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Abstract

Phylogenetic placement of a query sequence on a backbone tree is increasingly used across biomedical sciences to identify
the content of a sample from its DNA content. The accuracy of such analyses depends on the density of the backbone
tree, making it crucial that placement methods scale to very large trees. Moreover, a new paradigm has been recently
proposed to place sequences on the species tree using single-gene data. The goal is to better characterize the samples
and to enable combined analyses of marker-gene (e.g., 16S rRNA gene amplicon) and genome-wide data. The recent
method DEPP enables performing such analyses using metric learning. However, metric learning is hampered by a need
to compute and save a quadratically growing matrix of pairwise distances during training. Thus, DEPP (or any distance-
based method) does not scale to more than roughly ten thousand species, a problem that we faced when trying to use our
recently released Greengenes2 (GG2) reference tree containing 331,270 species. Scalability problems can be addressed in
phylogenetics using divide-and-conquer. However, applying divide-and-conquer to data-hungry machine learning methods
needs nuance. This paper explores divide-and-conquer for training ensembles of DEPP models, culminating in a method
called C-DEPP that uses carefully crafted techniques to enable quasi-linear scaling while maintaining accuracy. C-DEPP
enables placing twenty million 16S fragments on the GG2 reference tree in 41 hours of computation.
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Introduction

The past decade has brought much focus on phylogenetic

placement of a query taxon on a backbone tree (Matsen

et al., 2010; Berger et al., 2011; Mirarab et al., 2012; Zheng

et al., 2018; Barbera et al., 2019; Linard et al., 2019;

Rabiee and Mirarab, 2020b; Balaban et al., 2020; Turakhia

et al., 2021; Wedell et al., 2022a). The reason behind

this increased popularity is that placement can identify the

contents of a biological sample, a problem that is enormously

consequential in many downstream applications. Placement is

used extensively in microbiome analyses (Matsen, 2015; Janssen

et al., 2018) and tracking of epidemics (Turakhia et al., 2021).

What placement offers, in lieu of the de novo reconstruction, is

scalability: since placement processes queries independently, it

scales linearly with the number of queries and enables analyzing

millions of queries. This focus on scalability, however, should

not come at the expense of accuracy.

A main lesson learned in analyses using existing tools,

one that should not be surprising, is that the accuracy of

the placements and downstream analyses both depend on the

density of the backbone tree (e.g., Nasko et al., 2018; McDonald

et al., 2022). For example, Balaban et al. (2020, 2022)

documented that subsampling a larger tree to create smaller

backbone trees reduced accuracy for all methods tested. Most

methods have reduced accuracy when the closest matches in

the reference database differ substantially from the query. This

observation has spurred the development of many reference sets

(many using genome-wide data) that include tens to hundreds

of thousands of taxa (e.g., Quast et al., 2012; Shi et al., 2019;

Parks et al., 2018; Zhu et al., 2019; Asnicar et al., 2020;

McDonald et al., 2022). These large databases include a fraction

of available prokaryotic genomes and a tiny fraction of an

estimated 1012 microbial species (Locey and Lennon, 2016).

While placement methods are naturally scalable with more

queries, they do not always scale to large backbone trees. This

lack of scalability can hamper the use of methods and has

motivated the development of booster methods such as pplacer-

XR (Wedell et al., 2021) and SCAMMP (Wedell et al., 2022a)

that scale existing methods. These methods extensively rely

on a divide-and-conquer strategy that is used by all placement

methods to some degree. Some of the existing methods, such

as APPLES-II (Balaban et al., 2022) and SCAMMP, have

been successfully run with reference trees with many tens of

thousands of leaves with reasonable running times.

What connects most traditional placement methods is that

they use some model of sequence evolution to place a query on

a tree that has generated the sequences. A new paradigm some

of us recently proposed (Jiang et al., 2022a) is to use the species

tree as the backbone while sequence data come from a single or

a handful of genes. While this so-called discordant placement

is conceptually less appealing than the traditional approach,

it is very useful in practice. The goal of sample identification

is to find species identities, not genes; discordant placement

makes that conflict explicit. Also, by allowing updates of a

species tree using single genes, it provides a path for combining

two types of data historically analyzed separately: genome-wide

(shotgun) metagenomic data and 16S amplicon-based data. If

we can place 16S data on the species tree, we can jointly analyze
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16S and genome-wide data. Jiang et al. (2022a) demonstrated

that this goal is achievable with decent accuracy. In particular,

they proposed a metric learning framework for phylogenetic

placement using deep neural networks. The method proposed,

called DEPP, trains a model based on backbone tree and

alignment and uses the trained model to place new queries.

The trained model is an embedder that maps sequences into

Rd space such that Euclidean distances in the embedding space

match the patristic distances on the backbone tree (see Jiang

et al. (2022b) for an extension to hyperbolic spaces).

