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We propose a model of random diffusion to investigate flow fluctuations in complex networks. We

derive an analytical law showing that the dependence of fluctuations with the mean traffic in a network is

ruled by the delicate interplay of three factors, respectively, of dynamical, topological and statistical

nature. In particular, we demonstrate that the existence of a power-law scaling characterizing the flow

fluctuations at every node in the network cannot be claimed. We show the validity of this scaling

breakdown under quite general topological and dynamical situations by means of different traffic

algorithms and by analyzing real data.
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Communication networks [1] are nowadays the subject

of intense research as modern society increasingly depends

on them. On the one hand, the first studies have dealt with

the architecture of these systems, showing that the sys-

tems’ topological features [1–3] are at the root of the

critical behavior of several dynamical processes taking

place on top of them [1,4]. On the other hand, models for

traffic and information flow on complex networks have

been recently investigated as a way to improve our under-

standing on key issues such as the scalability, robustness,

performance, and dynamics of technological networks

[1,4]. In particular, much effort has been invested in finding

what are the conditions for an efficient performance of

communication networks, the latter being measured as

the ability of the system to avoid congestion and reduce

transit times [5–8]. Nevertheless, large communication

networks such as the Internet usually avoid the regime in

which congestion arises, and therefore the dynamics of

packets is not driven by congestion processes. Instead,

the fluctuations in traffic flow constitute the main factor

affecting the dynamics of these communication systems.

The relationship between the fluctuations � and the

average flux hfi in traffic dynamics on complex networks

is a controversial issue that has received a lot of attention

very recently [9,10]. The authors of Refs. [9,11] claimed

the existence of the relation �� hfi�, with real commu-

nication networks belonging to one of two universality

classes, the first one characterized by an exponent value

� � 1=2, the second one by � � 1. The authors of [10]

questioned the existence of the two universality classes.

They numerically showed that there is a wide spectrum of

possible values for �, depending on parameters such as the

persistence of packets in the network, the duration of the

time window during which statistics are recorded, and the

rate of service at the nodes’ queues [10].

In this Letter, we propose a model for traffic in complex

networks, the Random Diffusion (RD) model, that is amen-

able to analytical solution. The model predicts the exis-

tence of a simple law that relates the fluctuations at a node

i, �i to the average traffic flow fi, depending on the

delicate balance of three quantities: (i) the variation in

the number of packets in the network, (ii) the degree of

the node i, and (iii) the length of the time window in which

measures of traffic flow are performed. Notwithstanding its

simplicity, the RD model is able to capture the essential

ingredients determining the scaling of fluctuations empiri-

cally observed for traffic flow in real complex networks.

More important, we also show that the hypothesis of a

power-law scaling of flow fluctuations has to be abandoned

under certain conditions. Results of numerical simulations

of a traffic-aware model and analysis of real data of

Internet flow confirm our theoretical findings.

In the random diffusion (RD) model, we represent pack-

ets of information as w random walkers traveling in a

network made up of N nodes and K links. Under the

assumption that the packets are not interacting, it follows

that the average number of walkers �i at a node i is given,

in the stationary regime, by [12,13]

 �i�w� �
ki
2K

w: (1)

Let us assume that the total observation time T is divided

into time windows of equal length. Each window is made

of M time units. A window represents the minimal resolu-

tion for measurements of the flux in a node and its fluctua-

tions, being the first the result of accumulating the number

of packets traveling through the node during the M time

units. The average number of packets hfii processed by

node i in a time window is measured, together with its

standard deviation �i. These are the two quantities moni-

tored in Refs. [9,10] for real systems and in the numerical

simulations of network traffic models. The main interest is

to investigate the dependence of �i with hfii. In particular,

we want to verify whether a power-law relation �i � hfii
�
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holds, and what factors determine the exponent �. In the

RD model, we can consider two possible situations: either

the number of packets in the network is constant over the

whole period of time T, namely w � W, or it can vary from

one time window to the other. In the latter situation, we

assume that the probability F�w� of having w walkers on

the network in a window of length M is equally distributed

in the range [W � �, W � �], i.e.,

 F�w� �
1

2�� 1
; (2)

with 1 � � � W. To find an expression for the average

number of packets hfii flowing through a given node i, we

first calculate the probability Pi�n� that, after M time steps,

n packets have visited node i.
In the case w � W, due to the fact that the packets are

not interacting, the arrival of walkers at a node is a Poisson

process. Therefore, after a period of M time units, the mean

number of packets (the average flux) at a node i is hfii �
�i�w�M, and the probability of having n packets reads

 Pi�n� � e��i�w�M
��i�w�M	n

n!
; (3)

with � �
�����������������

�i�w�M
p

�
��������

hfii
p

. Thus, the scaling exponent is

� � 1=2.

