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By means of extensive three-dimensional contact dynamics simulations, we analyze the strength properties
and microstructure of a granular asteroid, modeled as a self-gravitating cohesive granular aggregate composed
of spherical particles, and subjected to diametrical compression tests. We show that, for a broad range of system
parameters (shear rate, cohesive forces, asteroid diameter), the behavior can be described by a modified inertial
number that incorporates interparticle cohesion and gravitational forces. At low inertial numbers, the behavior
is ductile with a well-defined stress peak that scales with internal pressure with a prefactor ≃ 0.9. As the inertial
number increases, both the prefactor and fluctuations around the mean increase, evidencing a dynamical crisis
resulting from the destabilizing effect of particle inertia. From a micromechanical description of the contact
and force networks, we propose a model that accounts for solid fraction, local stress, particle connectivity, and
granular texture. In the limit of small inertial numbers, we find a very good agreement of the theoretical estimate
of compressive strength, evidencing the major role of these structural parameters for the modeled aggregates.

DOI: 10.1103/PhysRevE.98.030901

Understanding the physical and mechanical properties of
small planetary bodies (comets, asteroids, small satellites) is
essential not only for the study of the solar system and its
origins, but also as a basis for future space exploration and
mining missions [1]. Until very recently, it was assumed that
the smallest of asteroids were monolithic rocks with a bare
surface [2,3], but recent space missions and observations have
established that not only their surfaces are covered by regolith,
but that their internal structure is not monolithic either [4–6].
From these observations, the concept of a “granular asteroid”
has progressively emerged [7,8].

Granular asteroids are naturally occurring gravitational
aggregates (rubble piles) bound together by gravitational and
possibly cohesive forces. They have large interior voids which
allow them to support large plastic deformations [9]. Their
macroscopic behavior and internal structure are still not well
known and how to predict their mechanical strength, based on
their microstructure and dynamics, is still an open question
[1,10]. However, in view of their discrete nature, it is rea-
sonable to use the theoretical concepts and numerical tools
developed for granular media to study them.

After more than 15 years of research, the two following
general features have been well established for granular mate-
rials (with some caveats for real geological systems [11]): (1)
Their dynamical behavior, under various boundary conditions
and confining geometries, is well captured through the so-
called inertial number I , defined as the ratio of the particle
relaxation time d

√
ρ0/p, under a confining stress p and for a

particle of density ρ0 and diameter d, to shear time ts = γ̇ −1
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imposed by the shear rate γ̇ [12–14], and (2) their strength
properties result from the buildup of anisotropic structures at
the particle scale which are induced by steric effects, force
transmission, and friction mobilization [15–18].

In granular asteroids, long-range gravitational forces have
to be taken into account along with cohesive forces and so, the
generalization of these “granular concepts” is highly nontriv-
ial. However, some recent simulations have started to include
these effects; this has led researchers to propose new micro-
scopic mechanisms [19,20] to explain the behavior of some of
the small members of the near Earth object (NEO) population.
For example, the fact that small asteroids (<150 m) can have
a rotation rate higher than what a purely gravitational model
would predict [21] can be attributed to local cohesion [22–24],
where the smallest particles agglomerate in the form of a
weak cohesive matrix that binds the larger particles [19,20].
Unfortunately, a general framework for the analysis of such
bodies is still lacking. In this Rapid Communication we lay
the foundation of a framework that unifies the I rheology with
the overburden pressure given by self-gravity.

Considering that several forces come into play [19], it may
be assumed that internal stresses result from two characteristic
stresses acting on particles: (1) interparticle tensile strength
η = f0/d

2, where f0 is the cohesive force, and (2) interior
stress given by P (r ) = 0.25ρ0g0D(1 − 4r2/D2), with g0 =
GMa/D

2, where G is the gravitational constant, Ma and D

the total mass and diameter of the asteroid, and r the distance
from the center, assuming a constant bulk density and spher-
ical geometry. The pressure at the center is given by P0 =
ρ0g0D/4 and can be used as a referential interior stress. Two
different particle relaxation times can be built as tη = d

