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Recently, interesting data concerning dNch/dη in Au-Au collisions [η = − ln tan(θ/2)]
with centrality cuts have been reported from the PHOBOS Collaboration. In most treatment
these data are divided by the number of participants (nucleons) in collisions. Instead of this
method, we use the total multiplicity Nch =

∫
(dNch/dη)dη and find that there is scaling

phenomenon among (Nch)
−1dNch/dη = dn/dη with different centrality cuts at

√
sNN = 130

GeV. To explain this scaling behavior of dn/dη, we employ a stochastic approach using
the Ornstein-Uhlenbeck process with two sources. A Langevin equation is adopted for this
explanation. Moreover, comparisons of dn/dη at

√
sNN = 130 GeV with that at

√
sNN = 200

GeV are made, and no significant difference is found. A possible method for the detection
of the quark-gluon plasma (QGP) through dNch/dη is presented.

§1. Introduction

Recently, interesting data from the PHOBOS Collaboration on dNch/dη [η =
− ln tan(θ/2)]∗)in Au-Au collisions at

√
sNN = 130 GeV have been published. 1) The

authors of Ref. 1) calculated the quantity

1
〈Npart〉/2

dNch

dη
= f(〈Npart〉, Ncoll, η) , (1.1)

where Npart and Ncoll represent the number of participants (nucleons) and the num-
ber of collision particles in Au-Au collisions. The quantity in Eq. (1.1) depends on
the centrality cuts. The intercept f(Npart, Ncoll, η = 0) is an increasing function of
〈Npart〉.

∗) Here,

y =
1

2
ln

E + pz

E − pz
=

1

2
ln

[√
1 +m2/p2

t + sinh2 η + sinh η√
1 +m2/p2

t + sinh2 η − sinh η

]
= tanh−1

(
pz

E

)
≈ − ln tan(θ/2) ≡ η .

η =
1

2
ln

p+ pz

p− pz
and

dn

dη
=

p

E

dn

dy
, where

p

E
=

cosh η√
1 +m2/p2

t + sinh2 η
.
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560 M. Biyajima, M. Ide, T. Mizoguchi and N. Suzuki

In this paper, instead of Eq. (1.1), we consider the physical quantity

1
Nch

dNch

dη
=

dn

dη
, (1.2)

where Nch =
∫
(dNch/dη)dη and

∫
(dn/dη)dη = 1. In Fig. 1, three sets of values for

dn/dη are shown. They suggest that there is scaling behavior among the different
sets of dn/dη with different centrality cuts. Thus, dn/dη can be considered a kind
of probability density, because the variable η is a continuous variable. This fact
probably implies that a stochastic approach is appropriate in analyses of dn/dη.∗)

The content of the present paper is as follows. In §2, we examine the dn/dη
scaling. In §3, a stochastic approach is considered as one possible explanation of
dn/dη scaling. In §4, concrete analyses employing Gaussian distributions obtained
from the Ornstein-Uhlenbeck (O-U) process are presented. In the final section,
concluding remarks are given. In the Appendix, the Fokker-Planck equation for the
O-U process is considered.

§2. Confirmation of dn/dη scaling

It is worthwhile to confirm whether dn/dη scaling holds. Using the intercepts of
dn/dη at η = 0 in Fig. 1,

dn

dη

∣∣∣∣
η=0

= c ≈ 0.129± 0.005 , (2.1)

we can obtain a relation between Nch and 〈Npart〉 as follows. The intercept at η = 0
can be parameterized as

1
0.5〈Npart〉

dNch

dη

∣∣∣∣∣
η=0

= A〈Npart〉α , (2.2)

∗) From studies of multiparticle dynamics in high energy physics, we have learned that the

probability distributions P (n, 〈n〉) are functions of n and 〈n〉. It is known that the KNO scaling

functions 2)

lim
n, 〈n〉→∞

〈n〉P (n) = ψ(z = n/〈n〉) ,

are described by solutions of various Fokker-Planck equations. 3), 4) Moreover, this stochastic descrip-

tion is also seen in QCD. For example, Dokshitzer has calculated the generalized gamma distribution

in QCD 5)

