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Yield stress materials flow if a sufficiently large shear stress is

applied. Although such materials are ubiquitous and relevant for

industry, there is no accepted microscopic description of how they

yield, even in the simplest situations in which temperature is

negligible and in which flow inhomogeneities such as shear bands

or fractures are absent. Here we propose a scaling description of

the yielding transition in amorphous solids made of soft particles

at zero temperature. Our description makes a connection between

the Herschel–Bulkley exponent characterizing the singularity of

the flow curve near the yield stress Σc, the extension and duration

of the avalanches of plasticity observed at threshold, and the den-

sity P(x) of soft spots, or shear transformation zones, as a function

of the stress increment x beyond which they yield. We argue that

the critical exponents of the yielding transition may be expressed

in terms of three independent exponents, θ, df, and z, character-

izing, respectively, the density of soft spots, the fractal dimension

of the avalanches, and their duration. Our description shares some

similarity with the depinning transition that occurs when an elastic

manifold is driven through a random potential, but also presents

some striking differences. We test our arguments in an elasto-

plastic model, an automaton model similar to those used in depin-

ning, but with a different interaction kernel, and find satisfying

agreement with our predictions in both two and three dimensions.

nonlinear rheology | dynamical phase transition | complex fluid

Many solids will flow and behave as fluids if a sufficiently
large shear stress is applied. In crystals, plasticity is gov-

erned by the motion of dislocations (1, 2). In amorphous solids,
there is no order, and conserved defects cannot be defined.
However, as noticed by Argon (3), plasticity consists of ele-
mentary events localized in space, called shear transformations,
in which a few particles rearrange. This observation supports that
there are special locations in the sample, called shear trans-
formation zones (STZs) (4), in which the system lies close to an
elastic instability. Several theoretical approaches of plasticity,
such as STZ theory (4) or soft glassy rheology (5), assume that
such zones relax independently or are coupled to each other via
an effective temperature. However, at zero temperature and small
applied strain rate _γ, computer experiments (6–11) and very recent
experiments (12, 13) indicate that local rearrangements are not
independent: plasticity occurs via avalanches in which many shear
transformations are involved, forming elongated structures in
which plasticity localizes. If conditions are such that flow is ho-
mogeneous (as may occur, for example, in foams or emulsions),
one finds that the flow curves are singular at small strain rate and
follow a Herschel–Bulkley law Σ−Σc ∼ _γ1=β (14, 15). These fea-
tures are reproduced qualitatively by elasto-plastic models (16–
20) in which space is discretized. In these models, a site that
yields plastically affects the stress in its surroundings via some
interaction kernel G(r), argued to decay as a power law of dis-
tance and to display a fourfold symmetry (21), as supported by
observations (22–24). This perturbation may trigger novel plastic
events and lead to avalanches. However, even within this picture,
the relationship between the avalanche dynamics and the sin-
gularity of the flow curves remains debated (7, 25).

It is tempting to seek progress by building a comparison be-
tween the yielding transition and the much better understood
depinning transition that occurs when an elastic interface of di-
mension d is driven in a d + 1 random environment (2, 26). The
role that transverse displacements play in depinning corresponds
to the local accumulated plastic strain γð~xÞ, and the total plastic
strain γ can be identified with the center of mass of the interface,
as illustrated in Fig. 1. Both phenomena display very similar
properties: near the depinning threshold force Fc, the velocity v
vanishes nonanalytically v ∼ (F − Fc)

