
J
H
E
P
0
5
(
2
0
1
4
)
0
1
9

Published for SISSA by Springer

Received: December 31, 2013

Revised: March 26, 2014

Accepted: April 1, 2014

Published: May 6, 2014

Scaling and tuning of EW and Higgs observables
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1 Introduction

The first run of the LHC, with the discovery of the Higgs boson and the measurement of its

characteristic properties [1, 2], has been extremely successful. There are, however, still no

signs of any new physics that can stabilize the Higgs mass and thus a deeper understand-

ing of the electroweak (EW) symmetry breaking sector of the Standard Model (SM) is still

missing. All natural explanations for the EW symmetry breaking introduce new particles

around the TeV scale which, when integrated out, alter the Higgs properties. Hence, mea-

suring the Higgs sector with great accuracy has the potential of clarifying the origin of

EW symmetry breaking. Assuming a mass gap between the SM scale and the new physics

scale, as the lack of evidence for new physics seems to suggest, the Higgs properties and

its deviations from the SM can be conveniently parametrized and systematically studied

by higher dimensional operators [3],

δL =
∑
i

ci
Λ2
Oi , (1.1)

where the ci’s are dubbed Wilson coefficients.
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While these higher dimensional operators are generated at the new physics scale Λ,

they are measured at the lower scale of the experiments.1 Due to renormalization group

(RG) flow, the Wilson coefficients run and mix as we go down from Λ to the experimen-

tal scale ∼ mW . The operator coefficients at the two different scales are related to each

other via the so-called anomalous dimension matrix. These quantum corrections mix the

operators among themselves and therefore open the possibility of linking different kinds of

deformations from the SM which are otherwise unrelated. In this article, we compute the

anomalous dimension matrix of a set of 13 dimension-6 (dim-6) operators composed only

of gauge bosons and Higgs fields and estimate the impact of these RG mixing effects on

experimental measurements. Some elements of the anomalous dimension matrix have been

previously calculated in the literature, see refs. [4–14], with a renewed interest after the

recent Higgs property measurements.

To be completely general about the possible new physics scenarios one would need

to compute the anomalous dimension matrix for all the 59 dim-6 operators [3, 15].2 A

given set of experimental observables, however, receives contributions only from a subset

of these operators. The dim-6 operators we are focussing our attention on, is a particularly

interesting subset as they capture most of the possible deformations of the electroweak

sector studied at LEP (i.e., electroweak precision tests and triple gauge couplings) and of

the Higgs sector being currently studied at the LHC. At the same time, these operators

are among the most important ones generated by universal new physics theories.3 See for

instance refs. [16, 17] and refs. [12, 18] for a recent general phenomenological analysis of the

SM operators; the last two stress the presence of blind directions on certain combinations

of the Wilson coefficients [19].

One may naively think that these RG effects do not have a significant impact on

phenomenology since they are loop suppressed. This is, however, not the case because

the different Wilson coefficients have been constrained at different levels of precision. In

particular, the ones contributing to LEP electroweak precision observables have been mea-

sured at the per mille level, whereas those parametrizing triple gauge couplings (TGC)

and Higgs coupling data have been measured at most at the percent level. This hierarchy

in the size of constraints means that, despite the one loop factor, the RG contributions

of a weakly constrained coupling to a strongly constrained one can be of the same order

as, or even larger than, the bound on the strongly constrained coefficient. This means

that the RG-mixing effects of such weakly constrained Wilson coefficients can be mea-

sured/constrained by precision measurements of other couplings to which experiments are

more sensitive. Indeed, we find interesting instances of coefficients which receive stronger

bounds from the RG mixing than from the direct tree-level constraint. For example, we

show that the Wilson coefficients parametrizing deviations in some of the anomalous TGC

observables and the correction to the Higgs kinetic term ĉH receive a stronger bound via

their RG-mixing contribution to the electroweak parameters Ŝ, T̂ , W , Y and Γh→γγ than

the direct constraint. In refs. [6, 8], and more recently refs. [20, 21], the RG effects of the

mixing of TGC and the EW parameters are studied.

1We assume that, at the scale Λ, the baryon and lepton numbers are conserved.
2This is the number of independent operators for one generation of fermions, see next section.
3By universal theories we mean theories in which the BSM sector is flavour universal and in addition

any new vector state couples to fermions via the SM SU(2)×U(1) currents.
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The paper is organized as follows. In section 2 we define the basis of dim-6 operators

we shall use. Then, in section 3 we present our result for the anomalous dimension matrix

of the 10 bosonic4 operators related to EW and Higgs observables. In section 4 we shall

use the RG equations (RGE’s) to set bounds on the value of some Wilson coefficients that

are otherwise less constrained by direct measurements; we also comment on the future

prospects. In section 5 we present the anomalous dimension matrix for a set of operators

with gluons and discuss the available bounds on them. We conclude in section 6. In the

appendices, we report several details of our computations and present a comparison with

existing results in literature.

2 The dimension-six operator basis

In this section we define our choice for the dim-6 operator basis [3, 15] and the subset of

the dim-6 operators for which we want to compute the anomalous dimension submatrix.

Our choice of basis is motivated by the observables we are interested in, and the subset we

consider is defined by the operators in this basis which give a tree-level contribution to our

set of observables. In this work, we shall be interested in EW observables, Higgs couplings

to gauge bosons and QCD observables involving gluons only and the relations among each

other as imposed from the running between the scale of new physics to the weak scale.

These include the four electroweak oblique pseudo-observables Ŝ, T̂ , W and Y , the three

triple gauge coupling observables gZ1 , κγ and λγ , the Higgs couplings to vector bosons, the

gluon oblique parameter Z [22] and the anomalous triple gluon coupling parameter ĉ3G. We

describe these observables in more detail in section 4.2 and section 5. For ealier systematic

studies of the effects of higher-dimensional operators on these observables, see refs. [23, 24].

We have not included the Higgs decays to fermions in our list of observables. The only

dim-6 operators contributing to these observables are the operators Oyu ,Oyd and Oye , de-

fined in ref. [12].5 The RG effects of these operators have been already studied in ref. [12].

These are weakly constrained operators and new RG-induced constraints can be derived

only if they contribute to the running of more strongly constrained operators. In ref. [12]

it has been shown that there is no such contribution and therefore we do not include these

operators in our analysis.

Before defining our choice for the dim-6 operator basis, let us specify the subset of

independent operators on which we concentrate and which are part of the basis. This

subset, which has the property that it can efficiently parametrize dim-6 contributions to

the observables specified above, is given in table 1. The basis therefore contains a total of

14 CP-even bosonic operators, notice however that O6 does not contribute to any of the

observables we are interested in, neither at tree-level nor by RG running [12]; it contributes

4By bosonic operators we denote those operators made out of boson fields.
5The flat direction [25] between the operators Oyu ,OBB and OGG from the measurements of Higgs

couplings to photons and gluons is lifted by considering the (still loose) upper limit on the cross section

production of a Higgs boson in association with a pair of top-antitop quarks [18]. Stronger bounds on the

Wilson coefficients of OBB and OGG can be obtained by imposing some theoretical priors on the value of

the Wilson coefficient of Oyu but we did not consider these stronger bounds here and we can safely ignore

the operator Oyu in our analysis.

– 3 –



J
H
E
P
0
5
(
2
0
1
4
)
0
1
9

OH = 1
2(∂µ|H|2)2

OT = 1
2

(
H†
↔
DµH

)2

O6 = λ|H|6

OW = ig

(
H†τa

↔
DµH

)
DνW a

µν

OB = ig′YH

(
H†

↔
DµH

)
∂νBµν

O2W = −1
2(DµW a

µν)2

O2B = −1
2(∂µBµν)2

O2G = −1
2(DµGA

µν)2

OBB = g′2|H|2BµνB
µν

OWB = gg′H†σaHW a
µνB

µν

OWW = g2|H|2W a
µνW

aµν

OGG = g2
s |H|2GA

µνG
Aµν

O3W = 1
3!gεabcW

a ν
µ W b

νρW
c ρµ

O3G = 1
3!gsfABCGAν

µ GB
νρG

C ρµ

Table 1. The 14 CP-even operators made of SM bosons. The operators have been grouped in two

different categories corresponding to operators of the form (SM current)× (SM current) (left box)

and operators which are not products of SM currents (right box).

instead to the Higgs self-coupling which however is still not directly measured. For this

reason we did not include this observable in our list and did not compute its RG scaling.

The conventions in table 1 and in the rest of the text are as follows. We define

DρW
a
µν = ∂ρW

a
µν + gεabcW b

ρW
c
µν , H†

↔
DµH ≡ H†DµH − (DµH)†H, with DµH = ∂µH −

igτaW a
µH − ig′YHBµH. We have taken the hypercharge of the Higgs YH = 1/2 and

τa = σa/2 are the SU(2)L generators in the fundamental representation.

Note that the four precision parameters Ŝ, T̂ , W and Y , generated in our basis by four

bosonic dim-6 operators [22, 26], as we show in section 4.2, are sufficient to describe all pos-

sible dim-6 contributions to the e+e− → f+f− observables at LEP 1 and 2, only in the limit

of universal new physics. To be completely general about possible new physics scenarios

it would be necessary to include two more operators that contribute to the e+e− → f+f−

experiment [12, 18],

OL = (iH†
↔
DµH)(L̄LγµLL) , O1,2

LL = (L̄1
LσaγµL1

L)(L̄2
LσaγµL2

L) , (2.1)

where the former affects the SM coupling of the Z boson to the left-handed leptons, and

the latter affects the measurement of GF (recall that the super-indices denote the fermion

family). There are enough measurements to simultaneously constrain all six operators at

the per mille level [27]. The RG contributions of {OL,O1,2
LL} to the other operators have

been already computed and can be found in ref. [12]. We have not studied possible RG-

contributions of the operators of table 1 to {OL,O1,2
LL}, such RG-contributions could be used

to impose some bounds on the weakly constrained operators of table 1, since {OL,O1,2
LL},

are constrained at the permil level [18]. Such an analysis would require computing many

more elements of the full anomalous dimension matrix as well as enlarging the list of ob-

servables under consideration; this analysis would be interesting but beyond the scope of

the present project.
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The operators in table 1 have been grouped in two different categories, corresponding

to operators of the form (SM current) × (SM current) (left box) and operators which are

not products of SM currents (right box). There are also 6 CP-odd counterparts of the

operators in the second box which complete the list of bosonic operators of our basis, 20

in total. The current-current operators can be related to each other and to other fermionic

current-current operators, using the SM equations of motion (EoM) or, equivalently, by

performing field redefinitions. As we discuss in the following paragraphs, this means that

we have to be careful in choosing the other operators in our basis to ensure that there are

no redundancies. As we discuss in appendix B, these relationships give us an important

consistency check on the anomalous dimension matrix we obtain.

