
Scaling Distance Labeling on Small-World Networks

Wentao Li
CAI, FEIT, University of

Technology Sydney, Australia
wentao.li@student.uts.edu.au

Miao Qiao
University of Auckland, New

Zealand
miao.qiao@auckland.ac.nz

Lu Qin
CAI, FEIT, University of

Technology Sydney, Australia
lu.qin@uts.edu.au

Ying Zhang
CAI, FEIT, University of

Technology Sydney, Australia
ying.zhang@uts.edu.au

Lijun Chang
The University of Sydney,

Australia
lijun.chang@sydney.edu.au

Xuemin Lin
The University of New South

Wales, Australia
lxue@cse.unsw.edu.au

ABSTRACT

Distance labeling approaches are widely adopted to speed
up the online performance of shortest distance queries. The
construction of the distance labeling, however, can be exhaus-
tive especially on big graphs. For a major category of large
graphs, small-world networks, the state-of-the-art approach
is Pruned Landmark Labeling (PLL). PLL prunes distance la-
bels based on a node order and directly constructs the pruned
labels by performing breadth-�rst searches in the node order.
The pruning technique, as well as the index construction,
has a strong sequential nature which hinders PLL from being
parallelized. It becomes an urgent issue on massive small-
world networks whose index can hardly be constructed by
a single thread within a reasonable time. This paper scales
distance labeling on small-world networks by proposing a
Parallel Shortest-distance Labeling (PSL) scheme and fur-
ther reducing the index size by exploiting graph and label
properties. PSL insightfully converts the PLL’s node-order
dependency to a shortest-distance dependence, which leads
to a propagation-based parallel labeling in D rounds where
D denotes the diameter of the graph. Extensive experimen-
tal results verify our e�ciency on billion-scale graphs and
near-linear speedup in a multi-core environment.

KEYWORDS

Shortest Distance; Indexing; 2-hop Labeling; Parallel; Small-
World Network; Compression; Algorithm

ACM Reference Format:

Wentao Li, Miao Qiao, Lu Qin, Ying Zhang, Lijun Chang,

and Xuemin Lin. 2019. Scaling Distance Labeling on Small-World

Networks. In 2019 International Conference on Management of Data

(SIGMOD ’19), June 30-July 5, 2019, Amsterdam, Netherlands. ACM,

New York, NY, USA, 18 pages. https://doi.org/10.1145/3299869.

3319877

1 INTRODUCTION

Given a graph G, a shortest distance query q(s, t) reports a
minimized length of an s-t path on G. It is a fundamental
primitive as either a main function or a building block of
applications such as geographic navigation, Internet routing,
socially tenuous group �nding [25], in�uential community
searching [16] and event detection [24]. Many of these appli-
cations cannot a�ord frequent online distance computations,
and therefore, 2-hop labeling [9] and its variations prevail
as indexing techniques.

The index size of 2-hop labeling, however, can be quadratic
to the number n of the nodes in the graph. For each nodev , 2-
hop labeling selects a set of nodes as hubs and tagsv with its
distances to its hubs as labels. A query q(s, t)minimizes, over
all hubs r shared by s and t , the 2-hop distances from s to t via
r , i.e., dist(s, r) + dist(r , t). To report a precise distance, the
shared hubs of s and t must hit — have a common node with
— a shortest path between s and t . Such a requirement over
all pairs, s and t , of nodes is called the 2-hop cover constraint.
A label set that satis�es the 2-hop cover constraint can have
a cardinality quadratic to n, especially on dense graphs. For
example, a clique necessitates Ω(n2) labels.

Finding a global minimum index size of 2-hop labeling,
unfortunately, is NP-hard [9]. A local minimum, instead,
can be reached by iteratively pruning redundant labels1. A
label of a node v is redundant if the remaining labels in
the label set still satisfy the 2-hop cover constraint. The
pruning technique, however, has a strong sequential nature

1In many labeling approaches, the labels are pruned in an implicit way — a

label will not be generated if pruning it is guaranteed to be safe.

https://doi.org/10.1145/3299869.3319877
https://doi.org/10.1145/3299869.3319877
810167
Highlight

— pruning one label will a�ect the redundancy of another
label. Consider two nodes u and v on the same shortest path
between two nodes s and t . The moment when both s and t
have the hub set of {u,v}, all labels on s and t are redundant.
After pruning the label on s with the hub u, however, both
labels on s and t with the hub v become critical. Due to such
a dependency, the order of the pruning has a great in�uence
on the pruning outcome and e�ectiveness.

The optimization of the pruning order is based on graph
properties. For example, the planarity and hierarchical struc-
ture of road networks have been well explored to reach a
scalable solution (see [19] as an entrance). For a major cate-
gory of real graphs, small-world [26, 28] networks, the state-
of-the-art approach is Pruned Landmark Labeling (PLL) [3].

The key to PLL’s success on small-world networks is to
encode the highly clustered topology into a node order and
construct/prune labels strictly following the node order.

(1) PLL prunes labels based on a node order that prioritizes
the high-centrality2 nodes. The label on a node s to its
hub t is pruned if their distance can be answered by
labels from s and t to a higher ranked hub. Therefore,
a high-centrality hub r is able to prune labels along
a large number (due to the clustered topology of the
graph) of shortest paths hit by r .

(2) PLL prunes a majority of labels in an implicit way. In
other words, PLL constructs pruned labels directly as
opposed to following a construct-and-then-prune par-
adigm. This is done by performing a pruned Breadth-
First-Search (BFS) sourced from a hub r with the as-
signment of r sequentially following the node order.

It is worth noting that the index construction of PLL is
highly node-order dependent: the pruning procedure in the
BFS of hub r is dependent on the pruned labels constructed
for the predecessor, in the node order, of r . Such a strong
sequential nature of PLL hinders its parallelization.

On the other hand, the index time becomes an urgent issue
for massive small-world networks whose index can hardly
be constructed by a single thread within a reasonable time.
For example, for the graph SINA3 with 58 million nodes and
261 million edges, PLL cannot �nish the indexing within 3

days. The same situation applies to UK4 which has 77million
nodes and 2.9 billion edges.

This paper focuses on the scalability issue of the 2-hop
distance labeling of small-world networks. We propose non-
trivial algorithms to parallel the indexing process of PLL

2The centrality can be de�ned with degree, closeness and betweenness [17].
3http://networkrepository.com/index.php
4http://law.di.unimi.it

and further reduce the index size. The scalability of our pro-
posed approach is con�rmed by extensive experiments. Our
contributions are summarized as follows.

• We propose a Parallel Shortest distance Labeling ap-
proach PSL upon a novel and insightful conversion
from the node-order label dependency of PLL to a
shortest-distance label dependency. This conversion
leads to a non-trivial propagation based labeling pro-
cess. The algorithm completes in D rounds where D
denotes the diameter of the graph — small for small-
world networks. The resulting labels are identical to
those constructed in the sequential algorithm of PLL.

• We provide a graph compression technique for all 2-
hop labeling approaches and also exploit the property
of PLL to further reduce the index size.

• We conduct extensive experiments to verify the per-
formance of the proposed techniques. In a single-core
environment, our index reduction technique dramat-
ically shrinks the index size and improves the index
time. In a multi-core environment, our PSL approach
shows near-linear speed-up in parallelism. The pro-
posed techniques jointly enable the index construction
on networks with billion scale o�ine, which veri�es
the e�ciency of the proposed approach.

The rest of the paper is organized as follows. Section 2
introduces the state-of-the-art 2-hop labeling approach on
small-world networks. Section 3 devises a distance label-
ing algorithm. Section 4 introduces two index reduction
techniques. Section 5 summarizes related works. Section 6
experimentally evaluates our proposed approaches on real
small-world networks and Section 7 concludes the paper.