β and the interplay between
disorder and elasticity at threshold leads to broadly distributed
avalanches corresponding to jerky motions of the interface.
Much more is known about the depinning transition: it is a dy-
namical critical point characterized by two independent expo-
nents related to avalanche extension and duration (26, 27).
These exponents have been computed perturbatively with the
functional renormalization group (28–30) and evaluated nu-
merically with high precision (31, 32). The comparison between
these two phenomena has led to the proposition that the yielding
transition is in the universality class of mean-field depinning (33,
34). However, experiments find a reological exponent β > 1
against the β ≤ 1 predicted for elastic depinning, and numerical
simulations display intriguing finite size effects that differ from
depinning (9, 10, 35–37).
Formally, elasto-plastic models are very similar to automaton

models known to capture the depinning transition well (17); the
key difference lies in the interaction kernel G, long-ranged and
of variable sign for elasto-plastic models while essentially a
Laplacian for depinning with short-range elasticity. We recently
showed (20) that in the presence of long-ranged interaction with
variable sign, the distribution of shear transformations at a dis-
tance x from instability, P(x), is singular with P(x) ∼ xθ, unlike in
depinning for which θ = 0. As we shall recall, this singularity
naturally explains the finite size effects observed in simula-
tions. In this article, we argue that once this key difference with
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depinning is taken into account, the analogy between these two
phenomena is fruitful and leads to a complete scaling de-
scription of the yielding transition. In particular, we find that
the Herschel–Bulkley exponent is related to avalanche exten-
sion and duration via Eq. 9 and that the avalanche statistics
may be expressed in terms of three independent exponents: θ,
df, and z, characterizing, respectively, the density of shear
transformations, the fractal dimension of the avalanches, and
their duration.

Definition of Exponents

Several studies (see Table 2) characterized the yielding transition
with several exponents, which we now recall.

Flow Curves.Rheological properties are singular near the yielding
transition. Herschel and Bulkley (38) noticed that for many yield
stress materials, Σ=Σc +A _γn, where _γ is the macroscopic strain
rate and Σ is the external shear stress. By analogy with depinning,
we instead introduce the exponent β = 1/n, such that

_γ∼ ðΣ−ΣcÞ
β: [1]

In contrast to depinning, one finds β > 1 in the yielding tran-
sition, as we explain below. Our analysis below focuses on the
regime (Σ − Σc)/Σc � 1; effects not discussed here are expected to
affect the flow curves at larger stresses (39, 40).

Length Scales. Near the yielding transition, the dynamics become
more and more cooperative and are correlated on a length scale ξ:

ξ∼ jΣ−Σcj
−ν: [2]

Avalanche Statistics. At threshold Σ = Σc, the dynamics occur by
avalanches whose size we define as S ≡ ΔγLd, where Δγ is the
plastic strain increment due to the avalanche and Ld is the vol-
ume of the system. The normalized avalanche distribution ρ(S)
follows a power law:

ρðSÞ∼ S−τ: [3]

In a finite system of size L, this distribution is cut off at some
value Sc, where the linear extension of the avalanche is of order
L, enabling definition of the fractal dimension df:

Sc ∼Ldf : [4]

A key exponent relates length and time scales; z characterizes
the duration T of an avalanche whose linear extension is l:

T ∼ l z: [5]

Density of Shear Transformations. If an amorphous solid is cut into
small blocks containing several particles, one can define how
much stress xi needs to be applied to the block i before an in-
stability occurs. The probability distribution P(x) is a measure of
how many putative shear transformations are present in the
sample (20). Near the depinning transition, a similar quantity can
be defined, and in that case it is well known that P(x) ∼ x0 (26).
We have argued (20) that it must be so when the interaction
kernel G is monotonic, i.e., its sign is constant in space. For an
elastic interface, this is the case, as a region that yields will always
destabilize other regions. This implies that locally, the distance
to instability xi always decreases with time until xi < 0, when the
block i rearranges. Thus, nothing in the dynamics allows the
block i to forecast an approaching instability, and no depletion or
accumulation is expected to occur near xi = 0. By contrast, for
the yielding transition, the sign of G varies in space. Thus locally,
xi jumps both forward and backward, performing some kind of
random walk. Because x = 0 acts as an absorbing boundary
condition (as the site is stabilized by a finite amount once it
yields), one expects that depletion may occur near x = 0 (20, 37,
41). In ref. 20, we argued that P(x) indeed must vanish at x = 0 if
the interaction is sufficiently long range (particularly if jGj ∼ 1/rd,
as is the case for the yielding transition); otherwise, the system
would be unstable: a small perturbation at the origin would
cause extensive rearrangements in the system. Thus, the yielding
transition is affected by an additional exponent θ that does not
enter the phenomenology of the depinning problem:

PðxÞ∼ xθ; [6]

with θ > 0. Using elasto-plastic models, we previously measured
θ ∼ 0.4 for d = 3 and θ ∼ 0.6 for d = 2 (20), as we confirm here
with improved statistics.

