
ar
X

iv
:0

91
2.

27
44

v1
  [

co
nd

-m
at

.q
ua

nt
-g

as
]  

15
 D

ec
 2

00
9

Scaling approach to quantum non-equilibrium dynamics of many-body systems

Vladimir Gritsev♣, Peter Barmettler♣, and Eugene Demler♠
♣Physics Department, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland

♠Lyman Laboratory of Physics, Physics Department, Harvard University, 17 Oxford Street, Cambridge MA, 02138, USA
(Dated: December 15, 2009)

Understanding non-equilibrium quantum dynamics of many-body systems is one of the most challenging
problems in modern theoretical physics. While numerous approximate and exact solutions exist for systems
in equilibrium, examples of non-equilibrium dynamics of many-body systems, which allow reliable theoretical
analysis, are few and far between. In this paper we discuss a broad class of time-dependent interacting sys-
tems subject to external linear and parabolic potentials, for which the many-body Schrödinger equation can be
solved using a scaling transformation. We demonstrate that scaling solutions exist for both local and nonlocal
interactions and derive appropriate self-consistency equations. We apply this approach to several specific ex-
perimentally relevant examples of interacting bosons in one and two dimensions. As an intriguing result we
find that weakly and strongly interacting Bose-gases expanding from a parabolic trap can exhibit very similar
dynamics.

I. INTRODUCTION

Understanding time evolution of complex quantum sys-
tems, often in the presence of strong correlations between
constituent particles, is crucial for solving many fundamental
problems in physics, from expansion of the early universe, to
heavy ion collisions, to pump and probe experiments in solids.
New questions of dynamical evolution arise in recently real-
ized artificial quantum many-body systems, such as ultracold
atoms in optical potentials or photons in media with strong op-
tical nonlinearities. Some of these systems are not coupled to
external heat baths and have a limited life-time, thus many ex-
periments require interpretation in terms of coherent quantum
dynamics rather than properties of equilibrium states. On the
positive side, these systems allow remarkable control of pa-
rameters and open exciting opportunities for doing controlled
experiments exploring non-equilibrium many-body dynamics.

In the realm of many-body physics low-dimensional sys-
tems have a special place. They have dramatically enhanced
quantum and thermal fluctuations and exhibit most surpris-
ing manifestations of strong correlations. Rigorous theo-
rems provide strong constraints on long- range order and of-
ten such systems cannot be analyzed using mean-field ap-
proaches even at zero temperature. Nevertheless, equilib-
rium properties are well understood using methods specific to
low dimensions, such as Coulomb-gas representation of vor-
tices in two dimensions or effective low energy descriptions of
one-dimensional systems including Luttinger liquid and sine-
Gordon models (see e.g. ref. [1]). However, such analysis
cannot be straightforwardly extended to non-equilibrium dy-
namics. Most equilibrium theories focus on the low-energy
part of the spectrum while non-equilibrium dynamics can
couple degrees of freedom at very different energy scales
[2, 3, 4, 5, 6, 7, 8]. It would be highly valuable to have exam-
ples of many-body dynamics of low-dimensional strongly cor-
related systems amenable to an unbiased analytical treatment.
These examples could be used not only for analyzing exper-
imental systems, but also for testing theoretical calculations
utilizing effective models or approximations and for checking
validity of new numerical approaches. In this paper we pro-
pose such a class of non-equilibrium quantum problems with

time-dependent Hamiltonians which allow for a scaling ansatz
of many-body wave functions.

Scaling solutions in quantum dynamic were first discussed
in the context of a single harmonic oscillator with a time-
dependent frequency [9, 10, 11, 12, 13]. This problem can
be reduced to a time-independent one by properly rescaling
space and time. Scaling transformation of variables is pos-
sible due to the existence of a dynamical symmetry gener-
ated by dynamical invariants of the system [11, 12]. There
are also extensions of this approach to single particle prob-
lems with potentials of the Coulomb and inverse square type
[14, 15]. In many-body problems, scaling approach has
been previously used in the context of mean-field solutions
of bosonic systems, i.e. for a classical Gross-Pitaevskii equa-
tion [16, 17, 18, 19, 20] or in the analysis of hard-core bosons
in one dimension, which can be mapped to non-interacting
fermions [21]. Here we extend previous analysis to the case
of full many-body solution of interacting quantum systems.

In this paper we consider systems with a finite number of
particles in arbitrary dimension, and assume that the effective
mass, the interaction constant and the external potential can
be time-dependent. Particles can obey fermionic, bosonic or
mixed statistics, they interact via pairwise interaction, and be
subject to parabolic confining potential, to a linear potential,
and to a complex chemical potential. While in general this
represents a complicated dynamical problem, we will demon-
strate that for a wide class of time-dependent variations of pa-
rameters one can map the non-equilibrium equations of mo-
tion to an equilibrium many-body Schrödinger equation. The
mapping is based on scaling functions which relate correlation
functions of time-dependent systems to correlation functions
of systems in equilibrium. Hence several results known for
equilibrium many-body systems can be directly translated to
non-equilibrium situations. To our knowledge this is the first
example of a scaling solution for interacting many-body sys-
tems with time-dependent Hamiltonians.

Our scaling solution does not impose any constraints on the
wave function but requires the interaction and the external po-
tentials to be dynamically tunable. In systems of cold atoms
control of the effective interaction can be done using either
Feshbach resonances or by changing the transverse confin-
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ing potential, whereas the effective mass can be changed by
application of the weak optical lattice [22]. In quantum op-
tics, the time-dependent dispersion and Kerr nonlinearity can
be achieved using electromagnetically induced transparency
[23]. In this paper we propose applications of the scaling
ansatz which are experimentally relevant in the context of both
of these systems.

The paper is organized as follows. In section II we in-
troduce a general formalism of scaling transformation for a
many-body Schrödinger equation. In section III we com-
pute momentum distributions for one- and two-dimensional
bosonic gases with contact interactions released from a
parabolic trap. Further details are given in the Appendices,
where we also discuss relation of our work to classical inte-
grability of time-dependent bosonic systems with contact in-
teractions.