√
ρ0/η

and tg0 = d
√

ρ0/P0, leading, in combination with ts , to the
definition of two dimensionless numbers, Iη = γ̇ d

√
ρ0/η and

Ig0 = γ̇ d
√

ρ0/P0. From these two numbers, we can also find a
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Vwall

FIG. 1. Snapshots of a simulated granular asteroid under diamet-
rical compression for (a) εh = 0 and (b) εh = 0.1. Force chains are
represented by lines joining the centers of two touching particles.
Compressive forces in red, and tensile forces in blue.

modified version of the Bond number, λ = η/P0 = (Ig0/Iη )2,
which has been originally defined as the ratio of cohesive to
gravitational forces [19,25]. We thus expect that the rheology
of a granular asteroid will be governed by two of these three
numbers.

By means of extensive three-dimensional (3D) contact
dynamics simulations [26–29], we analyze the stress-strain
behavior and microstructure of a granular asteroid, modeled
as a cohesive granular agglomerate of spherical particles,
subjected to vertical compression together with gravitational
forces and for a broad range of parameters Iη, Ig0 , and η. As
we shall see, the peak strength, as well as the microstructure,
scale with a modified inertial number that, in fact, com-
bines two of these three numbers, so extending the granular

paradigm to these ideal self-gravitating systems.
First, we build a large sample of 10 000 spherical particles

under isotropic compression inside a box. The particles have a
diameter d ∈ [0.6dmax, dmax], with a uniform distribution per
volume fraction. Friction, cohesion, and gravitational forces
are not yet activated. Density ρ0 of the particles is fixed to
3200 kg/m3. We extract spherical agglomerates of diameter
D from this sample comprising nearly Np = 5000 particles.
In order to analyze the effect of aggregate size, four aggregates
were built, with dmax ∈ [3, 6, 12, 18] m, so D is approxi-
mately [50, 100, 190, 375] m. Then, the friction coefficient is
fixed to 0.4, cohesive forces, modeled as a constant reversible
attractive force −f0 with a short-range action of the order
of 0.01d, are activated. Gravitational forces are represented
by the force Fg0 = πd3ρ0g0r/(6D) acting on the center of
each particle at a distance r of the center of the aggregate
and pointing towards it. The aggregates are then subjected
to diametrical compression between two platens, with a pre-
scribed velocity Vwall = γ̇ D [see Fig. 1(a)]. Iη and η were
varied between [5 × 10−4, 0.1] and [0.1 Pa, . . . , 100 MPa],
respectively. We performed 192 simulations for a broad range
of combinations of these two parameters for both nongravita-
tional and gravitational aggregates. When gravitational forces
are considered, P0 increases with D, from ∼0.48, to ∼30 Pa.

During diametrical compression, the vertical stress σzz

acting on an aggregate is given by 4F/πD2, where F is

FIG. 2. Typical curve showing the vertical strength as a function
of the cumulative vertical deformation for η = 1 Pa, D = 50 m, and
various values of Iη (gravitational forces are not activated). The inset
show the same curve for Ic = 5 × 10−5, η = {1, 3, 10, 30, 50} Pa for
D = 190 m considering gravitational forces.

measured on the platen. It can be also calculated from the mi-
cromechanical expression of the stress tensor σij = nc〈f c

i ℓc
j 〉c

[27], where nc = Nc/V with Nc the total number of contacts
in the volume V = πD3/6; the average 〈· · · 〉c is taken over
the contacts c with contact force component f c

i and branch
vector component ℓc

j (i.e., the vector joining the centroids of
two contacting particles).