Fig. 1. (Left) Analogy between the yielding transition of a d-dimensional

amorphous solid and the depinning transition of an elastic interface of d

dimensions in a space of d + 1 dimensions, illustrated here for d = 2. The

height of the interface is the accumulated local plastic strain generated by

local plastic rearrangements; one example of the latter appears in the bot-

tom. (Right) the strain rate–stress (velocity–force) curves for the yielding

(depinning) transition with β > 1 (β < 1) in yielding (depinning) transition.

Table 1. The critical exponents and their expressions

Exponent Expression Relations 2d measured/prediction 3d measured/prediction

θ P(x) ∼ xθ 0.57 0.35

z T ∼ lz 0.57 0.65

df Sc ∼ Ldf 1.10 1.50

β _γ∼ ðΣ−ΣcÞ
β

β = 1 + z/(d − df) 1.52/1.62 1.38/1.41

τ ρ(S) ∼ S−τ τ=2− θ
θ+ 1

d
df

1.36/1.34 1.45/1.48

ν ξ ∼ (jΣ − Σcj)
−ν ν = 1/(d − df) 1.16/1.11 0.72/0.67

The third column contains the three scaling relations we derive in the text. We compare values measured in

our elasto-plastic model, both in 2d and 3d, with the predictions from the scaling relations.
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The definitions of the relevant exponents are summarized in
Table 1 and their values, as reported in the literature, in Table 2.

Scaling Relations

We now propose several scaling relations, which essentially mirror
arguments made in the context of the depinning transition (SI
Text), with the additional feature that P(x) is singular.

Stationarity. Consider the application of a quasistatic strain in a
system of linear size L, as represented in Fig. 2. The stress Σ
fluctuates as the result of avalanches: an avalanche of size S
leads to a stress drop proportional to the plastic strain Δγ ∼ S/Ld,
of average 〈S〉/Ld. Using Eqs. 3 and 4 and assuming 2 > τ >1,
one gets hSi∼Ldf ð2−τÞ, so the average drop of stress is of order
Ldf ð2−τÞ−d.
Between plastic events, the system loads elastic energy, and

stress rises by some typical amount ΔΣ. ΔΣ is limited by the next
plastic event and thus is inversely proportional to the rate at
which avalanches are triggered. Although one might think that if
the system were twice as large a plastic event would occur twice
as soon (implying ΔΣ ∼ 1/Ld), this is not the case, and ΔΣ
depends on system size with a nontrivial exponent (9, 10, 35, 36).
As argued in refs. 35 and 37, one expects ΔΣ to be of order xmin,
the weakest site in the system. If the xi are independent, this
implies that ΔΣ∼L−

d
θ+1. In ref. 35, it was argued based on local

considerations that θ = 1/2. Instead, our recent work (20) implies
that θ is governed by the elastic interactions between plastic
events and remains a nontrivial exponent that depends on in-
teraction range and spatial dimension.
Supposing that in a stationary state, the average drop and

jump of stress must be equal leads to Ldf ð2−τÞ−d ∼ΔΣ (9, 10, 35,
36); using our estimate of the latter, we get Ldf ð2−τÞ−d ∼L−

d
θ+1,

leading to our first scaling relation:

τ= 2−
θ

θ+ 1

d

df
: [7]

As discussed in SI Text, a similar but not identical relation also
holds for the depinning transition (26, 42).