II. SCALING TRANSFORMATION – GENERAL
APPROACH

Our starting point is the many-body Schrödinger equation
for N interacting particles in D dimensions,

i
∂Ψ(x1, . . . ,xN ; t)

∂t
= H(t)Ψ(x1, . . . ,xN ; t), (1)

H(t) = −
1

2m(t)

N
∑

i=1

∆(D)
xi

− µ(t)N + g(t)
N

∑

i=1

xi

+
m(t)ω2(t)

2

N
∑

i=1

x2
i +

∑

i#=j

V (xi − xj ; t),

where ∆(D)
xi

is a D-dimensional Laplacian acting on the co-
ordinate xi = (x(1)

i , x(2)
i , . . . , x(D)

i ) of the particle i (h̄ = 1
here). The external parameters (chemical potential µ(t), lin-
ear potential g(t) and trapping frequencyω(t)) and the many-
body interaction potential V (x; t) depend explicitly on time.
The chemical potential µ(t) = "[µ(t)]+ i#[µ(t)] can accom-
modate effects of dissipation via its imaginary part [39].

We address the following question: under which condi-
tions Eq. (1) (the Ψ-system) can be transformed into the
Schrödinger equation for a time-independent (Φ-system):

i
∂Φ(y1, . . . ,yN ; τ)

∂τ
= H0Φ(y1, . . . ,yN ; τ), (2)

H0= −
1

2m0

N
∑

i=1

∆(D)
yi

+
m0ω2

0

2

∑

i

y2
i +

∑

i#=j

V0(yi − yj).

We emphasize that so far in (2) ω0 and m0 are unspeci-
fied parameters; in particular the Φ-system can have vanish-
ing confining potential even when the Ψ-system is confined.
We assume that the time dependence of the pairwise inter-
action potential enters through a single time-dependent cou-
pling V (x; t) ≡ V (x)v(t) and V0(x) = V (x)v0. We further
assume that the interactions have a scaling property and are
characterized by the exponentα, which we take to be the same

for both Ψ- and Φ-systems,

V (λx) = λαV (x). (3)

Most generic interaction potentials (or pseudo-potentials) sat-
isfy a scaling law (3): s-wave interactions Vs(x) ∝ δ(x)
(α = −D), any algebraic law, V (x) ∝ |x|α, including
Coulomb (α = −1), inverse square law (α = −2) or dipole-
dipole interactions (α = −3). Other examples are ultracold
fermions interacting via p-wave channel which gives rise to
the δ′ pseudo-potential (α = D − 1). Also logarithmic poten-
tials can be treated; scaling of the logarithmic law produces a
time-dependent shift to µ(t).

To express the solution of the time-dependent Schrödinger
equation (1) in terms of the solution Φ(y1, . . . ,yN ; τ) of the
static equation (2) we introduce the scaling ansatz

Ψ(x1, . . . ,xN ; t) = ei[F (t)
P

N

i=1 x2
i
+G(t)

P

N

i=1 xi+M(t)N ]

×
1

RN(t)
Φ(y1, . . . ,yN ; τ) , (4)

with yi = (xi/L(t)) + S(t) and τ ≡ τ(t). Direct calculation
shows (se appendix A), that this ansatz is valid if the scal-
ing functions R(t), L(t), F (t), τ(t),G(t),S(t), M(t) satisfy
a set of coupled differential equations,

Ṙ(t) =
1

m(t)
DF (t)R(t) −#[µ(t)]R(t), (5)

L̇(t) =
2

m(t)
F (t)L(t) (6)

Ḟ (t) = −
2

m(t)
F 2(t) −

m(t)ω2(t)

2
+

m2
0ω

2
0

2L4(t)m(t)
,(7)

τ̇ (t) =
m0

m(t)L2(t)
, (8)

Ṁ(t) = −
G2(t)

2m(t)
−"[µ(t)] +

m2
0ω

2
0S

2(t)

2m(t)L2(t)
, (9)

Ṡ(t) = −
G(t)

m(t)L(t)
, (10)

Ġ(t) = −
2F (t)G(t)

m(t)
− g(t) +

m2
0ω

2
0S(t)

m(t)L3(t)
, (11)

Lα+2(t) =
m(t)

m0

v(t)

v0
. (12)

It is not obvious a priori that equations (5-12) can be sat-
isfied simultaneously for any reasonable time-dependencies
of system parameters m(t), v(t), ω(t). Our next goal is to
show that there is a number of non-trivial cases for which
equations (6-12) are consistent with each other. First of
all we note that equations (5) and (6) imply that R(t) =

[L(t)]D/2 exp(−
∫ t
0 #[µ(t)]dt). In the absence of dissipation

(#[µ(t)] = 0) this condition is equivalent to the conservation
of the norm of the wave function under the scaling transfor-
mation. Eq. (6) allows to express F (t) via L(t), F (t) =
m(t)

2 L̇/L, which can the be substituted into the Eq. (7). This
leads to the differential equation for L(t),

L̈(t) + h(t)L̇(t) + ω2(t)L(t) =
m2

0ω
2
0

m2(t)L3(t)
, (13)
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where h(t) = m0ṁ(t)/m(t). The term with the first deriva-
tive can be removed by the change of variables L(t) =
exp[B(t)]y(t) with Ḃ(t) = −h/2. For y(t) we obtain

ÿ(t) + Ω2(t)y(t) =
ω2

0

y3(t)
, (14)

where Ω2(t) = 1
4h2 − 1

2 ḣ + ω2(t). Eq. (14) is the celebrated
Ermakov equation [25] first discovered in 1880 [26]. This
equation has been used primarily for tracking invariants of the
time-dependent harmonic oscillator. In appendix B we show
how one can use the non-linear superposition principle to re-
duce Eq. (14) to the linear equation. Once L(t) is known, the
remaining set of equations for S(t), M(t),G(t) can be solved
directly.