Figure 2 shows σzz as a function of the axial deformation
εh for η = 1 Pa, D = 50 m, and different values of Iη, and
for Iη = 5 × 10−4 with different values of η (inset). εh is the
classical cumulative vertical deformation defined as �D/D,
where �D = D − Dt and Dt the height of the wall at the time
t . As a general observation, at small Iη values, the stress-strain
curve is well defined and has very small deviations around
the mean. The stress increases to a peak value at small strain
(≈2%) before relaxing to a constant plateau (plastic behavior)
at larger strain. Deformations are localized in the vertical
plane of the aggregate, where compressive force chains are
mainly vertical and tensile force chains lie horizontally [see
Fig. 1(b)]. This ductile behavior results from particle rear-
rangements, dissipation due to friction, and the short-range
action of cohesive forces. As Iη increases, fluctuations in the
stress-strain responses increase both in number and magni-
tude, revealing a dynamical crisis. Thus, in the following
we consider only results for Iη < 0.035 for nongravitational
aggregates and Iη < 0.1 for gravitational ones; the peak stress
σ ∗

zz is defined as an average stress around a deformation of
2%.

In the absence of gravitational forces, we naturally expect
σ ∗

zz to scale with η since cohesion is homogeneously dis-
tributed in all contacts. This is well observed in Fig. 3(a) for a
wide range of values of Iη, η, and D. In contrast, when gravi-
tational forces are active, the scaling with η is not verified [see
Fig. 3(b)]. This is because the effect of gravity is to increase
the local stresses acting on the particles, so that interparticle
tensile strength and interior stresses become additive. We can
thus postulate that the mean pressure is p = η + αP0, where
α is a weight parameter that represents the stress gradient
produced by the radial variation of the gravitational field
inside an aggregate. A similar approach has been used for the
scaling of shear stresses in dense suspensions [30,31] and in
cohesive granular flow [32], where the fluid or cohesive forces
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FIG. 3. Peak stress σ ∗
zz normalized by the cohesive stress η as

a function of Iη (a) without gravitational forces (i.e., Ig0 = 0), and
(b) with gravitational forces (i.e., Ig0 
= 0), in which only one or two
parameters were varied.

and grain stresses are responsible for the effective friction
angle. Accordingly, the inertial number can be rewritten as

I ′ = γ̇ d

√

ρ0

η + αP0
=

Iη√
1 + αλ−1

=
Iη · Ig0

√

I 2
g0

+ αI 2
η

. (1)

Figure 4 shows σ ∗
zz normalized by (η + αP0) as a func-

tion of I ′, for α = 0.48. We observe the collapse of all our
simulation data with a prefactor ≃ 0.9 for small I ′ values.
This prefactor (and fluctuations around the mean) increases
with I ′ to 1.3 in the range of values tested here, evidencing
the dynamical crisis resulting from the destabilizing effect
of particle inertia. It is thus crucial to explore the extent at

FIG. 4. Peak stress σ ∗
zz normalized by additive stress p = η +

αP0 as a function of the modified inertial number I ′ for the raw data
(color coding as in Fig. 3). Error bars represent the standard deviation
around the peak state.

FIG. 5. Coordination number Z∗ and anisotropy descriptors
(a∗

c , a
∗
n, a

∗
t ), as a function of I ′ (the same color coding as in Fig. 3).

The inset shows the polar diagrams of the angular distributions (black
dot) together with harmonic approximations Eq. (2) (solid lines) for
the smallest I ′.

which the texture related to the contact and force network is
controlled by I ′.

At the lowest order, the contact network is characterized
by the coordination number Z = 2Nc/Np (average number of
contacts per particle). Much more accurately, the anisotropy
of the contact network, evidenced in Fig. 1(b) through a typi-
cal representation of forces, is characterized by the probability
density functions P (n), 〈fn〉(n), and 〈ft 〉(n) of contact nor-
mal, mean normal force, and mean tangential force, respec-
tively. In 3D, n is defined by the angles (θ, φ), but given the
spherical geometry of our aggregates, it may be argued that
all these distributions are independent of the azimuthal angle
φ, so in the following, we will consider only the probability
densities Pθ (θ ), 〈fn〉(θ ), and 〈ft 〉(θ ) of the radial angles θ (see
the insets in Fig. 5). These distributions are π periodic and, at
the peak state, an approximation based on spherical harmonics
at leading terms (only those compatible with the symmetries)
can capture their anisotropic behavior [17,33],

Pn(θ ) ≃ 1/(4π ){1 + a∗
c [3 cos2(θ − θ∗

c ) − 1]},

〈fn〉(θ ) ≃ 〈fn〉{1 + a∗
n[3 cos2(θ − θ∗

n ) − 1]}, (2)

