
Scaling Communication-Intensive Applications on BlueGene/P
Using One-Sided Communication and Overlap

Rajesh Nishtala∗, Paul H. Hargrove†, Dan O. Bonachea∗ and Katherine A. Yelick∗†
∗Computer Science Division, College of Engineering

University of California at Berkeley, Berkeley, CA, USA
†High Performance Computing Research Department

Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Email: {rajeshn,bonachea,yelick}@cs.berkeley.edu, phhargrove@lbl.gov

Abstract

In earlier work, we showed that the one-sided commu-
nication model found in PGAS languages (such as UPC)
offers significant advantages in communication efficiency by
decoupling data transfer from processor synchronization.

We explore the use of the PGAS model on IBM Blue-
Gene/P, an architecture that combines low-power, quad-core
processors with extreme scalability. We demonstrate that the
PGAS model, using a new port of the Berkeley UPC compiler
and GASNet one-sided communication layer, outperforms
two-sided (MPI) communication in both microbenchmarks
and a case study of the communication-limited benchmark,
NAS FT. We scale the benchmark up to 16,384 cores of
the BlueGene/P and demonstrate that UPC consistently
outperforms MPI by as much as 66% for some processor
configurations and an average of 32%. In addition, the
results demonstrate the scalability of the PGAS model and
the Berkeley implementation of UPC, the viability of using
it on machines with multicore nodes, and the effectiveness
of the BG/P communication layer for supporting one-sided
communication and PGAS languages.

1. Introduction

As the demand for computation power continues to grow
at an exponential rate, system designers are turning to higher
degrees of parallelism to deliver increased performance, due
to the oft-cited difficulties with increasing serial performance
within a processor core. They are also increasingly focused
on high performance networks which enable users to take
advantage of the increasing degree of parallelism. In our
work we use the IBM BlueGene/P [1] (BG/P) as an example
of a machine in this category of systems.

As the number of cores in a socket and within a system
continue to grow at an exponential rate, the ability to
scale communication systems, programming models, and
applications to this large scale once again takes center stage.
Further aggravating the problem, the pressures of power and
machine cost at these large scales motivate the use of lower

core clock rates leading to weak integer performance relative
to lower-scale predecessor systems. The relatively weak
compute cores on the BG/P magnify the software overheads
associated with the communication subsystem. Semantic
matching between the higher level programming model and
the underlying network hardware can help alleviate some of
these overheads.

A new class of languages, called Partitioned Global Ad-
dress Space (PGAS) languages, has recently emerged to
aid in the performance and scalability of High Performance
Computing (HPC) applications. Rooted in traditional shared
memory programming models, these languages expose a
global address space that is logically partitioned across the
threads. To provide the illusion of a globally shared memory
these languages employ a one-sided communication model
whereby a thread may directly read and write the memory
located at a remote node, without the explicit cooperation
of the application thread(s) on the remote node. One-
sided communication semantics have been shown to enable
increased performance by decoupling processor synchro-
nization from data transfer, operations which are implicitly
linked in two-sided communication models such as MPI
message-passing [2]. One of the major contributions of this
paper is to show the scalability of such a programming
model. To the best of our knowledge our Berkeley Unified
Parallel C (UPC) compiler [3] is the first PGAS compiler
available on the BG/P and this work comprises some of the
largest-scale PGAS application numbers published to date.

In order to benchmark communication performance we
use the NAS Parallel Benchmark FT [4]. The core of the
NAS FT benchmark is a large three-dimensional FFT, a
problem that is known to be limited by the bisection band-
width performance of the network. In our previous work [5]
we demonstrated the utility of one-sided communication
and communication/computation overlap to realize signifi-
cant performance improvements relative to MPI message-
passing. However the previous version only examined a
one-dimensional decomposition of the problem grid which
limited the maximum number of processor cores. In this
paper we examine a two-dimensional decomposition of the



grid which has a much more aggressive communication
pattern than its one-dimensional counterpart. In particular
we focus on how the one-sided communication semantics
found in UPC aid in scalability on the BG/P.

We outline the PGAS and UPC programming models
in Section 2 and describe GASNet, our portable, high-
performance communication system, in Section 3. Section 3
also discusses our implementation of UPC over the Blue-
Gene/P communication APIs and associated microbench-
mark performance. Section 4 details the NAS FT benchmark
and outlines our strategies for overlapping communica-
tion and computation. Section 5 describes our experimen-
tal methodology, and application results are presented in
Section 6. Sections 7 and 8 present related work and
conclusions.

2. Background

PGAS languages provide the programmer with an ab-
straction of a global address space, which is logically
partitioned to give each thread a portion of shared memory
to which it has affinity. They offer the programmability
advantages of shared-memory models, but are carefully
designed to allow efficient implementation on distributed-
memory architectures. UPC, Titanium, and Co-array Fortran
are examples of modern PGAS languages, as are the DARPA
HPCS languages (X10, Chapel and Fortress). The study
in this paper is based on UPC, although the observations
on communication techniques are more broadly applicable
to the entire family of PGAS languages and other parallel
systems providing one-sided communication.

UPC [6] is a parallel SPMD superset of the ISO C 99
programming language. It has language support for parallel
data distribution and provides a shared memory abstraction
to the programmer, regardless of the memory model pro-
vided by the underlying hardware. The language provides a
hybrid strict/relaxed memory consistency model that enables
aggressive compiler communication optimizations, such as
message aggregation and the automatic use of non-blocking
remote memory operations to help tolerate network latencies
with communication/computation overlap.

In this paper we used the portable, high-performance
Berkeley UPC compiler [3]. On shared memory machines,
accesses to the UPC shared address space translate into
conventional load/store instructions. On distributed memory
machines such as the BG/P, remote shared accesses translate
into calls to the GASNet communication layer [7]. The
GASNet communication API provides an expressive and
portable interface for high-performance one-sided communi-
cation as a compilation target for PGAS languages. It offers
portable and native implementations on a wide variety of
modern HPC platforms, and serves as the communication
layer for six PGAS compiler efforts and various prototype
systems [8].