Although we are interested in the anomalous dimension matrix of the 13 operators in

table 1, we have to define the complete basis of dim-6 operators that we are using. This

is because, as we shall see, under RG scaling many redundant operators not in our basis,

including operators containing fermions, can be generated radiatively. These operators

then need to be redefined away in terms of the ones in our basis. To clearly identify these

redundant operators it is thus necessary to unambiguously define our full basis including

the fermionic ones. We do this in the following way: first we include the operators of

table 2 in ref. [12].6 Now the set of operators is an over-complete basis since it contains

20 bosonic operators + 44 operators with fermions = 64 operators in total. As shown in

ref. [15], the dim-6 basis contains a total of 59 operators (for a single family), therefore there

are 5 redundant operators which we can remove. Performing field redefinitions, or equiv-

alently using the EoM’s, we can trade the three four-fermions operators of the first family

(ū1
RγµTAu1

R)(d̄1
RγµT

Ad1
R) , (L̄1

LσaγµL1
L)(L̄1

LσaγµL
1
L) , (ē1

Rγµe1
R)(ē1

Rγµe
1
R) , (2.2)

for {O2G, O2W , O2B} of our basis and the operators of the first family

(iH†σa
↔
DµH)(L̄1

LσaγµL1
L) , (iH†

↔
DµH)(ē1

Rγµe1
R) , (2.3)

are removed in favour of the bosonic operators in table 1, see appendix A for more details.

This completes the definition of our dim-6 operator basis, for one family. In the present

work, we denote by F and f the fermion SU(2)L doublets and singlets, respectively, the

subscripts R or L denote right or left-handed spinors. We put the index i (indistinguish-

ably as a superscript or subscript) to denote either of the three SM families or, in some

cases, to denote a particular SM fermion. Then, when convenient, we shall replace F by

L or Q to denote an SU(2)L lepton or quark doublet, respectively, and replace f by either

{e, u, d} for the right-handed fermions of the first family, and so on for the other families.

To generalize the basis to three families one has to add extra four-fermion operators and

take into account the different flavor indices structures. Nonetheless, these extra operators

do not affect our results.

Let us comment on bases of common use in the literature. The set of operators

{OW ,OB,OWW ,OWB,OBB} (2.4)

6Equivalently, for our discussion of bosonic operators, we could add the operators with fermions of

tables 2 and 3 in ref. [15].

– 5 –



J
H
E
P
0
5
(
2
0
1
4
)
0
1
9

is in one-to-one correspondence with the operators used in ref. [6]

{OHW ,OHB,OWW ,OWB,OBB} , (2.5)

where OHW ≡ ig(DµH)†σa(DνH)W a
µν , OHB ≡ ig′(DµH)†(DνH)Bµν , and with the ones

used in ref. [28]

{OW ,OB,OHW ,OHB,OBB} . (2.6)

Our basis has the advantage that the anomalous dimension matrix of the sector {OB,OW }×
{OBB,OWB,OWW } is block diagonal [11]. The anomalous dimension in the other bases is

given in appendix C. As the SILH basis [28], our basis also separates the operators generated

at tree-level from the ones obtained at the radiative level only, when the new physics degrees

of freedom, assumed to be weakly coupled, are integrated out [11]. When the Higgs emerges

as pseudo Nambu-Goldstone boson, the SILH basis further makes the distinction between

a loop involving new-physics interactions and a loop involving SM interactions only.

In this paper, we are limiting ourselves to the set, B1, of 13 operators appearing in

table 1 (omitting O6 that does not contribute directly to the 13 physical observables we are

studying). We compute the running of B1 into B1. If the remaining set of independent op-

erators, needed to complete the basis specified above, is denoted by B2, there could also be

i) a running of B2 into B1, ii) a running of B1 into B2 and of course iii) a running of B2 into

itself. The first effect would reflect itself in new RG contributions to our list of low-energy

observables; under our hypothesis of no-tuning (or no correlations) among the different RG

contributions these effects do not change our RG-induced bounds on the operators in B1.

In principle new RG-induced bounds on some operators in B2 could be obtained, however

we already commented on the fact that this is not the case for O6 and Oyu,d,e . The second

effect could, in principle, allow us to obtain new RG-induced bound on the operators in

B1 via the mixing to some tightly constrained operators in B2, for example via the mixing

to OL and O12
LL, as we mentioned above. The study of these effects would be an interest-

ing generalization of our ideas but would require the computation of the full anomalous

dimension matrix and a complete phenomenological analysis of all the observables relevant

to the dimension-6 operators, which is beyond the purpose of the present work.

3 One-loop scaling of EW and Higgs operators

In general, quantum effects mix all the operators among themselves when going from the

scale of new physics down to the scale at which the experimental measurements are per-

formed. However, the 3 operators with gluons, OGG,O2G and O3G, constitute a separate

sector that does not mix with the other 11 bosonic operators at one-loop.7 So, even if OGG
affects Higgs physics by controlling the dominant production mode of the Higgs boson at

the LHC, it can be treated separately from the 3 other Higgs observables we are interested

in here. Furthermore since the Higgs self-interactions have not been measured yet, and

7The only exception is a contribution from O2B to the RG of O2G, see table 6. This mixing, however,

is phenomenologically not very relevant since the Wilson coefficient of O2B is strongly constrained, as we

show in section 4.2. In section 5 we present the anomalous dimension of the three operators with gluons.

– 6 –



J
H
E
P
0
5
(
2
0
1
4
)
0
1
9

since O6 does not enter into the anomalous dimensions of any dim-6 operator other than

itself, it can also be omitted from our analysis. For the Higgs- and EW-sector RG study, we

can thus restrict to the following set of 10 dim-6 operators and compute the corresponding

anomalous dimension matrix

{OH ,OT ,OB,OW ,O2B,O2W ,OBB,OWW ,OWB,O3W } . (3.1)

We include all the one-loop contributions proportional to ci and depending on{
g′, g, gs, λ, yt

}
, (3.2)

where g′, g and gs are the respective U(1)Y , SU(2)L and SU(3)c gauge couplings, λ is the

Higgs quartic coupling and yt is the Yukawa coupling of the top quark, i.e. we neglect the

contributions proportional to the Yukawas of the light fermions (yb/yt ∼ 0.02, yb is the

bottom quark Yukawa). The couplings are normalised such that

LSM = LKin + m2|H|2 − λ |H|4 − yt

[
Q̄LtRH̃ + h.c.

]
+O (yl) , (3.3)

where H̃ = iσ2H
∗, QL is the third family quark doublet (tL, bL)T whose weak hypercharge

is YL = 1/6, tR is the right-handed top quark of weak hypercharge YR = 2/3 and yl denotes

the Yukawa couplings of the fermions lighter than the top. The kinetic term LKin contains

covariant derivatives, defined in the previous section, that determine the couplings of the

Higgs doublet and fermions to the gauge bosons as well as gauge bosons self-interactions.

We regularized the loop integrals using dimensional regularisation and used MS sub-

traction scheme. We performed the computation in the unbroken phase of the SM and in

the background field gauge, with the gauge fixing term

Lg.f. = − 1

2ξA
(D(A)

µ δAaµ)2 , (3.4)

where δA = {δB, δW, δG} is the quantum field with respect to which the dim ≥ 4 SM action

is path-integrated and D
(A)
µ is the covariant derivative with respect to the corresponding

background field A = {B, W, G}.
In table 2, we give the one-loop anomalous dimensions of the operators of eq. (3.1), in

the basis defined in section 2.8 We have defined

γci = 16π2 dci
d log µ

. (3.5)

A common effect encountered while computing the RG scaling of the above operators

is the appearance of counter-terms which correspond to dim-6 operators that are not in

our basis (the computation does not know our choice of basis) [12]. These radiatively-

generated redundant operators need to be redefined into operators present in our basis.

Upon redefinition, these redundant operators contribute to the anomalous dimensions of

the operators in our basis at the same order as other direct contributions coming from one-

particle-irreducible graphs. For details on the radiatively generated operators and how we

deal with the redundant ones, see appendix A. Notice that the matrices of table 2 already

– 7 –
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cH cT

γcH − 9
2
g2 − 3g′2 + 24λ+ 12y2

t −9g2 + 9
2
g′2 + 12λ

γcT
3
2
g′2 9

2
g2 + 12λ+ 12y2

t

γcB − 1
3

− 5
3

γcW − 1
3

− 1
3

other γci ’s 0 or O(yl) 0 or O(yl)

cB cW c2B c2W

γcH − 9
4
g′2(g′2−2g2)−6λg′2 9

4
g2(2g′2−g2)−36λg′2 − 141

16
g′4+3g′2λ 63

8
g4+ 51

16
g2g′2+18λg2

γcT − 9
4
g′2g2 − 6λg′2 − 9

4
g′2g2 3g′4 + 9

8
g′2g2 + 3λg′2 9

8
g′2g2

γcB
g′2

6
+ 6y2

t
g2

2
59
4
g′2 − g

2

4

γcW
g′2

6
17
2
g2 + 6y2

t

(
29
8
− 53g′2

4g2

)
g′2 79

8
g2 + 29

4
g′2

γc2B − 2
3
g′2 0 94

3
g′2 0

γc2W 0 − 2
3
g2

(
53
12
− 53g′2

4g2

)
g′2 331

12
g2 + 29

4
g′2

γcBB 0 0 0 0

γcWW 0 0 0 0

γcWB 0 0 0 0

γc3W 0 0 0 0

cBB cWW cWB c3W

γcH 0 0 0 0

γcT 0 0 0 0

γcB 0 0 0 0

γcW 0 0 0 0

γc2B 0 0 0 0

γc2W 0 0 0 0

γcBB

g′2

2
− 9g2

2
+6y2

t +12λ 0 3g2 0

γcWW 0 − 3g′2

2
− 5g2

2
+6y2

t +12λ g′2 5
2
g2

γcWB 2g′2 2g2 - g
′2

2
+ 9g2

2
+6y2

t +4λ − g
2

2

γc3W 0 0 0 53
3
g2

Table 2. Anomalous dimension matrix for the Wilson coefficients of the dim-6 bosonic operators,

in the basis defined in section 2.

contain these indirect effects. This ensures that the result is gauge invariant and indeed

we checked that the result is independent of the gauge fixing parameters ξA of eq. (3.4).