Dynamics. A powerful idea in the context of the depinning tran-
sition is that avalanches below threshold and flow above threshold
are intimately related (26). Above threshold, the motion of the
interface may be thought as consisting of several individual
avalanches of spatial extension ξ, acting in parallel. We propose
the same image for the yielding transition. If so, the strain rate _γ
in the sample is simply equal to the characteristic strain rate of
an avalanche of size ξ, leading to

_γ=
S

Tξd
∼ ðΣ−ΣcÞ

νðd−df+zÞ; [8]

implying our second scaling relation, which to our knowledge was
not proposed in this context:

β= ν
�

d− df + z
�

: [9]

Statistical Tilt Symmetry. If flow above Σc consists of independent
avalanches of size ξ, then the avalanche-induced fluctuations of
stress on that length scale, δΣ, must be of order

δΣ∼ Sc
�

ξd ∼ ðΣ−ΣcÞ
νðd−dfÞ: [10]

One expects that the fluctuations of stress on the scale ξ must
be of order of the distance to threshold Σ − Σc. Eq. 10 then
leads to

ν=
1

d− df
: [11]

It was suggested in ref. 36 that Eq. 11 may apply at the yielding
transition. A similar relation holds for depinning of an interface
if the elasticity is assumed to be linear, a nontrivial assumption
underlying Eq. 10. In that case, it can be derived using the so-
called statistical tilt symmetry. In SI Text, we discuss evidence
that linearity applies at the yielding transition, enabling us to use
this symmetry to derive Eq. 11.
Overall, the scaling relations Eqs. 7, 9, and 11) allow to express

the six exponents we have introduced in terms of three, which

Table 2. Values of exponents as reported in the literature

Value

Exponent 2d 3d Lattice model Molecular dynamics Experiments

β 1.52 1.38 1.78 (43) 2 (45), 2.33 (8), 3(3d) (8) 2.22(3d) (46), 2.78 (47),

2.22(3d) (48)

ν/β 0.72 0.53 0.5 (19), 0.6 (43), 1 (20) 0.5 (7), 0.43 (8), 0.33(3d) (8)

τ 1.36 1.43 1.34 (49),1.25 (16) 1.3 (36), 1.3(3d) (36) 1.37–1.49(3d) (50), 1.5(3d) (60)

df 1.1 1.5 1.5 (20), 1.5 (43), 1 (16) 0.9 (36), 1.1(3d) (36), 1 (51),

1.5(3d) (51), 1.6(3d) (52)

(2 − τ)df 0.7 0.8 0.75 (16) 1 (10), 0.6 (36), 0.8(3d) (36)

z/df 0.52 0.43 0.68 (49) 0.5 (60)

θ 0.57 0.35 0.54 (36), 0.43(3d) (36),

0.5 (35), 0.5(3d) (35)

The exponents characterizing the relationships between length and strain rate ξ∼ _γ�ν=β, average avalanche size and system length

hSi∼ Lð2−τÞdf , and avalanche durations with sizes T ∼ Sz=df are reported often and are shown here. Three-dimensional observations

are labeled (3d); otherwise, the values correspond to 2D systems.
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0.5
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0.52
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0.54

Fig. 2. Example of a stress Σ vs. plastic strain γ signal from extremal dy-

namics simulations of our elasto-plastic model, which corresponds to qua-

sistatic strain simulations in computer experiments. Avalanches relax the

shear stress by some amount S/Ld. ΔΣ is the stress increment needed to

trigger a new avalanche. In the stationary state, these two quantities must

be equal on the average.
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we choose to be θ, df, z. The corresponding relations are in-
dicated in Table 1.