While DEPP was successfully tested on backbone trees

with roughly 10,000 species, it has fundamental scalability

issues that need addressing. DEPP requires calculating an

O(n2) distance matrix for training on a backbone tree with

n leaves. For datasets with n ≫ 104, saving the matrix (not to

mention calculating it) is impossible on most machines. The

alternative, to compute distances on the fly without saving

them in the memory, is too time-consuming and makes the

training process too slow. Thus, the current DEPP is limited to

roughly 10,000 species in its training dataset, making it unable

to take advantage of the modern ultra-large reference sets.

This limitation is not just theoretical. In a recent effort,

McDonald et al. (2022) built a new version of the widely used

Greengenes (DeSantis et al., 2006) reference dataset (GG2)

complete with a tree with 331,270 tips, including both genomes

and 16S sequences. Because this tree is (partially) a species

tree, placing 16S rRNA amplicon sequences on the tree is

best done using DEPP. However, DEPP cannot handle such

a large backbone tree. To enable using GG2, we needed to

develop a set of techniques that enable DEPP to scale to much

larger backbone trees. These methods use divide-and-conquer

to make the training time and memory grow quasi-linearly with

the size of the backbone. However, as we show, much care is

needed to retain the accuracy of the original method, mainly

because of the trade-off between generalizability and precision

during model training. This paper reports various ways of

scaling DEPP, culminating in a method called Clustered-DEPP

(C-DEPP), which is used by Greengenes2 (GG2). Besides

showing the scalability and accuracy of C-DEPP, our results

shed light on more basic questions about the best ways

to perform phylogenetic divide-and-conquer in the machine-

learning context.

Methods

Problem statement

Phylogenetic Placement and updates

The phylogenetic placement problem seeks to determine the

optimal position of a query species on a backbone tree

T consisting of species n accompanied by corresponding

sequences. We also study the related tree-update problem:

Given the backbone tree and the corresponding sequences,

extend the tree to include the new species. Unlike placement,

the resulting tree in the tree update task is a fully-

resolved tree that elucidates the relationships between queries.

Jiang et al. (2022a) introduced the concept of discordance

phylogenetic placement where the backbone tree is not solely

or exclusively inferred from the sequences used for placement.

For downstream applications, placing on the species tree is the

ultimate goal, even when data from a single gene is available.

In this paper, we focus on discordance placement and update.

Training/Testing Datasets
We will focus on two datasets for benchmarking.

Biological data

The Web-of-Life (WoL) dataset, built by Zhu et al. (2019),

contains 10,575 species and 381 marker genes. An ASTRAL tree

constructed using the 381 marker genes is available with the

branch length calculated using sites sampled from the marker

genes. Here, we use the 10 genes examined by Jiang et al.

(2022b) as well as the marker 16S gene. Because the dataset

is at the limit of what DEPP can analyze, using this dataset,

we can compare the effect of various scaling strategies to the

baseline method trained on the entire dataset. To allow fair

comparisons, we use the same set of queries used by Jiang

et al. (2022b) for phylogenetic placement and tree update. For

placement, 5% of the species of each gene are randomly selected

as the queries and removed from the backbone. For the tree

update, we have two replicates. In each one, 100 random clades

in the species tree ranging in size from 5 to 10 species were

selected and pruned from the tree, with the remaining species

serving as the reference. In total, across 11 genes, we have 5,038

queries for placement and 12,248 queries for tree update.

Simulated data

Similar to Jiang et al. (2022a), we generated a dataset

comprising a species tree with 64,000 species and 100 genes

undergoing extensive horizontal gene transfer (HGT) and some

incomplete lineage sorting (ILS) using Simphy (Mallo et al.,

2016). The branch lengths of the species tree were estimated

under the GTR model using sequences from the 100 genes,

with each gene providing 100 randomly selected sites. Here,

we used only the first 5 genes for the placement experiments.

For identical sequences, a random species was retained and

all others were removed. This step resulted in the removal of

505 to 1,935 sequences among the five genes. Then, 5% of the

species were randomly removed from the species tree as queries,

resulting in 15,694 queries across all the genes.