Apart from gauge invariance, there is another non-trivial consistency check that we

have performed. The current-current operators in the left box of table 1 can be related

to each other and to other current-current operators containing fermions by using the SM

EoM, or equivalently by carrying out field redefinitions. In a hypothetical theory without

fermions,9 some contributions of the operators in the left box of table 1 would vanish upon

the EoM, i.e. they would form an over-complete set of operators. This would also imply

8The self-renormalization of c3W has been extracted from the computation of refs. [4, 5], where the

authors calculated the one of c3G.
9The anomalous dimension matrix of this fermionless theory is related, though not equal, to the anoma-

lous dimension matrix we have computed, that is why considering this hypothetical theory provides a

non-trivial test of our computation.
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relationships between independently computed entries in the anomalous dimension matrix

or, in other words, the anomalous dimensions of this over-complete set is invariant under

changes in the field coordinates that respect the SM gauge symmetries. Our matrix passes

this consistency check as we shall discuss in detail in appendix B. We emphasize that the

set of 59 operators introduced in section 2 is a basis, i.e. it does not contain any redundant

operators; it is over-complete only in the hypothetical theory without fermions.

Some parts of the anomalous dimension matrix presented here, have been calculated in

previous literature [4–14]. In some cases these previous computations use methods different

from ours, but we find complete agreement in the final results. We present a detailed com-

parison with previous literature, including a discussion about the difference in our methods

in appendix C.

4 RG-induced contraints on EW and Higgs observables

In this section we discuss the possibility to use the RGE’s to derive constraints on the

Wilson coefficients at the weak scale by requiring that none of the RG contributions to

these weak-scale Wilson coefficients exceeds the direct bounds [6]. Since the RGE’s mix

various operators, it becomes possible to put tight constraints on operators loosely con-

strained by direct measurements via their RG contributions to more severely constrained

operators. Then, in section 4.2, we apply our method and use EW precision data, triple

gauge couplings measurements and Higgs data to derive RG-induced bounds on the set of

10 observables we are interested in.

Renormalizing, order by order, the effective action, the logarithmically divergent terms

computed in the previous section are absorbed in the definition of the renormalized Wilson

coefficient. If one is interested in obtaining bounds on the Wilson coefficients at the low

scale ∼ mH , the only effect of the 1-loop diagrams are small finite terms, proportional to

∼ log mH/mZ , which we did not compute here. Allowing for arbitrary cancellations in the

definition of the renormalized coefficients renders the 1-loop effects small and the indirect

bounds which can be obtained in this way are quite weak [20] and not competitive with

direct bounds from Higgs physics and anomalous TGC measurements. We follow a differ-

ent approach, already outlined in ref. [6]. We are interested in obtaining indirect bounds

on the UV value of the Wilson coefficients from low-energy experiments, in this case the

1-loop effect is enhanced by ∼ log Λ/mH . Moreover, we assume that no tuned cancellations

(or correlations) are present in the definition of the renormalized coefficients and require

each log-divergent term not to exceed the direct bounds. In this way, our indirect bounds

are much stronger than in ref. [20] and, more importantly, are useful in order to obtain

insight into the UV physics. In fact, if any of our RG-induced bounds would be violated by

a direct measurement this would imply a particular pattern of cancellation (or correlation)

in the UV dynamics.

4.1 How much fine-tuning is needed to accommodate the data?

The electroweak and Higgs observables we are interested in (specified in section 4.2) re-

ceive contributions from a particular linear combination of the dim-6 operator’s Wilson
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coefficients, suitably multiplied by the SM couplings:

(obs)i = κi + ωijcj ≡ κi + ĉi → δ(obs)i = ĉi , (4.1)

where κi is the SM contribution, the ck’s are the Wilson coefficients and ωij is a matrix con-

taining the SM couplings and ratios of scales (ω ∼ O(m2
W /Λ2)). We defined ĉi as the linear

combinations of the Wilson coefficients which contribute directly to each observable (obs)i
and we shall refer to them in the following as observable couplings, with a slight abuse of

language. If the new combinations ĉi are independent, this corresponds to a change of basis

such that to each operator corresponds an observable; we shall call this the observable basis.

As an example, consider the process h → γZ which receives a contribution from the

SM (in this case at one loop) as well as a direct contribution from a linear combination of

the dim-6 operators. We parametrize this contribution with the observable coupling ĉγZ ,

to be defined in eq. (4.18), which is related to the Wilson coefficients of our basis as (cθW
and sθW are respectively the sinus and cosinus of the weak mixing angle θW )

ĉγZ =
m2
W

Λ2

(
2c2
θW

cWW − 2s2
θW

cBB − (c2
θW
− s2

θW
)cWB

)
. (4.2)

The above relation defines the coefficients ωγZ,j for this particular observable.

Now, suppose that this set of observables receives lower and upper bounds from ex-

perimental measurements:

δ(obs)i|mh = ĉi(mh) = ωij(mh)cj(mh) ∈ [εlowi , εupi ] . (4.3)

The observable coupling ĉi(mh) (constrained at low energy) is related, through the run-

ning, to the high-scale value of the Wilson coefficients cj(Λ), which is not directly known

since it is determined by the BSM degrees of freedom that have been integrated out. The

matrix ωij(mh) also runs with the scale (in the example of eq. (4.2) this would be the

running of g, g′ and v inside mW and θW ), however we are not interested in such a running

because ωij is determined by measurements performed at the EW scale and because, for

the purpose of this work, we are not interested in the UV value of the SM couplings. This

is the reason why we have not taken care of the contributions of the dim-6 operators on

the SM couplings, parametrized by κi in eq. (4.1), which would only be necessary if we

wanted to relate ωij(mh) to ωij(Λ) at the order we are working.

This discussion leads us to define the scale-dependent observable couplings as

ĉi(µ) ≡ ωij(mh)cj(µ) , (4.4)

obtaining

δ(obs)i|mh = ĉi(mh) = ĉi(Λ)− 1

16π2
γ̂ij ĉj(Λ) log

(
Λ

mh

)
, (4.5)

where

γ̂ij ≡ ωik(mh) γkl ω
−1
lj (mh) (4.6)

and γkl is the matrix computed in the previous section. Our interest in eq. (4.5) is twofold:

we want to find instances where a less constrained operator can mix with a more constrained
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one by appearing in its RGE’s and secondly (but closely related), to learn about the new

degrees of freedom at the matching scale. In the following we shall work at leading-log

order, which is fine if the hierarchy between the new physics scale Λ and the EW scale is

not too big.

The fundamental assumption we make in order to obtain an indirect constrain on the

ĉj(mh) through the RG is that we require each term in the sum on the r.h.s. of eq. (4.5),

proportional to some coefficient ĉj , to be contained in the experimental bounds associated

to the observable δ(obs)i|mh :

(1− δi)ĉi(Λ) ∈ [εlowi , εupi ] , (4.7)

− 1

16π2
γ̂i̂ĉ̂(mh) log

(
Λ

mh

)
∈ [εlowi , εupi ] , (4.8)

where we defined δi = γ̂ii/(16π2) log(Λ/mh) and in the last line the index ̂ is not summed

over.10 We have also used the fact that substituting ĉj(Λ) for ĉj(mh) in the γ̂ij ĉj term

of eq. (4.5) amounts to corrections O
(
(4π)−4 log2(Λ/mh)

)
that are beyond our precision

(the same is true for the evaluation of γij). Notice that this assumption is not only a

requirement of the absence of fine-tuning but also an hypothesis on the UV physics, since

particular relations, due to symmetry or dynamical accidents, between those combinations

could be generically found when considering a BSM theory. From our bottom-up approach

we parametrize also this absence of correlations as an absence of tuning. From eq. (4.7)

we can put bounds on the matching-scale Wilson coefficients cj(Λ):

cj(Λ) ∈

[∑
i

(1− δi)
−1ω−1

ji εlowi ,
∑
i

(1− δi)
−1ω−1

ji εupi

]
, (4.9)

notice that, as expected, they grow quadratically weaker with the increase of the UV scale

Λ since ω−1 ∼ Λ2/m2
W . Using eq. (4.8), instead, we can put an RG-induced bound on the

observable δ(obs)j |mh using the direct constraints on δ(obs)i|mh , eq. (4.3):

if γ̂ı̂j > 0 : δ(obs)j |mh ∈
16π2

log (Λ/mh)
(γ̂ı̂j)

−1[−εupı̂ ,−εlowı̂ ] ,

if γ̂ı̂j < 0 : δ(obs)j |mh ∈
16π2

log (Λ/mh)
(γ̂ı̂j)

−1[εlowı̂ , εupı̂ ] .

(4.10)

The indirect bounds in eq. (4.10), grow logarithmically stronger with the increase of the UV

scale Λ. However, since the expected effects from new physics decrease quadratically with

Λ, assuming order one coefficients ci, even if the RG-induced bounds on the observables

become slightly stronger, their power in investigating the UV degrees of freedom becomes

much weaker for higher values of Λ, as is clear from eq. (4.9). It might seem that these

bounds are not significant because of the loop factor in the above equation; all the εi’s

are, however, not of the same order and if |εlow,upi | � |εlow,upj |, the bound in the above

equation can be stronger than the direct bound on δ(obs)j |mh , in spite of the loop factor.

10In the following we shall denote with a hat all repeated indices which are not summed over.
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The RG-induced bounds are, thus, significant only when a weakly constrained coupling

appears in the RGE of a strongly coupled one.

Once new physics effects will be, hopefully, observed and the constraints of eq. (4.3)

will not include the zero value in the allowed interval (0 < εlowi < |δ(obs)i|mh < εupi ),

another interesting information that could be extracted from RG effects is a quantification

of how much tuned, among themselves, are the electroweak and Higgs observables. First

of all, let us define the fine-tuning in an observable as [29]

∆i ≡ Maxj

∣∣∣∣∂ log δ(obs)i|mh
∂ log ĉj(Λ)

∣∣∣∣ ' Max

{
|ĉi(Λ)|
|δ(obs)i|mh

,
log (Λ/mh)

16π2

Maxj 6=i |γ̂i̂| |δ(obs)̂|mh
|δ(obs)i|mh

}
,

(4.11)

where in the second step we separated the diagonal contribution from the off-diagonal ones

and, for the diagonal term, we neglected the loop contribution since ĉi(Λ) enters already

at tree level and this would be its leading contribution to the tuning. In particular, the

fine-tuning ∆i will satisfy,

∆i ≥
log (Λ/mh)

16π2

Maxj 6=i |γ̂i̂| |δ(obs)̂|mh
|δ(obs)i|mh

>
log (Λ/mh)

16π2

Maxj 6=i |γ̂i̂| εlow̂
εupi

, (4.12)

and one might be able to conclude that a certain degree of fine-tuning among the contri-

butions to the RG flow of some operator is necessary.