In summary, to find time-dependent parameters which ad-
mit a scaling solution one can apply the following recipe: af-
ter specifying two time-dependent functions ω(t) and m(t)
one obtains a solution of the Ermakov equation (14) from
which one determines time-dependent interaction strength
v(t) consistent with Eq. (12). Solutions for the functions
M(t),G(t),S(t) can then be obtained straightforwardly pro-
vided that functions g(t) and µ(t) are explicitly specified.

The initial conditions for systems (1) and (2) are related to
each other through Eq. (4) applied at time t = 0:

Ψ(x1, . . . ,xN ; 0) = ei[F (0)
P

N

i=1 x2
i
+G(0)

P

N

i=1 xi+M(0)N ]

×
1

RN (0)
Φ

(

x1

L(0)
, . . . ,

xN

L(0)
; τ(0)

)

.

Generally at t = 0 the Hamiltonians controlling the dynamics
of Ψ- and Φ-systems do not coincide. For example, they can
have different confining potentials, or one system can be in
a trap while the other one is in free space (ω0 = 0). In this
paper we focus on a finite initial trapping potential, ω(0) =
ω0 > 0, for which we introduce the additional assumption
that at t = 0 the two systems coincide. This means that we
have m(t = 0) = m0, v(t = 0) = v0 F (t = 0) = G(t =
0) = M(t = 0) = 0. At t > 0 the parameters of the Ψ-
system begin to change in time while the parameters of the
Φ-system remain constant. Since the two systems coincide
for t < 0, the initial state of the Ψ-systems at t = 0 should
correspond to the equilibrium state of theΦ-system. Existence
of the scaling solution in one dimension in the hard-core limit
v0 → ∞ has been established previously [21]. Within our
approach this can be understood as follows: the first equation
of (12) is trivially satisfied, whereas other equations do not
depend on the interaction strength and remain valid.

III. DYNAMICS OF BOSE-GAS WITH CONTACT
INTERACTION RELEASED FROM THE TRAP

In this section we apply the scaling approach to an ultracold
Bose gas with contact interaction which is prepared in a con-
fined, weakly interacting initial state. The nontrivial dynamics
comes from a sudden switching off of the confining potential
from ω(t) = ω0 at t = 0 to ω(t) = 0 at t > 0. Solution

of the scaling equation (13) for constant mass m(t) = m0,
is then given by L(t) =

√

(1 + ω2
0t

2), and consequently
F (t) = m0ω2

0t
2 /L2(t). In appendix B 3 we examine additional

scenarios corresponding to varying mass which exhibit simi-
lar behavior of the scaling functions. We recall that the time-
dependence of the interaction strength is determined by the
the scaling function and exponent α, here v(t) = v0L(t)α+2.

To characterize the non-equilibrium dynamics it is conve-
nient to deal with correlation functions which can be easily
derived within the scaling approach (Appendix D). The dy-
namics of the momentum distribution, for example, can be
related to the single-particle density matrix g1 of the initial
state,

n(p, t) = [L(t)]D
∫ ∞

−∞

dx

∫ ∞

−∞

dx′g1(x,x′; 0)

× e−i[F (t)L2(t)(x2−x′2)+L(t)p(x−x′)] . (15)

From the asymptotic behavior of the scaling functions
L(t)

ω0t'1−−−−→ ω0t and F (t)L(t) = m(t)L̇(t)/2
ω0t'1−−−−→

m0ω0/2 we can extract the long-time limit of the momentum
distribution using the stationary phase approximation (SPA),

n(p, t)
ω0t'1−−−−→

(

2π

m(t)L̇(t)

)D

g1(
p

m(t)L̇(t)
,

p

m(t)L̇(t)
; 0) .

Hence the momentum distribution becomes fully determined
by the density distribution [ρ(x, t) = g1(x,x, t)] of the initial
state.

For a quantitative description of dynamics we need to spec-
ify the initial correlation function, which we take from ear-
lier analysis of effective theories for weakly interacting Bose-
gases in harmonic traps [27, 28, 29]. An important character-
istic for a condensed state with a sufficiently large number
of particles is the Thomas-Fermi shape of the density pro-
file, ρ(x) = Θ(RTF − |x|)(µ/v0)

(

1 − (x/RTF )2
)

, where
RTF =

√

2µ/m0/ω0 is the Thomas-Fermi radius.
First we analyze the one-dimensional case in the low-

temperature regime when the coherence length is of the or-
der of the Thomas-Fermi radius (Eq. (E1) of Appendix D).
According to the scaling equation (12), for contact interac-
tions, V (x, t) = v(t)δ(x) (α = −D), the interaction must be
tuned inversely proportional to the scaling function, v(t) =
v0/L(t). In Fig. 1a results of numerical evaluation of the mo-
mentum distributions (15) for specific initial values are shown
together with results from SPA. The behavior of the p = 0
component is characterized by a steep decay on a time scale
ω−1

0 followed by slowly dephasing oscillations, which are due
to the finite extension of the density profile and the quadratic
phase factor in (15). The corresponding period of oscillations
P is determined by the Thomas-Fermi radius, P ∼ 2πm0

h̄R2
T F

.
Oscillations as a function of |p| at constant t can be attributed
to the finite Thomas-Fermi radius as well. Here the quadratic
phase factor leads to the oscillation period growing with |p|.
In agreement with the SPA prediction, the momentum distri-
bution relaxes to a semi-circle law. This is remarkable, since
such a behavior has been previously associated with one-
dimensional Bose-systems in the strongly interacting limit
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FIG. 1: Temporal evolution of momentum distribution functions fol-
lowing turning off the trap at t = 0. The insets show the time evo-
lution of the p = 0 component. The initial correlation functions are
derived from effective theories (Refs. [27, 28, 29], see also appendix
D). Dynamical evolution is obtained from numerical integration of
eq. (15). The stationary phase approximation (SPA) represents the
asymptotic t → ∞ result. Numerical errors are of the order of the
line thickness. In the one-dimensional case (a) the system parame-
ters are N = 140, kBT = 0.1h̄ω0, v0 = 0.2

p

h̄3ω0/m0, RTF =
3.46

p

h̄/(m0ω0), v(t) = v0

p

(1 + ω2
0
t2). In the two-dimensional

case (b) the interaction strength is constant, v(t) = v0 and N = 16,
kBT = 0.1h̄ω0, v0 = 0.2h̄/m0, RTF = 1.41

p

h̄/(m0ω0).

