 496.8026 483.6499
64 454.6806 538.4734
128 11.7928 14.8641
256 10.5620 15.0454
512 9.4354 13.9982
1,024 19.6865 47.6764

this effect is amplified when an index is used because a

whole sub-tree of data in the index can be pruned.

7.3.2 k-nearest neighbor search

In practice, it is more often that people are interested

in more than one nearest neighbor. Thus, experiments

have been conducted to evaluate how well the proposed

method performs as the number of nearest neighbor k

increases.

Figure 29 shows how the query time of k-nearest

neighbor search using index varies as the number of

nearest neighbor k increases. It shows that the query

time varies substantially across different datasets and

different number of nearest neighbor k required. How-

ever, the query time for more than half (27 out of 41)

of the datasets was within 10 s when k = 100, while the

query time for most (33 out of 41) of the datasets was

within 10 s when k = 10, and within 6 s when k = 5.

The numbers quoted above clearly demonstrated that

the average query time, as plotted on Fig. 30, was a pes-

simistic estimate of the expected query time. Even so, it

is worth noting that the average query time was about

40 s for queries up to k = 20 and it was just above 40 s

for queries up to k = 100. Also, the large standard devi-

ation, as shown by the long error bars, also supported

Scaling and time warping in time series querying

Fig. 28 Query time using
linear search versus using
index

E
e
g

E
a
rt

h
q
u
a
ke

G
re

a
t
L
a
ke

s
G

la
s
s

F
u
rn

a
c
e

B
u
rs

tin
S

p
e
e
ch

T
id

e
S

te
a
m

g
e
n

L
e
le

cc
u
m

W
o
o
l

S
y
n
th

e
ti
c

C
o
n
tr

o
l

S
p
o
t
E

x
ra

te
s

S
ta

n
d
a
rd

a
n
d

P
o
o
r

D
a
rw

in
B

u
o
y

S
e
n
so

r
K

o
sk

i E
C

G
T

o
n
g
u
e

E
v
a
p
o
ra

to
r

E
E

G
P

o
w

e
r

P
la

n
t

R
a
n
d
o
m

W
a
lk

S
h
u
tt
le

P
o
w

e
r

D
a
ta

N
e
tw

o
rk

C
h
a
o
ti
c

P
a
ck

e
t

C
S

T
R

B
u
rs

t
W

in
d
in

g
S

o
il

T
e
m

p
P

G
T

5
0

A
lp

h
a

A
T

T
A

S
M

e
m

o
ry

B
a
llb

e
a
m

P
G

T
5
0

C
D

C
1
5

R
o
b
o
t
A

rm
R

e
a
lit

y
C

h
e
ck

F
o
e
ta

l
E

C
G

O
ce

a
n

O
c
e
a
n

S
h
e
a
r

E
R

P
D

a
ta

1024
512
256
128
64
32

0

5000

10000

15000

20000

25000

Dataset

Length of

Original

Data

Query Time Ratio

Fig. 29 Query time of
k-nearest neighbor search

D
a
rw

in
S

o
il

T
e
m

p
S

p
o
t
E

xr
a
te

s
P

o
w

e
r

D
a
ta

M
e
m

o
ry

S
ta

n
d
a
rd

a
n
d

P
o
o
r

K
o
sk

i E
C

G
B

u
o
y

S
e
n
so

r
R

e
a
lit

y
C

h
e
ck

B
u
rs

t
L
e
le

cc
u
m

B
a
llb

e
a
m

R
a
n
d
o
m

W
a
lk

S
te

a
m

g
e
n

E
a
rt

h
q

u
a
ke

G
re

a
t
L
a
ke

s
P

o
w

e
r
P

la
n
t

S
h
u
tt
le

O
ce

a
n

S
h
e
a
r

O
ce

a
n

A
T

T
A

S
W

o
o
l

1
2
5
8
10
20
50
80
1000

1

2

3

4

5

6

Q
u

e
ry

 T
im

e
 (

s
e

c
o

n
d

)