4.2 EW and Higgs observables

Let us now apply the general formulas of the previous section to the electroweak and Higgs

observables we want to constrain. In section 2 we have considered 10 EW and Higgs

operators

OH , OT , OW , OB, O2W , O2B, OWW , OWB, OBB, O3W , (4.13)

to parametrize BSM corrections to the SM Lagrangian. Let us now describe in detail the

set of pseudo-observables, briefly mentioned in section 2, that constrain all these operators

and form our observable basis. These include the four electroweak oblique parameters Ŝ,

T̂ , Y and W , constrained by LEP 1 and LEP 2, the three anomalous triple gauge coupling

(TGC) and three observables related to Higgs physics: the decays to γγ, γZ and a universal

rescaling of all the branching ratios [18]. To derive the RG-induced constraints on these

observables we first need to relate them to the operators in eq. (4.13), that is define the

transformation matrix, ωij , from the basis in eq. (4.13) and to the observable basis.

We begin with the electroweak precision observables constrained by measurements at

LEP1, LEP2 and Tevatron. The first step of the analysis is to fix the SM parameters g,

g′ and v by the three most precise measurements: the Fermi constant GF in muon decays,

the fine-structure constant αem and the Z-boson mass mZ . With the input parameters

fixed, the SM gives predictions for observables such as Z-pole measurements at LEP 1,

the Tevatron measurement of the W -mass and LEP 2 measurements of the e+e− → f+f−

cross-sections. New physics can affect this analysis by either changing the relationship

between the input parameters g, g′ and v to the measurement of GF , αem and mZ or by

directly contributing to the other measurements. All the deviation in the above observables
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induced by the operators we consider, eq. (4.13), can be parametrized by the Ŝ, T̂ , W and

Y parameters [22]

∆LEWPT = − T̂

2

m2
Z

2
ZµZ

µ − Ŝ

4m2
W

gg′v2

2
(W 3

µνB
µν)− W

2m2
W

(∂µW 3
µν)2 − Y

2m2
W

(∂µBµν)2.

(4.14)

The contribution of the Wilson coefficients of the operator set in eq. (4.13) to the above

observables is given by,

T̂ = ĉT (mW ) =
v2

Λ2
cT (mW ) , Ŝ = ĉS(mW ) =

m2
W

Λ2
[cW (mW )+cB(mW )+4cWB(mW )] ,

Y = ĉY (mW ) =
m2
W

Λ2
c2B(mW ) , W = ĉW (mW ) =

m2
W

Λ2
c2W (mW ) . (4.15)

The above parameters have been measured very precisely and are constrained at the per

mille level. We present the 95 % CL bounds on these parameters in table 3.

A second set of independent measurements that constrain the operator set in eq. (4.13)

are the TGC that were measured in the e+e− →W +W− process at LEP2. The phenomeno-

logical Lagrangian to describe deviations in the TGC observables, from their SM values, is,

∆L3V = ig gZ1 cθWZµ
(
W +νŴ−

µν −W−νŴ +
µν

)
+ ig

(
κzcθW Ẑµν + κγsθW Âµν

)
W +
µ W−

ν

+
ig

m2
W

(
λZcθW Ẑµν + λγsθW Âµν

)
Ŵ−ρ
µ Ŵ +

ρν , (4.16)

where V̂µν = ∂µVν − ∂νVµ, the photon field Aµ = cθWBµ + sθWW 3
µ has field-strength

Âµν , while Zµ = cθWW 3
µ − sθWBµ has field-strength Ẑµν and we use sθW ≡ sin θW =

g′/
√

g2 + g′2, cθW ≡ cos θW = g/
√

g2 + g′2 and e = gsθW . Note that the above Lagrangian

has only three independent parameters at the dim-6 level taken to be gZ1 , κγ and λγ here;

the other two can be expressed as: λZ = λγ and κZ = gZ1 − t2
θW

κγ . These relations are a

consequence of the accidental custodial symmetry that is preserved by the dim-6 operators

entering in the TGC [30]. The SM contribution is given by (gZ1 )SM = (κγ)SM = 1 and

(λZ)SM = 0. The corrections induced by the dim-6 operators in our basis are given by:

δgZ1 ≡ ĉgZ(mW ) = −
m2
W

Λ2

1

c2
θW

cW (mW ) , δκγ ≡ ĉκγ(mW ) =
m2
W

Λ2
4cWB(mW ) ,

λZ ≡ ĉλγ(mW ) = −
m2
W

Λ2
c3W (mW ) ,

(4.17)

where δgZ1 = gZ1 − (gZ1 )SM and δκγ = κγ − (κγ)SM . The constraints on these TGC ob-

servables are at the percent level (see table 3) and thus at least an order of magnitude

weaker than the constraints on the electroweak parameters in eq. (4.15). Note that, for

this reason, in eq. (4.17) we have ignored contributions to the e+e− → W +W− process

from the couplings in eq. (4.14).

Higgs physics provides the three remaining observables for our observable basis. We

consider the branching ratios h→ γγ/Zγ and the correction to the Higgs kinetic term,

∆LHiggs ⊃
ĉH
2

(∂µh)2

2
+

ĉγγe
2

m2
W

h2

2
ÂµνÂ

µν +
ĉγZ eg

m2
W cθW

h2

2
ÂµνẐ

µν . (4.18)

– 13 –



J
H
E
P
0
5
(
2
0
1
4
)
0
1
9

Coupling Direct Constraint RG-induced Constraint

ĉS(mt) [−1, 2]× 10−3 [31] -

ĉT (mt) [−1, 2]× 10−3 [31] -

ĉY (mt) [−3, 3]× 10−3 [22] -

ĉW (mt) [−2, 2]× 10−3 [22] -

ĉγγ(mt) [−1, 2]× 10−3 [18] -

ĉγZ(mt) [−0.6, 1]× 10−2 [18] [−2, 6]× 10−2

ĉκγ(mt) [−10, 7]× 10−2 [27] [−5, 2]× 10−2

ĉgZ(mt) [−4, 2]× 10−2 [27] [−3, 1]× 10−2

ĉλγ(mt) [−6, 2]× 10−2 [27] [−2, 8]× 10−2

ĉH(mt) [−6, 5]× 10−1 11 [−2, 0.5]× 10−1

Table 3. In this table we present the 95 % CL, direct constraints on the coefficients in the

observable basis (second column). The constraints on Ŝ and T̂ presented here the ones obtained after

marginalizing on the other parameters in the fit of ref. [31]. In the analysis we use the Ŝ, T̂ -ellipse

from ref. [31] with U = 0. Simultaneous constraints on all three of the TGC observables do not

exist in the literature, so we have provided the individual constraints on the three couplings without

taking into account correlations between them [27]. In the third column we show the RG-induced

constraint we are able to obtain under the assumption of no fine-tuning in eq. (4.22), for Λ = 2 TeV.

The above coefficients, in terms of the dim-6 operator’s Wilson coefficients are given by

ĉH(mh) =
v2

Λ2
cH(mh),

ĉγγ(mh) =
m2
W

Λ2
(cBB(mh) + cWW (mh)− cWB(mh)) ,

ĉγZ(mh) =
m2
W

Λ2

(
2c2
θW

cWW (mh)− 2s2
θW

cBB(mh)− (c2
θW
− s2

θW
)cWB(mh)

)
.

(4.19)

We present the constraints on these three observables in table 3. The coupling ĉγγ is

constrained at the per mille level although the constraint on the SM diphoton width has

been measured only with O(1) precision. This is because the SM width is already one-loop

suppressed and thus the current O(1) precision of measurement corresponds to ĉγγ ≈ 10−3.

The correction to the Higgs kinetic term ĉH on the other hand is poorly constrained. This

is because ĉH causes a universal shift in all the Higgs couplings and thus drops out from

the branching ratios. Moreover, if only gluon fusion production channels are considered,

the coupling cGG mimics the effect of ĉH . Therefore, to disentangle the effect of cGG and

constrain ĉH , Higgs production cross-sections in different channels have to be compared; in

particular the weakly sensitive vector-boson fusion (VBF) channels have to be considered.

Based on their precision of measurement, the observables can be divided into at least

two groups. In the first group, containing highly constrained operators, we have the four

electroweak parameters and the Higgs diphoton coupling (see table 3),

{ĉS , ĉT , ĉW , ĉY , ĉγγ} , (4.20)

11We thank F. Riva for providing us with the latest constraint on cH from the fit in ref. [18].
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which have been measured at the per mille level. In the second group we have the hγZ

coupling, the couplings related to the three TGC observables κγ , g
1
Z , λγ and ĉH ,

{ĉγZ , ĉκγ , ĉgz, ĉλγ , cH} , (4.21)

which are much more weakly constrained. One can, in fact, further split the above set into

cH which is constrained only at the O(1) level and the other couplings that are constrained

at the few percent level.

We are interested in finding instances where the couplings from the second group in

eq. (4.21) appear in the RGE’s of the first group of couplings in eq. (4.20). To check this

we rotate the anomalous dimension matrix to the observable basis defined by eq. (4.15),

eq. (4.17), and eq. (4.19). We present the anomalous dimension matrix in the observable

basis in table 4. Using this, and fixing Λ = 2 TeV, we write numerically eq. (4.5) as

(ĉS , ĉT , ĉY , ĉW , ĉγγ , ĉγZ , ĉκγ , ĉgz, ĉλγ , ĉH)t (mt) ' (4.22)

'



0.9 0.003 −0.03 −0.08 −0.02 −0.02 −0.04 0.05 −0.01 0.001

0.03 0.8 −0.02 −0.009 0 0 −0.03 0.01 0 −0.003

0.001 0 0.9 0 0 0 −0.001 0.001 0 0

0 0 −0.001 0.8 0 0 0 −0.003 0 0

0 0 0 0 0.9 0 0.006 0 0.02 0

0 0 0 0 0 0.9 0.007 0 0.03 0

0 0 0 0 −0.02 −0.02 0.9 0 −0.01 0

0.0004 −0.0007 −0.0004 0.1 0 0 −0.0004 0.9 0 −0.0007

0 0 0 0 0 0 0 0 0.9 0

−0.02 0.03 0.01 −0.4 0 0 0.02 −0.3 0 0.8





ĉS(Λ)

ĉT (Λ)

ĉY (Λ)

ĉW (Λ)

ĉγγ(Λ)

ĉγZ(Λ)

ĉκγ(Λ)

ĉgz(Λ)

ĉλγ(Λ)

ĉH(Λ)


.