In the more general case in which the number w is

distributed as in Eq. (2), the probability Pi�n� is

 Pi�n��
X

j�2�

j�0

e��ki=2K��W���j�M

2��1

� ki
2K
�W���j�M	n

n!
: (4)

Calculating first and second moments of Pi�n�, one obtains

 hfii �
X

1

n�0

nPi�n� �
kiWM

2K
; (5)

 hf2i i �
X

1

n�0

n2Pi�n� � hfii
2

�

1�
�2

W2

�

� hfii: (6)

Finally, the standard deviation can be expressed as a func-

tion of hfii as

 �2
i � hfii

�

1� hfii
�2

W2

�

: (7)

The above derivation provides an understanding of the

origins of Eq. (7), proposed in [9], and shows that the

relation between �i and hfii depends on the concurrent

effects of three factors, namely: (i) the noise � associated

to the fluctuations in the number of packets in the network

from time window to time window; (ii) the length M of the

time window; and (iii) the degree of the node ki (since hfii
depends on ki). Consequently, real traffic rarely falls in

either of the two limiting cases of Eq. (7), i.e., �� hfi�

with � � 1=2 or 1.

Expression (7) contains all the behaviors previously

observed in Refs. [9,10], and also predicts new dependen-

cies that can be tested to be valid in more refined traffic

models as well as in real data. In fact, if the three quantities

�, M, and ki are such that

 

kiM�2

2KW

 1; (8)

expression (7) reduces to a power-law scaling �� hfi�

with exponent � � 1=2. On the contrary, whenever the

ratio kiM�2

2KW
is not negligible anymore, the exponent � differs

from 1=2 and approaches 1. In other words, it may well be

the case in which, even for small values of the noise

parameter �, a large value of M cancels out the effect of

the ratio �
W

being too small in Eq. (7). This behavior was

already explored in [10] by means of numerical simula-

tions. However, the fact that the ratio in formula (8) de-

pends quadratically on � and only linearly on ki and M, has

gone unnoticed. The RD model puts such dependence on

solid theoretical grounds, and also reveals the role played

by the other two parameters M and ki on the observed

scaling.

In Fig. 1, we plot the dependence of � with hfi in the RD

model for several values of the parameters M and �. Panel

(a) corresponds to the case in which the ratio �
W
� 10

�1 is

fixed and the length of the time windows used to measure

FIG. 1. Flow fluctuation � as a function of hfi for the RD

model with various parameter values. In panel (a), � � 103 and

W � 10
4. In panel (b), W has the same value while M has been

fixed to 10. In both figures, points correspond to the solution of

Eq. (7) for different values of ki (1. . .18). The total number of

links is K � 33500. Dashed lines are guides to the eyes and

correspond to �� hfi�, with � � 1=2 (lower curves) and � � 1

(upper curves). See the text for further details.
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the flow of packets through different nodes is varied. For

each value of M, we have superimposed the results ob-

tained for nodes with different connectivity values, ranging

from ki � 1 to ki � 18. If one follows the arguments given

in [9], a value of � � 1=2 should be expected for this

choice of �=W. Instead, as shown in the figure, ��

hfi1=2 only for small values of M, while the scaling ex-

ponent approaches 1 as M is increased. This means that,

whenever the temporal resolution in the measurements is

not small enough and packets are counted and accumulated

over long periods, � tends to 1.

A novel striking feature revealed by law (7), and not

revealed in previous studies, is the dependence with the

degree of the nodes. An example of the effects of node

degrees is shown in Fig. 1(a). It turns out that, for some

values of M (e.g., M � 10
2 in the figure), the fluctuations

at lowly connected nodes are characterized by an exponent

� � 1=2, whereas for highly connected nodes, the expo-

nent turns out to be � � 1. Hence, there is not a single

exponent characterizing the fluctuations at every node of

the network, regardless of its connectivity. This is again a

clear indication that a power-law behavior, �� hfi�, even

with nonuniversal exponents ranging in [1=2, 1], is not the

most general situation when characterizing the flow fluc-

tuations for a whole network [9,10]. Admittedly, � is not

constant for every possible choice of the parameters �, W,

and M along the whole set of ki values. This effect is par-

ticularly relevant for highly heterogeneous networks like

the Internet, where degree classes span several decades. In

these kinds of networks, one should therefore expect differ-

ent scaling laws depending on whether the packets are

flowing through lowly or highly connected nodes.

The influence of the noise level on � for a fixed time

window length (M � 10) is depicted in Fig. 1(b). When �
is small, so that the number of packets in the network from

one time frame to the following does not change signifi-

cantly, � � 1=2. On the contrary, when � is sufficiently

large, the exponent is 1. This is more in consonance with

the results in [9], where the dependence with the noise level

was addressed only for a low value of M, getting that as �
increases � ! 1. On the other hand, we observe again that

fixing M and varying � does not guarantee the existence of

a unique exponent for the scaling of fluctuations in traffic

flow, though in this case the dependence is smoother than

that observed in Fig. 1(a).