2 PRELIMINARY

2.1 Shortest Distance Problem

LetG be a graph with vertex setVG and edge set EG . Denote
by n andm the number |VG | of nodes and |EG | of edges in
the graph, respectively. For each node v ∈ VG , denote by
NG (v) = {u |(u,v) ∈ EG } the neighbors of v and deдG (v) =
|NG (v)| the degree of nodev inG . We mainly use undirected
graphs in the paper; Appendix C extends our techniques
to directed graphs. Without loss of generality, we assume
a connected graph G. Our techniques can be extended to
disconnected graphs easily.

Let p(s, t) = {v1,v2, · · · ,vk } with s = v1 to t = vk . p is
a path on G if, for ∀1 ≤ i ≤ k , edge (vi ,vi+1) ∈ EG . For
an i ∈ [1,k], denote by p(s, t) = p(s,vi) + p(vi , t) the con-
catenation of two paths. The length of a path p(s, t) is the
number of edges on the path, i.e., |p(s, t)| = k − 1. The short-
est path between s and t is the path with shortest length. The
shortest length is the length of the shortest path, denoted

as distG (s, t). Given a graph G, a point-to-point distance
query q(s, t) with s, t ∈ V returns the shortest distance
distG (s, t) between s and t . When the context is clear, we use
V ,E,N (v),deд(v),dist(s, t) to represent the node set, edge
set, neighbor set of v , the degree of v and the shortest dis-
tance from s to t , respectively, for simplicity.

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

Figure 1: Graph G

Example 2.1. Fig. 1 shows a network G = (V ,E) with
12 nodes and 23 edges. The neighbors of v6 are N (v6) =

{v2,v3,v7}. Two paths between v4 and v6 are p1(v4,v6) =
{v4,v3,v6}, p2(v4,v6) = {v4,v1,v2,v6}. The shortest path
p1(v4,v6) has the shortest length 2.

2.2 2-Hop Labeling for Distance Queries

To e�ciently process point-to-point distance queries, 2-hop
labeling approach [9] precomputes the distances from each
node to preselected hub nodes and uses the 2-hop distances
via hubs to answer a query. Below we introduce the 2-hop
labeling approach that has been slightly updated [3, 11, 13]
to enable label reduction.

A labeling function L maps each node v ∈ V to a label
set L(v). L(v) consists of a set of label entries where each
entry is a key/value pair (u,dist(v,u))with a nodeu ∈ V and
the distance between v and u. The hub nodes of v are the
projections of L(v) on the key, i.e.,C(v) = {u |(u,dist(v,u)) ∈
L(v)}. C is called the hub function of L. {L(v)|v ∈ V } is a
2-hop labeling if L satis�es the 2-hop cover constraint

below.

De�nition 2.2 (2-hop Cover Constraint [9]). A labeling func-
tion L satis�es the 2-hop cover constraint if for any node
pair s and t , C(s) ∩C(t) shares a node with a shortest path
from s to t .

For a 2-hop labeling L, the label size |L(v)| of a node v is
the number of entries in L(v). Denote by δ the largest label
size of G, i.e., δ =maxv ∈V (|L(v)|).

Given a 2-hop labeling L, a distance query q(s, t) is an-
swered with Query(s, t ,L) de�ned below.

Query(s, t ,L) = min
u ∈C(s)∩C(t)

dist(s,u) + dist(u, t)

Lemma 2.3. For a 2-hop labeling L that satis�es the 2-hop

cover constraint, Query(s, t ,L) = dist(s, t).

Proof. See Appendix A. □

Assume that the label entries in each label set are stored in
the ascending order of the key. The online cost of answering
q(s, t) is on retrieving and merging the entries in L(s) and
L(t). Thus, the query time complexity is O(|L(s)| + |L(t)|).

2.3 Prune Landmark Labeling Approach

Prune Landmark Labeling Approach (PLL) is the state-of-
the-art 2-hop labeling approach on small-world networks.

Node Order. The e�ectiveness of PLL heavily relies on a
node order and the corresponding ranking functions r (v) on
nodes v ∈ V . A typical ranking function prioritizes nodes
with higher degrees and resorts to original ID to break ties.
Speci�cally, for two nodes v and v ′, r (v) > r (v ′) if

• deд(v) > deд(v ′) or
• deд(v) = deд(v ′) and ID(v) > ID(v ′).

Without loss of generality, we rename the nodes such that

r (v1) > r (v2) > · · · > r (vn).

Example 2.4. We rank the nodes in Fig. 1 according to
their degrees. When two nodes have the same degree, the
tie is broken by the original ID of the node. We re-order the
nodes such that r (v1) > r (v2) > · · · > r (v12).

The node order can similarly be selected based on other
node centralities, e.g., betweenness centrality and closeness
centrality. Please see [17] as a comprehensive comparison.

PLL with Pruned BFS. Algorithm 1 shows the process of
PLL. Given a graph G and a node order v1,v2, · · · ,vn , PLL
constructs a pruned 2-hop labeling LPLL in n rounds (Line 1).
In the i-th round, i ∈ [1,n], PLL performs a pruned BFS
search (a standard BFS search apart from Line 6-8) sourced
from vi . To prune the BFS, PLL tests if the existing index
can already report the distance between vi and a node u
(Line 6). If yes, u will neither be labeled nor expanded in
this round (Line 7); otherwise, a label with hub vi will be
added tou (Line 8) andu will be expanded right away (Line 9-
12). Obviously, on the nodes that are either unexpanded or
unreached, the labels with hub vi are conceptually pruned.

Lemma 2.5 ([3]). The index of PLL satis�es the 2-hop cover

constraint.

We analyse the index time of PLL in Theorem 2.6.

Theorem 2.6. The time complexity of PLL isO(δ 2 ·m)where

δ denotes the maximum label size over all nodes in the graph.

Proof. Every execution of Line 8 will add a new label
entry to PLL andwill expand a nodeu to its neighbors (Line 9-
12), for each neighbor of u, when it is popped, Line 6 will
call the query function to calculate the distance between
vi and u. The time complexity of Query(vi ,u,L

PLL) is O(δ).

Algorithm 1: PLL

Input: Graph G(V ,E)

Output: The index LPLL

1 for i = 1, 2, · · · ,n do

2 Q ← a queue with only one element vi ;

3 dist(vi) ← 0 and dist(v) ← ∞,∀v ∈ V \vi ;

4 while Q , � do

5 u ← Q .pop();

6 if Query(vi ,u,L
PLL) ≤ dist(u) then

7 continue;

8 LPLL(u) ← LPLL(u) ∪ {(vi ,dist(u))};

9 forw ∈ N (u) do

10 if dist(w) = ∞ then

11 dist(w) ← dist(u) + 1;

12 Q .push(w);

13 return LPLL ;

The number of function calls is Σu ∈V Σr ∈C(u)deд(u) ≤ δm.

Therefore, the overall index time of PLL is O(δ 2 ·m). □

We show index time of PLL by investigating δ on two rep-
resentative small-world networks. Youtube, a social network,
has δ = 1665. UK-Tpd, a web graph, has δ = 2866. When
the number of edges is 1 billion, δ 2m = 1015. This amount of
work for constructing LPLL, therefore, can hardly be �nished
on a single thread within a reasonable time.

3 PARALLELIZED DISTANCE LABELING

Section 3.1 -3.2 revisit PLL to identify the label properties
and order dependency. Section 3.3 transforms the order de-
pendency in PLL to distance dependency. By utilizing the
distance dependency, Section 3.4 proposes a practical ap-
proach in constructing the index in parallel.

3.1 Label Property

The labels of PLL show an important node-order property.

Theorem 3.1. For any two nodes ∀u,v ∈ V , v is a hub of u

under PLL, i.e., (v,dist(v,u)) ∈ LPLL(u), if and only if v is the

highest ranked node on all the shortest paths from u to v .