Elasto-Plastic Model

The phenomenological description proposed above may apply to
real materials with inertial or overdamped dynamics, as well as to
elasto-plastic models, although the yielding transition in these
situations may not lie in the same universality class (36, 43). In
what follows, we test our predictions in elasto-plastic models,
implemented as in ref. 20, whose details are recalled here.
We consider square (d = 2) and cubic (d = 3) lattices of unit

lattice size with periodic boundary conditions, where each lattice
point i may be viewed as the coarse-grained description of a
group of particles. It is characterized by a scalar stress σi, a local
yield stress σ th

i , and a strain γi = γ el
i + γ

pl
i . The total stress carried

by the system is Σ=
P

iσi=L
d. The elastic strain satisfies γ el

i ∝ σi.
The plastic strain is constant in time, except when site i becomes
plastic, which occurs at a rate 1/τc if the site is unstable, defined
here as xi ≡ σ th

i − σi < 0. For simplicity, we consider that σ th
i does

not vary in space, and we use it to define our unit stress σ th = 1.
τc is the only time scale in the problem, and it defines our unit
of time.
When plasticity occurs, the plastic strain increases locally and

the stress is reduced by the same amount δγ pl
i =−δσi = δxi. We

assume that δγ pl
i = σi + e, where e is some random number, taken

to be distributed uniformly between −0.1 and 0.1. e = 0 would
correspond to imposing zero local stress after a plastic event (a
choice we avoid as it sometimes leads to periodic dynamics).
When a site relaxes, it affects the stress level on other sites im-
mediately, such that

δxj =−G
�

~rij
�

δxi; [12]

with Gð~rijÞ∝ cosð4ϕÞ=r2 in an infinite 2D system under simple
shear, and where ϕ is the angle between the shear direction and
~rij (21). In a finite system, G depends on the boundary conditions
(21). At fixed stress, by definition G(0) = −1 and stress conserva-
tion implies that the sum of G on any line or column of the lattice
is zero. At fixed global strain, however, one plastic event reduces
the stress by 1/Ld. When desired, we model this effect by mod-
ifying the interaction kernel as follows: Gð~rijÞ→Gð~rijÞ− 1=Ld.
In our model, the average plastic strain is defined as γ=

1
Ld

P

iγ
pl
i and the strain rate simply follows _γ=

P

ihδ _γ
pl
i i=Ld

=
P

σiΘðσi − 1Þ=ðτcL
dÞ, where Θ(x) is the Heaviside function. Above

Σc, the system will reach a steady state with a finite _γ. Below or in
the vicinity of Σc, however, the system may stop spontaneously.
When this happens, to generate a new avalanche, we trigger the
dynamics by giving very small random kicks to the system (cho-
sen to conserve stress on every line and column) until one site
becomes unstable.

This elasto-plastic model essentially is identical to the automaton
models introduced in ref. 44 in the context of the depinning tran-
sition, in which the role of the plastic strain γ

pl
i is played by the

transverse displacement of the elastic interface ui. The only
qualitative difference is the form of G.

Numerical Estimation of Critical Exponents

Flow Curves and Length Scales. We first implement the extremal
dynamics protocol: the average stress decreases by 1/Ld after
each plastic event during avalanches, and increases again to
generate a new active site at the beginning of a new avalanche.
The corresponding stress–plastic strain curves shown in Fig. 2
allow us to estimate the critical stress Σc and the correlation
length exponent ν from the fluctuations δΣ of Σ at different sizes:

hΣcðLÞi=Σc + k1L
−
1
ν + . . .

δΣðLÞ= k2L
−
1
ν + . . . ;

[13]

where 〈Σc(L)〉 is the mean stress and δΣ(L) the SD at a given size
L, and k1, k2 are nonuniversal constants. From our data (SI Text),
we obtain Σc = 0.5221 ± 0.0001, ν = 1.16 ± 0.04 for d = 2 and
Σc = 0.5058 ± 0.0002, ν = 0.72 ± 0.04 for d = 3. These quantities
also may be extracted reliably from finite strain rate measure-
ments, as shown in SI Text.
We then compute the flow curve at a fixed strain rate. The

stress is adjusted to keep the fraction of unstable sites fixed. The
determination of the exponent β is very sensitive to the value of
Σc. Using the values obtained from the previous analysis, we find
β = 1.52 ± 0.05 for d = 2 and β = 1.38 ± 0.03 for d = 3, as shown
in Fig. 3.