In the following, we show that expression (7) predicted

by the RD model is indeed valid for more elaborated traffic

models and that the RD approximation captures the phe-

nomenology of real communication systems. We report the

results obtained on top of synthetic scale-free (SF) net-

works with N � 10
4 nodes and power-law degree distri-

butions pk � k��, with an exponent � � 2:2 as the one

empirically observed for the Internet at the autonomous

system level [2]. However, we stress that since the topo-

logical properties of the underlying graph only enter into

Eq. (7) through the degree of the nodes ki and the total

number of links in the network, K, the results hold for any

graph with an arbitrary degree distribution pk as our own

simulations using SF networks, random graphs, and a real

autonomous system map of the Internet [2] reveal.

On the other hand, to mimic the way packets flow in real

communication networks, we consider a dynamical model

that is able to simulate the Internet’s most important dy-

namical characteristics [6,7]. The dynamics of the packets

is simulated as follows. Each node represents a router with

an infinite size buffer. The delivery of packets is made

following a First In First Out (FIFO) policy. At each time

step, p new packets are introduced in the system with

randomly chosen sources and destinations [14]. Packets

routing is based on a traffic-aware scheme [6,7] in which

the path followed by a packet is the one that minimizes the

effective distance di
eff

� hdi � �1� h�ci, where di is the

distance between node i and the packet destination, ci is

the number of packets in i’s queue, and h is a tunable

parameter that accounts for the degree of traffic awareness

incorporated in the delivery algorithm [6,7]. It is worth

recalling that h � 1 recovers a shortest-path delivery pro-

tocol, mimicking most of the actual Internet routing

mechanisms.

Figure 2 shows � as a function of hfi obtained through

extensive numerical simulations of the traffic model with

h � 1 and p � 2. Different panels in the figure correspond

to different values of the time-window length M. The

results indicate that the main responsible of the value of

� (interpolating between the two extreme � � 1=2 and

� � 1) is the interplay between the node degree and the

time resolution used to record the flux of packets, exactly

as predicted by the scaling law (7) obtained in the RD

model. In fact, Fig. 2(a) corresponds to the choice of

parameters for which formula (8) holds for all values of

ki, leading to � � 1=2. On the contrary, when M is large

enough and the other parameters are kept fixed as in

< f  >i < f  >i
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FIG. 2 (color online). Flow fluctuation � as a function of hfi
from numerical simulations of the Internet traffic model (see text

for details) on synthetic scale-free networks with N � 10
4

nodes, K � 37551 links, and degree exponent � � 2:2.

Different panels correspond to different values of M, respec-

tively M � 1, 5� 102, 35� 103, 105. Color-coded values rep-

resent the logarithm of node degree. The continuous line is the

curve y � x0:5, while the dashed line is y� x.
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Fig. 2(d), relation (8) is not satisfied whatever the value of

ki used, hence giving an exponent � � 1. Finally, the

breakdown of the scaling law �� hfi� anticipated by

the RD model is captured in Figs. 2(b) and 2(c), where it

is clearly revealed that there is not a unique exponent

characterizing the flow of packets through every node of

the network. Indeed, there is a crossover from �� hfi1=2

for lowly connected nodes to �� hfi for the highly con-

nected ones. We also note that a similar behavior is ob-

served (figures not shown) when traffic-aware routings

(h < 1) are taken into account.

Finally, we have also analyzed the data corresponding to

the traffic between routers of the Abilene backbone net-

work [15]. As the data collected for the routers in the

backbone correspond only to the flow between them, this

backbone network can be viewed as an isolated communi-

cation system where the routers create, deliver, and receive

data packets. Therefore, the measures effectively corre-

spond to a small network handling a large amount of traffic

and with all its nodes having a similar degree. For this

reason, we are not able to observe here the dependence

with the node degree. However, at variance with the analy-

sis performed in [10], we have varied the length of the time

windows used to extract the flux and its deviation [16].

Once again, the results, depicted in Fig. 3, show that the

exponent � is not universal and radically depends on M.

Note that, although the lower bound of � � 0:706> 1=2 is

determined by the minimal resolution (M � 5 minutes) of

the raw data, further increasing M will recover the upper

bound � � 1.

In summary, in this Letter, we have derived a theoretical

law for the dependence of fluctuations with the mean traffic

in a network. Such a dependence is governed by three

factors: one related to the dynamics, one related to the

topology, and one of statistical nature. More importantly,

the theoretical law reveals that the previously claimed

power-law scaling (with universal or nonuniversal expo-

nents) has to be abandoned. Our numerical results and the

analysis of real data confirm that, even in the presence of

correlations between packets, one cannot assume a single

exponent to characterize the fluctuations of traffic for the

whole network. Finally, we note that the scaling break-

down predicted here is amenable to experimental confir-

mation by measuring the traffic flow in large communi-

cation networks to capture the predicted (topological) ef-

fects of degree heterogeneity.
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FIG. 3 (color online). Flow fluctuation � as a function of hfi
for the Abilene Interfaces. The values of M used in each panel

are: M � 5 (a), M � 30 (b), M � 60 (c), and M � 720 (d).

Time is in minutes. The value of � for each M is also reported.

Averages are taken over one month of data corresponding to the

period between January 11 to February 11 of 2006.
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