(v0 → ∞) [21] only. In our case the interaction strength is ini-
tially small and then even decreases in time. We note that this
can not be understood as effect of dilution due to expansion of
the system because the effective one-dimensional interaction
parameter [30], γ ∝ v(t)/ρ(t) ∝ v(t)L(t), remains constant.

In two dimensions α = −2 and eq. (12) leads to inter-
actions which are constant in time. When the initial state is
weakly interacting (Appendix D), we choose an effective the-
ory which incorporates effects of quantum and thermal fluc-
tuations [28]. Results of numerical evaluation of Eq. (15) are

shown in Fig. (1b). The momentum distribution evolves very
much like in the one-dimensional case and is essentially de-
termined by the initial density distribution and the associated
Thomas-Fermi radius. Here the number of particles (N = 16)
is set to be smaller than in the one-dimensional system. There-
fore the asymptotic stationary phase solution is approached
slowly and oscillations dominate in the analyzed time window
ω0t ≤ 20. We checked that both in one and two dimensions
the results are robust against variation of temperature and in-
teractions as long as phase coherence is not destroyed.

The analysis of these examples leads to remarkable conse-
quences. We note that the stationary phase regime is reached
rather quickly with momentum distribution determined by
the initial density distribution. Therefore specially designed
initial density distributions (equilibrium or not) can be used
to create specific momentum distributions, such as step-like
fermionic ones, on demand. Previously such behavior of the
momentum distribution function has been obtained for hard
core bosons. It is remarkable that we find very similar dynam-
ics for weakly interacting systems. This is opposite to what is
realized in time-of-flight experiments of ultracold atoms re-
leased from a lattice [31], where the expansion at sufficiently
large times can be regarded as free and momentum distri-
butions get mapped to density profiles. By contrast in our
case we find that the real space density profile in the trap
determines momentum distribution after expansion (see eq.
(15)). While we do not discuss the appropriate time evolution
of ω(t), m(t), and v(t) here, we point out that the time-of-
flight ’far-field’ limit [31] may also be captured formally by
our scaling approach when the asymptotics of L(t) are linear
and the contribution of the quadratic phase factor in Eq. (15),
m(t)L̇(t), vanishes in the long-time limit.

IV. CONCLUSIONS AND OUTLOOK

We used scaling ansatz to show that certain quantum non-
equilibrium problems with time-dependent parameters can be
related to equilibrium problems with constant parameters pro-
vided that the time-dependent parameters satisfy a system of
self-consistency equations. This approach is valid for rather
general types of interactions and is not linked to the integrabil-
ity of the model. However, an integrable structure, when it ex-
ists, is consistent with the scaling transformation. Solvability
by the scaling ansatz is a consequence of the non-relativistic
dynamical symmetry which received considerable attention
recently in relation to the non-relativistic version of AdS/CFT
correspondence [32]. The appearance of this symmetry in re-
alistic many-body systems, which we discuss in this paper,
can open intriguing connections to the concept of AdS/CFT
correspondence.

We used scaling approach to analyze the problem of an
abrupt switching off of a confining potential for bosoinc sys-
tems with contact interactions in d = 1 and 2. Such experi-
ments can be performed using either ultracold atoms or pho-
tons in non-linear medium. We find that the asymptotic mo-
mentum distribution is essentially given by the initial density
profile – a phenomenon which previously has been discussed
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only in the (Tonks-Girardeau) limit of the infinitely strong re-
pulsive one-dimensional Bose gas [21]. Possible future appli-
cations of the scaling ansatz include interaction quenches or
transport phenomena (by considering finite linear potentials).
Extensions of our method to systems with dissipation are also
possible.

In our analysis we considered the situation when the scal-
ing ansatz is obeyed exactly. We expect however that our re-
sults remain qualitatively valid even for systems with small
deviations from the exactly scalable Hamiltonians. For exam-
ple, weak lattice potentials should not have dramatic effects as
long as the effective mass approximation is applicable. There-
fore one could achieve a full description of time-of-flight ex-
periments if the lattice potential and interactions are tuned ac-
cordingly. Moreover it is conceivable that on a phenomeno-
logical level the ansatz can be used even when the time- and

space-dependencies of system parameters do not fully satisfy
the consistency equations. The scaling solution could then be
seen as a universality class of non-equilibrium systems, very
much like a renormalization group fixed point at equilibrium.
It would be interesting to address this conjecture in experi-
ments.
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APPENDIX A: DERIVATION OF THE SCALING EQUATIONS

We consider the ansatz (4)

Ψ(x1, . . . ,xN ; t) =
1

R(t)
exp(i[F (t)

N
∑

i=1

x2
i + G(t)

N
∑

i=1

xi + M(t)])Φ(
xi

L(t)
+ S(t); τ(t)) (A1)

for the transformation between the many-body Schrödinger equation with time-dependent parameters (Eq. (1) and the equation
(2) with time-independent coefficients. Calculating directly

Ψ̇ =( −
Ṙ

R2
+

iḞ

R

N
∑

i=1

x2
i +

iĠ

R

N
∑

i=1

xi + i
Ṁ

R
)eiφ(xi,t)Φ(yi, τ)) (A2)

+
1

R
eiφ(xi,t)

N
∑

i=1

∂Φ(yi; τ)

∂yi
[xi(−

L̇

L2
) + Ṡ(t)] +

1

R
eiφ(xi,t) ∂Φ(yi; τ)