〈ft 〉(θ ) ≃ −〈fn〉a∗
t sin 2(θ − θ∗

t ),

where 〈fn〉 is the mean normal force, a∗
c , a∗

n , and a∗
t are

anisotropy parameters, and θ∗
c ≃ θ∗

n ≃ θ∗
t are the correspond-

ing privileged directions which coincide with the major prin-
cipal stress direction θσ = π/2 in the peak state.
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The above microscopic descriptors, calculated in the peak
state, are displayed in Fig. 5 as a function of I ′. We obtain
a very clear collapse of the data points (except maybe for
a∗

n), which provides factual evidence for a unified scaling
of gravitational and nongravitational aggregates with the I ′

formalism. As is often observed, a∗
c and Z∗ vary oppositely,

so the reduction of Z∗ with I ′ represents the loss of contact
in the extension direction [34]. The fact that force chains
are increasingly destabilized as I ′ increases is captured by
the decrease of a∗

n together with the fact that at , which
reflects friction mobilization (〈|ft |〉/〈fn〉 ∝ at [17]), remains
constant.

Now, let us remark that the stress tensor can be rewritten as
an integral as follows [17,33],

σij = nc

∫ ∫ ∫

fαℓβ Pℓf n d f dℓ dn, (3)

where Pℓf n is the joint probability density of forces and
branch vectors ℓ = ℓn. Neglecting the force-contact correla-
tions (which is numerically always verified), P can be split
as Pℓf n = Pℓ(ℓ)Pf ( f )Pn(n). Integrating over f and ℓ and
considering the normal and tangential components of the
forces, we get the following relation [15,17],

σij = ncℓ0

∫

�

[〈fn〉(n)ni + 〈ft 〉(n)ti]P (n)njdn, (4)

where � is the angular domain of integration, and 〈ℓ〉 = ℓ0 ≃
d (because of the weak size span [35,36]). Moreover, it is easy
to show that nc is related to both Z and the solid fraction ν =
Npπd3/(6V ) by nc = 3Zν/(πd3) [37]. We assume also that
an extreme value of the normal force f ∗

n is (η + αP0)d2, on
the basis that at the peak state all contacts in a given direction
are mobilized in extension and have reached their limit value.
In the absence of gravitational forces this means that f ∗

n = f0.
A similar hypothesis, which provided a correct estimate of the
strength in direct shearing, was used by Richefeu et al. [37]
for wet granular media.

Thus, introducing the expressions of nc and f ∗
n in Eq. (3)

together with Eq. (2), we may introduce a theoretical peak
strength for a gravitational aggregate as

σ theoric
zz

η + αP0
=

Z∗ν∗

π

(

1 +
4

5
a∗

c a
∗
n

)

, (5)

where ν∗ is the solid fraction at the peak state. Note that
this equation can be reduced to the well-known “first-order”
Rumpf’s formula for P0 = 0 [38,39]. For all our simulated
data we have ν∗ ≃ 0.60. The theoretical values of σ theoric

zz

are shown in Fig. 6 as a function of I ′, together with those
obtained directly from the stress tensor. We observe that
Eq. (5) approximates very well the peak stress at low I ′ values,
which explains the microscopic origin of the value of ≃ 0.90,
but underestimates it at larger values, where impulsive forces
prevail, defying the hypothesis done on normal forces at the
peak state. In the limit of small inertial numbers (i.e., for
quasistatic deformation) the important parameters are related
to the compactness (solid fraction and number of contacts)
and, to a lesser extent, to the way in which the contacts
and forces are distributed inside the aggregate. Equation (5)
provides a clear evidence for the role of these structural
parameters for a granular asteroid.

FIG. 6. Peak stress σ ∗
zz normalized by additive stress p = η +

αP0 as a function of I ′ for the raw data (stars) (same as Fig. 4),
together with the prediction given by Eq. (5) (color coding as in
Fig. 3).