3. GASNet on BlueGene/P

3.1. The BlueGene/P Overview

The processing element found on the BG/P is a Quad-
Core 850MHz PowerPC 450 processor. This Quad-Core
chip is combined with 2GB of memory to form a compute
node. Thirty-two of these compute nodes form a Node Card.
Thirty-two node cards form one rack of the machine. Thus
each rack of the machine holds 4,096 PowerPC 450 cores.
We have scaled our experiments to four racks (16,384 cores)
of a BG/P at Argonne National Lab named “Intrepid” [9].

Most inter-node communication on BG/P is done via a
three-dimensional torus network, and the machine offers
separate network hardware for barriers, collectives, and I/O.
In our implementations of NAS FT, the main point-to-point
communication uses the torus network while the barriers use
the auxiliary barrier network. Each torus link provides a peak
hardware bandwidth of 425MB/s in each direction, thus the
six links into and out of a node provide an aggregate peak bi-
directional bandwidth of 5100MB/s at each node. However
due to packet overheads, as shown by Kumar et al. [10],
the peak messaging bandwidths available to applications are
374MB/s per link in each direction, and 4488MB/s aggregate
bi-directional per node.

IBM has designed the Deep Computing Messaging
Framework (DCMF) [10] as a semi-portable open-source
communication layer that provides the low level communica-
tion APIs for higher level programming models such as UPC
and MPI. The MPI implementation on the BG/P, MPICH2
1.0.7 [11], uses DCMF for all its communication interac-
tions with hardware. To achieve the best PGAS language
communication performance, the GASNet communication
layer implementation on BG/P also targets this communi-
cation API. Although the only HPC machine providing a
DCMF implementation is the BG/P, the API was designed
to accommodate possible future systems. DCMF provides
point-to-point communication operations, plus collective op-
erations that have been specifically designed for the BG/P
to take advantage of the hardware collective networks when
possible.

3.2. DCMF

DCMF offers three mechanisms for point-to-point com-
munication. While the API offers many more features we
focus on these three since they are the salient ones to our
discussion. For more complete details, see [10].

• DCMF_Send(): The send operation is the active mes-
sage mechanism in DCMF. It accepts the function
to invoke on the remote node, its arguments, and a
message payload. The client provides a callback to
be invoked on the initiator when the data is locally
reusable. With a send, the remote processor needs to



run the specified handler when the active message is
received. Therefore the target processor has some non-
trivial involvement in message reception.

• DCMF_Put(): Unlike the send, the caller of a put
provides both the source and destination addresses. In
addition, the client provides two callbacks to run on the
initiator: one that is invoked when the data movement is
locally complete and the other when the data has been
delivered to the remote memory. Notice that since the
source node provides all the information required for
delivery, this is a one-sided operation; the operation
can be retired with no interaction from the remote
processor.

• DCMF_Get(): The get is an analog of the put oper-
ation. Like put, the initiator provides both addresses
(local and remote) eliminating the need for any in-
volvement from the remote processor. Unlike the put
however, the user only provides one callback that is
invoked when the data transfer is complete and the data
is locally available.

DCMF provides the ability to overlap communication
with other communication or computation through the use of
the callback mechanisms. When the DCMF communication
operations return it implies that the communication operation
is in-flight and completion is not guaranteed until the call-
back is invoked. Thus anything that is done between message
injection and associated callback invocation is potentially
overlapped with the communication.

In GASNet, there are also three primary mechanisms
for point-to-point communication. These map directly onto
the DCMF calls described above. GASNet’s Active Mes-
sages are implemented directly over DCMF_Send(), while
the Get and Put operations are implemented directly over
DCMF_Get() and DCMF_Put(). The remote completion
callbacks of DCMF_Get() and DCMF_Put() provide the
completion semantics required by GASNet without the need
for any additional network messages. Using the one-sided
communication model the initiator of the transfer provides
all the information about the communication operation.
Since no additional information is needed from the target
node, the communication operation can always immediately
deposit data into its target location.

In MPI, there are a number of requirements that any con-
forming implementation must ensure. These include point-
to-point ordering and message matching guarantees. For
instance, the communicator and tag information from the
sender must be matched to that of a previously posted
receive operation at the remote node before data can reach its
final destination. To implement these semantics, data move-
ment must generally either be delayed (as in a rendezvous
protocol) or copied (as in an eager protocol). The message
matching requirement and associated ordering restrictions
may impose overheads on any MPI implementation. Lacking
hardware or firmware assistance, MPI message matching is

performed in software on the BG/P. Because the BG/P cores
are relatively weak compared to the network performance,
the software overheads associated with two-sided messaging
can impact messaging performance on BG/P more severely
than on other platforms.

In summary, GASNet has been implemented over DCMF
as a very light-weight layer with no need to enforce ad-
ditional semantics that are unavailable from DCMF. On
the other hand, the nature of the MPI semantics require
any conforming implementation to do additional work in
software on BG/P for every message. As demonstrated
below, the result is that GASNet is able to initiate and
complete communication operations with significantly less
software overhead than MPI on BG/P.

3.3. Microbenchmarks

As described above, the communication APIs provided
by DCMF provide a very good fit to the communication
semantics of GASNet. This section shows how this match
enables better point-to-point performance than is achievable
using MPI message-passing on this system. To quantitatively
see the benefits of using GASNet relative to MPI we present
latency and bandwidth microbenchmarks.