Background: DEPP
DEPP uses machine learning to estimate evolutionary distances

between sequences. Unlike traditional methods, which rely on

predefined evolutionary models, it learns to embed sequences

in the d-dimensional space such that the pairwise distances

of the embeddings approximate the tree distances, either in

Euclidean space or Hyperbolic space (Jiang et al., 2022b). In

the training phase, DEPP uses stochastic gradient descent to

set the parameters of the model to minimize the cost function:

argmax
Φ

∑
i,j

1

dij

(||Φ(si) − Φ(sj)||2 −
√

dij)
2

(1)

where dij are the backbone tree distances and Φ(si) are the

output embeddings generated by the DEPP model. The model

is a neural network that consists of a single convolutional layer

followed by a residual block, which comprises two convolutional

layers with the input being added to the output. A final fully-

connected layer is appended to generate the embeddings. Once

the models are trained on the backbone tree and the backbone

sequences, we can use them to place queries. To do so, we

use the model to compute a distance vector and use this

distance vector as the input to the distance-based phylogenetic

placement method APPLES-2 (Balaban et al., 2022), which

finds the optimal placement.
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Fig. 1. Pipeline of C-DEPP for phylogenetic placement and tree update. The tree is divided into multiple 1st-level groups and a separate neural network

is trained on each of these subsets. Note that representatives from one group are added to the other ones during training (not shown here). Each 1st

level subset is further divided into smaller subsets. A classifier is trained to classify a query to one of these smaller subsets probabilistically. At the

query time, probabilities from small subsets are summarized (max) to 1st-level subsets, and the corresponding models are used to calculate distances.

APPLES-II is used to place on the backbone, using only distances from chosen models. Updates happen similarly, but using FastME to update subsets

and using ASTRAL (as a supertree method) to combine the subset trees and the original backbone.

C-DEPP: Scaling DEPP
To scale DEPP to n ≫ 104, we use a divide-and-conquer

strategy in our proposed method C-DEPP. To summarize

(Figure 1), C-DEPP trains a separate model for each of several

overlapping subtrees; for each query, C-DEPP uses a 2-level

classifier to select one or more subtrees, computes distances

using those subtrees, and uses these distances as input to

APPLES-II, leaving the other distances blank. For this strategy

to work optimally, many algorithmic tricks are needed. To

motivate our final approach, below, we propose successively

more advanced strategies and discuss the shortcomings of

each. Since it is unclear how to evaluate these strategies

theoretically, we resort to empirical evaluation to show that

each additional strategy does contribute to better accuracy.

We use two datasets mentioned earlier for benchmarking. The

WoL dataset allows us to compare to normal DEPP while the

simulated dataset allows examining the effects of having a very

large training set and abundant HGT.

Subsampling

The most obvious option for scaling is to simply train the model

on a subset of species available in the tree. Such subsampling

would still allow placement on the full tree as the model can

embed the unused backbones as well. However, the accuracy of

deep learning models is known to depend on the size of training

sets. Moreover, taxon sampling is crucial to phylogenetic

accuracy (Zwickl and Hillis, 2002) and phylogenetic placement

(Balaban et al., 2022). Thus, we expect subsampling to reduce

the accuracy. On the biological WoL dataset, reducing sampling

by ten folds increases the average error by around 50% (Fig. 2).

Random Partitioning

An alternative is to partition the data and train a separate

encoder on each subset. The resulting ensemble model allows

calculating distances to each backbone using the associated

model. Implementing this ensemble model using a random

partitioning of data is far better than subsampling (compare

Subsample and RandomPart in Figure 2) and comes close to

the accuracy of the original model built on the full dataset.

Nevertheless, it is less accurate and leads to the question: does

more careful partitioning help?

Tree-based partitioning

Instead of random partitioning, we can use the reference tree

to create subtrees that are more evolutionary homogeneous.
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WoL 10K (Real)

HGT-Sim 64K

(a)

(b)

Fig. 2. Performance of different strategies for scaling DEPP to ultra-large

trees, tested on (a) WoL dataset, averaged over the 11 marker genes and

(b) an example gene of the simulated dataset with n = 64000 leaves. We

show the mean and standard error of the placement error. The full dataset

can only be used for training on the WoL dataset. We compare it with

strategies of subsampling the dataset to 2,500 (a) and 3,500 (b) sequences

(similar to partition sizes used in the remaining methods), partitioning

the dataset randomly into 3 (a) and 17 (b) subsets, and C-DEPP. For C-

DEPP, features are added sequentially; TreePart: tree-based clustering;

Rep: augment clusters with representatives from other groups; Class: use

a classifier to select one (-one) or multiple (-mult) clusters; Class(2L):

2-level classification scheme. TreePart+Rep+Class(2L)-mult is the final

version used elsewhere.

Such an approach creates a mixture of local experts, a well-

established concept in machine learning (Jacobs et al., 1991)

and used previously for phylogenetic placement (Mirarab et al.,

2012). While many tree decomposition methods are available

(e.g., Liu et al., 2011), we base our approach on the following

criterion: divide the tree into subsets that are at most of the

size m while minimizing the number of clusters. The optimal

solution can be found in time linear in the size of the tree n, as

implemented by the TreeCluster (Balaban et al., 2019) method.

Thus, the tree is divided into subtrees T = {t1 . . . tc}, each with

at most m species. We fix m (1500 by default) as n changes;

thus, running time and memory both scale linearly with n.