Proof. Let S be the set of nodes on all the shortest paths
from u tow . Letw be the highest ranked node in S .

We prove that all nodes in S havew as their hubs in LPLL

by contradiction. Assume that there is a node z in S such that
z does not have a hub of w in LPLL. Consider the round of
Algorithm 1 where the pruned BFS sourcedw is performing.
Let L′ be the snapshot of the PLL label set right before the
round begins. Given that z has no hub ofw , then either

• z is explicitly pruned: Query(z,w,L′) = dist(w, z), or

• z is implicitly pruned: z is not reached since there is
at least a node z ′ on the shortest path from w to z

explicitly pruned with Query(z ′,w,L′) = dist(w, z ′).

In either case, it requires a common hub between w and z
(or z ′) to produce the query result, which is impossible since
i) z, z ′ ∈ S and ii)w has the highest rank in S and iii) L′ does
not include any hub ranked higher thanw . Contradiction.

Since all nodes in S havew as their hubs in LPLL, we prove
the two directions of the theorem in two cases: 1) ifw = v ,
that is, v is the highest ranked node in S , then v is a hub
of u ∈ S and 2) if r (w) > r (v), when before the pruned BFS
sourced from v is performed,w is already a common hub of
u and v . Asw is on the shortest path between u and v , the
label with hub v on u is pruned and not in PLL. □

Lemma 3.2-3.4 are derived from Theorem 3.1.

Lemma 3.2. If v is a hub of u, r (v) > r (u).

Proof. Since v has the highest rank on a shortest path
from v to u (Theorem 3.1), r (v) > r (u). □

Lemma 3.3. For ∀u ∈ V , (u, 0) ∈ LPLL(u).

Proof. We make the path as p(u,u) and according to The-
orem 3.1, (u, 0) will be always inserted to LPLL(u). □

Lemma 3.4. For ∀(u,v) ∈ E, (u, 1) ∈ LPLL(v), if r (u) > r (v);

otherwise,(v, 1) ∈ LPLL(u).

Proof. Let p(u,v) be the path with an edge. According to
Theorem 3.1, the higher ranked node is the hub node. □

3.2 Order Dependency

To see the dependency among the labels, we partition the
labels in LPLL according to their hub nodes. Letv1,v2, · · · ,vn
be the node order under which label set LPLL was constructed.

We de�ne two sets with particular meanings. Recall that
PLL has n rounds where the i-th round performs a pruned
BFS sourced from vi . We denote by LPLL

<i (u) the snapshot of

LPLL(u) at the beginning of the i-th round and by LPLLi (u) the
incremental label of u built in the i-th round.

De�nition 3.5 (Order Speci�c Label Set).

LPLLi (u) = {(vi ,dist(vi ,u)) ∈ L
PLL},

for ∀i ∈ [1,n], u ∈ V . Let LPLLi =

⋃
u ∈V LPLLi (u).

De�nition 3.6 (Order Partial Label Set).

LPLL
<i (u) = {(vj ,dist(vj ,u)) ∈ L

PLL |j < i},

for ∀i ∈ [1,n + 1], u ∈ V . Let LPLL
<i =

⋃
u ∈V LPLL

<i (u). L
PLL
<n+1 =

LPLL.

The following lemma shows that the pruning condition
in Algorithm 1 leads to an order dependency among labels.

Lemma 3.7 (Order Dependency). LPLLi (u) depends on

LPLL
<i (u). Speci�cally, L

PLL
i (u) =

{
{(vi ,dist(vi ,u))} Query(vi ,u,L

PLL
<i) > dist(vi ,u);

� otherwise .

Proof. Let S be the set of nodes on the shortest path from
vi to u (including vi and u). Let w be the node with the
highest rank in S . Ifvi = w , according to Theorem 3.1, i)vi is
a hub ofu and ii) for ∀v ∈ S\vi ,v is a not a hub ofvi , and thus
Query(vi ,u,L

PLL
<i) > dist(vi ,u). If r (vi) < r (w), thenvi is not

a hub of u and label (w,dist(w,vi)), (w,dist(w,u)) ∈ LPLL
<i

and thus Query(vi ,u,L
PLL
<i) = dist(vi ,u). □

Lemma 3.7 shows that LPLLi (u) depends on LPLL
<i (u) while

LPLL
<i (u) depends on LPLLi−1 (u). Such a convolved dependency

can hardly be removed as long as the labels are built in the
node order.

Example 3.8. Table 1 illustrates how PLL constructs the
index. A cell at the row of vi and the column of vj records
the order speci�c label of vi at the j-th round. In column
v1, pruned BFS inserts v1 into LPLL

1
(u), ∀u ∈ V . In column

v2, PLL performs pruned BFS and v2 becomes the hub of
{v2,v3,v6,v7,v10} due to the pruning condition of LPLL

1
=

{LPLL
1
(u)|u ∈ V }. The order dependency in the column v7:

partial set LPLL
<7
=

⋃
i<7,u ∈V LPLLi (u) prunes the labels on all

nodes except on v7.

3.3 Distance Dependency

To break the order dependency in the label construction,
consider the pruning condition of Line 6, Algorithm 1. When
Query(vi ,u,L

PLL
<i) = dist(u,vi) prunes a node label on u,

there must be two labels on u and vi , respectively, to a com-
mon hub w such that dist(u,w) + dist(w,vi) = dist(u,vi).
Therefore, dist(u,w) and dist(w,vi)must be no greater than
dist(u,vi). In other words, all the labels with distances
greater than dist(u,vi) have no e�ect on the query result of
Query(vi ,u,L

PLL
<i) and the corresponding pruning outcomes.

From the above intuition, we group the label entries in
LPLL based on their label distances. The rearranged label sets
will pave the way to our Parallel Shortest distance Labeling
(PSL) approach (Section 3.4) and are thus called PSL label
sets. Let D be the diameter of the graph G.

De�nition 3.9 (Distance Speci�c Label Set).

LPSL
d
(u) = {(v,dist(v,u)) ∈ LPLL(u)|dist(v,u) = d},

for ∀u ∈ V ,d ∈ [1,D]. Let LPSL
d
= {LPSL

d
(u)|u ∈ V }.

Similarly, the partial label of a node then becomes the set
of label entries with distance less than a certain distance and
is de�ned in De�nition 3.10.

De�nition 3.10 (Distance Partial Label Set).

LPSL
<d
(u) = {(v,dist(v,u)) ∈ LPLL(u)|dist(v,u) < d},

for ∀u ∈ V ,d ∈ [1,D + 1]. Let LPSL =
⋃

u ∈V LPSL(u). In
particular, LPSL(u) = LPSL

<D+1
(u).

The equivalence of the index LPLL and the novel index
LPSL is given in Theorem 3.11.

Theorem 3.11. LPSL = LPLL.

Proof. Since all the label (v,dist(v,u)) in LPLL has
dist(v,u) ≤ D, LPSL includes all labels in LPLL and has no
other labels according to the de�nition. □

Example 3.12. Table 1 shows a rearrangement of labels in
PLL. A cell with row vi and column j denotes label set of
LPSLj (vi) — the PLL labels of vi whose distances are j.

Distance Dependency. De�nition 3.9 and De�nition 3.10
provide us an opportunity in removing the order dependency
in the label construction process.

Theorem 3.13 (Distance Dependency). LPSL
d
(u) depends

on LPSL
<d

. Speci�cally, given a node u, for a node v ∈ V with

r (v) > r (u) and dist(u,v) = d , (v,dist(v,u)) ∈ LPSL
d
(u) if and

only if Query(u,v,LPSL
<d
) > d .

Proof. Consider a node v with dist(u,v) = d . Denote by
S the set of nodes on the shortest paths from u tov and letw
be the highest ranked node in S . According to Theorem 3.1,
we have two exclusive cases:

• w = v if and only if v is the hub of u;
• w , v means that
– w is the hub of both u and v , and
– dist(u,w),dist(w,v) < d ,
and therefore, Query(u,v,LPSL

<d
) = d .