3.3.1. Latency Advantages of GASNet. In our first mi-
crobenchmark we compare the roundtrip GASNet and MPI
“ping-ack” latency performance. For MPI this test measures
the time needed for the initiator to send a message of
the given size and the remote side to respond with a
0-byte acknowledgment. This benchmark is written using
MPI_Send() and MPI_Recv() for both operations. The
GASNet test measures the time to issue a put or a get
of the given size and block for remote completion (when
DCMF runs the remote completion callback). This com-
parison is made because while GASNet takes advantage of
the remote completion notification of DCMF, MPI needs an
explicit acknowledgement to implement a roundtrip network
traversal (such as those required in applications with fine-
grained irregular accesses). Figure 1 shows the performance
comparison.

As the data show, GASNet’s use of the remote completion
notification of DCMF yields about half the latency of MPI
for an equivalent operation. In fact, for message sizes up
to 32 bytes, the advantage is slightly larger than the factor
of two which the message count alone can account for.
While the FFT benchmark we study later in the paper
is bandwidth limited, this latency comparison shows that
the close semantic match between GASNet and DCMF
allow implementation of a PGAS language at relatively
low cost. This low software overhead has implications
for the effectiveness of communication/communication and
communication/computation overlap on this system.



1 2 4 8 16 32 64 128 256 512
0

1

2

3

4

5

6

7

8

9

Transfer Size (Bytes)

R
o

u
n

d
tr

ip
 L

a
te

n
c
y
 (

m
ic

ro
s
e

c
o

n
d

s
)

 

 

MPI Send/Recv

GASNet (Get + sync)

GASNet (Put + sync)

Figure 1: Roundtrip Latency Comparison

512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Transfer Size (Bytes)

F
lo

o
d

 B
a

n
d

w
id

th
 (

M
B

/s
 1

M
B

 =
 2

2
0
 B

y
te

s
)

 

 

Six Link Peak

GASNet (6 link)

MPI (6 link)

GASNet (4 link)

MPI (4 link)

GASNet (2 link)

MPI (2 link)

One Link Peak

GASNet (1 link)

MPI (1 link)

Figure 2: Flood Bandwidth Comparison

3.3.2. Multi-link Flood Bandwidth Performance. In our
next microbenchmark we analyze the flood bandwidth per-
formance of GASNet and MPI. Each BG/P compute node
has six links to neighboring nodes, two links in each of the
three dimensions of the torus. When measuring the effective
bandwidth of the node, measuring the performance across
only one link under-utilizes the bandwidth available at each
node. Therefore our bandwidth test, like those presented
by Kumar et al. [10], measures the bidirectional bandwidth
performance on a varying number of links. Figure 2 shows
the flood bandwidth performance. The maximum achievable
payload bandwidth for one and six links are shown for
comparison. For the GASNet tests one core per node initiates
a long series of non-blocking puts of the specified size to
the neighbors on each of the chosen links (round-robin).
For MPI we implement the same pattern of communica-
tion using MPI_Isend()s and a preposted window of
MPI_Irecv()s. We have varied the size of this window
over powers of two and for each MPI data point report only
the highest bandwidth achieved.

Unlike the latency microbenchmark, the message counts at
the GASNet and MPI levels of the benchmark are identical
for this comparison. Thus here we observe the communi-
cation/communication overlap that each software stack can
achieve from the multiple hardware paths. At large message
sizes, the cost of message injection is small relative to the
data transfer times, hence the performance for both com-
munication layers approaches the same asymptotic value.
However for the mid-range message sizes, there is a sig-
nificant difference in the achievable data transfer bandwidth
between the two communication layers. GASNet adds less
software overhead above the DCMF primitives than MPI,
thus GASNet can inject messages into the network more
efficiently than MPI at small and mid-range message sizes.
Furthermore, MPI’s two-sided message-passing semantics

require the implementation to use a rendezvous protocol in
order to leverage the high-performance, zero-copy RDMA
hardware on this system, entailing additional DCMF-level
messages that further magnify the overheads. Thus the data
show that the MPI microbenchmark is able to extract far
less of the available communication/communication overlap
than its GASNet counterpart, leading to a loss in throughput
for medium-sized messages. This effect is exacerbated in the
presence of the additional network bandwidth made available
through the multiple hardware links, while software over-
heads for message injection (and reception for MPI) remain
serialized on the slow processor core. Later in Section 6
we will see that for the 3D FFT algorithm, running time is
determined by the communication performance in this same
middle range of message sizes.

4. Optimizing Bandwidth Limited Applications

As the previous sections show, GASNet and its one-
sided communication model has performance advantages
compared to MPI’s two-sided message-passing. In this sec-
tion we see how the performance advantages demonstrated
in the microbenchmarks translate into overall application
performance. To compare GASNet and MPI on the BG/P
we use the NAS Parallel Benchmark [4] FT as a case study.

At the center of the NAS FT benchmark is a three-
dimensional FFT. In a three-dimensional FFT the rectangular
prism (of NX, NY, × NZ) points is evenly distributed
amongst all the threads and FFTs must be done in each of
the dimensions. Depending on how the data is laid out, the
prism might need to be transposed in order to relocalize the
data to perform the FFTs. We go into further details on this
operation later in this section. At large scale this transpose
step is often the performance-limiting step since it stresses
the bisection bandwidth of the network.



!"#$%&''()#

*+#,-&.%/01#

23#
2!#

24#

25#

6782#

69#

6:82:#

67827#

4"#$%&''()#

*+;+#,-&.%/01#

69##

6:##

Figure 3: Comparison of 1D and 2D decompositions

As we have shown in our previous work [5], GASNet (and
hence Berkeley UPC) allow effective overlap of communi-
cation and computation, enabling large performance gains.
In that work we show that we can effectively use hard-
ware features found in modern networks, such as Remote
Direct Memory Access (RDMA), to significantly improve
performance for an application that is often considered a
bisection bandwidth limited problem. In addition, we show
that GASNet is a better semantic match to these hardware
features than MPI. One of the most significant results is that
breaking up the exchange collective (i.e. MPI_Alltoall
in MPI parlance) into point-to-point operations that are over-
lapped with computation leads to significant performance
improvements1.