Surprisingly, phylogenetic partitioning has a higher error

than random partitioning (compare RandomPart and TreePart

in Figure 2). This reduced accuracy may be due to the fact that

each model is trained on a subtree without the ability to learn

from the full range of possibilities in the sequence space. Thus,

the sequence embedder trained on less diverse data is perhaps

more precise but less generalizable (i.e., is overfit).

Adding representatives (overlapping clusters).

To address the lack of generalizability, we design an approach

that still uses the tree but creates overlapping subsets: Each

subset includes all of sequences in one of the phylogenetic

partitions created previously plus a selection of sequences from

other subsets. More precisely, we create another set of subtrees

T̂ = {t̂1 . . . t̂c} by adding k auxiliary species to each subtree

in T . We set k = 1
3m log(c) by default. Note that as we

fix m when n grows, the size of the t̂i subtrees grow with

O(log(n)) and the total running time and memory grow with

O(n log2(n)). The auxiliary species added to ti are those with

the minimum distances to any species in ti. Since the subtrees

are overlapping, the distance of a query to a reference species

can be calculated using multiple models; when this happens,

we simply take the median distance.

This overlapping partitioning approach performs better

than random and tree-based partitioning alone (compare

TreePart+Rep to TreePart and RandomPart in Figure 2). We

believe the reason is that each model in the ensemble is both a

local expert and also aware of the larger context (e.g., sequences

outside the subtree). Thus, its embeddings are better than

other “experts” for sequences belonging to that subset but

it also is not ignorant of the rest of the space. Such hybrid

approaches have been also used previously in machine learning

(Peralta et al., 2019; Liao et al., 2019).

Selecting the best model(s): classifiers

Instead of simply using all distances computed from all the

models, would it be better to pick the best “expert” model and

use only its distances? Note that APPLES-II allows missing

distances, enabling us to place on the full tree using distances

computed from a single model. Similar to methods such as

SCAMPP and pplacer-XR (Wedell et al., 2022a, 2021), we

can use an initial placement using APPLES+JC to pick a

subset and use only the model trained on that subset for

placement. This approach works no better or worse than

giving APPLES-II the distances from all the models (compare

TreePart+Rep+APPLES and TreePart+Rep in Figure 2). But

can we do better than using an initial placement?

Deciding which cluster to use can itself be posed as a

classification problem where the input is a sequence, and the

output is a probability vector indicating the likelihood of the

input sequence belonging to each subtree. Using an architecture

very similar to DEPP, we designed such a classifier. The only

difference compared to DEPP is that the number of embedding

dimensions equals the number of partitions and the final output

goes through a softmax layer that ensures the L1 norm of

the output is 1 (i.e., can be interpreted as the probability of

the partition). The loss function is the cross-entropy between

the output probabilities and the ground truth (i.e., indicator

function of the correct partition).

Using this classifier and simply picking the most likely

cluster improves accuracy in the real dataset but dramatically

reduces the accuracy in the simulated high-HGT dataset

(TreePart+Rep+Class-Top vs TreePart+Rep in Figure 2).

We then resorted to using multiple models when they all

have a substantial likelihood. More precisely, we sort the

models based on their likelihood and take each of the top 4

models if it has a likelihood at least 1⁄200 times the likelihood

of the previously taken model (the threshold was picked

arbitrarily and not optimized). This strategy substantially

improves results (TreePart+Rep+Class-Multi in Figure 2) but

still remains slightly worse than using all the models on the

simulated dataset. We believe the reason is that the classifier

needs to assign a sequence to very large groups, a task that

may be difficult in the face of HGT among distantly related

species. Recall that the backbone tree (used in partitioning) is
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the species tree and may not reflect the relationships among

genes, making the high-level classification more challenging.

2-Level classifier

We propose a 2-level classification scheme. For the second level,

each subtree in T (e.g., ti) is further split into smaller subtrees

(T
′

i = {ti1 . . . tici
}) with a maximum of m′ leaves, where m′

is set to 30 by default. The classifier is then trained to select

among the second-level subtrees
⋃

i T
′

i . This classifier is built

identically to what we described earlier for 1-level classifiers.

To determine the subtree of a query, the classifier is used to

calculate the likelihood pi
j of the query belonging to each 2nd-

level subtree j of 1st-level subtree i. Next, we define the score of

the 1st-level subtree ti to be sti = maxj pi
j and assign the query

to one or more 1st-level subtree(s) with the highest score. We

keep assigning the query to up to four subtrees with the highest

scores as long as the subset has a score that is at least 1/200

of the score of the previous subtree. Note that the 2nd-level

classifiers are only used to select the 1st-level classes. Once the

query is assigned to the 1st-level subtree(s), it is placed using

distances calculated corresponding 1st-level model.

The 2-level classification strategy retains the same accuracy

as the 1-level for the real dataset and substantially improves

the accuracy for the simulated dataset (Figure 2). This version

of the tool including all these features is the final version we

will use throughout the rest of the paper as C-DEPP.