As explained above, understanding the physical and me-
chanical properties of small planetary bodies is an essential
step to understand their formation and to plan present and
future space missions. One of the outstanding questions in
planetary sciences was the observation that, though most
near Earth asteroids (NEAs) had a maximum spin period of
≈2.2 h [21], some of the small members of the population
(<150 m) could reach spin periods of just a few minutes. This
of course implied that these bodies had an amount of cohesive
strength [23,24] that held them together beyond the gravita-
tional limit; however, no explanation was given to the source
of this strength. Prompted by this, Refs. [19,40] proposed that
cohesive van der Waals forces among the small regolith and
dust of an asteroid acted as a weak matrix that could hold
the larger boulders in place and provide the cohesive strength
necessary for the elevated spin rates that had been observed.
The specifics of this were explored in Ref. [20], arriving at
the conclusion that the strength of this matrix was inversely
proportional to the average particle radius. This finding, or its
principle, has been later used by others [41–43] in their own
research. In spite of this, the study of the dynamics of cohesive
granular asteroids has been limited to either specific asteroids
or to bodies with specific sizes and cohesive strength [44].

To this moment, and even after obtaining a sample from as-
teroid Itokawa, little is known about the structural strength of
small planetary bodies, and this was evidenced by the events
of the Hayabusa mission to asteroid Itokawa and the Ros-
seta mission to comet 67P/Churyumov-Gerasimenko. The
spacecraft of the Hayabusa mission seems to have touched
the surface without piercing it [45], which would imply a
cohesive strength of at least some tens of Pa. These values
are in complete agreement with what would be expected if the
findings of Ref. [20] were applied to a soil formed by mainly
micron-size dust and small pebbles, whereas the lander of the
Rosseta mission sank in the regolith of 67/P to then bounce off
an underlying more rigid layer, which would imply an almost
cohesionless upper layer [46].

At this moment, the Hayabusa 2 [47] and OSIRIS-REx
[48] missions to asteroids Ryugu and Bennu, respectively,
are scheduled to obtain a sample from their target asteroids.
The strength of their surfaces and interiors has been the
topic of large research efforts, but they have been focused on
the macroscopic strength of the soil disjoint from the global
mechanics of the asteroid. The upcoming DART [49] mission
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is also running into the same question about the strength of
asteroid Didymos. Other efforts related to planetary defense
and asteroid mining can also be added to the interested parties,
but a theoretical explanation to establish how cohesive and
gravitational forces interact to support the structural integrity
of granular asteroids or how they scale is lacking. This is what
we have tried to do with this Rapid Communication.

The numerical experiments we have carried out do not
reflect events that asteroids could undergo; rotational fission,
collisions, and gravitational tides are not represented by them.
However, they allowed us to directly measure characteristics
of a self-gravitating aggregate that are independent of the
measuring technique. We used an idealized, simpler system
that served as a proxy for an asteroid, and this is the strength
of this work. Given that now we have a theoretical framework,
we can explore ways to make our simulations more realistic
and applicable to other scenarios. This will be the focus of
future research.

To summarize, in this Rapid Communication we have
defined a consistent framework for the analysis of the behavior
of self-gravitating aggregates, which we used as a proxy for
granular asteroids, by extending the I -rheology paradigm.

Our extensive numerical simulations provide clear evidence
that both macro- and microstructures are well captured
through a modified inertial number incorporating interparticle
cohesive and gravitational forces. A theoretical model, relat-
ing the peak stress to granular texture at sufficiently small I ′

values, is introduced and shown to be in good agreement with
the measured data. The present study sheds some light on
a vast and substantial scientific domain given the multitude
of open questions related to granular asteroids. The above
framework may now be used and extended to analyze much
more “complex” self-gravitating systems by incorporating a
wide range of particle and asteroid sizes and shapes, and
various sources of cohesion (which are generally coupled
with particle size [19]) so that they can better represent real
asteroids. This will also allow us to explore various dynamical
scenarios, such as the rotational evolution of granular aster-
oids and comets, their reshaping due to planetary tides, or even
their exploration, exploitation, redirection, or destruction for
planetary defense.

Research at the University of Colorado was supported by a
grant from NASA’s SSERVI program.
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