Our previous work only examined a 1-D decomposi-
tion of the problem domain across the threads, which
limited the maximum number of threads to be the
MIN(NX,NY,NZ). On BG/P and other systems that
use high degrees of parallelism to realize performance, this
limitation prohibited scaling to core counts found in typical
installations. Thus we have extended our previous work to
handle a 2-D thread layout. Figure 3 shows the differences
between the two thread layouts. In a one-dimensional thread
layout a particular thread owns NZ

T planes of NX × NY
points where T is the total number of threads. In a two-
dimensional thread layout a particular thread owns NZ

TZ
planes and NY

TY rows of NX points where the T threads
are laid out in a TY × TZ thread grid.

In a one-dimensional thread layout two of the three dimen-
sions of the FFT are fully located on one thread thus only
one transpose needs to be performed: the one that relocalizes
the data in the Z-dimension. In a two-dimensional thread
layout only one dimension of the grid is contiguous on

1. The way the exchange collective is specified in UPC and MPI, local
data movement needs to be done before and after the collective to achieve
a full matrix transpose operation. Throughout the rest of this paper when
we use the term transpose we mean the entire matrix transpose including
local and global data movement. When we refer to exchange we mean just
the global data movement.

a thread and thus two rounds of transposes need to be
performed to complete one FFT. The first relocalizes the
data to make the Y -dimension contiguous and thus the
communication is performed amongst teams of threads in
the TY dimension (i.e. all the threads within the same thread
plane in Figure 3). The second one relocalizes the data to
make the Z-dimension contiguous amongst teams of threads
in the TZ dimension (i.e. all the threads within the same
thread row).

4.1. NAS FT Algorithms

In our previous work we showed that one can overlap
the exchange step and the computation of the 1-D FFTs
to realize performance improvements. While the principles
carry over into the two-dimensional case the algorithms
are slightly different from our previous work and we thus
present them here. Throughout the rest of this paper we will
define a slab as one of the planes a particular thread owns.
Thus, for the initial data distribution given in Figure 3, each
thread owns NZ

TZ slabs, each of which is NX columns by
NY
TY rows.

4.1.1. Packed Slabs. Conventional wisdom suggests the
best way to optimize this application is to perform the
communication and the computation in two distinct stages,
using what we shall refer to as the Packed Slabs algorithm.
In the first stage this algorithm computes the FFTs for all
the NZ

TZ ×
NY
TY rows that a thread owns across all the planes.

The data is then packed and all the threads within the same
thread plane exchange their data in one big communication
step. After the first round of exchanges are finished the data
is then unpacked and the next NZ

TZ ×
NX
TY rows of NY FFTs

are performed. The data is then repacked and the the final
communication step is done. Once the communication is
done, the data is unpacked and the final NY

TZ ×
NX
TY rows of

NZ length FFTs can be performed. This algorithm is more
fully detailed in Algorithm 1 in the Appendix.



The Packed Slabs algorithm uses packing to maximize
message sizes, in order to achieve the best bandwidth perfor-
mance for those transfers. However this approach sacrifices
the ability to overlap the communication and computation –
at any given time either the communication or computational
subsystems will be sitting idle.

4.1.2. Slabs. With the goal of overlapping communication
and computation in mind we analyze a second algorithm.
In the previous algorithm, each thread finishes all NZ

TZ slabs
before any communication is started. However, after a thread
finishes a single slab there are no further dependencies that
prevent the communication from being initiated. Thus in our
Slabs algorithm, each thread initiates the communication on
a slab as soon as the computation on that slab is finished.
This overlaps the communication of the current slab with
the computation of the next slab. This is more fully detailed
in Algorithm 2 in the Appendix.

4.1.3. Summary. There exists a continuum of granularities
of overlap ranging from initiating the communication after
finishing one row of computation all the way to the method
described in the Packed Slabs approach. On one extreme
there are many fine-grained messages that are sent with
abundant opportunities for overlap at the cost of smaller
message sizes and higher message counts, and thus poten-
tially higher network contention. On the other extreme we
have fewer larger messages in the network at the cost of the
ability to overlap computation with communication2.

The Slabs algorithm is in the middle of this contin-
uum, as it computes an entire slab of independent 1D
FFT pencils before injecting them into the network. We
explored finer-grained approaches (i.e. the Pencils approach
described in our previous work) to achieve more aggressive
communication/computation overlap, however on the BG/P
system this finer-grained communication decomposition did
not yield additional performance improvements for any of
the configurations studied. For the sake of simplicity of
explanation we do not show those results in this paper,
however future work may validate how these algorithms
perform on different architectures.

The two different algorithms have different impacts on the
network hardware. The Packed Slabs approach sends larger
and fewer messages while the Slabs approach sends more
and smaller messages while simultaneously enabling com-
munication/computation overlap (the total volume of data
communicated is the same for all algorithms considered).
Table 1 shows the difference in communication behavior of
the two different FFT algorithms for what a single thread
sends in each round. The Packed Slabs approach can have
exactly one outstanding collective and that is not overlapped

2. Note that all the algorithms exhibit communication / communication
overlap.

with any of the computation while the Slabs approach can
have up to NZ

TZ outstanding nonblocking collectives before
needing to wait for the data movement to finish. In the later
sections we will highlight the regions on the bandwidth
microbenchmark described in the previous section where
these two algorithms reside.

5. Experimental Setup

5.1. Processor Layouts

Since each compute node has four cores, the BG/P has
three different operating modes with four, two or one pro-
cesses per node. In the latter two cases the presumption
is that within the process, threading or OpenMP style
parallelism will be employed to utilize the other cores. We
conducted all our experiments using four processes per node
(one per core), referred to as Virtual Node mode in IBM
terms. The Virtual Node Mode adds a fourth dimension
to the torus since at each grid point in the 3D torus there
are four processes. Thus in this execution environment we
are running our benchmark over a four dimensional torus
network. However, all processes on a given compute node
share the network hardware and thus the bandwidth.