We can now derive the RG-induced constraints by using eq. (4.10) assuming no fine-tuning

among the different terms in the RGE’s.

The strongest RG-induced constraints come from the direct bounds on the Ŝ, T̂ , W

and Y parameters, i.e. the first four lines in eq. (4.22). We require that each observ-

able coupling individually satisfies the four RG-induced constraints from these electroweak

precision parameters simultaneously. It is very important to take into account the experi-

mental correlations between Ŝ, T̂ ,W and Y while imposing these bounds [32–34]. Note that

the RG-mixing contributions to ĉW and ĉY , from the couplings in the weakly constrained

group in eq. (4.21), is either absent or accidentally much smaller than the ones to ĉS and

ĉT (see the RG contributions to ĉW and ĉY in the third and fourth row of eq. (4.22)). We,

therefore, look at the constraints on the Ŝ − T̂ plane taking W = Y = 0. We use the

Ŝ − T̂ ellipse in ref. [31], which assumes W = Y = U = 0, to derive our constraints. We

present these RG-induced bounds and compare them with the direct bounds in table 3 and

in figure 1. We find that for each of the couplings in the second group we can derive a RG-

induced constraint stronger than, or of the same order of, the direct tree-level constraint.

We also obtain RG-induced bounds from the direct constraint on ĉγγ using the fifth line

in eq. (4.22) and eq. (4.10),

ĉκγ ∈ [−0.2, 0.3] ,
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Figure 1. The blue ellipses represent the 68% (solid), 95% (dashed) and 99% (dotted) CL bounds

on Ŝ and T̂ as obtained in the fit of ref. [31] with U = 0. The straight lines represent the RG-

induced contribution to the oblique parameters from the weakly constrained observable couplings

of eq. (4.21), divided in Higgs couplings (a) and TGC couplings (b), using the first two lines of

eq. (4.22), for Λ = 2 TeV. The length of the lines corresponds to their present 95% CL direct

bounds, see table 3; the line is green (red) for positive (negative) values of the parameters.

ĉλγ ∈ [−0.05, 0.10] , (4.23)

but at present these bounds are weaker than those from the direct bounds on electroweak

parameters.

Let us briefly comment on alternate choices for our observable basis. In general, a

change of observable basis modifies the anomalous dimension matrix of table 4, also for the

observables which were maintained in the basis. Thus, the RG-induced constraints we have

derived, are applicable only to our particular choice of observables, and for an alternate

choice the analysis must be repeated.12 For instance, the Higgs decay observables related

to h→W +W−, ZZ decays could have been alternatively chosen as part of our observable

basis instead of two of the TGC observables (κγ and gZ) but we have kept the TGC in

our basis as they are measured more precisely than these Higgs decay observables. This

situation is likely to continue in the future. Although, observables like the relative deviation

of h → W +W−, ZZ with respect to the SM would be strongly constrained at the 5 %(3

%) level at the LHC with 300 fb−1 ( 3000 fb−1) data [35], the bounds on TGC are also

expected to become stronger by an order of magnitude at the LHC [35] so that the TGC

would still be more precisely measured than these Higgs observables. At linear colliders the

Higgs h→W +W−, ZZ is expected to be measured at the level of 0.5 % [35] and the TGC

observables at the 10−4 level [36]; again the TGC observables would be more constrained.

12Note that for our choice of observable basis, h → γγ does not receive a contribution from the Ŝ

parameter even though there is a dependance on cWB in the anomalous dimension but cWB is actually

reconstructing the δκγ parameter.
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ĉ λ
γ

γ
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Direct Future |ĉκγ | |ĉγZ | |ĉλγ | |ĉH |

Measurement Precision

ĉγγ 4× 10−5 [35] 6× 10−3 - 2× 10−3 -

ĉγZ 3× 10−4 [35] 4× 10−2 - 1× 10−2 -

ĉκγ 2× 10−4 [36] - 1× 10−2 1× 10−2 -

ĉgZ 2× 10−4 [36] 0.4 - - 0.25

Table 5. In this table we present the minimum value of the couplings in eq. (4.21) to which direct

measurements of the observables in the first column would be sensitive via the one loop RG-mixing

effects computed in this work. The long term projection for the measurement precision for the

observables in the first column is given in the second column.

Finally, let us discuss the future prospects for these RG-induced effects. In the fu-

ture, as the measurement of the observables we have considered becomes more and more

precise, it may be possible to detect signs of new physics. In this case, since some of the

observables in table 3 will be non-zero one would expect a deviation, via RG-mixing, also

in other observables, unrelated at tree level. Note that according to future projections,

ĉγγ , the TGC observables (ĉκγ , ĉgz) and ĉγZ would be measured at the 10−4 level [35, 36]

at linear colliders and thus all these observables would be sensitive to RG-induced mixing

effects of the couplings in eq. (4.21), if they are above a minimal value.13 We present

these minimum values in table 5. If, instead, a deviation is detected in some observable

but no such RG-induced deviation in other observables is detected at the level hinted by

our analysis, then this would indicate a tuning (or a correlation) among the various RG

contributions to the direct measurement, see eq. (4.11). Take, for example, the first row

of table 5. Suppose we measure the deviation ĉλγ ∼ 1 × 10−2, a value larger than the

minimum value presented in table 5, while instead h → γγ would still remain compatible

with zero with the reported sensitivity. From eq. (4.11) we would than conclude that a

fine-tuning of the order ∆γγ & 5 would be necessary to accommodate the data, or that

some particular correlation in the UV physics is needed to induce such cancellation.

13Future prospects for measurements at the Z-pole predict an enhancement of the precision, with respect

to the present one, of about one order of magnitude for ILC [36] and two orders of magnitude for TLEP [37],

depending on the observable. Moreover, from runs at energy
√
s ∼ 2mW , the measurement of the W mass

is predicted to became more precise by one (ILC) or two (TLEP) orders of magnitude. This will imply an

enhancement of the precision in the oblique parameters Ŝ, T̂ , W and Y . A more detailed study of these

future prospects is beyond the scope of this paper, since our aim is only to show some examples for future

applications of the general idea of RG-induced bounds.
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5 Scaling of the gluon operators

In this section we shall extend the results of the previous sections and present also the

scaling of the bosonic operators that contain gluons, as defined in table 1:

{O2G, OGG, O3G}. (5.1)

The anomalous dimension matrix is shown in table 6, where the c3G self-renormalization

has been taken from refs. [4, 5]. This matrix already contains the effect of the redundant

operators that are generated radiatively and, upon eliminating them, modify the RG of

the operators in table 1, see appendix A for details.

In the same spirit of section 4, let us now turn to the observables which are sensitive

to these operators and review the present constraints. The Wilson coefficient c2G can be

put in one-to-one relation to the parameter Z introduced in ref. [22] (analogous to the W

and Y electroweak parameters):

Z =
m2
W

Λ2
c2G. (5.2)

A bound on this parameter has been obtained by an analysis of dijets events at LHC [38, 39]:

− 9× 10−4 . Z . 3× 10−4. (5.3)

A bound on cGG can be obtained from the analysis of the Higgs production cross section

at LHC. The relevant phenomenological Lagrangian is

Lh ⊃ ĉGG
hv

m2
W

g2
sG

A
µνG

µν A, (5.4)

where we defined

ĉGG ≡
m2
W

Λ2
cGG. (5.5)

The most recent bound, obtained in ref. [18] after marginalizing over the other deviations

from the SM, reads

ĉGG ∈ [−0.8, 0.8]× 10−3. (5.6)

The coefficient c3G, analogous to the SU(2)L counterpart c3W , would contribute to the

anomalous triple gluon couplings. These effects can be measured at LEP, Tevatron and

LHC, for example via top-quark pair production, see for example ref. [40] where it is esti-

mated that LHC should be able to put a bound |ĉ3G| ≡ |c3G|m2
W /Λ2 . 0.1.

As can be seen in table 6, no mixing to (or from) these gluon operators is present

among the operators we considered in table 1, the only exception being a contribution

from c2B to c2G which, however, is not very interesting since c2B is already very well di-

rectly constrained by the oblique Y parameter. For this reason, we are not able to cast

any indirect constraint using these gluon operators.
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c2G cGG c3G c2B c2W

γc2G
266
9 g2

s 0 0 g′2
(

17
6 (Y 2

u + Y 2
d ) + 12YuYd

)
0

γcGG 0 −3
2g′2 − 9

2g2 + 12λ + 6y2
t 0 0 0

γc3G 0 0 22g2
s 0 0

Table 6. Anomalous dimension matrix for the Wilson coefficients of the dim-6 bosonic operators

with gluons, in the basis defined in section 2. The contributions to and from the other coefficients

of the operators in eq. (3.1), not reported here, are zero.

6 Conclusions

We computed the scaling and mixing of 13 dim-6 deformations of the SM affecting EW pre-

cision observables (4), anomalous EW triple gauge boson couplings (3), QCD observables

(2) and Higgs decays (4). This computation has important phenomenological implications.

Particularly interesting is the RG-mixing induced among 10 of these observables (the 2

two QCD observables and one Higgs observable, namely Γ(h→ gg), constitute a separate

sector that does not mix in a relevant way with the severely constrained EW observables.).

These 10 different observables are constrained at very different levels of precision. For

example, whereas the electroweak precision observables and the operator coefficient related

to the h→ γγ partial width are constrained at the per mille level, the TGC and the 2 other

Higgs observables are constrained at the percent level at most. As we run down from the

new physics scale to the lower scale of experiments, quantum effects mix the observables

and the most severely constrained ones receive a contribution from the ones allowed to

deviate the most from the SM predictions. These RG-contributions could in principle be

of the same size or even larger than the direct experimental bounds, in other words, the

difference in the experimental sensitivities can compensate for the RG-loop factor. Re-

quiring that these RG-contributions do obey individually the direct bounds, i.e. dismissing

any possible tuning/correlation among the various RG-terms, we can derive some indirect

RG-induced bounds on the weakly constrained observables from the direct measurement

of the severely constrained ones. This analysis is particularly relevant for the TGC and

the universal shift of the Higgs couplings, as reported in table 3.