Dataset

k

Query Time of k-nearest Neighbor Query
P

G
T

5
0

C
D

C
1
5

F
o
e
ta

l
E

C
G

N
e
tw

o
rk

P
G

T
5
0

A
lp

h
a

E
R

P
D

a
ta

B
u
rs

tin
S

yn
th

e
tic

C
o
n
tr

o
l

P
a
ck

e
t

G
la

s
s

F
u
rn

a
c
e

T
id

e
S

p
e
e
ch

T
o
n
g
u
e

E
E

G
C

h
a
o
ti
c

C
S

T
R

E
v
a
p
o
ra

to
r

W
in

d
in

g

E
e
g

R
o
b
o
t
A

rm

1
2
5
8
10
20
50
80
100

0
100
200
300
400
500
600
700
800
900

Q
u

e
ry

 T
im

e
 (

s
e

c
o
n

d
)

Dataset

k

Query Time of k-nearest Neighbor Query

A. W. -C. Fu et al.

1 2 5 8 10 20 50 80 100
0

40

80

120

160

200

k

Q
u
e
ry

 T
im

e
 (

s
e
c
o
n
d
)

Average Query Time

Fig. 30 Average query time of k-nearest neighbor search

1 2 5 8 10 20 50 80 100
0

0.5

1

1.5

2

2.5

k

Q
u
e
ry

 T
im

e
 (

s
e
c
o
n
d
)

Median Query Time

Fig. 31 Median query time of k-nearest neighbor search

the claim that the average query time was biased toward

a few unusually long running queries.

The median query time may better reflect the trend

of the query time as the number of nearest neighbor k

increases and thus how the index scales on increasing k.

Figure 31 shows that the median query time was just a

few seconds, even when k = 100. And the median query

time was below 1 s when k = 10. Hence, when the num-

ber of nearest neighbor k increased by ten times, the

median query time only increased mildly by a few times.

8 Conclusion

In this article, we reviewed Euclidean distance, dynamic

time warping (DTW), and uniform scaling (US). We

motivated our work by showing that these time series

similarity measures found in previous literature are inap-

propriate or insufficient for many applications.

In view of the weakness of previous distance mea-

sures, we proposed to combine DTW and US to solve

these real world problems. Through this complementary

merger, we amplified the power of both DTW and US to

give a better time series similarity measure, scaled and

warped matching (SWM).

Although SWM is inherently expensive to compute,

we showed that the lower bounding technique is

applicable to SWM in drastically improving the query

performance. In particular, experiments showed that as

many as 97% of the SWM computation could be saved

by using the proposed lower bounding function, reduc-

ing the query time of one nearest neighbor search to

13% of time required when the lower bounding func-

tion was not used.

Based on the first lower bounding function, we pro-

posed an optimization to squeeze query time further. We

showed that applying the proposed optimization consis-

tently reduces the query time by extensive experiments.

Moreover, we employed an index to improve the per-

formance of time series matching under the proposed

SWM distance. This approach is especially useful when

the size of data is large. We evaluated the usefulness and

performance of the index in handling both one-nearest

neighbor queries and k-nearest neighbor queries.

For future work, it is observed that the performance

of time series similarity matching algorithms can be

highly data-dependent. It is of practical values to fur-

ther analyze the characteristics of data from different

domains, and to investigate how these characteristics

of data affect the performance of time series similarity

matching algorithms.

Acknowledgments This research was supported by the RGC
Research Direct Grant 03/04, and the RGC Earmarked Research
Grant of HKSAR CUHK 4120/05E.

References

1. Agrawal, R., Lin, K.I., Sawhney, H.S., Shim, K.: Fast simi-
larity search in the presence of noise, scaling, and transla-
tion in time-series databases. In: VLDB’95, Proceedings of
21st International Conference on Very Large Data Bases, pp.
490–501. Morgan Kaufmann, Zurich (1995)

2. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The
R∗-tree: an efficient and robust access method for points
and rectangles. In: SIGMOD ’90: Proceedings of the 1990
ACM SIGMOD International Conference on Management
of Data, pp. 322–331. ACM Press, Atlantic City (1990)

3. Berchtold, S., Keim, D.A., Kriegel, H.P.: The X-tree: An index
structure for high-dimensional data. In: VLDB’96, Proceed-
ings of 22nd International Conference on Very Large Data
Bases, pp. 28–39. Morgan Kaufmann, Mumbai (Bombay)
(1996)

4. Campbell, L., Bobick, A.: Recognition of human body motion
using phase space constraints. In: Proceedings of Interna-
tional Conference on Computer Vision, pp. 624–630. IEEE
Computer Society, Washington (1995)