Therefore, if (v,dist(v,u)) < LPSL
d
(u), namely, v is not a hub

of u, then w , v , and then Query(u,v,LPSL
<d
) = d . Besides,

if (v,dist(v,u)) ∈ LPSL
d
(u), namely, v is a hub of u, v is the

highest ranked node in S and therefore, no other node in S

can be a hub of v , that is, Query(u,v,LPSL
<d
) > d . □

By transforming the order dependency to distance depen-
dency, it is possible to complete the index construction in D

rounds where D denotes the diameter of the graph.

Example 3.14. In Table 1, each row corresponds to the
partial label of a node while each column corresponds to
the incremental labels regarding each distance value. When
d = 0, each node add to itself since the distance between
itself is zero. When d = 1, we either add nodes that are 1-hop

Table 1: The Index of PLL and PSL

PLL PSL

ID v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 0 1 2

v1 (v1, 0) - - - - - - - - - - - (v1, 0) - -

v2 (v1, 1) (v2, 0) - - - - - - - - - - (v2, 0) (v1, 1) -

v3 (v1, 1) (v2, 1) (v3, 0) - - - - - - - - - (v3, 0) (v1, 1) (v2, 1) -

v4 (v1, 1) - (v3, 1) (v4, 0) - - - - - - - - (v4, 0) (v1, 1) (v3, 1) -

v5 (v1, 1) - - (v4, 1) (v5, 0) - - - - - - - (v5, 0) (v1, 1) (v4, 1) -

v6 (v1, 2) (v2, 1) (v3, 1) - - (v6, 0) - - - - - - (v6, 0) (v2, 1) (v3, 1) (v1, 2)

v7 (v1, 2) (v2, 1) (v3, 1) - - (v6, 1) (v7, 0) - - - - - (v7, 0) (v2, 1) (v3, 1) (v6, 1) (v1, 2)

v8 (v1, 1) - - - (v5, 1) - - (v8, 0) - - - - (v8, 0) (v1, 1) (v5, 1) -

v9 (v1, 1) - - - - - - (v8, 1) (v9, 0) - - - (v9, 0) (v1, 1) (v8, 1) -

v10 (v1, 1) (v2, 1) - - - - - - (v9, 1) (v10, 0) - - (v10, 0) (v1, 1) (v2, 1) (v9, 1) -

v11 (v1, 2) - (v3, 2) (v4, 1) (v5, 1) - - - - - (v11, 0) - (v11, 0) (v4, 1) (v5, 1) (v1, 2) (v3, 2)

v12 (v1, 2) - (v3, 2) (v4, 1) (v5, 1) - - - - - - (v12, 0) (v12, 0) (v4, 1) (v5, 1) (v1, 2) (v3, 2)

away to a node u or prune the 1-hop away nodes. Note that
according to Lemma 3.2, only higher ranking nodes can be
hubs of lower ranking nodes. When d = 2, we either add
nodes that are 2-hop away to a node u or prune the 2-hop
away nodes. For instance, ifu = v11, the nodev1 that is 2-hop
away is added into LPSL

2
(v11). But node v8 is pruned since we

can make use of v5, which is less than two hops away with
v8, to prune it.

3.4 The Parallelized Labeling Method

To apply Theorem 3.13 to generate LPSL
d
(u), all the node pairs

with distance equal to d are to be examined which is also ex-
pensive. This section provides a practical algorithm, Parallel
Shortest distance Labeling (PSL), to construct the index LPSL

in label propagations.

Propagation-Based Label Construction. This section
provides a positive answer to the following question: can
we build the distance speci�c label LPSL

d
(u) by gathering the

labels of its neighbors, namely, LPSL
d−1
(v), for v ∈ N (u)? We

formally show that
⋃

v ∈N (u) L
PSL
d−1
(v) is su�cient to create

LPSL
d
(u) in Lemma 3.15

Lemma 3.15. All the hub nodes of labels in LPSL
d
(u) appear

in labels
⋃

v ∈N (u) L
PSL
d−1
(v) as hub nodes.

Proof. We show that if a node is not a hub of any node
v ∈ N (u) in LPSL

d−1
(v), then it is not a hub of u in LPSL

d
(u). Let

w , u be a hub of u in LPSL
d
(u) but is not a hub of any node

v ∈ N (u) in LPSL
d−1
(v). Note that the PLL was built in a BFS

search. Consider the round when the pruned BFS search is
sourced fromw . Sincew , u andw is a hub of u, there is a
shortest path fromw tou such thatw is a hub of all nodes on
the path. Let s be the predecessor of u on the shortest path.
s ∈ N (v) and (w,dist(w, s)) ∈ LPLL. Since dist(w, s) = d − 1,
w is a hub of LPSL

d−1
(s), contradiction. □

Pruning Conditions. From Lemma 3.15, we can construct
LPSL(u) in an iterativeway and the initial condition is given in
Lemma 3.3 by inserting u to the label LPSL

0
(u) as its own hub.

However, pouring all nodes in
⋃

v ∈N (u) L
PSL
d−1
(v) directly into

LPSL
d
(u) produces a large set of candidate labels. Therefore,

we propose two rules to prune unnecessary label entries.

Lemma 3.16. A hub w in the label set
⋃

v ∈N (u) L
PSL
d−1
(v) is

not a hub of u if r (w) < r (u).

Proof. Lemma 3.2. □

Lemma 3.17. A hub w in the label set
⋃

v ∈N (u) L
PSL
d−1
(v) is

not a hub of u in LPSL
d
(v) if Query(w,u,LPSL

<d
) ≤ d .

Proof. If Query(w,u,LPSL
<d
) < d , then dist(w,u) < d ,

w is not a hub of u with distance dist(w,u) = d . If
Query(w,u,LPSL

<d
) = d , we discuss in two cases.

• dist(w,u) < d ,w is not a hub of u with distance d .
• dist(w,u) = d , there is a node z on the shortest path
betweenw and u with r (z) > r (w). According to The-
orem 3.1,w is not be a hub of u in LPLL.

Therefore,w is not a hub of u if Query(w,u,LPSL
<d
) ≤ d . □

Based on the above pruning rules, we propose our label
propagation function to �nd the exact LPSL

d
(u), ∀u ∈ V .

Denote by Cd (v) the set of hub nodes in label set LPSL
d
(v),

for ∀v ∈ V and d ∈ [1,D + 1].

Theorem 3.18 (Label Propagation Function).

LPSL
d
(u) =

⋃

w ∈Cd−1(v), for ∀v ∈N (u)

LPSL
d
(u,w) (1)

where LPSL
d
(u,w) =

{
�, i f r (w) < r (u) or Query(w,u,LPSL

<d
) ≤ d ;

{(w,dist(w,u))}, otherwise .
(2)

Proof. Denote by L′ the label set computed from Equa-
tion (1). We show that L′ = LPSL

d
(u) in two directions. Due

to the correctness of Lemma 3.15 and the pruning condi-
tions, the label set LPSL

d
(u) ⊆ L′. The follow parts prove

L′ ⊆ LPSL
d
(u). Let (w,dist(w,u)) be a label in L′. Equation (2)

shows that r (w) > r (u) and Query(w,u,LPSL
<d
) > d .

If in LPLL, w is not a hub of u, then according to Theo-
rem 3.1, there is a node s that in S — the set of all nodes in
the shortest path betweenw andu —with r (s) > r (w) > r (u).
Therefore, dist(w, s),dist(s,u) < d and dist(w,u) ≤ d , and
thus, Query(w,u,LPSL

<d
) ≤ d , contradiction.