We also looked at the future prospects of these RG-induced effects. If a deviation from

the SM is observed in some of the observables we considered, in the absence of tuning

one would expect a deviation, due to these RG effects, to appear also in other seemingly

unrelated observables. If, instead, these RG-induced deviations are not observed, it would

mean that some tuning is needed, or it would indicate some correlation among the higher

dimensional operators pointing towards a particular structure of the new physics that has

been integrated out. We have presented the projected future experimental sensitivity to

these RG effects in table 5.
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The first run of the LHC ended beautifully with the discovery of the Higgs boson

and initiated an era of measurements in the EWSB sector that remained only indirectly

constrained for several decades. With the next run of the LHC and the high-luminosity

program will start an era of precision that will lead certainly to a better understanding of

the Higgs sector itself and also, hopefully, to the first glimpse of the new physics laying

beyond the Standard Model. We hope that the results we presented in this paper will be

a powerful tool in that quest.

Note added. While this paper was being submitted, the work [41] appeared. It com-

puted the gauge-coupling dependence of the anomalous dimensions among the dim-6 op-

erators.
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A Dealing with redundant operators

In this appendix we explain in detail the anomalous dimension matrix presented in the

main body of the paper, tables 2 and 6. As remarked in section 2, a common effect en-

countered in the computation of the scaling of the dim-6 operators is the appearance of

counter-terms that correspond to operators not included in our basis, i.e. operators that are

redundant for the description of physical processes. In particular, the set of 13 operators

we are interested in,

{OH ,OT ,OB,OW ,O2B,O2W ,OBB,OWW ,OWB,O3W ,O2G,OGG,O3G} , (A.1)

not only mix among themselves under the RG flow but also generate redundant operators

that are not included in our basis (defined in section 2). In this appendix we first give a

pedagogic example of radiatively generated redundant operators, section A.1. Then, we

present the set of redundant operators generated by those in eq. (A.1), together with their

anomalous dimensions, section A.2. In section A.3 we explain how the redundant operators

are redefined back into our basis and what is their effect on the anomalous dimensions of

the operator set in eq. (A.1) [12].

A.1 Example of radiatively generated redundant operators

As a first step, let us give a detailed example of the generation of redundant operators by

the ones in eq. (A.1). Consider the renormalization of the vertex ēR − eR − Bν by the
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c2B

g′g′

c2B

g′g′

g′

(a) (b)

Figure 2. Feynman diagrams representing the contribution of the dim-6 operator

O2B = − 1
2 (∂µBνµ)2 to the renormalization of the vertices ēR− eR (diagram (a)) and ēR− eR−Bν

(diagram (b)).

operator O2B. There is only one possible diagram, depicted in figure 2(b), which can give

contributions to any of the operators

OeBR = g′∂νBµν(ēRγµeR) , O′eBR = g′B̃µνif̄
i
RγµDνf iR , (A.2)

or to the three-point vertex of the operator

OeK3R =
1

2
ēR( /DD2 + D2 /D)eR . (A.3)

It can be easily checked that there is no other operator with the same field content which

is also independent from the ones in eq. (A.2) and eq. (A.3). As for a CP-odd version

of O′eBR is of not concern to us since it is clear that the diagrams we are considering

cannot violate CP. The crucial point of this discussion is that the above operators are not

contained in our basis, therefore one has to redefine them back to the ones in our basis,

giving a contribution in the anomalous dimensions. These indirect contributions of O2B

to the anomalous dimensions of the bosonic operators are of the same order as the direct

contributions computed via one-particle-irreducible diagrams, it is therefore necessary to

keep track of all such effects in order to have a consistent calculation.

The computation of diagram (b) in figure 2 gives us, in general, a combination of the

contributions from O2B to all the operators in eq. (A.2) and eq. (A.3). To disentangle

the different contributions from the divergent part of diagram (b), we look at the differ-

ent momentum structures of the three operators and recognize them inside the result of

diagram (b):

Adiv
(b) = −

γ
(b)
cK3R|c2B

2ε
c2B〈OeK3R〉 −

γcBR|c2B
2ε

c2B〈OeBR〉 −
γc′BR|c2B

2ε
c2B〈O′eBR〉 , (A.4)

using dimensional regularization with D = 4− 2ε. 〈Oi〉 represents the Feynman rule of the

operator Oi with the external states of diagram (b). We obtain

16π2γ
(b)
cK3R|c2B = −Y 2

e g′2, 16π2γcBR|c2B = −5

6
Y 2
e g′2, 16π2γc′BR|c2B = −Y 2

e g′2. (A.5)
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Diagram (a) in figure 2 gives univocally the contribution of O2B to OeK3R, since this is

the only dim-6 operator with only {ēR, eR} as external legs. Since we are working in the

background field gauge, we expect that all vertices of a gauge invariant operator should

be renormalized in the same way.14 For this reason, and from the previous computation

in eq. (A.5), we already know what that the result of diagram (a) should be: γ
(a)
K3R|2B =

γ
(b)
K3R|2B; and indeed this is what we find performing the explicit calculation. One can often

use similar relations as a check of the computation.

In the following section we shall study how these redundant operators, generated by

the RG flow, can be redefined into the ones of our basis. For instance, we shall see that

the contribution from O2B to OeBR described above has to be included as a contribution

to the running of OB and O2B, eq. (A.18).

A.2 Anomalous dimension matrix

The relevant redundant operators that are radiatively generated by those in eq. (A.1) are:

Or = |DH|2 |H|2 , OK4 =
∣∣D2H

∣∣2 ,

O(3)
LL = (L̄LσaγµLL)(L̄LσaγµLL) , O(3)L1

L = i(H†σa
↔
DµH)L̄1

LσaγµL1
L ,

O(8)u1d1

RR = (ūRγµTAuR)(d̄RγµTAdR) , Oe1RR = (ēRγµeR)(ēRγµeR) ,

OFiK3L =
1

2
F̄ i
L

(
/DD2 + D2 /D

)
F i
L , OfiK3R =

1

2
f̄ iR
(

/DD2 + D2 /D
)
f iR ,

OFiWL = gDνW a
µν(F̄ i

LσaγµF i
L) , O′FiWL = gW̃ a

µνiF̄
i
LσaγµDνF i

L ,

OFiBL = g′DνBµν(F̄ i
LγµF i

L) , O′FiBL = g′B̃µνiF̄
i
LγµDνF i

L ,

OfiBR = g′DνBµν(f̄ iRγµf iR) , O′fiBR = g′B̃µνif̄
i
RγµDνf iR ,

OQiGL = gsD
νGA

µν(Q̄i
LTAγµQi

L) , O′QiGL = gsG̃
A
µνi(Q̄

i
LTAγµDνQi

L) ,

OqiGR = gsD
νGA

µν(q̄iRTAγµqiR) , O′qiGR = gsG̃
A
µνi(q̄

i
RTAγµDνqiR) ,

(A.6)

By relevant we mean those radiatively generated redundant operators that modify the

Wilson coefficient of the operators in eq. (A.1) when the former operators are redefined

into operators in our basis, defined in section 2.

Below we present in three different tables the anomalous dimension matrix of the

operators in eq. (A.1) as well as the relevant redundant operators generated by them,

eq. (A.6), at the order stated in eq. (3.2). We work with arbitrary ξ in the background

field gauge (see eq. (3.4)) and use dimensional regularization. All the contributions given

in tables 7, 8 and 9 below arise from one-particle-irreducible Feynman diagrams, i.e. it is

the one-loop renormalization of the Effective Action.

14This is somewhat trivial for this example since the considered diagrams are clearly independent of the

background field gauge terms, eq. (3.4); but it is relevant in general.
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cH cr cT

γcH 28λ + 12y2
t − 3

(
5
2g2 + g′2

)
3
2

(
2g2 + g′2

)
− 4λ 8λ− 6g2 − 3

2g′2

γcT
3
2g′2 −3

2g′2 12λ + 12y2
t + 9

2g2

γcB −1
3

1
3 −5

3

γcW −1
3

1
3 −1

3

γcr 4λ− 3g2 20λ + 12y2
t − 3

2

(
g2 + g′2

)
−4λ + 3g2 − 6g′2

Table 7. Anomalous dimension matrix. Further contributions ofOH , Or andOT to other operators

in eq. (A.1) and eq. (A.6) are either zero or proportional to the Yukawa coupling of any fermion

lighter than the top. The dashed line separates the anomalous dimension of the operators in our

basis from that of the redundant operators.

cBB cWW cWB c3W

γcH 6g′4 18g4 6g′2g2 0

γcT 0 0 0 0

γcB 0 0 0 0

γcW 0 0 0 2g2

γc2B 0 0 0 0

γc2W 0 0 0 4g2

γcBB
g′2

2 −
9g2

2 +6y2
t +12λ 0 3g2 0

γcWW 0 −3g′2

2 −
5g2

2 +6y2
t +12λ g′2 5

2g2

γcWB 2g′2 2g2 -g
′2

2 + 9g2

2 +6y2
t +4λ −g2

2

γc3W 0 0 0 24g2−2γW

γcr 6g′4 18g4 6g′2g2 0

γ
cQ,LWL

0 0 0 g2

Table 8. Anomalous dimension matrix. Further contributions of OBB ,OWW ,OWB and O3W to

other operators in eq. (A.1) and eq. (A.6) are either zero or proportional to the Yukawa coupling of

fermions lighter than the top. The dashed line separates the anomalous dimension of the operators

in our basis from that of the redundant operators.
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In table 7 we display the contributions of OH , Or and OT to the running of the Wilson

coefficients of the operators in eq. (A.1). We have defined

γci = 16π2 dci
d log µ

, βg =
dg

d log µ
(A.7)

and

γH =−Ncy
2
t +

1

4

(
3[3− ξW ]g2 + [3− ξB]g′

2
)

,

γG =− 1

gs
βgs =

(
11− 4

3
NG

)
g2
s , γW =−1

g
βg=

19

6
g2, γB=− 1

g′
βg′ =−

41

6
g′2 , (A.8)

in the background field gauge. NG = 3 is the number of generations. The contributions

not shown are either zero or proportional to the Yukawa coupling yl of any fermion lighter

than the top. Notice that in table 7 we have gone beyond the strictly necessary computa-

tions to obtain the anomalous dimension matrix and also included the contributions of the

operator Or, that is redundant with respect to our basis; their contributions are used for

a crosscheck in appendix B.

In table 8 we show the contributions of OBB,OWW ,OWB and O3W to the running

of the operators in eq. (A.1). The c3W self-renormalization has been extracted from the

result of ref. [4]. Their contribution to the running of the redundant operators in eq. (A.6)

that we have not written are either zero or proportional to yl.