5. Chai, W., Vercoe, B.: Folk music classification using hidden
markov models. In: Proceedings of International Conference
on Articial Intelligence (2001)

Scaling and time warping in time series querying

6. Chan, F., Fu, A.: Efficient time series matching by wavelets.
In: Proceedings of the 15th International Conference on Data
Engineering. IEEE Computer Society, Sydney (1999)

7. Cheung, K.L., Fu, A.W.C.: Enhanced nearest neighbour
search on the R-tree. ACM SIGMOD Reco. 27(3), 16–
21 (1998)

8. Dalal, N., Horaud, R.: Indexing key positions between mul-
tiple videos. In: Proceedings of IEEE Workshop on Motion
and Video Computing, pp. 65–71. IEEE Computer Society,
Orlando (2002)

9. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast sub-
sequence matching in time-series databases. In: SIGMOD ’94:
Proceedings of the 1994 ACM SIGMOD International Con-
ference on Management of Data, pp. 419–429. ACM Press,
Minneapolis (1994)

10. Fu, A., Chan, P., Cheung, Y.L., Moon, Y.: Dynamic vp-tree
indexing for n-nearest neighbor search given pair-wise dis-
tances. VLDB J. 9(2), 154–173 (2000)

11. Fu, A.W.C., Keogh, E., Lau, Y.H., Ratanamahatana, C.A.:
Scaling and time warping in time series querying. In:
VLDB 2005, Proceedings of 31st International Conference
on Very Large Data Bases. Morgan Kaufmann, Trondheim
(2005) (in press)

12. Guttman, A.: R-trees: a dynamic index structure for spa-
tial searching. In: SIGMOD ’84: Proceedings of the 1984
ACM SIGMOD International Conference on Management
of Data, pp. 47–57. ACM Press, Boston (1984)

13. Hjaltason, G.R., Samet, H.: Distance browsing in spatial da-
tabases. ACM Trans. Database Syst. 24(2), 265–318 (1999)

14. Itakura, F.: Minimum prediction residual principle applied
to speech recognition. IEEE Trans. Acoust. Speech Signal
Process. 23(1), 67–72 (1975)

15. Kale, A., Chowdhury, R., Chellappa, R.: Towards a view
invariant gait recognition algorithm. In: Proceedings of the
IEEE International Conference on Advanced Video and
Signal based Surveillance (AVSS). IEEE Computer Society,
Miami (2003)

16. Kale, A., Cuntoor, N., Yegnanarayana, B., Rajagopalan, A.,
Chellappa, R.: Gait analysis for human identification. In: Pro-
ceedings of the 3rd International conference on Audio and
Video Based Person Authentication (2003)

17. Keogh, E.: Exact indexing of dynamic time warping. In:
VLDB 2002, Proceedings of 28th International Conference
on Very Large Data Bases, pp. 406–417. Morgan Kaufmann,
Hong Kong (2002)

18. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Di-
mensionality reduction for fast similarity search in large time
series databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)

19. Keogh, E., Folias, T.: The UCR Time Series Data Min-
ing Archive. University of California, Computer Sci-
ence & Engineering Department, Riverside. (Available at
http://www.cs.ucr.edu/ eamonn/TSDMA/index.html (2002))

20. Keogh, E., Palpanas, T., Zordan, V.B., Gunopulos, D., Cardle,
M.: Indexing large human-motion databases. In: VLDB 2004,
Proceedings of 30th International Conference on Very Large
Data Bases, pp. 780–791. Morgan Kaufmann, Toronto (2004)

21. Keogh, E., Ratanamahatana, C.A.: Exact indexing of
dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2004)

22. Kosugi, N., Sakurai, Y., Morimoto, M.: SoundCompass: a
practical query-by-humming system; normalization of scal-
able and shiftable time-series data and effective subse-
quence generation. In: SIGMOD ’04: Proceedings of the 2004
ACM SIGMOD International Conference on Management
of Data, pp. 881–886. ACM Press, New York (2004)

23. Matessi, G., Pilastro, A., Marin, G.: Variation in quantitative
properties of song among European populations of the reed

bunting (Emberiza schoeniclus) with respect to bill morphol-
ogy. Can. J. Zool 78, 428–437 (2000)

24. Meek, C., Birmingham, W.: The dangers of parsimony in
query-by-humming applications. In: Proceedings of Interna-
tional Symposium on Music Information Retrieval (2003)