Therefore,w is a hub of u in LPLL. Besides, if dist(w,u) <
d , Query(w,u,LPSL

<d
) = dist(w,u) < d , contradiction. Thus,

dist(w,u) = d . Now we have proved thatw is a hub of u in
LPLL with dist(w,u) = d , i.e.,w is a hub ofu in LPSL

d
(u)which

completes the proof. □

The PSL Algorithm. Algorithm 2 puts all parts of PSL to-
gether. LPSL

0
(u) is obtained by add u to itself (Line 1). Then,

for each edge, the higher ranked node v is added into lower
ranked node u to form LPSL

1
(u) according to Lemma 3.4

(Line 2-4). If LPSL
d−1

is empty — the path with length d−1 is cov-

ered by LPSL
<d−1

— we �nd the �nal index (Line 6). Otherwise,

nodes are parallelly processed to build LPSL
d

for d > 1 (Line 7-
12): each node u �rst �nds its superset cand(u) (Lemma 3.15)
(Line 8) and then, pruning conditions 3.16-3.17 apply (Line 10-
11). Entry (w,dist(w,u)) is then added to LPSL

d
(u) (Line 11-12).

Algorithm 2: PSL

Input: Graph G(V ,E)

Output: The index LPSL

1 Insert (u, 0) into LPSL
0
(u), ∀u ∈ V ;

2 for (u,v) ∈ E do

3 if r (u) > r (v) then Insert (u, 1) into LPSL
1
(v);

4 else Insert (v, 1) into LPSL
1
(u);

5 d ← 2;

6 while LPSL
d−1

is not empty do

7 for u ∈ V in parallel do

8 cand(u) ← hubs in LPSL
d−1
(v), ∀v ∈ N (u);

9 for each nodew ∈ cand(u) do

// Pruning Condition Lemma 3.16

10 if r (w) < r (u) then continue;

// Pruning Condition Lemma 3.17

11 if Query(w,u,LPSL
<d
) ≤ d then continue;

12 Insert (w,d) into LPSL
d
(u);

13 d ← d + 1;

14 return LPSL;

Example 3.19. In Fig. 2(a), each node u ∈ V is added
to LPSL

0
(u) for d = 0. In Fig. 2(b), for each edge (u,v),

v is added to LPSL
1
(u) if r (v) > r (u). For instance,

LPSL
1
(v3) = {(v1, 1), (v2, 1)}, L

PSL
1
(v2) = {(v1, 1)}, L

PSL
1
(v7) =

{(v2, 1), (v3, 1), (v6, 1)}, In Fig. 2(c), for each node u, hubs in
{LPSL

1
(w)|w ∈ N (u)} are candidate hubs and then added to

LPSL
2
(u) if the pass pruning conditions. v6 has three neigh-

bors v2,v3,v7. Then, candidate nodes are {v1,v2,v3,v6,v7}.
(v1, 2) will be put into LPSL

2
(v6) since the current index

gives the answer ∞ and r (v1) > r (v6). {v2,v3,v6} will be
pruned by the current index while v7 will be pruned since
r (v7) < r (v6). Therefore, L

PSL
2
(v6) = {(v1, 2)}.

Theorem 3.20. The time complexity of PSL under one core

environment is O(δ 2 ·m).

Proof. Let LPSL = LPSL
<D+1

= LPLL. For each label in LPSL(v),
it has been collected by each of v’s neighbors once as candi-
dates (Line 11). For each candidate, a query (Line 15) is called
in O(δ) time. The total cost is Σv ∈V δd(v) × δ = O(δ

2m). □

4 INDEX SIZE REDUCTION

Parallel index construction reduces the index time while
leaving the index size LPSL = LPLL unchanged. This section
improves the scalability of the PSL by reducing the index
size. Section 4.1 reduces the graph size using the equivalence
relationships among nodes. Section 4.2 optimizes the index
size of PSL based on an observation on the label distribution.

4.1 Equivalence Relation Reduction

We consider the equivalence of two nodes u and v based
on their neighbors. Depending on whether u and v have an
edge, we de�ne two types of equivalence relations.

De�nition 4.1 (Node Equivalence Relations). For u,v ∈ V ,

• u ≃1 v if N (u) = N (v);
• u ≃2 v if N (u) ∪ {u} = N (v) ∪ {v}.

It can be veri�ed that ≃1 and ≃2 are equivalence relations.
Their re�exive, symmetric and transitive properties are in-
herited from the equality operator over node sets.

Since u < N (u), u ≃1 v requires that u and v have no edge
while u ≃2 v requires that u and v must have an edge.

Each equivalence relation partitions V into disjoint equiv-
alent classes: the equivalent class of a node v includes all the
nodes that are equivalent to v . We say an equivalent class
non-trivial if it includes at least two nodes. De�nition 4.2
obtains nodes in non-trivial equivalent classes under the
two equivalence relations and Lemma 4.4 shows that these
non-trivial equivalent classes are disjoint.

De�nition 4.2. De�ne three vertex sets V1, V2 and V3 with

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

(a) d = 0

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

(b) d = 1

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

(c) d = 2

Figure 2: The execution of PSL from d = 0, d = 1 to d = 2

• V1 = {u ∈ V |there exists v , u such that u ≃1 v}
• V2 = {u ∈ V |there exists v , u such that u ≃2 v}
• V3 = V \V1 \V2.

V1

V9

V10 V8

V5

V11

V4

V2

V6 V3

Figure 3: Equivalence Relation Reduction

Example 4.3. In Fig. 3, V1 = {v11,v12} since N (v11) =

N (v12) = {v4,v5}; V2 = {v6,v7} since {N (v6) ∪ v6} =

{N (v7) ∪v7} = {v2,v3,v6,v7}.

Lemma 4.4. V1,V2 and V3 is a partition of the graph G.

Proof. Since V3 is the complement of V1 ∪V2, the three
vertex sets jointly coverV . It remains to prove thatV1∩V2 = ∅.
Letu be a nodeu ∈ V1∩V2. According to the de�nition, there
exist two nodesv , u andw , u such thatu ≃1 v andu ≃2 w .
In other words, N (u) = N (v) and N (u) ∪ {u} = N (w) ∪ {w}.
Since v has no edge to u while w has an edge to u, v , w .
Thus,w ∈ N (u) = N (v), namely, there is an edge betweenw
and v . Since v ∈ N (w) \ {u} ⊆ N (u), u and v have an edge,
contradiction. Therefore, V1 ∩V2 = ∅. □

According to Lemma 4.4, each node belongs to at most
one non-trivial equivalence class constructed under the two
equivalence relations. Therefore, we de�ne themapping func-
tion f that maps a node to the node with the smallest node
ID in the corresponding non-trivial equivalent class.

De�nition 4.5.

f (u) =

min{v |v ≃1 u}, i f u ∈ V1;

min{v |v ≃2 u}, i f u ∈ V2;

u, i f u ∈ V3;

(3)

Example 4.6. In Fig. 3, f (v11) = f (v12) = v11; f (v6) =
f (v7) = v6; f (u) = u, for u ∈ V3.

Graph Reduction. We compress the graph by eliminating
all the nodes u in V1 and V2 and their incident edges unless
f (u) = u. This operation transforms G to its subgraph Gs .

Example 4.7. In Fig. 3, f (v7) , v7, we delete v7. Similarly,
f (v12) , v12, we delete v12. Nodes u with f (u) = u are kept.

Lemma 4.8. For any two nodes s, t with f (s) , f (t),

distG (s, t) = distGs (f (s), f (t)).

Proof. Let p(s, t) = {v1,v2, · · · ,vk } be a shortest path on
G from s to t and let ps (s, t) = { f (v1), f (v2), · · · , f (vk)}.