An important step in application tuning on the BG/P is
deciding how to map virtual process ranks to physical pro-
cessor IDs to optimize communication patterns. We explored
a variety of mappings and found that the default XYZT
was optimal for both GASNet and MPI. For the sake of
brevity we omit results for other mappings. Table 2 in the
Appendix shows the processor sizes that we used along with
the resultant processor grid.

5.2. Compiler and Runtime Information

To perform the 1D FFTs we use the IBM’s vendor-
supplied ESSL library that has been hand-tuned for
BG/P [12]. ESSL gave consistently better serial perfor-
mance for our usage pattern than FFTW 3.1.2 [13]. All
our benchmarks are linked against the same ESSL library
to ensure that the performance differences are a result of
the communication differences arising from the different
implementations rather than the serial FFT performance. The
MPI implementation we use is MPICH2 version 1.0.7 that
has been specially modified for the BG/P by IBM. The C
compiler used is the IBM BG/P version of XLC 9.0. The
UPC compiler used is Berkeley UPC 2.8.0 with GASNet
1.12.0.

6. Application Performance Results

Section 3 showed the microbenchmark bandwidth advan-
tages of a one-sided communication model. In this section



Packed Slabs Slabs

Message Size in Round 1 NZ
TZ × NY

TY × NX
TY elements NY

TY × NX
TY elements

Number of Messages per Thread in Round 1 TY NZ
TZ × TY

Message Size in Round 2 NZ
TZ × NX

TY × NY
TZ elements NX

TY × NY
TZ elements

Number of Messages per Thread in Round 2 TZ NZ
TZ × TZ

Table 1: Summary of Message Counts and Sizes for the two different 3D FFT algorithms

we will see how this advantage translates into application
scalability. We analyze the performance of two different
common scaling metrics: (1) fix the problem size and vary
the number of cores (i.e. strong scaling) and (2) vary the
problem size linearly with the number of cores (i.e. weak
scaling).

We try three different algorithms in each case: Packed
Slabs written in MPI, Slabs written in MPI, and Slabs
written in UPC. The MPI Packed Slabs implementation is
the publicly available reference implementation of the NAS
benchmark, written in Fortran with MPI. Minor modifica-
tions have been made to allow the use of an external FFT
library such as ESSL along with adding new problem sizes
in the build infrastructure. However, the critical parts of
the code, especially relating to the communication have not
been modified. The UPC Slabs implementation is a portable
(machine-independent) implementation written entirely in
UPC with calls to ESSL to perform the local 1-D FFT
operations. It performs data transfers using the non-blocking
memory copy library extension which is provided by Berke-
ley UPC [14], and that is expected to appear in the next
UPC language specification. The MPI Slabs implementation
is very similar to the UPC version (both are comprised
primarily of C99 code), but this version performs the data
transfers using MPI_Isend() and MPI_Irecv(). All of
these implementations are available by request to the contact
author.

6.1. Strong Scaling

In our first set of experiments we fix the problem size
and use the NAS FT Class D (2048× 1024× 1024 double
complex numbers). We vary the processor count from 512
cores (128 compute nodes) to 16,384 cores (4,096 compute
nodes). The performance data is shown in Figure 4. We
plot the performance on a log scale to show the application
scalability. To highlight the differences, Figure 5 shows the
same data normalized to the performance of the UPC Slabs
algorithm, on a linear scale.

To estimate an upper bound on performance we calculate
the bisection bandwidth based on the best one-link band-
width performance for each of the two rounds of commu-
nication. Using this bandwidth we then estimate the time
needed for the data transfer across the bisection at the given
problem size. We then calculate the Gigaflop rate assuming
that the computation is free and the communication is the

only bottleneck. Thus the “Upper Bound” line shows a not-
to-be-exceeded performance given that this is a communi-
cation bound problem. The upper bound line shows some
interesting kinks, namely the jump from 1024 cores (256
nodes) to 2048 cores (512 nodes). At 256 nodes and below
the network does not complete a three-dimensional torus, the
network is just a 3D mesh. However when we cross over
to 512 nodes the three-dimensional torus completes, thus
doubling the bisection bandwidth and resulting in a super-
linear performance improvement.

As the data show, MPI Packed Slabs realizes better strong
scaling than MPI Slabs, indicating that when using MPI on
this machine the advantages of overlapping communication
and computation are outweighed by the added cost of send-
ing more smaller messages. This supports the conventional
wisdom that packing data into fewer larger messages yields
the best performance. However, when comparing the Slabs
implementations, we observe that UPC Slabs is consistently
better than its MPI counterpart with speedup of between
33% and 110%, and a mean of 63% 3.

Additionally, UPC Slabs consistently outperforms MPI
Packed Slabs by 11% to 67% (a mean of 37%). At the
largest processor configuration, the UPC Slabs algorithm
outperforms MPI Packed Slabs by 13% (1.61 Teraflops vs.
1.42). The superior performance of the UPC Slabs over MPI
Packed Slabs is in contrast to the conventional wisdom of
using the largest possible message sizes to achieve the best
performance, but is consistent with our previous findings that
performance can be improved by decomposing the exchange
into smaller messages with an opportunity for overlap of
communication with computation.

6.2. Weak Scaling

Another very common application scaling model is to
keep a fixed problem size per core and vary the number
of cores. In our experiments we run NAS FT Class D for
the middle processor count (2048 cores) and scale the grid
size linearly with the processor count 4. Figure 6 shows

3. For all our percent difference calculations we use the formula:
(UPC −MPI)/MPI .

4. Due to the nature of the FFT algorithm, scaling the problem domain
by a factor of N increases the total memory and communication volumes
by N , while the floating-point computation grows by NlogN . Results
are given as flop rates and take this into account. Despite the increased
computation per core at higher core counts, communication performance
remains the dominant factor in all configurations examined.