Avalanche Statistics. Avalanche statistics may be investigated us-
ing extremal dynamics and Fig. 4. As documented in SI Text, this
method leads for our largest system size to τ ∼ 1.2 for d = 2 and
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Fig. 3. (Insets) Flow curves _γðΣÞ in the vicinity of Σc for different system size

L as indicated in the legend in d = 2 (Left) and d = 3 (Right). (Main Curves)

The same flow curves in log-linear scale, fitted by the Herschel–Bulkley law,

Σ=Σc +A _γ1=β, which gives us β ∼ 1.52 in 2d, β ∼ 1.38 in 3d.

Fig. 4. (Left, Insets) Avalanche size distribution ρ(S, L) for extremal dy-

namics as the system size L is varied in d = 2 (Upper) and d = 3 (Lower). (Main

Plots) Rescaling avalanche size enables the collapse of these distributions,

allowing a fractal dimension df to be extracted. (Right, Insets) Distribution

ρ(T) of the duration of the avalanches for the system sizes as indicated in the

legend in d = 2 (Upper) and d = 3 (Lower). (Main Plots) The cutoff present

in these distributions can be collapsed by rescaling time, leading to an

estimate of the dynamical exponent z.
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τ ∼ 1.3 for d = 3. This measure appears to have large finite size
effects, however. We find that such effects are diminished if we
work instead at constant stress Σ and consider ρ(S, Σ) as Σ→Σ−c .
In SI Text, we find using this method that τ = 1.36 ± 0.03 for
d = 2 and τ = 1.45 ± 0.05 for d = 3.
Next, we evaluate the fractal dimension df and the dynam-

ical exponent z using extremal dynamics. Here, the avalanche
cutoff Sc corresponds to an avalanche of linear extension ∼L
so that for large systems, one expects ρðS;LÞ∼ S−τhðS=Ldf Þ∼
L−df τHðS=Ldf Þ, where h is some function and H(x) = x−τh(x).
This collapse is checked in Fig. 4 and leads to df = 1.10 ± 0.04
for d = 2 and df = 1.50 ± 0.05 for d = 3 (for the collapse, we
used the values of τ measured with the constant stress pro-
tocol). Error bars are estimated by considering the range of
exponents for which the collapse is satisfactory. To measure z,
we record the duration T of each avalanche and compute the
duration distribution ρ(T) for different system sizes. These dis-
tributions are cut off at some Tc, corresponding to the duration
of avalanches of spatial extension L, so that Tc ∼ Lz. As shown
in the right panels of Fig. 4, we indeed find a good collapse
ρðT;LÞ∼T−τ′h2ðT=L

zÞ∼L−τ′zH2ðT=L
zÞ with z = 0.57 ± 0.03,

τ′ ∼ 1.6 for d = 2 and z = 0.65 ± 0.05, τ′ ∼ 1.9 for d = 3.

Density of Shear Transformations. In elasto-plastic models, it is
straightforward to access the local distance to thresholds xi and
to compute its distribution P(x) (20). Here we recall these results
with improved statistics. We fix the stress at Σc and let the system
evolve for a long enough time such that γ � 1. The dynamics
occasionally stop; at that point, we measure P(x) and average
over many realizations. As shown in Fig. 5, we find θ = 0.57 ±
0.01 for d = 2, θ = 0.35 ± 0.01 for d = 3, where the error bar is
from the error estimation of linear fit. Although in experiments
P(x) is hard to access, the system size dependence of the average
increment of stress where no plasticity occurs should be acces-
sible, and follows ΔΣ∼L−d=ð1+θÞ. In Fig. 5 Insets, ΔΣ is com-
puted via extremal dynamics, leading to slightly smaller exponents
θ ’ 0.50 for d = 2 and θ ’ 0.28 for d = 3, a difference presumably
resulting from corrections to scaling.