P (z = n/〈n〉) ≈ 2µ2

z

(Dz)3µ/2

√
2µγ

exp [−(Dz)µ] ,

where z is the KNO scaling variable, µ is given by 1 − γ = 1/µ, D is a parameter, and γ is the

anomalous dimension in QCD. This is a stationary solution of the following Fokker-Planck equation

∂P

∂t
= − ∂

∂z

[(
d+

1

2
Q

)
z + bz1+γ

]
P +

1

2
Q

∂2

∂z2
[z2P ] .
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Fig. 1. (a) and (b) Two sets of dn/dη with different centrality cuts. 1) Data with 15–25% are plotted

in both figures for the sake of comparison. (c) To examine dn/dη in the fragmentation region,

a log-linear plot is given.

where A = 2.16, and α = 0.064. Thus we obtain the relation

c =
0.5〈Npart〉

Nch

1
0.5〈Npart〉

dNch

dη

∣∣∣∣∣
η=0

=
0.5〈Npart〉

Nch
A〈Npart〉α . (2.3)

Equation (2.3) is examined in Table I and Fig. 2. That Eq. (2.3) holds approximately
among 6 centrality cuts reflects the dn/dη scaling, in particular, in the central region.

§3. A possible explanation of dn/dη obtained
using a stochastic approach

It is well known that the rapidity (y ≈ η) is a kind of velocity. Moreover, there
are leading particles in the beam and in target nuclei that collide with each other.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/108/3/559/1844144 by U

.S. D
epartm

ent of Justice user on 16 August 2022



562 M. Biyajima, M. Ide, T. Mizoguchi and N. Suzuki

Table I. Empirical examination of Eq. (2.3).

centrality (%) 2c×Nch A× 〈Npart〉1+α

35–45 2× 0.129× 1056 2.16× 931+0.064

272.6± 14.6 268.5± 17.7

25–35 2× 0.129× 1582 2.16× 1351+0.064

408.1± 21.9 399.1± 28.4

15–25 2× 0.129× 2270 2.16× 1971+0.064

585.7± 31.4 596.7± 45.8

6–15 2× 0.129× 3199 2.16× 2701+0.064

825.2± 44.6 834.5± 67.9

0–6 2× 0.129× 4070 2.16× 3401+0.064

1050± 57 1066± 90
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Fig. 2. Determination of the parameters A and α.

For example, nucleons in gold atoms in RHIC experiments collide with each other,
and thereby lose energy and emit various particles. Since we have to treat large
numbers of particles (e.g., 1k–10k), a stochastic approach seems to be appropriate
and to offer a simpler description than Monte Carlo approaches.∗)

To describe dn/dη scaling with the leading particle effect and fluctuations in
rapidity space, we assume the following Langevin equation 8)– 10) for the rapidity
variable:∗∗)

dy

dt
= −γy + fw(t) . (3.1)

Here t, γ and fw(t) are the evolution parameter,∗∗∗) the frictional coefficient and a
∗) It should be noted that the transport approach is another useful method (see Refs. 6) and

7)).
∗∗) In classical mechanics, Eq. (3.1) corresponds to the equation

m
dv

dt
= −mγv +mfw(t) ,

where v is the velocity.
∗∗∗) As an alternative interpretation, t may be related to the number of collisions among the wee

partons and produced particles.
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Scaling Behavior of (Nch)−1dNch/dη 563

white noise term, respectively. In our treatment, we assume that Nch particles are
produced at ±ymax at t = 0. This picture takes into account leading particle effects.
Using the assumption y(0) = ±ymax, we obtain the solution

y(t) = ±ymaxe
−γt + e−γt

∫ t

0
eγsfw(s)ds . (3.2)

The average and variance of y(t) are calculated as

E[y(t)] = ±ymaxe
−γt , (3.3)

E[(E[y(t)]− y)2] =
σ2

2γ

(
1− e−2γt

)
, (3.4)

where we use the expression

〈fw(t)fw(s)〉 = σ2δ(t − s) (3.5)

for the white noise, where σ2 is the variance. It is known that the distribution
function for y(t) is given by a Gaussian distribution with the above average and
variance. The probability density with V 2(t) = (σ2/2γ)(1− e−2γt) is given by

P (y, ymax, t) =
1√

8πV 2(t)

{
exp

[
−(y + ymaxe

−γt)2

2V 2(t)

]

+exp

[
−(y − ymaxe

−γt)2

2V 2(t)

] }
. (3.6)

The connection between Eq. (3.1) and the Fokker-Planck equation for the O-U pro-
cess is given in the Appendix.