Experimental Details
To evaluate the performance of C-DEPP, we compare our

method with several alternative methods for both placement

and update tasks.

For placement, we measure the number of edges between

the placement and the correct placement on the tree. For

the simulated dataset, we use the true species tree as the

backbone, and thus, the correct placement is well-defined.

On the real dataset, we take the position of the species in

the original ASTRAL tree inferred from all 381 marker genes

(before removing the queries) as the optimal position. We

compare DEPP (only tested on the smaller real dataset) and

C-DEPP to the following methods.

EPA-ng (Barbera et al., 2019) performs maximum-likelihood

phylogenetic placement. We use RAxML-ng (Kozlov et al.,

2019) to infer the parameters of the substitution models

and the backbone tree under the GTR + Γ model.

EPA-ng-SCAMPP (Wedell et al., 2022a) is a method that

enables EPA-ng to work on ultra-large trees by first finding

a subtree and placing on that subtree using EPA-ng. We

apply the default backbone tree size of 2000. Similar

to EPA-ng, we use RAxML-ng to prepare the backbone

parameters under the GTR + Γ model.

APPLES2+JC: We use APPLES-2 (Balaban et al., 2022) which

uses Jukes-Cantor (JC) model to estimate distances. We

use RAxML-ng under JC models to recalculate the branch

length of the input backbone tree for this tool.

For tree updates, we measure both the Robinson and Foulds

(1981) (RF) and quartet distance between the true/reference

tree and the inferred updated tree. We compare these methods.

RAxML (Stamatakis, 2014) maximum-likelihood inference is

used to update an existing tree; we use the backbone tree

as a constraint to fix its topology. When multiple genes are

available, we concatenate the sequences from all the genes.

JC+FastME. We first calculate the distances between all pairs

of the sequences under the JC model and use the distance

matrix as the input to the distance-based FastME (Lefort

et al., 2015). When using more than one gene, we first

calculated the distance matrix for each gene and then take

the median of the distances for each pair across all genes

to summarize the distance matrices. Distances among pairs

of backbone species are fixed to patristic distances in the

backbone tree to encourage FastME to keep the backbone

relationships fixed.

DEPP+FastME is run using a pipeline similar to JC+FastME,

using DEPP models to estimate the distances between

sequences rather than the JC model.

C-DEPP+FastME first trains the models from the backbone

and then performs three steps (fig. 1). First, we assign

each query to the 1st-level subtree with the highest score

si; when multiple genes are available, we simply average

the scores across genes. We calculate the distance matrices

for all query and backbone species in each subtree using

all genes. As in the previous methods, we take the median

across genes and fix distances among backbone species to

their patristic distance on the backbone tree. Whether we

have single or multiple genes, we obtain a single distance

matrix at the end for each subtree. We then re-infer

each subtree using FastME given this distance matrix. To

combine all the subtrees into a full tree, we give updated

subtrees as well as the backbone tree as input to ASTER

software (Zhang and Mirarab, 2022) without weighting.

Note that, here, we use ASTER as a supertree method

and not as a summary method combining gene trees.

Results

Simulated data
We start by evaluating C-DEPP on simulated data. Note that

on this dataset, DEPP would require more than 250Gb of

memory, and hence, we could not run it.

Comparing the remaining three methods, EPA-ng-SCAMPP

has the best placement accuracy closely followed by C-DEPP

(Fig. 3). Specifically, EPA-ng-SCAMPP has an average error

of 2.78 edges over all five genes compared to 2.89 edges for C-

DEPP. Both of the two methods are substantially more accurate

than APPLES+JC with an average error of 3.73 edges. When

evaluating the entire distribution of the error, the trend is

generally consistent but a long tail of high errors is observed

for all methods (Fig. S7). EPA-ng-SCAMPP finds placements

at most three edges away from the correct placement 91.7% of

the time, which is only 2.4% higher than C-DEPP and 11%

higher than APPLES+JC.

While slightly more accurate, EPA-ng-SCAMPP has much

higher computational demands in terms of both running time

and memory. When examining the running time, both C-

DEPP and APPLES+JC are much faster than SCAMPP-EPA-

ng (Fig. 3). Specifically, C-DEPP is 50 times faster than

EPA-ng-SCAMPP, with a slightly higher error of 0.1 edges.

Interestingly, C-DEPP is also faster than the less accurate

method APPlES+JC. In terms of memory consumption,

APPLES+JC is the most efficient requiring less than 0.5Gb,

followed by C-DEPP which requires less than 1.5Gb; EPA-ng-

SCAMPP required 8Gb on this dataset.
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(a)

(b)

Fig. 3. Results on HGT-Sim (64K) comparing average placement errors

(y-axis) with running time (a) and peak memory (b). Larger dots are

averages over all five replicates.