This paragraph proves that for any nodes x and y on p

with x , y, f (x) , f (y). We �rst show that for all v , t on
p, f (v) , f (t): if otherwise the predecessor pre(v) of v on
the path p — pre(v) exists since f (s) , f (t) — can link to
t directly and then reduces the path length, contradiction.
Therefore, any node v with f (v) , f (t) has a successor on p.
Secondly, letu , t be a node on p; denote by S the equivalent
class of u; let z be the last node in S on the path. suc(z), the
successor of z on the path exists since f (u) = f (z) , f (t)

(from the �rst point). There is an edge from u to suc(z) since
1) z has an edge to suc(z), 2) u, z ∈ S and 3) suc(z) < S . Thus,
if suc(z) is not the successor ofu then p is not a shortest path.
Therefore, all nodes on p have di�erent f (·) values.

It is easy to verify that if f (u) , f (v) and there is an edge
between u and v , then there is an edge between f (u) and
f (v). Thus, ps (s, t) is a path on Gs . Since GS is a subgraph
of G, distG (s, t) ≤ distGS (s, t) ≤ distG (s, t). □

Table 2: Reduce Index Size with Equivalence Relations

Number of Reduced Nodes Index Space (MB)

Dataset |V | |V1 \ F (V1)| |V2 \ F (V2)| Before After

YOUT 3,223,590 1,068,666 14,405 2141.512 1474.86

TPD 1,766,010 312,166 11,912 1783.192 1495.05

Example 4.9. Denote by F (V ′) = {v ∈ V ′ |v = f (v)} the
remained nodes in a set under equivalence reduction. Ta-
ble 2 shows the e�ectiveness of the equivalence relations on
index reduction. For YOUT (TPD), around 33.15% (17.67%)
and 0.45% (0.67%) of nodes are eliminated by the �rst and
the second equivalence relation, respectively and the index
size are reduced by 31.13% (16.16%).

Query Processing. With the compressed graph, the query
processing has to be adapted. We answer query q(s, t) in the
following four cases. 1) If s = t , return 0. 2) If f (s) = f (t)

under s ≃1 t then return 2. 3) If f (s) = f (t) under s ≃2 t ,
return 1. 4) Otherwise, return q(f (s), f (t)) in Gs .

4.2 Local Minimum Set Elimination

The index reducing technique in this section is motivated by
an observation on the PLL label distribution.

For PLL with nodes ordered in node degrees, Fig. 4 shows
the label size distribution of two representative small-world
networks: Youtube (denoted by YOUT) is a social network
and UK-Tpd (denoted by TPD) is a web graph. The maximum
degrees of YOUT and TPD are 91751 and 63731, respectively.
It can be observed that low degree nodes have signi�cantly
larger label sizes than the high degree nodes. This observa-
tion motivates the elimination of node labels on the nodes
ranked lowest among its neighbors.

 0

 50

 100

 150

 200

 250

 300

 350

0 20K 40K 60K 80K 100K

A
v
g
 L

ab
el

 S
iz

e

Degree

(a) YOUT

0

200

400

600

800

1000

0 10K 20K 30K 40K 50K 60K

A
v

g
 L

ab
el

 S
iz

e

Degree

(b) TPD

Figure 4: PLL: Degree and Label Size

De�nition 4.10 (Local Minimum Set). A node is local min-
imum node if it has the lowest rank among its neighbors.
Local minimum set constitutes of local minimum nodes:

M(G) = {u ∈ V |for ∀v ∈ N (u), r (u) < r (v)}.

Example 4.11. In Fig. 5,M(G) = {v7,v10,v11,v12}. For ex-
ample, node v7 has the lowest rank among its neighbors.

An ideal property of a local minimum node v is that v is
referred to by no node other than v itself as a hub.

Lemma 4.12. For any node ∀v ∈ M(G) and any node ∀u ∈

V , v is a hub of u in LPSL if and only if v = u.

Proof. According to Theorem 3.1, v is a hub of u if v is
the highest ranked node in S — the set of all nodes on the

V1

V9

V8

V5

V4

V2

V6 V3

Figure 5: Local Minimum Set

shortest path fromu tov . Unlessu = v , for any shortest path
from u to v , there is a node w ∈ N (v) on the path. If v is a
local minimum node, r (v) < r (w) and v cannot be a hub of
u. □

Construct Labels for V \ M(G). Lemma 4.12 shows that
removing nodes in M(G) does not a�ect the label set of any
node in V \M(G). However, in our propagation based label
construction, LPSL

d
(v) is built from LPSL

d−1
(u), ∀u ∈ N (v). In

other words, for a node u ∈ N (v) ∩M(G), without LPSL
d−1
(u)

we cannot construct LPSL
d
(u) using Theorem 3.18.

To tackle the above problem, the key �nding is that nodes
in M(G) are independent. That is, there is no edge between
nodes inM(G). Thus, a nodeu with some of its neighbor from
M(G) can be saved by resorting to u’s two-hop neighbors
via nodes in M(G). These 2-hop neighbors will certainly fall
in V \M(G) and their labels are ready for use.

De�nition 4.13 (Generalized Neighbors). Given a node v ∈
V \M(G), we de�ne two neighbor sets. N 1(v) = N (v)\M(G)

includes the neighbors ofv that fall inV \M(G) and N 2(v) =

{w |w ∈ (N (u) \ {v}),∀u ∈ (N (v) ∩ M(G))} includes the
two-hop neighbors of v connected via nodes in M(G).

Example 4.14. In Fig. 5, since v9 ∈ V \ M(G), N 1(v9) =

{v1,v8}, N
2(v9) = {v1,v2}.

We show that the generalized neighbors are not inM(G).

Lemma 4.15. Given a nodev ∈ V \M(G),N 1(v)∩M(G) = ∅

and N 2(v) ∩M(G) = ∅.

Proof. N 1(v) ∩ M(G) = ∅ by De�nition 4.13. Let x ∈
N 2(v) be a node expanded from y ∈ N (v) ∩ M(G). If x ∈
M(G), then r (y) < r (x) and r (x) < r (y), contradiction. □

Example 4.16. In Fig. 5, N 2(v9) = {v1,v2}, which are all
in the set V \M(G).

We show a label propagation function onV \M(G) below.

For ∀v ∈ V and d ∈ [1,D + 1], denote, byCd (v), the set of
hub nodes in label set LPSL

d
(v).

Theorem 4.17. For each node u ∈ V \M(G)

LPSL
d
(u) =

⋃

w ∈Cd−1(v), for ∀v ∈N
1(u)

w ∈Cd−2(v
′), for ∀v ′∈N 2(u)

LPSL
d
(u,w), (4)

where LPSL
d
(u,w) =

{
�, i f r (w) < r (u) or Query(w,u,LPSL

<d
) ≤ dist(w,u);

(w,dist(w,u)), otherwise .

Proof. Let L′′ be the labels drawn from Equation (4). We
reuse the proof of Theorem 3.18 by showing that the hubs
L′ constructed in Equation (1) is a subset of the hubs in
L′′. According to Lemma 3.15,

⋃
v ′∈N 2(u)Cd−2(v

′) is a su-

per set of
⋃

v ∈N (v)∩M(G)Cd−1(v), besides, N (u) = N 1(u) ∪

(N (u) ∩M(G)), thus
⋃

v ∈N (u)Cd−1(v) ⊆
⋃

v ∈N 1(u)Cd−1(v) ∪⋃
v ′∈N 2(u)Cd−2(v

′) which completes the proof. □

Table 3: Reduced Index Size with Local Minimum Set

Node Number Index Space (MB)

Dataset |V | |M(G)| Before After

YOUT 3,223,590 2,287,357 2141.512 1234.377

TPD 1,766,010 1,151,224 1783.192 989.567

Example 4.18. Table 3 shows the e�ectiveness on reducing
the index size using local minimum set. For YOUT (TPD), the
local minimum set eliminates about 70.95% (65.18%) nodes
and reduces the index size by 42.4% (44.5%).