∂τ
τ̇ , (A3)

where for the sake of brevity we introduced φ(xi, t) = F (t)
∑N

i=1 x2
i + G(t)

∑N
i=1 xi + M(t) and where the dot denotes the

derivative with respect to t, and

∂Ψ(xi, t)

∂xi
=

1

R

(

2iF
∑

i

xi + G

)

eiφ(xi,t)Φ(yi, t) +
1

R
eiφ(xi,t) ∂Φ(yi, τ)

∂yi
, (A4)

∆(D)
xi
Ψ(xi, t) = [

(

2iFD

R
+

1

R
(2iFxi + iG)(2iFxi + iG)

)

Φ(yi, τ)) (A5)

+

(

4iFxi + 2iG

RL

∂Φ(yi; t)

∂yi
+∆(D)

yi
Φ(yi; t)

1

RL2

)

]eiφ(xi,t). (A6)

Substituting this into the initial Schrödinger equation (1) with time-dependent coefficients and adding and subtracting the term
A(t)

∑

i x
2
i with yet to be determined function A(t) we regroup the different contributions in front of Φ(yi, τ), ∂Φ(yi, τ)/∂yi,

and ∆yi
. Each group has several contributions proportional to x0

i ,xi,x2
i which are linearly independent and must be treated

separately. This is how conditions expressed by Eqs.(7) appear. The remaining equation has the form of a Schrödinger equation
with time-dependent coefficients

i
∂Φ(yi, τ)

∂τ
τ̇ = −

1

2m(t)L2(t)
∆yi
Φ(yi, τ) +

[

A(t)L2(t)
∑

i

y2
i + Lα(t)v(t)V (yi − yj)

]

Φ(yi, τ). (A7)

We note that to compensate the terms appearing after the change xi → yi in the quadratic potential we get terms proportional to
ω2

0 in the Eqs. (6-12). Now, requiring that the three unknown functions τ, L(t), A(t) satisfy

τ̇ =
m0

L2(t)m(t)
, v0τ̇ = v(t)Lα(t), A(t)L2(t) = τ̇

m0ω2
0

2
(A8)

we obtain the remaining conditions in the set of Eqs.(5-12). Under this conditions the Schrödinger equation for the function
Φ(y, τ) has no time-dependent coefficients. From the conditions (A8) above we determine the function

A(t) =
m0ω2

0 [(v(t)m(t)]
4

α+2

2m(t)v
4

α+2

0

(A9)

Therefore we find that when pairwise potentials obey Eq. (3), and the systems of Eqs (5) is satisfied, Eq. (1) is indeed mapped
to Eq. (2).
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APPENDIX B: ANALYSIS OF THE SCALING EQUATIONS AND THEIR SOLUTIONS – THE ERMAKOV EQUATION AND
DYNAMICAL SYMMETRY

1. General properties of the Ermakov and related equations

In this Appendix we briefly overview some general properties of the Ermakov (sometimes spelled as Yermakov) equation
which plays such a fundamental role in our formalism. We also point out the relation of this equation with the Riccati equation
and with the linear differential equation with variable coefficients. The Riccati equation directly appears in our approach in some
limiting cases.

The Ermakov [26] equation is defined as follows

ÿ(t) + f(t)y(t) =
a

y(t)3
. (B1)

Here a is some t-independent constant. If there is a nontrivial solution of the second order differential equation

ẍ(t) + f(t)x(t) = 0 (B2)

then the transformation

ξ =

∫

dt

x2(t)
, z =

y

x
(B3)

puts the Ermakov equation into the form

z̈ = az−3. (B4)

The solution for the initial equation then follows immediately

C1y
2 = ax2 + x2(C2 + C1

∫

dt

x2
)2 (B5)

where C1,2 are arbitrary constants. If we take two solutions of the linear (Hill) equation to satisfy initial data x1(0) = x1,
ẋ1(0) = ẋ1 while x2(0) = 0, ẋ2 += 0 then a general solution of the Ermakov equation is given by a nonlinear superposition
principle,

y(t) =

√

x2
1(t) +

1

w2
x2

2(t) (B6)

where w = x1ẋ2 − x2ẋ1 is a constant Wronskian.
Now, provided the linear equation for x(t) is satisfied, the function u(t) defined as

x(t) = exp(−
∫ t

0
u(t)dt) (B7)

satisfies the Riccati equation,

u̇ − u2 = f(t) (B8)

This demonstrates that all three equations are closely related: Ermakov, linear second order differential equation with variable
coefficients and the Riccati equation. Other remarkable equations are also connected to the Ermakov equation. For example
(taking a = 1 for simplicity in (B4)) and defining ξ(t) = z(t)−2 we obtain ξẍi − (3/2)(ξ̇)2 + 2ξ4 = 0. Now, defining w(t) via
ξ(t) = αẇ/w with α2 = −1/4 we obtain a Kummer-Schwarz equation ẇ

...
w − (3/2)(ẅ)2 = 0.

In some limiting situations (e.g. ω0 = 0, see the next appendices) the Riccati equation appears naturally in our approach, so
we sketch some of its properties here. The general Riccati equation with time-dependent coefficients

u̇(t) = f(t)u2(t) + g(t)u(t) + h(t) (B9)

can be transformed into the second order differential equation

f(t)ÿ(t) − [ḟ(t) + f(t)g(t)]ẏ(t) + f2(t)h(t)y(t) = 0 (B10)
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by the following substitution y(t) = exp(−
∫

f(t)u(t)dt). In many cases a particular solution of (B10) is easier to find than the
one for the (B9).