Biological data
We now examine the results of WoL data.

Placement

Similar to the observation in the simulated data, the maximum-

likelihood method EPA-ng outperforms the other alternatives

in terms of placement accuracy (fig. 4). Averaged across the

11 genes, EPA-ng has the lowest error of 1.9 edges. Following

EPA-ng, DEPP has the second lowest error of 2.1 edges.

The performance C-DEPP is close to DEPP with a slightly

higher average error of 2.2 edges. All these three methods are

significantly more accurate than APPLES+JC whose average

error is 3.1 edges.

While maintaining the high accuracy of DEPP almost intact,

C-DEPP significantly reduces training time. For instance,

training the DEPP model on 16S data from the WoL dataset

using a Tesla V100-SXM2-32GB card takes 210 minutes. In

contrast, the C-DEPP model requires only 1⁄3 of that time to

train on the same data. In terms of testing, while C-DEPP

has a longer running time than DEPP, it is more memory-

efficient. For example, when placing 1000 16S sequences onto

the backbone tree with 7400 leaves, C-DEPP has a peak

memory usage of 0.67G (126 seconds running time), while

DEPP requires a peak memory usage of 1.5G (26 seconds),

p0151 p0310 p0258 p0032 p0005 p0132 p0000 p0018 p0023 p0067 16s
genes
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EPA-ng

Fig. 4. Placement error, showing mean and standard error of error, across

11 genes of the WoL dataset with ≈ 104 species, where DEPP can be run.

reducing memory consumption by more than half compared to

DEPP’s. Note that on datasets much larger than 7400 leaves,

the memory requirements of DEPP would become prohibitive.

Tree update

When using a single gene, RAxML has a clear advantage over

other methods with lower error measured by quartet distance

or RF distance (fig. 5). However, C-DEPP has very similar

accuracy to DEPP. When multiple genes are used, patterns

gradually change. Errors drop rapidly for DEPP and C-DEPP

but not the concatenation-based RAxML. For example, by

using two genes, the average quartet distance of C-DEPP is

0.02 which is around 1⁄3 of its error with one gene. The quartet

error quickly drops down to 0.006 with six genes. The pattern

is similar (though less pronounced) when examining the RF

distances. For example, the RF distances reduce by half from

using a single gene to using six genes. In contrast, the error

reduction is less pronounced for RAxML; the quartet error does

not reduce notably in response to increasing the number of

genes beyond two and can occasionally increase (e.g., from two

genes to four genes). C-DEPP and DEPP start to outperform

RAxML with six genes or more when measuring the quartet

distance or with 10 genes when measuring the RF distance.

The performance of JC+FastME is significantly worse than the

other methods measured by quartet distance and is the worst

or among the worst methods measured by RF distance. Finally,

note that DEPP and C-DEPP have very similar accuracy. When

the dataset is small enough to allow running both, there is no

benefit in using C-DEPP on this dataset. However, for larger

datasets, C-DEPP is the only option possible due to its size.

Real world application
Recently, McDonald et al. (2022) inferred a reference tree

combining ≈ 16, 000 genomes and 321,210 16S full-length

sequences to produce the second version of the popular

Greengenes database. The next goal of that project was to

place all 23,113,447 short V4 16S rRNA Deblur v1.1.0 8 (Amir

et al., 2017) amplicon sequence variants from Qiita (Gonzalez

et al., 2018) (retrieved Dec. 14, 2021) on this tree. Since the

backbone tree is a mixed species/gene tree, DEPP, which can

learn to place on any tree, was the appropriate placement

method. However, because the backbone tree was more than an

order of magnitude larger than what DEPP could handle, we

had to develop the C-DEPP approach studied here (an earlier

version akin to TreePart+Class-Multi). McDonald et al. (2022)

extensively reports on the results of that analyses showing
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Fig. 5. Tree update results on the WoL dataset. We show both quartet

and RF distances, only restricted to query taxa, as the number of genes

increases. FastME fails to run in some cases with one or two genes because

specific pairs of sequences occasionally have no overlapping non-gap sites.

a)

b)

Fig. 6. Impact of using C-DEPP on GG2 reference set with the THDMI

dataset. a) Terminal branch length of the leaves in WoL reference tree

and GG2 reference tree. b) Statistics of placement onto WoL reference

tree and GG2 reference tree. Notice that the running time includes the

time for sequence alignment and use a machine with 128 cores.

improved taxonomic classification and consistency across data

types in using GG2. Here, instead of repeating those results,

we focus on the impact of C-DEPP. We study the impact of

enabling DEPP to handle a backbone tree of size > 3 × 105

by showing that using the original backbone of size 104 would

lead to more basal placements (Figure 6). The reduced terminal

branch lengths indicate that a larger backbone tree can provide

more precise phylogenetic placements and enable a better

understanding of the microbiome compositions. Comparing the

running time, placement using C-DEPP onto the backbone tree

with more than 330,000 leaves requires roughly the same time as

placement onto the WoL tree (with 10,575 leaves) using DEPP,

further demonstrating the impressive scalability of C-DEPP.