Query Processing. The reduced index provides the labels
for nodes in V \M(G). When it comes to query processing,
we can recover the labels of nodes inM(G) with the union
of the labels of neighbors. For a query q(s, t), without loss of
generality, if s ∈ M(G) and t ∈ V \M(G), we swap s and t .
To reduce the online cost, we use a hash join to produce the
2-hop distances. Let H be a table of size |V \M(G)| where
H (w) records the labelled distance in LPSL(s) with hub w .
H (w) = ∞ if w is not a hub of s . Since the label set LPSL(s)
may not be available, we construct H in two cases.

• If s ∈ V \M(G), we hash the labels in LPSL(s) by letting
H (v) = dist(s,v) for each hub v of s .
• Otherwise, we construct labels of s by visiting neigh-
borsw ∈ N (s) of s and updateH (v) with dist(v,w)+ 1
for each hub v ofw — H (v) only keeps the minimum
value along the updates.

After H being constructed, we generate labels of t in a
similar way and instead of updating the table H , we fetch
the value stored in the table H under the same hub node and
then compose a 2-hop distance.

Note that, the hash table H can be maintained across dif-
ferent queries without initialization: we keep a dirty log and
recover H after processing each query.

Lemma 4.19. When s, t ∈ M(G), the time cost of distance

query is O(Σa∈N (s) |L
PSL(a)| + Σb ∈N (t) |L

PSL(t)|).

Proof. For s , we store nodes in {LPSL(a)|a ∈ N (s)} in
H . For t , we scan the nodes in {LPSL(b)|b ∈ N (t)} to gain

the distance. The linear scan takes O(|{LPSL(a)|a ∈ N (s)}| +
|{LPSL(b)|b ∈ N (s)}|) time in total. □

Table 4: Local Minimum Set: Index and Query Time

Index Time (sec) Query Time (sec)

Dataset Before After Before After

YOUT 23.805 15.786 1.13E-06 1.71E-06

TPD 18.997 13.71 1.80E-06 3.71E-06

Example 4.20. Table 4 shows the index time and query
time in a 45-core environment. Local minimum set tech-
nique reduces, for YOUT (TPD), the index time by 33.69%
(27.83%) at a cost of 1.5× (2.06×) query time. The trade-o� is
worthwhile since the query time is still in micro-seconds.

5 RELATED WORK

Indexing shortest distances for fast online query processing
has been extensively studied. A recent experimental compar-
ison on distance labeling algorithms can be found in [17].

Distance Labeling on Small-world Networks. To index
shortest distances for small-world networks, existing solu-
tions either build a partial index to assist the online search
algorithms [5, 11, 12] or build a complete index to fully sup-
port the distance query [3, 13]. The solutions in the latter
category require a larger index but will obtain much faster
query processing time. In the �rst category, Is-label approach
�rst determines the vertex hierarchy through the indepen-
dent set and then creates the label for each node by this
hierarchy structure [11]. Tree decomposition is used in [5]
to discover the core-fringe structure of social-networks and
then index is created on these two separate parts. Shortest
path trees of high degree nodes are used [12] as index to
guide the online searching to process the distance query. In
the second category, PLL [3] constructs the index by per-
forming pruned BFS whose detail is given in Section 2.3. The
hop doubling approach in [13] applies generation rules to
join the short paths to long paths, until the whole paths are
covered. Compared to PLL, the algorithm proposed in [13]
uses less memory but will spend much more index time.

Distance Labeling on Road Networks. For distance in-
dexing approaches on road networks, the approach in [1]
constructs the index by eliminating the high ranking nodes
and add it to the labels of its neighbors. The approach pro-
posed by Wei [29] �rst decomposes the graph into a tree as
the index, and then the distance of two nodes are answered
through this index using dynamic programming. The pruned
highway labeling approach proposed by Akiba et al. [2] de-
composes the road network into disjoint paths and the label
of a node include the distance to some nodes of the paths. A
hierarchical hop-based index is proposed in [19] to answer

Table 5: The Description of the Datasets

Name Dataset n m Type

DELI Delicious10 536,109 1,365,961 Social Network

GP GPlus10 211,188 1,506,896 Social Network

LAST Lastfm10 1,191,806 4,519,330 Social Network

GOOG Google11 875,713 5,105,039 Web Graph

AMAZ Amazon7 735,323 5,158,388 Social Network

DIGG Digg10 770,800 5,907,132 Social Network

FLIX Flixster8 2,523,386 7,918,801 Social Network

TREC Trec8 1,601,787 8,063,026 Web Graph

YOUT Youtube8 3,223,589 9,375,374 Social Network

SKIT Skitter8 1,696,415 11,095,298 Internet Topology

TWIT Twitter11 456,631 14,855,875 Social Network

HUDO Hudong10 1,984,485 14,869,484 Web Graph

PET Petster8 623,766 15,699,276 Social Network

BAID Baidu10 2,141,301 17,794,839 Web Graph

TPD UK-Tpd7 1,766,010 18,244,650 Web Graph

DBLP DBLP8 1,314,050 18,986,618 Coauthorship

TOPC Topcats11 1,791,489 28,511,807 Web Graph

POK Pokec11 1,632,803 30,622,564 Social Network

FLIC Flickr8 2,302,925 33,140,017 Social Network

HOST UK-Host7 4,769,354 50,829,923 Web Graph

STAC Stack11 6,024,271 63,497,050 Interaction

LJ Ljournal7 5,363,260 79,023,142 Social Network

FB Facebook10 58,790,783 92,208,195 Social Network

INDO Indochina7 7,414,866 194,109,311 Web Graph

SINA Sina10 58,655,850 261,321,071 Social Network

WIKI Wiki8 12,150,976 378,142,420 Web Graph

ARAB Arabic7 22,744,080 639,999,458 Web Graph

IT IT-20047 41,291,594 1,150,725,436 Web Graph

SK SK-20057 50,636,154 1,949,412,601 Web Graph

UK UK-20067 77,741,046 2,965,197,340 Web Graph

shortest distance queries in a road network with bounded
query processing time and index size. More details about the
distance query on road networks can be found in [17, 30].

Approximate Distance Labeling. For approximate dis-
tance labeling algorithms, the basic idea is to select nodes
as landmarks and then precompute the distances from the
landmarks to all the other nodes. The distance between any
node pair can be estimated using triangle inequality [8, 20].
Online processing on landmarks is used to improve the preci-
sion [21, 27]. However, on small-world networks, the relative
error becomes signi�cant since the distances are bounded
by the small diameter.

6 EXPERIMENTAL RESULTS

Algorithms. We compare our proposed algorithms against
the state-of-the-art algorithm PLL [3]. Our techniques in-
clude the following three methods:

• PSL: the parallelized distance labeling technique intro-
duced in Section 3.

• PSL+: PSL with the equivalence relation elimination
technique as introduced in Section 4.1.
• PSL∗: PSL with the equivalence relation elimination
technique plus the local minimal set elimination tech-
nique as introduced in Section 4.2.

All algorithms were implemented in C++ and compiled
with GNU GCC 4.8.5 and -O3 level optimization. All experi-
ments were conducted on a machine with 48 CPU cores and
384 GB main memory running Linux (Red Hat Linux 4.8.5,
64bit). Each CPU core is Intel Xeon 2.1GHz. The parallelized
programs are supported by the OpenMP framework. We set
the cut-o� time as 24 hours.

Datasets. We conducted experiments on 30 real-world
graphs whose properties are shown in Table 5. The largest
graph has more than 2.9 billion edges. The datasets are
from various types of small-world networks including so-
cial networks, web graphs, internet topology graphs, coau-
thorship graphs, and interaction networks. All graphs were
downloaded from Network Repository5[23], Stanford Large
Network Dataset Collection6[15], Laboratory for Web Algo-
rithms7 [6, 7], and the Koblenz Network Collection8 [14].