The Riccati equation has a remarkable property: if there is a known particular solution u0(t) of (B9), then the general solution
of (B9) is given by

u(t) = u0(t) + Φ(t)

[

C −
∫

f(t)Φ(t)dt

]−1

(B11)

Φ(t) = exp

[
∫

(2f(t)u0(t) + g(t))dt

]

(B12)

where C is an arbitrary constant. The particular solution u0(x) corresponds to C = ∞.
The property (B11) allows the construction of many solutions of (B9) for given functions f(t), g(t), h(t). If, for example,

f(t) = 1, g(t) is arbitrary and h(t) = −(a2 + ag(t)) a particular solution is u0(t) = a, and a general solution is then

u(t) = a + Φ(t)[C −
∫

Φ(t)]−1, Φ(t) = exp(2at +

∫

g(t)dx) (B13)

for arbitrary C. For example for f(x) = 1, g(x) = 0, h(x) = bxn we obtain

u(t) = −
ẇ(t)

w(t)
, w(t) =

√
t[C1J 1

2k

(
1

k

√
btk) + C2Y 1

2k

(
1

k

√
btk)], (B14)

k =
1

2
(n + 2), for n += 2 (B15)

u(t) =
λ

t
− t2λ(

t

2λ + 1
t2λ + C)−1, for n = −2, (B16)

where λ is a root of λ2 + λ + b = 0.

2. Relation to dynamical symmetry

The Ermakov equation has the symmetry algebra isomorphic to sl(2, R), which is isomorphic to the algebra so(2, 1) of
rotations on the surface of one-sheet hyperboloid. The property (B11) of the Riccati equation is related to the covariance of the
Riccati equation with respect to the fractional-linear transformations which are generated by the action of sl(2, R) algebra: the
general solution can be expressed as a combination of particular solutions. The same algebra (more explicitly, one of its form,
su(1, 1)) appears as a dynamical symmetry of the quantum harmonic oscillator, where Ermakov equation appears as well. This
has been first found in [9]. There a single quantum harmonic oscillator with time-dependent frequency has been solved using
the methods of (adiabatic) invariants. An adiabatic invariant in this case is a function of a solution of the Ermakov equation.
This approach has led to appearance of the Ermakov-Pinney type equation [26] in quantum mechanics (see e.g. [13] for a recent
review). In [10] the same equation appears as a certain consistency condition on the time-dependent rescaling of coordinate and
time in the wave function of the oscillator. It became clear that these two approaches, one based on dynamical invariants and the
other on the scaling of dynamical variables, are equivalent. Indeed the rescaling procedure can be regarded as a transformation,
generated by a certain symmetry group, i.e. sl(2, R). The generators of this symmetry are operators corresponding to dynamical
invariants. Therefore the successiveness of applicability of scaling transformation implies the presence of dynamical symmetry
generated by the dynamical invariants [11, 12]. For this symmetry to hold one has to have a special class of potential terms in
the single-particle Hamiltonian [14]. Physically interesting potentials correspond to the contact interaction, harmonic, Coulomb
and inverse square laws. That is why the scaling approach has been applied to a Calogero-Sutherland model [15] and classical
Gross-Pitaevski type systems [16, 17, 18, 19, 20]. The appearance of the su(1, 1) dynamical symmetry in our non-relativistic
systems suggests a possible connection to non-relativistic version of the AdS/CFT correspondence [32]. In fact the Virasoro
algebra of any conformal field theory contains su(1, 1) as subalgebra.

3. Specific solutions for ω0 > 0

We compare examples for decreasing trapping potential and constant, increasing and decreasing masses.

(a) Constant mass – For the case of constant mass m(t) = m0 we choose an exponential decrease of the potential ω(t) =
ω0e−t/τω . The two independent solutions of the homogeneous equation (B2) read x1(t) = J0(2τω

√

ω(t)), x2(t) =
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FIG. 2: Scaling functions for ω0 > 0 (h̄ reinserted by dimensional analysis). Each curve corresponds to one of the cases (a)-(c) analyzed in
the text.

Y0(2τωω0

√

ω(t)). In fig. 2 the resulting scaling functions obeying the initial conditions L(0) = 1, F (0) = 0 are plotted.
For sufficiently small τω the functions are well described by the limit τω → 0, for which the scaling solution reduces to

L(t) =
√

(1 + ω2
0t

2), F (t) =
m0ω2

0t

2
/L2(t) . (B17)

(b) Increasing mass – We choose m(t) = m0et/τm and, for sake of simplicity, ω(t > 0) = 0. The solution then reads

L(t) =
√

1 + (1 − e−t/τm)τ2
mm0ω2

0 , F (t) = (1 − e−t/τm)τ2
mm0ω

2
0/L2(t) , (B18)

(plotted in fig. 2); this is similar to the scaling functions of the case (a), although the time is rescaled and in the limit
t → ∞ the functions converge to the values of the functions of case (a) at t = τm.

(c) Decreasing mass – For m(t) = m0e−t/τm the scaling functions take the form of case (b) when replacing τm by −τm (see
fig. 2 for an illustration).

We emphasize that the solutions do not depend on the dimensionality of the system; only the interaction constants, which
have to fulfill the consistency equation (12), will do so.

4. Specific solutions for ω0 = 0

Based on two examples we demonstrate within our formalism, that if we relate the non-equilibrium system in the trap to the
system without trap (the case ω0 = 0 in the main text) we directly obtain a Riccati equation.

For D = 1 eq. 12 reads L(t) = m0(m(t)c(t))−1 (we define c(t) = v(t)/v0) what we substitute in the equation for L(t) to
obtain F (t) = −(m(t)/2) d

dt log[c(t)m(t)/m0] . Consistency with the equation for F (t) imposes the following relation between
three time-dependent parameters

−
ṁ(t)

2

d

dt
log[c(t)m(t)] −

m(t)

2

d2

dt2
log[c(t)m(t)] = −

m(t)

2
(

d

dt
log[c(t)m(t)])2 −

m(t)ω(t)

2
. (B19)

By introducing U(t) = d
dt log(c(t)m(t)) it reduces to the Riccati equation

U̇(t) = ω(t) −
d

dt
(log[m(t)])U + U2. (B20)

The scaling ansatz (4) implies the relation between initial conditions of the two systems: Ψ(t = 0) = exp(iF (0)
∑

i x2
i )Φ(t =

0) provided that L(t = 0) = 1. The initial condition for the function U(t) is not so important for us because of the special
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property of the Riccati equation, related to the Bäcklund symmetry, which allows to interrelate solutions with different initial
conditions via a rational function.