512 1024 2048 4096 8192 16384

10
2

10
3

Core Count (Problem Size for All Core Counts: 2048 x 1024 x 1024)

G
F

lo
p

s

 

 

Upper Bound

UPC Slabs

MPI Packed Slabs

MPI Slabs

Figure 4: NAS FT Performance: Strong Scaling

512 1k 2k 4k 8k 16k

0.8

1

1.2

1.4

1.6

1.8

2

2.2

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o

 

 

UPC Slabs / MPI Slabs

UPC Slabs / MPI Packed Slabs

Figure 5: NAS FT Performance: Strong Scaling
Performance Ratio

256 (D/8) 512(D/4) 1024 (D/2) 2048 (D) 4096 (2D) 8192 (4D) 16384 (8D)

10
2

10
3

Core Count (Problem Size) (D=2048x1024x1024)

G
F

lo
p

s

 

 

Upper Bound

UPC Slabs

MPI Packed Slabs

MPI Slabs

Figure 6: NAS FT Performance: Weak Scaling

256 512 1k 2k 4k 8k 16k

0.8

1

1.2

1.4

1.6

1.8

2

2.2

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o

 

 

UPC Slabs / MPI Slabs

UPC Slabs / MPI Packed Slabs

Figure 7: NAS FT Performance: Weak Scaling
Performance Ratio

the weak scaling data. We again calculate the upper bound
on performance based on the bisection bandwidth. Figure 7
shows the same data normalized to the performance to the
UPC Slabs algorithm, to highlight the differences.

As the data show, the Slabs algorithm scales better in
the weak scaling case than for strong scaling. In strong
scaling, the fixed problem size implies a dramatic reduction
in message size at large core counts, eventually becoming
too small to effectively utilize the network or exploit overlap,
and software overheads become an increasingly dominant
factor. However, with weak scaling, the message sizes vary
less, yielding consistently better performance. The message
size for Slabs varies between 8KB and 32KB depending on
the problem size and the processor grid.

As before the data show MPI Packed Slabs outperforms
MPI Slabs for most processor configurations. Again this
difference shows there to be no net performance advantages
to reducing message size to achieve overlapping of com-
munication and computation in MPI. However the data also
show that using UPC to achieve to same overlap consistently
produces the highest performance of the three implementa-
tions. This is consistent with the microbenchmark results
that show GASNet better able to overlap communication

with communication, but also suggests (as evidenced by the
difference between MPI Slabs and UPC Slabs) that the UPC
implementation achieves greater overlap of communication
with computation as well, to yield improved application
performance for an identical algorithm. We pursue this
further below.

UPC Slabs outperforms the MPI Packed Slabs by 6%
to 67%, with a mean advantage of 37%. The best MPI
implementation runs at about 1.37 Teraflops while the UPC
implementation runs at 1.93 Teraflops – a 40% performance
improvement in overall application performance at 16,384
cores.

6.2.1. Application time breakdown (weak scaling). To
further examine where the time is being spent in the weak
scaling benchmarks we examine the performance breakdown
in Figure 8 at 16,384 cores on a 4096×2048×2048 grid. The
times are grouped as follows: “Local FFT (ESSL)” shows
the amount of time spent to perform local FFTs through
ESSL, “Synchronous Communication” counts the time spent
to initiate communication or wait for its completion, “In
Memory Data Transfers” counts the time to pack and unpack
data, “NAS Other” measures the time for the other parts of



0 10 20 30 40 50 60 70 80

UPC Slabs

MPI Slabs

MPI Packed Slabs

Time (seconds)

 

 

Local FFT (ESSL)

Synchronous Communication Time

NAS Other

Barrier

In Memory Data Transfer

Figure 8: NAS FT Performance Breakdown on 16k cores. Grid Size=4096× 2048× 2048

the NAS FFT benchmark besides the 3D FFT (initial setup,
local evolve computation and final checksum), and “Barrier”
measures the time spent in barriers.

Notice that the MPI Packed Slabs algorithm spends a
significant amount of the runtime in data movement to pack
and unpack the slabs. This reference version was written
so that all the FFTs are computed on unit stride pencils.
However, the other two implementations were written so
that the data could be read from a strided location, which
most FFT libraries support. Since the cost of memory copies
is expensive on the BG/P compute node due to the relatively
slow cores, it is better to employ a strided FFT than to rely
on data copying to allow a unit strided FFT.

As the data also show, the primary difference in execution
time is the time spent on communication. At 16,384 cores
the Packed Slabs algorithm induces 128KB messages and
the Slabs algorithm induces 8KB messages. From the flood
bandwidth microbenchmark (Figure 2 in Section 3) alone,
one expects MPI Packed Slabs to complete the communi-
cation significantly faster than either Slabs implementation
due to the higher bandwidths for 128KB (vs 8KB) messages.
However, the actual result shows UPC Slabs spending less
synchronous time in communication. This is consistent with
our intuition and previous findings that the addition of
communication/computation overlap in the Slabs implemen-
tations leads to a net reduction in synchronous communi-
cation costs. The cost of unoverlapped communication in
MPI Slabs, however, is roughly twice that of UPC Slabs.
This again shows how the software overheads of MPI are
preventing the degree of overlap that UPC can achieve.

Overall, these results show the performance improvement
achieved through the cumulative effects of allowing commu-
nication/computation overlap (which is absent in the Packed
Slabs algorithm) and the switch from MPI to the one-sided
communication of UPC over GASNet to maximize overlap.