Lastly, in table 9 we show the contributions of OB,OW ,O2B and O2W to the running

of any of the operators in eq. (A.1) and eq. (A.6). We have indicated by O (yl) those

contributions that at most are expected to be proportional to the Yukawa coupling of a

fermion lighter than the top. As can be noted from table 9, the contribution of O2W to

the running of OH , Or, OW , O2W , O
(3)Fi
L , OFiWL and O(3)Fi

LL is ξ-dependent. This should

not come as a surprise, even if we work in the background field gauge, where the counter-

terms are gauge invariant. The reason is that at this point of the computation we still

have redundant operators generated by the flow. By definition, in an over-complete ba-

sis that contains redundant operators only certain combinations of the Wilson coefficients

enter in the physical observables. Hence, it is only after these physical combinations of

the Wilson coefficients are taken, that the computation is guaranteed to be and should be

gauge invariant. For instance, in section A.3 we show that upon redefining the redundant

operators in terms of operators in our basis the ξ dependence of the anomalous dimension

vanishes. This subtlety is well known and, for instance, it also appears in the context of

Non-Relativistic QCD, where the running of the Wilson coefficients is gauge independent

only when the redundancy of different operators is taken into account [42]. This has also

been recently stressed again in ref. [13].

Table 10 reports the contributions of O2G,OGG,O3G,O2B and O2W to the anomalous

dimension of the (redundant) operators in eq. (A.1) and eq. (A.6), as needed to derive the

anomalous dimension matrix of the dim-6 bosonic operators with gluons of our basis (see

table 6).
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c2G cGG c3G c2B c2W

γc2G
1
2
g2
s(59−9ξG)−2γG 0 6g2

s 0 0

γcGG 0 − 3
2
g′2− 9

2
g2+12λ+6y2

t 0 0 0

γc3G 0 0 36g2
s−2γG 0 0

γcud
RR

−12g2
s(g′2YuYd) 0 0 −12(g′2YuYd)

2 0

γ
c
(8)ud
RR

1
2
g4
s(9ξG − 1) 0 0 −12g2

s(g′2YuYd) 0

γ
c
Q
K3L

− 4
3
g2
s 0 0 Table 9 Table 9

γ
c
u,d
K3R

− 4
3
g2
s 0 0 Table 9 0

γ
c
u,d
GR

− 9
2
ξG − 37

9
0 3g2

s − 5
6
(g′Yu,d)

2 0

γ
c
Q
GL

− 9
2
ξG − 37

9
0 3g2

s − 5
6
(g′YQ)2 − 5

8
g2

γ
c
Q
WL

− 5
9
g2
s 0 0 Table 9 Table 9

γ
c
Q
BL

− 10
9
g2
sYQ 0 0 Table 9 Table 9

γ
c
u,d
BR

− 10
9
g2
sYu,d 0 0 Table 9 0

γ
c
′u,d
GR

− 4
3
g2
s 0 0 −(g′Yu,d)

2 0

γ
c
′Q
GL

− 4
3
g2
s 0 0 −(g′YQ)2 − 3

4
g2

γ
c
′Q
WL

− 2
3
g2
s 0 0 Table 9 Table 9

γ
c
′Q
BL

− 4
3
g2
sYQ 0 0 Table 9 Table 9

γ
c
′u,d
BR

− 4
3
g2
sYu,d 0 0 Table 9 0

Table 10. Contributions of the operators O2G,OGG,O3G,O2B and O2W to the anomalous dimen-

sion of the operators in eq. (A.1) and eq. (A.6). The dashed line separates the anomalous dimension

of the operators in our basis from that of the redundant operators.

A.3 Removal of the radiatively-generated redundant operators

We now turn in to discuss how to deal with each operator in eq. (A.6) and their effect on

the operators of eq. (A.1).

The easiest way to deal with the redundant operator O′fiBR = g′B̃µνif̄
i
RγµDνf iR [15] is

by means of the identity15

γµγνγρ = gµνγρ + gνργµ − gµργν + iεµνρσγσγ
5 ; (A.9)

15We use the conventions of Peskin & Schroeder textbook.
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one finds

g′B̃µν f̄RγµiDνfR =
g′

4
f̄Ri

(
γµγν /D +

←−
/Dγµγν

)
fRg′B̃µν

+ig′f̄RγργµγνfRDρB̃µν . (A.10)

Then, using the fermion’s EoM

g′

4
f̄Ri

(
γµγν /D +

←−
/Dγµγν

)
fRg′B̃µν =

1

4
g′yf iF̄LσµνfRHg′B̃µν + h.c.

=
1

4
g′yf F̄LσµνfRHg′Bµν+h.c.≡ 1

4
OfDB , (A.11)

which is a dipole operator, where σµν ≡ i
2 [γµ, γν ]; using again eq. (A.9) in the second term

of the right hand side of eq. (A.10)

ig′f̄RγργµγνfRDρB̃µν = 2g′f̄RγσfRDρB
σρ = 2OfBR . (A.12)

Therefore, eqs. (A.10)–(A.12) and analogous manipulations, are equivalent to the following

shifts (ci → ci + δci) in the following Wilson coefficients:

δcFWL = 2c′FWL , δcFBL = 2c′FBL , δcfBR = 2c′fBR, δcQGL = 2c′QGL, δcqGR = 2c′qGR . (A.13)

The Wilson coefficient of the dipole operators are also shifted, see eq. (A.11), however,

we can not conclude that the dipoles are renormalized by the set of bosonic operators

we considered because we did not compute direct contributions, those coming from one-

particle-irreducible diagrams.

Then, for the operator OfiK3R, consider the field redefinition δfi = − c
fi
K3R
2Λ2 D2fi, that

removes OfiK3R from the Lagrangian while generates the operator

−
cfiK3Ryfi

2Λ2
DµF̄iLDµ (fiRH) + h.c. = −

cfiK3Ryfi
2Λ2

[
DµF̄iLγµγνDν (fiRH)

− 1

2
F̄iLXµνσ

µνfiRH + h.c.

]
,

(A.14)

where Xµν = g′YFiBµν + gW a
µντ

a + gsG
A
µνT

a, being τa and TA the SU(2)L and SU(3)c
generators in the fundamental representation, respectively. Then, by inserting the fermion’s

EoM in the first operator in the right hand side of eq. (A.14) one gets operators of the type

LYuk |H|2 and the operator yfiO
fi
R ≡ yfii(H

†
↔
DµH)f̄ iRγµf iR; we do not care about the latter

(proportional to yfi) since our basis choice of section 2 was to remove the operator OfiR
corresponding to a light fermion. Performing an analogous analysis for OFiK3L we reach the

same conclusion: neither of the two operator’s scaling affects the anomalous dimension of

the set of bosonic operators in eq. (A.1). As in the case of O′WL,BL,BR, the same comment

applies here: even-though the Wilson coefficient of the dipoles is shifted by the above

manipulations, we do not conclude that they are renormalized by the bosonic operators.
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Now, the remaining operators (corresponding to the third, forth and fifth line of

eq. (A.6)) are redefined into our basis by performing field redefinitions. Consider the

37 independent field redefinitions

Λ2δGA
µ = α2G(DνGA

µν) + gS
∑
i

αiQGQ̄i
LTAγµQ

i
L + gS

∑
i,q

αiqGq̄iRTAγµq
i
R, ,

Λ2δW a
µ = igαW (H†σa

↔
DµH) + α2W (DνW a

µν) + g
∑
i,F

αiFW F̄ i
LσaγµF

i
L,

Λ2δBµ = ig′αB(H†
↔
DµH)+α2B(∂νBµν)+g′

∑
i,F

YFαiFBF̄ i
LγµF

i
L+g′

∑
i,f

Yfα
i
fB f̄ iRγµf

i
R,

Λ2δH = α1H|H|2 + α2

(
(D2H)− yije ēiRLjL − yijd d̄iRQj

L − yiju iσ2(ūiRQj
L)∗
)

, (A.15)

with F = {L, Q}, f = {e, d, u}, q = {d, u} and i = 1, 2, 3. These generate the following

shifts for the Wilson coefficients of the dimension 6 operators:

cH → cH + 2(α1 + 2λα2)− αW g2 cr → cr + 2(α1 + 2λα2) + αW g2

cT → cT − αBg′2 cK4 → cK4 − 2α2

cB → cB + α2B − 2αB cFiWL → cFiWL +
1

2
α2W − αiFW

cW → cW + α2W − 2αW cFiBL → cFiBL + YF (α2B − αiFB)

c2B → c2B + 2α2B cf iBR → cf iBR + Yf (α2B − αifB)

c2W → c2W + 2α2W c
(3)Fi
LL → c

(3)Fi
LL +

g2

2
αiFW

c2G → c2G + 2α2G cFiLL → cFiLL + (YF g′)2αiFB

c6 → c6 − 4α1 cf iRR → cf iRR + (Yfg
′)2αifB

ciyf → ciyf − α1 + 2λα2 c
Fifj
LR → c

Fifj
LR + (YFYfg

′2)(αifB + αiFB)

cijyfyf → cijyfyf + 2α2 c
(3)Fi
L → c

(3)Fi
L +

g2

2
(αW + αiFW )

cu
idj

RR → cu
idj

RR + g′2YuYd(α
i
uB + αjdB) cFiL → cFiL + YF g′2

(
αB +

1

2
αiFB

)
cf iR → cf iR + Yfg

′2
(

αB +
1

2
αifB

)
cqiGL,R → cqiGL,R + α2G − αiqG for q = Q, u, d

c
(8)uidj

RR → c
(8)uidj

RR + g2
s(α

i
uG + αjdG). (A.16)

Notice that using Fierz identities we can always trade the operator OFiLL for O(3)Fi
LL : OFiLL =

O(3)Fi
LL . This means that the shift in cFiLL can be recast as a shift in c

(3)Fi
LL , which becomes:

c
(3)Fi
LL → c

(3)Fi
LL +

g2

2
αiFW +

(
cFiLL + (YF g′)2αiFB

)
. (A.17)

We use the freedom given by the field redefinitions to set to zero the following 37 coefficients:

cr, cK4, c
(3)L1

LL , ce1RR, c
(3)L1

L , ce1R , cFiWL, cFiBL, cfiBR, cQiGL, cuiGR, cdiGR, c
(8)u1d1

RR . This fixes all the shift
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parameters αi and gives shift invariant combinations, under eq. (A.16), of the Wilson

coefficients of the operators in our basis:

cH → cH − cr + 6(c
(3)L1

L − c̃
(3)L1

LL ) ,

cT → cT +
1

Ye

(
ce1R −

1

2Ye
ce1RR

)
,

cW → cW − 2cL1
WL − 4c′L1

WL +
4

g2
(c

(3)L1

L − 2c̃
(3)L1

LL ) ,

cB → cB −
1

Ye
ce1BR −

2

Ye
c′e1BR +

2

Yeg′2

(
ce1R −

1

Ye
ce1RR

)
,

c2W → c2W − 4cL1
WL − 8c′L1

WL −
8

g2
c̃

(3)L1

LL ,

c2B → c2B −
2

Ye
ce1BR −

4

Ye
c′e1BR −

2

Y 2
e g′2

ce1RR ,

c6 → c6 + 2cr + 4λcK4 − 8(c
(3)L1

L − c̃
(3)L1

LL ) ,

c2G → c2G − cd1
GR − 2c′d1

GR − cu1
GR − 2c′u1

GR −
1

g2
s

c
(8)u1d1

RR ,

(A.18)

where

c̃
(3)L1

LL = c
(3)L1

LL + cF1
LL + g′2YL

(
cL1
BL + 2c′L1

BL −
YL
Ye

(
ce1BR + 2c′e1BR +

1

g′2Ye
ce1RR

))
(A.19)

and eq. (A.13) has already been taken into account. This completes the removal of the

operators in eq. (A.6) in terms of the bosonic operators.