We note that the same equation describes the evolution of spin in a time-dependent magnetic field. A general way to solve it
is to notice that under some change of variables it can be reduced to the second-order liner differential equation

ü − P (t)u̇ + Q(t)u = 0, P (t) = −
d

dt
log[m(t)], Q(t) = ω(t). (B21)

Numerous explicit solutions are possible if we specify some of the functions ω(t), m(t).
In the two-dimensional case we obtain from (5)-(12) that R(t) ≡ L(t) and time-dependent parameters are connected by the

constraint c(t)m(t) = c0. Then F (t) = (m(t)/2) d
dt log[L(t)]. Introducing V (t) = d

dt log L(t)) and h(t) = d
dt log(m(t)/2) we

obtain

−
dV (t)

dt
= ω(t) + h(t)V (t) + V 2(t) (B22)

which is a Riccati equation for the coordinate scaling function L(t); its solution for given time-dependent parameters m(t),ω(t)
then defines a solution for the time-rescaling function

dτ(t)

dt
=

m0

m(t)L2(t)
(B23)

To be specific we list two examples of dynamical parameters:

(a) Increasing mass – From the form of the Riccati equation it is somewhat appealing to take m(t) = m0eαt, and constant
ω(t) ≡ Ω. Then

c(t) = φ(t) exp[−αt/2] (B24)

where φ(t) = sin(At + B)/C with A, B, C related to α and Ω. In particular, for m(t) = e2t, where Ω = 1,A = B = C
and C → 0 we obtain c(t) = (1 + t)e−t.

(b) Constant mass – For m(t) ≡ m0 the equation can be transformed into the equation for the harmonic oscillator with time-
dependent-frequency ω(t) for which many known solutions exist. Using these solutions we can extract the function c(t).
In particular, for constant ω(t) = Ω the solution for some domain of parameters is

c(t) =
1

m0 cos(Ωt)
. (B25)

In the simplest case of m(t) = 1, ω(t) = 0 we obtain c(t) = −1/(1 + t). This example is a many-body analogue of the
solution of the Hamiltonian with potential V (x) = c(t)δ(x) found in ref. [14] for a single-particle Schrödinger equation.
Direct application of this solution can be found in the ultracold Bose gas close to the confinement-induced resonance [33].

Other examples of solutions of (B9) can be found in the literature, see e.g. ref. [34].

APPENDIX C: CLASSICAL INTEGRABILITY OF THE NONLINEAR SCHRÖDINGER EQUATIONWITH
TIME-DEPENDENT PARAMETERS

It is instructive to check whether the exact scaling transformation we have studied in this paper is consistent with the property
of integrability of the nonlinear Schrödinger equation (NSE). Here we address this question for the classical NSE.

In the zero curvature representation, the NSE

i
∂Ψ

∂t
= −

∂2Ψ

∂x2
+ 2c|Ψ|2Ψ (C1)

is represented by the system of the first order differential equations

∂F

∂x
= U(x, t,λ)F,

∂F

∂t
= V (x, t,λ)F, F =

(

f1

f2

)

(C2)
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such that the matrices U(x, t,λ) and V (x, t,λ) which depend on the spectral parameter λ satisfy the condition

∂U

∂t
−

∂V

∂x
+ [U, V ] = 0 (C3)

which is equivalent to the compatibility condition of the system,

∂2F

∂x∂t
=

∂2F

∂t∂x
(C4)

and which is equivalent to the initial Schrödinger equation. In case of (C1) one can establish that

U = U0 + λU1, V = V0 + λV1 + λ2V2 (C5)

U0 =
√

c(Ψ̄σ+ +Ψσ−), U1 =
1

2
iσ3 (C6)

V0 = ic|Ψ|2σ3 − i
√

c(
∂Ψ̄

∂x
σ+ −

∂Ψ

∂x
σ−), V1 = −U0, V2 = −U1 (C7)

Conserved quantities are constructed from the matrices U, V in a known way. This method provides a direct way to various
generalizations of NSE. In particular one can obtain some generalization where the interaction parameter c and the mass are
explicitly time-dependent functions. Introducing generalization of (C5) as

Ũ =

(

− i
2α(x, t) γ(x, t)Ψ̄

γ(x, t)Ψ i
2β(x, t)

)

, Ṽ =

(

iA(|Ψ|2,λ(x, t)) B(Ψ̄, ∂Ψ̄
∂x , µ(x, t))

B∗(Ψ, ∂Ψ
∂x , µ(x, t)) −iD(|Ψ|2,λ(x, t)

)

(C8)

one can look for generalizations of integrable NSE by appropriately choosing the functions
α(x, t),β(x, t), γ(x, t),λ(x, t), µ(x, t), A, B, D. Analysis of the zero-curvature condition (C3) in the case of inhomoge-
neous time-dependent functions leads to a set of equations between those functions and reveals a large class of solutions of the
classical equations of motions for NSE with time-dependent coefficients. To get a consistency condition for a zero-curvature
representation we conclude that the spectral parameter should be an inhomogeneous time-dependent function.

Some restricted form of this inhomogeneous time-dependent Ũ − Ṽ pair has been considered in ref. [35] where it was shown
that a combination of space-time transformation together with a U(1) gauge transformation of the linear equations for the Ũ − Ṽ
pair and corresponding redefinition of the field variables brings the system into the form of a homogeneous time-independent
NLS system, thus showing the integrability of a time-dependent system. We note that a similar analysis has been given in Ref.
[36].

Although it is more difficult to show integrability on the quantum level directly, presumably the property of integrability is
not violated in that case for specific choice of time-dependent parameters which correspond to our scaling equations. A related
approach based on the inhomogeneity of spectral parameters for the quantum sine-Gordon model has been recently presented in
ref. [37].