Discussions

We presented a method called C-DEPP that enables the

distance-based machine-learning placement method DEPP to

scale to ultra-large datasets. C-DEPP is not more accurate

than normal DEPP but is far more scalable as the backbone

size grows. Unlike DEPP, which requires quadratic memory and

running time, the time and memory of C-DEPP grow quasi-

linearly with the backbone size. As more microbial genomes

become available, the need for sub-quadratic methods becomes

increasingly common. The C-DEPP method is already being

used by other projects (McDonald et al., 2022) and fills an

important practical gap; the most compelling reason for the

need for C-DEPP is the practical applications it enables. The

alternative distance-based methods (e.g., JC model within

APPLES-II) are not accurate enough while the maximum-

likelihood-based methods are too slow. C-DEPP is as salable

(or perhaps more salable) than simple distance-based methods

but comes close to maximum-likelihood in terms of accuracy.

In designing C-DEPP, we used common divide-and-conquer

techniques but with several important twists. Among these,

two stand out: 1) Phylogenetic-based division works only

if partitions are augmented by representatives from other

groups. This notion relates to the need for the sequence

embedders to “see” sufficiently diverse examples to learn

generalizable models; as such, this benefit may be particular to

machine learning approaches and may not extend to standard

phylogenetic methods. This reason for creating over-lapping

subsets is very different from some existing work (e.g., Nelesen

et al., 2012), which create overlapping subsets to allow merging

of trees. 2) It is beneficial (albeit, mildly) to restrict distance

calculation for each query to models more likely to have

generated it. However, this benefit is enjoyed only if a two-

layer classifier is used for judging the likelihood. A biological

insight underpins this two-layer design. The main cause of

gene tree discordance on microbial datasets is HGT. In the

presence of HGT, classifying a gene into groups defined by

the species tree can be misleading because the relevant part

of the tree according to the gene tree may be different from

the species tree. By making classification groups small, we

give the classifier a chance to find clades in the species tree

corresponding to the HGT origin in a specific gene.

Both the method and our analyses can improve in the future

in several ways. In particular, for the tree update pipeline,

we have made several choices without exploring alternatives.

For example, we summarize genes by computing the median

distance across genes; the alternative is to simply compute

an updated tree per gene and let ASTRAL combine them.

We also did not force the backbone trees to be fixed. It is

possible to impose such constraints using ASTRAL (Rabiee

and Mirarab, 2020a), and the constraints may improve the

accuracy of the query relationship. We leave the exploration

of these alternatives to the future. The most accurate method,

SCAMPP, was slow in our analyses. A new version called Batch-

SCAMPP (Wedell et al., 2022b) promises much faster running

times. In preliminary tests, we saw some improvements in

speed but not enough to bridge the gap with C-DEPP. Batch-

SCAMPP takes between 2.5 and 9 hours on the 64k dataset,

depending on the level of HGT in a gene, compared to 12 hours

for normal SCAMPP. In contrast, C-DEPP takes around 30

minutes. Finally, while in this paper we scaled to trees with up

to 330,000 leaves, larger trees have been built more recently. In

our future applications of C-DEPP, we plan to use it to place

queries on trees with a million leaves.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2023. ; https://doi.org/10.1101/2023.03.27.534201doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.27.534201
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 Jiang et al.

References

A. Amir, D. McDonald, J. A. Navas-Molina, et al. Deblur

Rapidly Resolves Single-Nucleotide Community Sequence

Patterns. mSystems, 2(2):e00191–16, 2017. doi: 10.1128/

mSystems.00191-16.

F. Asnicar, A. M. Thomas, F. Beghini, et al. Precise

phylogenetic analysis of microbial isolates and genomes

from metagenomes using PhyloPhlAn 3.0. Nature

Communications, 11(1):2500, 2020. doi: 10.1038/

s41467-020-16366-7.

M. Balaban, N. Moshiri, U. Mai, et al. TreeCluster: Clustering

biological sequences using phylogenetic trees. PLOS ONE,

14(8):e0221068, 2019. doi: 10.1371/journal.pone.0221068.

M. Balaban, S. Sarmashghi, and S. Mirarab. APPLES: Scalable

Distance-Based Phylogenetic Placement with or without

Alignments. Systematic Biology, 69(3):566–578, 2020. doi:

10.1093/sysbio/syz063.

M. Balaban, Y. Jiang, D. Roush, et al. Fast and accurate

distance-based phylogenetic placement using divide and

conquer. Molecular Ecology Resources, 22(3):1213–1227,

2022. doi: 10.1111/1755-0998.13527.