7. Related Work

Due to the importance of the FFT algorithm, there is
much related work on analyzing FFT performance for a
variety of networks. Many have focused specifically on torus
and mesh style networks [15]–[17]. While these efforts have
tended to examine a 1D FFT some of the same principles
of optimizing the communication patterns still apply. Our
most significant contribution relative to this work is the
scale to which we present the data and our analysis of the
effectiveness of overlap.

There is significant prior work focused on the effec-
tiveness of communication/communication overlap as well
as communication/computation overlap. A good modern
example of this is the work by Danalis et al. [18], who
studied in the context of MPI’s two-sided communication
model. We argue that the one-sided communication model
found in UPC provides additional opportunity for overlap of
communication and computation. In addition we show the
techniques of overlap are especially useful at large scale.

UPC is a relatively new programming language (the first
mature specification was standardized in Feb, 2001), and
compiler development efforts are underway at a number of
major corporations and institutions [19]. Initial results are
very promising and show that UPC application performance
can be competitive with MPI [20], and offers improved
usability and programmer productivity [21].

The Argonne ALCF group have submitted performance
results for the 1D FFT [22] on the same BG/P system that we
have used. Across 128k cores their best published result is
4.5 Teraflops. The IBM BlueGene group have also submitted
performance results for the 1D FFT on BlueGene/L (the
predecessor system to BG/P). Across 64k cores their best
published result to date is 2.2 Teraflops. Barton et al. [23]
also demonstrate that UPC can be scaled to extremely large
core counts, and raised scalability questions concerning the
design of our Berkeley UPC runtime. Our work validates that



Berkeley UPC scales well to large core counts. Nishtala et.
al have also done a study of 3D FFT performance on the
BG/L system [24] however their focus was more on the
interfaces to the collectives in UPC and did not address the
exploitation of communication/computation overlap.

8. Conclusions and Future Work

As demonstrated through the microbenchmarks, GAS-
Net’s one-sided communication model is a much better
semantic fit to the network hardware on the BG/P, leading
to better multi-link bandwidth. In addition we see that the
roundtrip latency for a GASNet put or get is about half that
for an equivalent ping-ack operation in MPI. This paper
shows that our portable Berkeley UPC compiler achieves
both scalability and portability. Our runs achieve the highest
degree of parallelism to date for our compiler. To the best of
our knowledge this is also the first compiler for any PGAS
language available for the BG/P.

In order to benchmark overall application scalability
we implemented a communication-bound benchmark, the
NAS Parallel Benchmark FT, in this one-sided communica-
tion model and compared it to two-sided implementations.
We compare two distinct algorithms; the first uses only
communication/communication overlap and relies on the
traditional method of packing data before performing the
communication, whereas the second additionally exploits
communication/computation overlap. We experiment with
both weak and strong scaling of the different algorithms and
found that the UPC implementation consistently outperforms
the MPI counterparts. We also compare our data against the
theoretical upper bound in which we assume computation
is free and show the maximum performance given the limit
is the bisection bandwidth and show that we are within a
factor of two of the maximum possible performance.

Our FT application benchmark achieves 1.93 Teraflops
across 16k cores on the BG/P for the UPC benchmark
compared to 1.37 Teraflops for the best MPI implementa-
tion leading to a 40% improvement in overall application
performance. The timing data show that the big difference
in execution time arises from the time spent in the commu-
nication subsystem.

Our scaling study was bounded at 16k cores as a result of
our allocation rather than any fundamental limits in GASNet
or UPC. We have every reason to believe that this code can
scale out to much higher core counts and future work will
explore runs on a larger fraction of the machine. In addition,
we will explore these scaling issues on other large parallel
machines such as the Cray XT. Future work will also create
a Packed Slabs implementation in UPC as well as revising
the MPI Packed Slabs code to minimize in-memory data
movement. Finally we have run all our experiments with
one process per core, and future work will explore the use

of one process per node with multi-threading for on-node
parallelism.

In conclusion, our data shows that the one-sided com-
munication model found in UPC is a better semantic fit
for the BG/P network. We are able to better leverage
communication/communication overlap as well as commu-
nication/computation overlap to realize linear scaling on an
application that is known to be bounded by the performance
of the communication subsystem.

Acknowledgements

We would like to thank Michael Blocksome, Douglas
Miller, Sameer Kumar and the entire IBM DCMF team
for their support in helping us port GASNet to BG/P. This
work was supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This research used resources of the Argonne
Leadership Computing Facility at Argonne National Lab-
oratory, which is supported by the Office of Science of
the U.S. Department of Energy under contract DE-AC02-
06CH11357.

References

[1] “IBM BlueGene/P,” IBM, http://www.research.ibm.com/
journal/rd/521/team.html.

[2] MPI Forum, “MPI: A message-passing interface standard,
v1.1,” University of Tennessee, Knoxville, Technical Report,
June 12, 1995.

[3] “The Berkeley UPC Compiler,” http://upc.lbl.gov, 2002.

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga, “The NAS Parallel Benchmarks,” The
International Journal of Supercomputer Applications, vol. 5,
no. 3, pp. 63–73, Fall 1991.

[5] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, “Optimizing
bandwidth limited problems using one-sided communication
and overlap,” in The 20th Int’l Parallel and Distributed
Processing Symposium (IPDPS), 2006.

[6] “UPC language specifications, v1.2,” Lawrence Berkeley Na-
tional Lab, Tech. Rep. LBNL-59208, 2005.

[7] D. Bonachea, “GASNet specification,” University of Califor-
nia, Berkeley, Tech. Rep. CSD-02-1207, October 2002.

[8] “GASNet home page,” http://gasnet.cs.berkeley.edu/.

[9] “Intrepid system,” Argonne Leadership Computing Facility,
http://www.alcf.anl.gov/.