APPENDIX D: SCALING OF CORRELATION FUNCTIONS

With the scaling ansatz (4) the relation between the single-particle correlation functions in the time-dependent and time-
independent systems is derived straightforwardly,

g(Ψ)
1 (x,x′, t) = N

∫ ∞

−∞

. . .

∫ ∞

−∞

dx2 . . . dxNΨ
∗(x,x2, . . . ,xN ; t)Ψ(x′,x2, . . . ,xN ; t) (D1)

=
1

[L(t)]D
g(Φ)
1

(

x

L(t)
,

x′

L(t)
; 0

)

exp
(

−iF (t)(x2 − x′2)
)

. (D2)

The labels in the g1-function refer to the time-dependent (Ψ) and time-independent (Φ) systems. From this expression we
can readily extract the density: ρ(Ψ)(x, t) = g1(x,x, t) = (1/L(t))ρ(Φ)(x/L(t); 0). The momentum distribution of a time-
dependent system, defined as

n(Ψ)(p, t) =

∫ ∞

−∞

dx

∫ ∞

−∞

dx′e−ip(x−y)g(Ψ)
1 (x,x′, t), (D3)

is then given by

n(Ψ)(p, t) = [L(t)]D
∫ ∞

−∞

dx

∫ ∞

−∞

dx′g(Φ)
1 (x,y; 0) exp[−iF (t)L2(t)(x2 − x′2) − iL(t)p · (x − x′)]. (D4)
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Note that because of the quadratic term in the exponent the integrations are nontrivial.
For the two-particle density matrix we find analogously

g(Ψ)
2 (x1, x2, x

′
1, x

′
2; t) = N(N − 1)

∫

dx3 . . . dxNΨ
∗(x1, x2, . . . , xN ; t)Ψ(x′

1, x
′
2, . . . , xN ; t)

=
1

L(t)2
g(Φ)
2

(

x1

L(t)
,

x2

L(t)
,

x′
1

L(t)
,

x′
2

L(t)
; 0

)

exp
(

−iF (t)(x2
1 + x2

2 − x
′2
1 − x

′2
2 )

)

. (D5)

and the two-particle correlation function reads

ρ(Ψ)
2 (x, y; t) = g(Ψ)

2 (x, y, x, y; t) =
1

L2(t)
ρ(Φ)
2

(

x

L(t)
,

y

L(t)
; 0

)

. (D6)

Other useful quantities such as non-equilibrium time-dependent correlation functions (e.g. n(Ψ)(p, t, t′) ) or the multi-mode
squeezing spectrum (S(k, k′; t, t′) = 〈n(Ψ)(p, t)n(Ψ)(p′, t′)〉) can also be easily computed using the scaling approach.

APPENDIX E: SOME TECHNICAL DETAILS RELATED TO THE DERIVATION OF 1D AND 2D MOMENTUM
DISTRIBUTION AT EQUILIBRIUM

1. Trapped weakly interacting Bose gases

In order to describe a condensed Bose gas in a harmonic potential we adopt results of previous works [27, 28, 29] which
consider phase fluctuations on top of the mean-field solution while density fluctuations are assumed to be negligible. This is a
valid approximation for a sufficiently high number of weakly interacting particles at low temperatures. The temperature range
where the density fluctuations are suppressed is Td / T / Tφ where the temperature of quantum degeneracy is Td = Nh̄ω0

and Tφ = Tdh̄ω0/µ.
Generically, the single-particle correlation can be represented as

g1(x,x′) =
√

ρ(x)ρ(x′) exp

(

−
1

2
〈(φ(x) − φ(x′))

2〉
)

, (E1)

where 〈φ(x)〉 denotes the average over phase fluctuations. We assume the validity of the Thomas-Fermi approximation for the
density

ρ(x) → ρTF (x) =
µ

g

(

1 − (
x

RTF
)2

)

θ(1 − |
x

RTF
|) , (E2)

where RTF =
√

2µ/m0/ω0 is the Thomas-Fermi radius.
In a 1D geometry, taking into account thermal fluctuations and neglecting contributions from quantum fluctuations, one obtains

the phase average [27]

〈(φ(x′) − φ(x))
2〉 =

4Tµ

h̄2ω2

∣

∣

∣

∣

∣

ln

[

(1 − x′

RT F
)(1 + x

RT F
)

(1 + x′

RT F
)(1 − x

RT F
)

]
∣

∣

∣

∣

∣

. (E3)

For the 2D case an expression similar to the 1D case can be derived. In this work we used the complete expression ob-
tained by Xia et al. (Eq. (77) in Ref. [28]), which explicitly accounts for thermal and quantum fluctuations. As a result, at
inter-particle distances much smaller than 2RTF the correlations decay exponentially with a decay rate approximately given
by mkBT/

(

2πh̄2ρ(0)
)

. However, for the dynamics studied in this paper we did not find significant effects from quantum
corrections.

2. One- and two-dimensional uniform Bose gases

For a one-dimensional Bose gas it was recently shown [38] that the effective field theory (Luttinger liquid) provides an
extremely accurate description for a single-body correlation function at distances beyond the inter-particle separation. If we are
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not interested in its large momentum behavior it is legitimate to use this effective theory. The single particle correlation function
in time-independent theory is then well known (see e.g. [1]). For nonzero temperatures it is given by (we omit oscillating terms)

g(Φ)
1 (x, x′; 0) = 〈Φ†(x)Φ(x′)〉 = ρ0B

[

π/ξT

ρ0 sinh(π(x − x′)/ξT )

]
1

2K

(E4)

where ξT = h̄vs/T = h̄2πρ/(m0KT ), ρ0 is the uniform equilibrium density, vs is the sound velocity, K is a Luttinger
parameter which is related to the interaction strength c and B = (K/π)1/2K is Popov’s factor.

In the two-dimensional case, we consider a system below the Berezinskii-Kosterlitz-Thouless (BKT) transition. The corre-
lation functions then decay algebraically with a temperature-dependent exponent, which tends to the universal value 1/4 when
approaching the BKT transition from below.