25. Moeller-Levet, C., Klawonn, F., Cho, K.H., Wolkenhauer, O.:
Fuzzy clustering of short time series and unevenly distributed
sampling points. In: Proceedings of IDA (2003)

26. Moon, Y.S., Whang, K.Y., Loh, W.K.: Efficient time-series
subsequence matching using duality in constructing windows.
Technical Report 00-11-001. Advanced Information Technol-
ogy Research Center (AITrc), KAIST, Taejon, Korea (2000)

27. Moon, Y.S., Whang, K.Y., Loh, W.K.: Duality-based subse-
quence matching in time-series databases. In: Proceedings
of the 17th International Conference on Data Engineering,
pp. 263–272. IEEE, IEEE Computer Society, Heidelberg,
Germany (2001)

28. Pullen K., Bregler C.: (2002) Motion capture assisted ani-
mation: Texturing and synthesis. ACM Trans. Graph. (Proc
SIGGRAPH 2002) 22(3)

29. Ratanamahatana, C.A., Keogh, E.: Everything you know
about dynamic time warping is wrong. In: Third Workshop on
Mining Temporal and Sequential Data, in conjunction with
the 10th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD-2004), Seattle, WA
(2004)

30. Ratanamahatana, C.A., Keogh, E.: Three myths about
dynamic time warping data mining. In: Proceedings of
the 5th SIAM International Conference on Data Mining,
Newport Beach, CA (2005)

31. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor
queries. In: SIGMOD ’95: Proceedings of the 1995 ACM SIG-
MOD International Conference on Management of Data, pp.
71–79. ACM Press, New York (1995)

32. Sakoe, H., Chiba, S.: Dynamic programming algorithm opti-
mization for spoken word recognition. IEEE Trans. Acoust.
Speech Signal Process. 26(1), 43–49 (1978)

33. Seidl, T., Kriegel, H.P.: Optimal multi-step k-nearest neighbor
search. In: SIGMOD ’98: Proceedings of the 1998 ACM SIG-
MOD International Conference on Management of Data, pp.
154–165. ACM Press, Seattle (1998)

34. Vlachos, M., Kollios, G., Gunopoulos, D.: An discovering sim-
ilar multidimensional trajectories. In: Proceedings of the 18th
International Conference on Data Engineering, pp. 673–684.
IEEE, IEEE Computer Society, San Jose, CA (2002)

35. Wong, T.S.F., Wong, M.H.: Efficient subsequence matching
for sequences databases under time warping. In: Proceed-
ings of the Seventh International Database Engineering and
Applications Symposium. IEEE, IEEE Computer Society,
Hong Kong, SAR (2003)

36. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbi-
trary Lp norms. In: VLDB 2000, Proceedings of 26th Inter-
national Conference on Very Large Data Bases, pp. 385–394.
Morgan Kaufmann, Cairo (2000)

37. Yi, B.K., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of
similar time sequences under time warping. In: Proceedings
of the 14th International Conference on Data Engineering.
IEEE, IEEE Computer Society, Orlando, Florida (1998)

38. Zhu, Y., Shasha, D.: Warping indexes with envelope trans-
forms for query by humming. In: SIGMOD ’03: Proceed-
ings of the 2003 ACM SIGMOD International Conference
on Management of Data, pp. 181–192. ACM Press, San Diego
(2003)

	Scaling and time warping in time series querying
	Abstract
	Introduction
	Justifying the need for uniform scaling and DTW
	Motivating examples
	Contributions
	Organization
	Problem definition
	Preliminaries
	Time warping distance
	Constraints and lower bounding
	Uniform scaling
	Lower bounding uniform scaling
	Scaling and time warping
	Tightness of lower bounds
	A faster and more flexible approach
	The enveloping sequences revisited
	Speeding up lower bounding distance computation
	Indexing for SWM
	Related work
	Fast subsequence matching
	Duality-based subsequence matching
	Dimension reduction
	Proposed indexing for SWM
	Index construction algorithm
	Utilizing the index for range queries
	Nearest neighbor search
	Experimental evaluation
	Enveloping data
	Enhancement by enveloping query
	Query time comparison
	Effect on pruning power
	Performance of indexing
	One nearest neighbor search
	k-nearest neighbor search
	Conclusion
	Acknowledgments