Theory vs. Numerics. Our scaling relations now can be tested, and
this comparison is shown in Table 1. We find very good agree-
ments for all three scaling relations: Eqs. 7, 9, and 11.

Comparison with Molecular Dynamics and Experiments

Although elasto-plastic models are well-suited to test theories,
they make many simplifications, and thus may not fall in the
universality class of real materials. One encouraging item is our
estimate of θ, which is very similar to the value extracted from
finite size effects in molecular dynamics (MD) simulations using
overdamped dynamics, as reported in Table 2. This is consistent
with our finding (20) that θ (and τ) is independent of the choice
of dynamical rules in our model, which however, may dramati-
cally affect the dynamics. Concerning the latter, our choice that
the interaction is instantaneous in time, although still long range,

likely will affect the exponents z and β. We expect that if a more
realistic time-dependent interaction kernel Gð~r; tÞ is considered
(a costly choice numerically), the exponent z will satisfy z ≥ 1.
According to Eq. 9, this will lead to larger values of β, in agree-
ment with experiments.
The scaling relations for τ and ν in Table 1 appear to be sup-

ported by MD simulations. In ref. 36 for overdamped dynamics,
df = 0.9 and θ ∼ 0.54 for d = 2, whereas df = 1.1 and θ ∼ 0.43 for
d = 3, leading to τ ∼ 1.2 in both 2d and 3d, which compares well
with their measured value τ = 1.3 ± 0.1. In d = 2, all numerics
(36, 51) report df ∼ 1, leading to ν ∼ 1, as observed in ref. 7. In
d = 3, there is some disagreement on the value of df: refs. 51 and
52 report df ∼ 1.5 as we do in our elasto-plastic model, in dis-
agreement with ref. 36, for which df < d/2, implying that ν < 2/d.
It would be useful to resolve this discrepancy, because in the
depinning problem, when ν < 2/d, another length scale enters the
scaling description, which affects particularly finite size effects
(44, 53). In this situation, however, we expect our scaling de-
scription to be unchanged if ν is meant to characterize the cor-
relations of the dynamics for Σ > Σc.

Conclusion

We have proposed a scaling description of stationary flow in
soft amorphous solids, and it is interesting to reflect whether
this approach can be applied to other systems. Plasticity in
crystals shares many similarities with that of amorphous sol-
ids, and the far-field effect of a moving dislocation essentially
is identical to the effect of a shear transformation (2). Thus,
we expect that the stability argument of ref. 20 regarding the
density of regions about to yield also applies in crystals,
leading to a nontrivial exponent θ in that case too. Our scaling
relations thus may hold in crystals, although the formation of
structures such as domain walls might strongly affect the yield-
ing transition.
Avalanches of plasticity are seen in granular materials in which

particles are hard (12, 13). However, we believe that at least for
overdamped systems, this behavior is only transient and that the
elasto-plastic description does not apply to such materials under
continuous shear. Some of us have argued that in this case, a
picture based on geometry applies (54, 55), which also leads to
a diverging length scale but of a different nature (56).
The scaling relations proposed here do not fix the values of the

exponents, particularly that of θ. To make progress, it is tempting
to seek a mean-field description of this problem that would apply
beyond some critical dimension. Current mean-field models in
which the interaction is random and does not decay with distance
lead to θ = 1 (20, 41). However, the anisotropy is lost in this view,
and the fact that θ diminishes as d increases when anisotropy is
considered suggests that a mean-field model that includes an-
isotropy is needed. Such a model would be valuable in building a
hydrodynamic description of flow that would apply, for example,
to slow flow near walls (57, 58), a problem for which current
descriptions do not include the role of anisotropy (25, 59).
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Fig. 5. Shear transformation distribution P(x), where

x is the local distance to an instability for d = 2 (Left)

and d = 3 (Right). (Insets) Amplitude of stress incre-

ments ΔΣ before an instability occurs as a function

of L, found to follow ΔΣ∼ L−d=ð1+θÞ.
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