In Fig. 3(a), we depict a simplified picture of heavy-ion collision. Our assump-
tions for the leading particle effect are equivalent to the assumption P (y, ymax, t =
0) = 0.5[δ(y−ymax)+δ(y+ymax)]. In other words, in this model we make the simple
assumption that there are two sources of particles at t = 0, located at ±ymax and
producing 0.5Nch particles each. The evolution of P (y, ymax, t) given in Eq. (3.6) is
shown in Fig. 3(b).

centraltarget projectile
fragmentation

region
rapidity fragmentation
region region

(a)

y
-ymax ymax

t ≈ 0 t ≈ 0

t → finite

(b)

Fig. 3. (a) Simplified picture for A-A collisions. The thin lines represent partons, and the black

circles represent nucleons. (b) Evolution of P (y, ymax, t) in Eq. (3.6) with two sources at ymax

and −ymax.
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564 M. Biyajima, M. Ide, T. Mizoguchi and N. Suzuki

§4. Analyses of dn/dη by means of Eq. (3.6)

Making use of Eq. (3.6), we can analyze dn/dη shown in Fig. 1. In our calcula-
tion, as most produced particles are not specified, we assume that y ≈ η in Eq. (3.6).
Our results are shown in Fig. 4 and Table II. In Fig. 5, we examine whether or not
the variance V 2(t) and the quantity p = 1− e−2γt depend on the centrality cuts. As
is seen in Figs. 3 and 4, the scaling behavior among the sets of dn/dη at

√
sNN = 130

GeV is explained by Eq. (3.6), with small changes in the variance V 2(t). The values
of V 2(t) depend on the distribution in the fragmentation region [−ηmax < η < −4
and 4 < η < ηmax]. It can be said that the scaling behavior is explained fairly well
by the O-U process with two sources, one at the beam (yB or ymax) rapidity and one
at the target (yT or −ymax) rapidity. We have confirmed that an O-U process with
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Fig. 4. Analyses of dn/dη using Eq. (3.6). (See Table II.)
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Scaling Behavior of (Nch)−1dNch/dη 565

Table II. Parameter values obtained in our analyses using Eq. (3.6) with two sources. The evolution

of P (y, ymax, t) in Eq. (3.6) is stopped at minimum values of χ2. Here, δp = 0.006 − −0.004
and c = 1√

2πV 2(t)
exp

[
− (ymaxe−γt)2

2V 2(t)

]
. (n.d.f. denotes the number of degree of freedom.)

Fig. 4 (a) (b) (c) (d) (e) (f)

centrality (%) 45–55 35–45 25–35 15–25 6–15 0–6

p 0.872±δp 0.875±δp 0.878±δp 0.882±δp 0.886±δp 0.888±δp
V 2(t) 3.83±0.27 3.61±0.21 3.23±0.16 3.00±0.13 2.72±0.10 2.47±0.08
〈Npart〉 — 93 135 197 270 340

Nch 662±10 1056±16 1582±23 2270±34 3199±49 4070±63
c 0.125 0.127 0.128 0.130 0.132 0.131

χ2/n.d.f. 8.61/51 7.63/51 5.88/51 5.35/51 3.57/51 3.82/51

 45-55  35-45  25-35  15-25  6-15  0-6 
 0.8 

 0.9 

 1.0 

centrality cuts (%)

p (b)

 0 

 2 

 4 
V 2(t)

(a)

Fig. 5. The values V 2(t) and p of Fig. 4 and Table II.

a single source is not capable of explaining the scaling behavior.∗),∗∗)
The intercepts for the sets of dn/dη are calculated using the expression

c =
1√

2πV 2(t)
exp

[
−(ymaxe

−γt)2

2V 2(t)

]
. (4.1)

The results are listed in Table II. They are almost the same as the values in Fig. 1.
Here we should carefully examine the values of V (t) in Table II. The slight

change reflects the discrepancies in the fragmentation region. As seen in Fig. 1(c),
there are small differences in the sets of dn/dη for |η|>∼4 between the 0–6% centrality
cut and the other centrality cuts. To explore the differences more carefully, we need

∗) For an explanation with the single source at y0 ≈ 0, we can use Eq. (A.2) in the Appendix.