[10] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen,
M. E. Giampapa, M. Blocksome, A. Faraj, J. Parker, J. Rat-
terman, B. Smith, and C. J. Archer, “The Deep Computing
Messaging Framework: Generalized scalable message passing
on the BlueGene/P supercomputer,” in ICS ’08: Proceedings
of the 22nd annual international conference on Supercomput-
ing. New York, NY, USA: ACM, 2008, pp. 94–103.

[11] “MPICH2 web site,” http://www.mcs.anl.gov/research/
projects/mpich2.

[12] “ESSL User Guide,” http://www-03.ibm.com/systems/p/
software/essl.html.

[13] M. Frigo and S. G. Johnson, “The design and implementa-
tion of FFTW3,” Proceedings of the IEEE, vol. 93, no. 2,
pp. 216–231, 2005, special issue on “Program Generation,
Optimization, and Platform Adaptation”.

[14] D. Bonachea, “Proposal for extending the UPC memory copy
library functions and supporting extensions to GASNet, v1.0,”
Lawrence Berkeley National Laboratory, Tech. Rep. LBNL-
56495, October 2004.

[15] C. Y. Chu, “Comparison of two-dimensional FFT methods
on the hypercube,” in Proceedings of the third conference
on Hypercube concurrent computers and applications. New
York, NY, USA: ACM Press, 1988, pp. 1430–1437.

[16] L. Dı́az, M. Valero-Garcı́a, and A. González, “A method
for exploiting communication/computation overlap in hyper-
cubes,” Parallel Computing, vol. 24, no. 2, pp. 221–245, 1998.

[17] P. N. Swartztrauber and S. W. Hammond, “A comparison
of optimal FFTs on torus and hypercube multicomputers,”
Parallel Computing, vol. 27, no. 6, pp. 847–859, 2001.

[18] A. Danalis, K.-Y. Kim, L. Pollock, and M. Swany, “Trans-
formations to parallel codes for communication-computation
overlap,” in Supercomputing 2005, November 2005.

[19] “UPC consortium home page,” http://upc.gwu.edu/.

[20] T. El-Ghazawi and F. Cantonnet, “UPC performance and po-
tential: A NPB experimental study,” in Supercomputing2002
(SC2002), November 2002.

[21] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi, “Pro-
ductivity Analysis of the UPC Language,” in International
Parallel and Distributed Processing Symposium (IPDPS),
2004.

[22] “HPC challenge benchmark results,” http://icl.cs.utk.edu/
hpcc/hpcc results.cgi.

[23] C. Barton, C. Casçaval, G. Almási, Y. Zheng, M. Farreras,
S. Chatterje, and J. N. Amaral, “Shared memory programming
for large scale machines,” SIGPLAN Not., vol. 41, no. 6, pp.
108–117, 2006.

[24] R. Nishtala, G. Almasi, and C. Cascaval, “Performance with-
out pain = productivity: data layout and collective communi-
cation in UPC,” in PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel
programming. New York, NY, USA: ACM, 2008, pp. 99–
110.

Appendix

Node Count Core Count X Y Z T TY × TZ
64 256 4 4 4 4 16 × 16

128 512 4 4 8 4 16 × 32
256 1024 8 4 8 4 32 × 32
512 2048 8 8 8 4 64 × 32

1024 4096 8 8 16 4 64 × 64
2048 8192 8 8 32 4 64 × 128
4096 16,384 8 16 32 4 128 × 128

Table 2: BlueGene/P Run Configurations

Algorithm 1 FFT Packed Slabs
1: Let myPlane = MYTHREAD / TY
2: Let myRow = MYTHREAD % TY
3: Let teamY = all threads who have same value of

myPlane
4: Let teamZ = all threads who have same value of myRow
5: for plane = 0 to NZ

TZ do
6: for row = 0 to NY

TY do
7: do 1D FFT of length NX
8: end for
9: end for

10: Pack the slabs together
11: Do Alltoall on teamY
12: Unpack the slabs to make Y dimension contiguous
13: for plane = 0 to NZ

TZ do
14: for row = 0 to NX

TY do
15: do 1D FFT of length NY
16: end for
17: end for
18: Pack the slabs together
19: Do Alltoall on teamZ
20: Unpack the slabs to make the Z dimension contiguous
21: for plane = 0 to NY

TZ do
22: for row = 0 to NX

TY do
23: do 1D FFT of length NZ
24: end for
25: end for

Most FFT libraries such as ESSL [12] and FFTW [13]
provide the ability to perform multiple strided FFTs with
one call to the library. This enables memory hierarchy
optimizations to be performed across multiple FFTs rather
than just one. For example lines 5-9 in Algorithm 1 and
lines 6-9 in Algorithm 2 can be realized as one call to the
underlying serial FFT library.



Algorithm 2 FFT Slabs
1: Let myPlane = MYTHREAD / TY
2: Let myRow = MYTHREAD % TY
3: For MPI Prepost all recvs for First Communication

Round
4: BARRIER
5: for plane = 0 to NZ

TZ do
6: for row = 0 to NY

TY do
7: do 1D FFT of length NX
8: end for
9: Pack the data for this plane

10: for t = 1; t ≤ TY ; t = t + 1 do
11: initiate communication to thread myPlane×TY +

(t + myRow)%TY
12: end for
13: end for
14: Wait for all communication to finish
15: Unpack all the data to make Y dimension contiguous
16: For MPI Prepost all recvs for Second Communication

Round
17: BARRIER
18: for plane = 0 to NZ

TZ do
19: for row = 0 to NX

TY do
20: do 1D FFT of length NY
21: end for
22: Pack the data for this plane
23: for t = 1; t ≤ TZ; t = t + 1 do
24: initiate communication to thread

((t + myPlane)%TZ)× TY + myRow
25: end for
26: end for
27: Wait for all communication to finish
28: Unpack all the data to make Z dimension contiguous
29: for plane = 0 to NY

TZ do
30: for row = 0 to NX

TY do
31: do 1D FFT of length NZ
32: end for
33: end for