As we have just shown, upon eliminating the redundant operators the Wilson coeffi-

cients of the operators of eq. (A.1) are shifted in such a way that the anomalous dimensions

are redefined as

γcH → γcH − γcr + 6(γ
c
(3)L1
L

− γ̃
c
(3)L1
LL

) ,

γcT → γcT +
1

Ye

(
γce1R
− 1

2Ye
γce1RR

)
,

γcW → γcW − 2γ
c
L1
WL

− 4γ
c
′L1
WL

+
4

g2
(γ
c
(3)L1
L

− 2γ̃
c
(3)L1
LL

) ,

γcB → γcB −
1

Ye
γce1BR

− 2

Ye
γ
c
′e1
BR

+
2

Yeg′2

(
γe1R −

1

Ye
γce1RR

)
,

γc2W → γc2W − 4γ
c
L1
WL

− 8γ
c
′L1
WL

− 8

g2
γ̃
c
(3)L1
LL

,

γc2B → γc2B −
2

Ye
γce1BR

− 4

Ye
γ
c
′e1
BR
− 2

Y 2
e g′2

γce1RR
,

γc6 → γc6 + 2γcr + 4λγcK4 − 8(γ
c
(3)L1
L

− γ̃
c
(3)L1
LL

) ,

γc2G → γc2G − γ
c
d1
GR

− γcu1
GR
− 1

g2
s

γ
c
(8)u1d1

RR

,

(A.20)
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where

γ̃
c
(3)L1
LL

=γ
c
(3)L1
LL

+γ
c
F1
LL

+g′2YL

(
γ
c
L1
BL

+2γ
c
′L1
BL

−YL
Ye

(
γcBRe1 +2γ

c
′e1
BR

+
1

g′2Ye
γce1RR

))
. (A.21)

after setting c0,i
red = 0, being c0,i

red the tree-level Wilson coefficient of any of the operators

in eq. (A.6). The anomalous dimensions of the remaining bosonic operators, that are not

of the form (SM current)×(SM current), are not redefined. In this way we can go back to

our original basis taking into account that some operators are generated radiatively even

if we set their Wilson coefficient to zero at the matching scale. In the main body of the

paper, tables 2 and 6, we gave the physical anomalous dimensions obtained using the right

hand side of eq. (A.20). As announced in section A.2, the ξ dependence cancels out in the

physical combinations of γci ’s, which can be easily checked using eq. (A.20).

B Field reparametrization-invariance crosscheck

There is a useful consistency check that can be done to the results presented in tables 7

and 9. Consider the set of 9 operators

B = {OK4,O6,OH ,Or,OT ,OB,OW ,O2B,O2W } . (B.1)

By means of field redefinitions, these operators are related among themselves and to other

operators that contain fermions, see eq. (A.15). Therefore, in a hypothetical theory with no

fermions, but otherwise equivalent to the SM, the operator set of eq. (B.1) would be over-

complete, i.e. there would be operators which could be removed using field redefinitions.

Let us take this scenario as a working assumption for the rest of this appendix. More

concretely, consider the subset of field redefinitions of eq. (A.15), parametrized by

{α1, α2, αB, α2B, αW , α2W } (B.2)

and the shifts they produce on the operators of eq. (B.1) given in eq. (A.16). Using this

shift freedom we can choose to remove all the operators in B except O6, OH and OT .

However, notice that the over-completeness16 of B can be exploited in our advantage;

physical observables are independent of the coordinates choice as long as such a choice is

compatible with the assumed symmetries. Hence, physical observables can not depend on

the arbitrary parameters αi of eq. (B.2) that we used to parametrize the field redefinitions.

The following combinations of Wilson coefficients are invariant under such shifts:

CH ≡ cH − cr −
3

4
g2(2cW − c2W ) ,

CT ≡ cT −
1

4
g′

2
(2cB − c2B) , (B.3)

C6 ≡ c6 + 2cr + g2(2cW − c2W ) + 4λcK4 .

16Again, we stress that the set of operators in eq. (B.1) is over-complete only in the absence of the SM

fermions.
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Physical observables depend on shift invariant combinations of couplings, which we denote

by a capital Ci. Also, a key property is that the anomalous dimension of a shift invariant

combination of couplings is a function of shift invariant combinations of couplings only17

γCi = f(Cj) . (B.4)

This is precisely the cross-check that can be done to the results computed in tables 7 and 9.

And indeed it is easy to check that:

γCH =
(
24λ− 4g2 − 3g′2

)
CH +

1

2

(
24λ + 9g′2 − 17g2

)
CT ,

γCT =
1

6

(
72λ + 5g′2 + 27g2

)
CT +

5

3
g′2CH ,

(B.5)

as it should, given the fact that O6 does not renormalize Or, OH , OT . As its clear from the

discussion above, to compute eq. (B.5) one has to insert the Higgs and gauge bosons anoma-

lous dimensions and the gauge beta functions without the contributions of the fermions:

γnfH = γH |yf=0 , γnfW = −1

g
βnfg =

43

6
g2 , γnfB = − 1

g′
βnfg′ = −g′2

6
, (B.6)

in the background field gauge and the superscript nf stands for no fermions, to distinguish

them from their SM counterparts.

Notice also that in eq. (B.5) the ξ dependence exactly cancels, as it should, rendering

the result independent of the gauge fixing term of eq. (3.4).

C Comparison with previous literature

Let us now put into context the results for the anomalous dimensions presented in this

paper. The first paper in the literature with a similar spirit to ours is ref. [6], followed by

ref. [8] and more recently by refs. [20] and [21], where they present the contributions of the

operators18

O3W , OWW , OBB, OHW ≡ ig(DµH)†σa(DνH)W a
µν , OHB≡ ig′(DµH)†(DνH)Bµν , (C.1)

to the running of the Wilson coefficients of the operators {O2W ,O2B,OWB,OT }.19 The

results in formulas (4.9a) − (4.9d) of ref. [6] recast in terms of our conventions are

shown in table 11; they correspond to the contributions of {cHB, cHW , cBB, c3W , cWW } to

{γc2B , γc2W , γcWB , γcT }, we find complete agreement.

We want to stress here that the approach we followed to compute the running of

the Wilson coefficients is somewhat different than in ref. [6]. We computed the effective

17See ref. [11] for a more detailed discussion.
18Notice that we have chosen different normalizations for the operators, different conventions for the

covariant derivatives and different names for the operators with respect to ref. [6].
19In fact they do not consider OT but OΦ,1 ≡ (OH − OT )/2. However only the projection of OΦ,1 into

OT enters in the T-parameter.
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action (only one-particle irreducible graphs) in the background field gauge starting from

a basis of operators; then, along the RG flow operators not included in the basis (like

O(3)
L ) are generated. These are redefined into our basis, and they are interpreted as

the vertex (eLσaγµeLW a
µ ) corrections that are computed in refs. [6, 7] to make the

result physical and hence gauge invariant. We believe that the approach we followed to

compute the anomalous dimensions is somewhat more systematic when dealing with the

renormalization of other operators than the oblique ones.

Contributions from OH to the T and S-parameters are given in ref. [9]. Then, the

separate contributions of {OT ,OH} to {OB,OW } are given in ref. [11].

The 3× 3 matrix of anomalous dimensions for the operators {OBB,OWB,OWW } has

been computed in ref. [10], together with its CP-odd counterparts. Then, in ref. [11] it is

shown that the 3×3 anomalous dimensions matrix computed in ref. [10] does not mix with

the 2 × 2 anomalous dimension matrix of the operators {OB,OW }. This later result, to-

gether with the use of the EOM or field redefinitions implies that none of the (SM current)×
(SM current) dim-6 operators renormalizes the operators {OBB,OWB,OWW }. In ref. [11]

the contribution of dipole operators (like ODB in appendix A.3) to the operators

{OBB,OWB,OWW }, and to its CP-odd counterparts, is also computed.

In ref. [12] several anomalous dimensions were computed, some of them overlap with

the work presented here. These are the contributions of {OH ,Or} to the anomalous

dimension of any dim-6 operator. The contributions from operators containing fermions

to the anomalous dimensions of any interesting operator for Higgs physics or EW precision

tests are also computed in ref. [12].

The Yukawa dependence of the anomalous dimensions matrix of the dim-6 SM opera-

tors is given in ref. [14]. However, notice the Yukawa dependences needed in the present

paper to derive RG-induced constraints come only from the wave functions of the SM

particle’s field or are proportional to small Yukawas.

Tables 11 and 12 show the results for the anomalous dimensions matrix presented in the

main body of the paper in two of the most used bases in the literature, refs. [6] and [28].

The three bases differ in the choice of 5 bosonic operators among the redundant set of

the 7 operators {OBB,OWW ,OWB,OHB,OHW ,OB,OW }: ref. [6] drops the 2 operators

{OB,OW } while ref. [28] does not use the 2 operators {OWW ,OWB}, and our basis leaves

out the 2 operators {OHB,OHW }. The three bases are connected by means of the identities

OW = OHW +
1

4
(OWW +OWB) ,

OB = OHB +
1

4
(OWB +OBB) . (C.2)

A good property of our basis with respect to the ones in the literature is that the one-loop

anomalous dimension matrix is simpler, since its has a block diagonal structure.
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Table 11. Anomalous dimension matrix for the Wilson coefficients of the dim-6 bosonic operators,

in the Hagiwara et al. basis [6].
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Table 12. Anomalous dimension matrix for the Wilson coefficients of the dim-6 bosonic operators,

in the SILH basis [28].
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