For the centrality cut 0–6%, we obtain χ2 = 25.76, with m/pt = 1.3 ± 0.1, which is necessary for

the single source model. If m/pt is ignored, we obtain a worse value of χ2. Thus we disregard this

model.
∗∗) We have investigated whether or not the dip structures at η ≈ 0 can be explained by the

Jacobian p/E, and obtained the worse values of χ2 than those listed in Table II. This fact is probably

related to the masses of produced particles that are not measured.
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566 M. Biyajima, M. Ide, T. Mizoguchi and N. Suzuki

sets of dn/dη with smaller centrality cuts, for example 0–3% – 0–5%.∗),∗∗)

§5. Concluding remarks

First, it can be said that there is scaling among the different sets of dn/dη with
various centrality cuts at

√
sNN = 130 GeV, as seen from the nearly constant values

of c and the behavior in Figs. 1(a)–(c).

 0  2  4  6 
 0 

 0.04 

 0.08 

 0.12 

 0.16 

η

dn
dη

200 GeV
130 GeV

Fig. 6. Comparisons of dn/dη with the cen-

trality cut 0–6% at
√
sNN = 130 GeV and

200 GeV. The solid curve is obtained for

latter energy. Here p = 0.879 ± 0.007,

V 2(t) = 2.67 ± 0.24, χ2/n.d.f. = 0.63/22

and c = 0.126.

Second, the scaling behavior of
dn/dη is described by the solution given
in Eq. (3.6) of the Langevin equation
with two sources.∗∗∗)(See Fig. 4 and the
values of c in Table II.)

Third, we can add the following
fact. Very recently, data for dNch/dη
with centrality cut 0–6% at

√
sNN =

200 GeV from the PHOBOS Collabo-
ration were reported. 16) They are com-
pared with data for dn/dη at

√
sNN =

130 GeV in Fig. 6. From this compar-
ison, it is obvious that the scaling of
dn/dη holds between

√
sNN = 130 GeV

and 200 GeV.†)
Moreover, we can consider the

dn/dη scaling from a different point of
view, i.e., regarding the scaling property

∗) A calculation based on QCD is given in Ref. 11) as

2

〈Npart〉
dNch

dη

∣∣∣∣
η=0

= a
(
s

s0

)λ/2
[
log

(
Q2

0S

ΛQCD

)
+

λ

2
log

(
s

s0

)]
,

where a ≈ 0.82, ΛQCD = 0.2 GeV and λ = 0.25, and the centrality dependence of the saturation

scale is Q2
0S. In the fragmentation region, this expression needs cutoff factors.

∗∗) Very recently, the results for dn/dη at
√
sNN = 130 GeV and 200 GeV with centrality

cuts 0–5% and others obtained by the BRAHMS Collaboration 12), 13) were reported. We have

analyzed them using Eq. (3.6) and obtained an almost constant value of V 2(t), because data in the

fragmentation region are lacking for |η|>∼4.5.
∗∗∗) To estimate the “thermalization time” of the QGP, Hwa has considered the Fokker-Planck

equation for the motion of quarks and gluons in nuclei. 14) (See also Ref. 15), in which the Wiener

process is considered for the problem of the thermalization of quarks and gluons.)
†) Using Bjorken’s picture 17) for the calculation of the energy density for |∆η| ≤ 0.5 with a

geometrical picture of gold (Rτ ≈ 6–7 fm, cτ0 ≈ 1–2 fm, V ≈ πR2
T(cτ0) ≈ 300 fm3), we obtain the

following values:

ε ∼ 3

2

1

V

dNch

dη
ET

∣∣∣∣
|∆η|≤0.5

∼ 1 GeV/fm3 (130 GeV) ,

ε ∼ 1.2 GeV/fm3 (200 GeV) .
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Fig. 7. Normalized distribution of dn/dzr with zr = η/ηrms scaling. The solid curve is obtained

by dn
dzr

= 1√
8πV 2

r (t)

{
exp

[
− (zr+zmaxe−γt)2

2V 2
r (t)

]
+ exp

[
− (zr−zmaxe−γt)2

2V 2
t

(t)

]}
, zmax = 2.23, V 2

r (t) =

0.502, χ2/n.d.f. = 92.9/321.