P. Barbera, A. M. Kozlov, L. Czech, et al. EPA-

ng: Massively Parallel Evolutionary Placement of Genetic

Sequences. Systematic Biology, 68(2):365–369, 2019. doi:

10.1093/sysbio/syy054.

S. A. Berger, D. Krompass, and A. Stamatakis. Performance,

accuracy, and Web server for evolutionary placement of

short sequence reads under maximum likelihood. Systematic

biology, 60(3):291–302, 2011. doi: 10.1093/sysbio/syr010.

T. Z. DeSantis, P. Hugenholtz, N. Larsen, et al. Greengenes, a

Chimera-Checked 16S rRNA Gene Database and Workbench

Compatible with ARB. Appl. Environ. Microbiol., 72(7):

5069–5072, 2006. doi: 10.1128/AEM.03006-05.

A. Gonzalez, J. A. Navas-Molina, T. Kosciolek, et al.

Qiita: rapid, web-enabled microbiome meta-analysis.

Nature Methods, 15(10):796–798, 2018. doi: 10.1038/

s41592-018-0141-9.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton.

Adaptive Mixtures of Local Experts. Neural Computation,

3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

S. Janssen, D. McDonald, A. Gonzalez, et al. Phylogenetic

Placement of Exact Amplicon Sequences Improves

Associations with Clinical Information. mSystems, 3

(3):e00021–18, 2018. doi: 10.1128/mSystems.00021-18.

Y. Jiang, M. Balaban, Q. Zhu, and S. Mirarab. DEPP:

Deep Learning Enables Extending Species Trees using Single

Genes. Systematic Biology, page 2021.01.22.427808, 2022a.

doi: 10.1093/sysbio/syac031.

Y. Jiang, P. Tabaghi, and S. Mirarab. Phylogenetic Placement

Problem: A Hyperbolic Embedding Approach. In L. Jin and

D. Durand, editors, Comparative Genomics, pages 68–85,

Cham, 2022b. Springer International Publishing. ISBN 978-

3-031-06220-9. doi: 10.1007/978-3-031-06220-9 5.

A. M. Kozlov, D. Darriba, T. Flouri, et al. Raxml-ng: a

fast, scalable and user-friendly tool for maximum likelihood

phylogenetic inference. Bioinformatics, 35:4453–4455, 2019.

doi: 10.1093/bioinformatics/btz305.

V. Lefort, R. Desper, and O. Gascuel. FastME 2.0: A

comprehensive, accurate, and fast distance-based phylogeny

inference program. Molecular Biology and Evolution, 32

(10):2798–2800, 2015. doi: 10.1093/molbev/msv150.

S. Liao, T. Chen, T. Lin, et al. Doubly sparse: Sparse mixture

of sparse experts for efficient softmax inference. 2019.

B. Linard, K. M. Swenson, and F. Pardi. Rapid alignment-

free phylogenetic identification of metagenomic sequences.

Bioinformatics, 35(18):3303–3312, 2019. doi: 10.1093/

bioinformatics/btz068.

K. Liu, T. Warnow, M. T. Holder, et al. SATe-II: Very Fast

and Accurate Simultaneous Estimation of Multiple Sequence

Alignments and Phylogenetic Trees. Systematic Biology, 61

(1):90–106, 2011. doi: 10.1093/sysbio/syr095.

K. J. Locey and J. T. Lennon. Scaling laws predict global

microbial diversity. Proceedings of the National Academy

of Sciences, 113(21):5970–5975, 2016. doi: 10.1073/pnas.

1521291113.

D. Mallo, L. De Oliveira Martins, and D. Posada. SimPhy

: Phylogenomic Simulation of Gene, Locus, and Species

Trees. Systematic Biology, 65(2):334–344, 2016. doi:

10.1093/sysbio/syv082.

F. A. Matsen. Phylogenetics and the Human Microbiome.

Systematic Biology, 64(1):e26–e41, 2015. doi: 10.1093/

sysbio/syu053.

F. A. Matsen, R. B. Kodner, and E. V. Armbrust.

pplacer: linear time maximum-likelihood and Bayesian

phylogenetic placement of sequences onto a fixed reference

tree. BMC bioinformatics, 11(1):538, 2010. doi: 10.1186/

1471-2105-11-538.

D. McDonald, Y. Jiang, M. Balaban, et al. Greengenes2 enables

a shared data universe for microbiome studies. preprint,

Bioinformatics, 2022. URL http://biorxiv.org/lookup/doi/

10.1101/2022.12.19.520774.

S. Mirarab, N. Nguyen, and T. Warnow. SEPP: SATé-
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Fig. S7. empirical cumulative distribution functions (ECDF) of errors in HGT-Sim (64K) dataset
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