Table III. Values of ηrms at
√
sNN = 130 GeV.

Fig. 4 (a) (b) (c) (d) (e) (f)

centrality (%) 45–55 35–45 25–35 15–25 6–15 0–6

ηrms =
√

〈η2〉 2.52 2.49 2.45 2.41 2.37 2.33

of Gaussian distributions. Using ηrms =
√〈η2〉 = √∑

η2dn/dη, we can compute the
following quantity with zr = η/ηrms:

ηrms
dn

dη
=

dn

dzr
= f(zr = η/ηrms) . (5.1)

In Fig. 7, we display our result for Eq. (5.1) and give ηrms in Table III. This scaling
of f(zr = η/ηrms) reflects the fact that the sets of dn/dη are described by a Gaussian
distribution. In other words, the description of dn/dη using the O-U process is
appropriate.

This dn/dη scaling suggests that dn/dη with the centrality cut 0–6% does not
exhibit singular or particular phenomena related to signatures of the quark-gluon
plasma (QGP).∗)Of course, care must be taken when handling averaged quantities
in statistics. Thus, while at present, it appears that the QGP is not created, it is pos-
sible that the QGP is created but its signature is washed out by strong interactions
between hadrons.∗∗)

∗) From studies of the HBT effect at RHIC, the authors of Ref. 18) have concluded that the

expected large radius from the QGP is not observed.
∗∗) Through the measurement of v2 (flow of nucleons), some physicists have conjectured that
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568 M. Biyajima, M. Ide, T. Mizoguchi and N. Suzuki

To investigate particular phenomena, like the turbulence and/or deflagration in
dNch/dη, we need to analyze a single event with smaller centrality cut than 0–6%.

Furthermore, event-by-event analyses using intermittency 21)– 26) and wavelets 27)

are necessary to investigate the detection of QGP and a disoriented chiral conden-
sate (DCC). For the latter case, the ratio of neutral pions (〈π0〉) to charged pi-
ons (〈πch〉), 〈π0〉/〈πch〉, should be measured. These methods should be applied to
dNch/dη with smaller centrality cuts and larger particles. They seem to be capable of
extracting useful information on QGPs and DCCs from the analysis of single events.

Finally, we should mention the results of recent analyses of data concerning
dNch/dη carried out by the NA50 Collaboration. 28) It has been reported that there
is η-scaling of dNch/dη in the data obtained from Pb + Pb collisions at SPS. 28) This
behavior can be described by a single Gaussian distribution. (See Eq. (A.2).) This
fact suggests that the stochastic approach can be used to describe the behavior of
dNch/dη at SPS. The intercepts at ηmax, (Nmax)−1dNch/dη = dn/dη are in range
0.246–0.266 for 6 centrality cuts. It should be noticed that there is no dip structure.
Their observation supports the validity of our stochastic approach.
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Appendix A
Solution of the Fokker-Planck Equation for the O-U Process

The Fokker-Planck equation for the O-U process connected with Eq. (3.1) is
given by

∂P (y, t)
∂t

= γ

[
∂

∂y
y +

1
2

σ2

γ

∂2

∂y2

]
P (y, t) . (A.1)

The solution of Eq. (A.1) with P (y, 0) = δ(y − y0) is obtained as

P (y, t) =
1√

2πV 2(t)
exp

[
−(y − y0e

−γt)2

2V 2(t)

]
, (A.2)

where we have used a resolution method for partial differential equations, includ-
ing the equation of the characteristic. 29) Similarly, the solution of Eq. (A.1) with
P (y, 0) = 0.5[δ(y + ymax) + δ(y − ymax)] is obtained as

P (y, ymax, t) =
1√

8πV 2(t)

{
exp

[
−(y + ymaxe

−γt)2

2V 2(t)

]

the increasing value of v2 reflects the effect from the compression of nuclear matter. 19) (See also

Ref. 20).)
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+ exp

[
−(y − ymaxe

−γt)2

2V 2(t)

] }
. (A.3)
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Note added in proof: After completion of this paper, we are informed that the relativistic diffusion

model has been used for analysis of the proton distributions in heavy ion collisions by Wolschin. 30)

A similar Fokker-Planck equation is used therein.
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