Exp 1: Index Time on a Single Core. We compare the
index time of PLL with PSL, PSL+ and PSL∗ on a single core.
Note that, the bit-parallel technique introduced in [3] is used
for all methods since it is a separate optimization which can
be plugged into all distance labeling methods.

Fig. 6 shows that PSL has an index time comparable to
PLL while PSL+ and PSL∗ reduce the index time of PLL—
a by-product of the index reduction. For example, on the
dataset ARAB, PSL+ and PSL∗ successfully constructed the
index while PLL and PSL failed.

Exp 2: Index Time on Multiple Cores. Fig. 7 shows the
index time of PSL, PSL+ and PSL∗ on 45 cores. Compared to
the single-core results shown in Fig. 6, all the three methods
have a signi�cant speedup. This speedup allows PSL to index
multiple massive graphs, e.g., LJ, ARAB and SK, that cannot
be indexed on a single core. PSL∗ succeeded in indexing all
the graphs while both PSL and PSL+ failed on FB and UK—
thanks to the index reduction. The results show that the
parallelism together with the index reduction techniques
scale up the distance labeling to handle larger graphs.

Exp 3: Index Size. Fig. 8 shows the index size of PLL, PSL,
PSL+ and PSL∗. The label size of PLL and PSL is the same,
which conforms to the analysis in Section 3.3. Both index
reduction techniques are e�ective. PSL+ reduces the index
size of PSL on SK bymore than 50%. Moreover, only PSL∗ can

5http://networkrepository.com/index.php
6http://snap.stanford.edu/data/
7http://law.di.unimi.it
8http://konect.uni-koblenz.de/

10
0

10
1

10
2

10
3

10
4

10
5

10
6

INF

DELI
GP LAST

GOOG
AMAZ

DIGG
FLIX

TREC
YOUT

SKIT
TW

IT
HUDO

PET
BAID

TPD
DBLP

TOPC
POK

FLIC
HOST

STAC
LJ FB INDO

SINA
W

IKI
ARAB

IT SK UK

T
im

e
C

o
n

su
m

p
ti

o
n

 (
se

c)

PLL PSL PSL
+

PSL
*

Figure 6: The Comparison of the Index Time on One Core

10
0

10
1

10
2

10
3

10
4

10
5

10
6

INF

DELI
GP LAST

GOOG
AMAZ

DIGG
FLIX

TREC
YOUT

SKIT
TW

IT
HUDO

PET
BAID

TPD
DBLP

TOPC
POK

FLIC
HOST

STAC
LJ FB INDO

SINA
W

IKI
ARAB

IT SK UK

T
im

e
C

o
n

su
m

p
ti

o
n

 (
se

c)

PSL PSL
+

PSL
*

Figure 7: The Comparison of the Index Time on 45 Cores

index massive graphs such asUKwhile the other approaches
ran out of memory. This veri�ed the e�ectiveness of our
index reduction approaches.

Exp 4: Query Time. We compare the average query time
of PSL, PSL+ and PSL∗ on 106 random queries. Fig. 9 shows
that PSL+ and PSL∗ have a query time comparable to PSL.
For PSL+, the additional query cost on checking equivalence
relations is negligible. Since Gs is smaller than G, the query
time of PSL+ is sometimes smaller than PSL. For example,
the query time of PSL+ on DELI is 1.17E-6 seconds while the
query time of PSL is 1.31E-6 seconds. For PSL∗, although the
labels of nodes in M(G) need to be constructed on-the-�y,
the query time of PSL∗ is within twice the query time of PSL
on average, remaining in micro-second level.

Exp 5: Indexing Speedup on Multi Cores. The speedup
of the index time of an approach on x cores is calculated by

speedup =
the index time of the approach with 1 core

the index time of the approach with x cores
. (5)

According to Equation 5, when the core number is 1, the
speedup is constantly 1; when an approach fails in indexing
on 1 core within the time limit, its speedup cannot be derived.
Fig. 10 shows the index time speedup of PSL, PSL+ and PSL∗

with the core number varying from 1, 12, 23, 34, to 45 on six
networks, DBLP, POK, LJ, FB, WIKI, and SK, respectively.
A near linear speedup has been observed for all the three
approaches along with the increasing number of cores. The
speedup of each approach is relatively stable over di�erent
graphs. On 45 cores, PSL shows, over all datasets, an average

speedup of 30 and a maximum speedup of 32, PSL+ shows
average 28 and maximum 31 while PSL∗ shows average 27
and maximum 31. The index reduction techniques have little
in�uence on the speedup: the lines of the three approaches
clutter, especially onDBLP. A mild slowdown in the speedup
when the core number gets close to 45 can be explained by
the imbalance resource allocation introduced by more cores.

The index size reduction techniques can be critical: PSL
failed on FB even when 45 cores were engaged while PSL∗

removed redundant nodes to achieve an completion.

Exp 6: Scalability on Index Time. We randomly divided
the nodes of a graph into 5 groups, each group consisted
of 1/5 of the nodes. We created 5 graphs while the i-th test
case is the induced subgraph on the �rst i node groups. The
experiments were performed on the 5 graphs, respectively.

Fig. 11 shows that the index time of PSL∗ increases almost
linearly with the number of nodes of the graph. For example,
the index time is about 48 times on 100% nodes than on 20%
nodes ofDBLP and is about 8 times for FB. For PSL and PSL+,
although there is a situation where these two methods fail
to create the index, the index time increases smoothly when
the number of nodes increases. Therefore, the above results
justify the scalability of PSL for index time.

Exp 7: Scalability on Index Size. The setting is the same
as the former experiment. Fig. 12 shows that the space con-
sumption grows smoothly with the graph size for all three
methods. For example, the index space on 100% nodes of
DBLP is about 184.6, 251.2, 182.5 times larger than that on

10
2

10
3

10
4

10
5

10
6

10
7

INF

DELI
GP LAST

GOOG
AMAZ

DIGG
FLIX

TREC
YOUT

SKIT
TW

IT
HUDO

PET
BAID

TPD
DBLP

TOPC
POK

FLIC
HOST

STAC
LJ FB INDO

SINA
W

IKI
ARAB

IT SK UK

S
p

ac
e

C
o

n
su

m
p

ti
o

n
 (

M
B

)

PLL PSL PSL
+

PSL
*

Figure 8: The Comparison of the Index Size

10
-7

10
-6

10
-5

10
-4

10
-3

INF

DELI
GP LAST

GOOG
AMAZ

DIGG
FLIX

TREC
YOUT

SKIT
TW

IT
HUDO

PET
BAID

TPD
DBLP

TOPC
POK

FLIC
HOST

STAC
LJ FB INDO

SINA
W

IKI
ARAB

IT SK UK

Q
u

er
y

 T
im

e
(s

ec
)

PLL PSL PSL
+

PSL
*

Figure 9: The Comparison of the Query Time

PSL PSL+ PSL*

 0
 5

 10
 15
 20
 25
 30
 35

1 12 23 34 45

Speedup

(a) DBLP

 0
 5

 10
 15
 20
 25
 30
 35

1 12 23 34 45

Speedup

(b) POK

 0

 5

 10

 15

 20

 25

 30

1 12 23 34 45

Speedup

(c) LJ

 0

 5

 10

 15

 20

 25

1 12 23 34 45

Speedup

(d) FB

 0

 5

 10

 15

 20

 25

 30

1 12 23 34 45

Speedup

(e) WIKI

 0

 5

 10

 15

 20

 25

1 12 23 34 45

Speedup

(f) SK

Figure 10: The E�ect of Core Number on the Index Time

20% nodes for PSL, PSL+, and PSL∗ respectively. Therefore,
the smooth increase of the index space shows the scalability
of PSL for the index size.

Exp 8: Scalability on Query Time. Fig. 13 shows that the
query time of the proposed approaches grows smoothly with
the graph size. For example, on LJ, the query time on 100%
nodes is about 368.34, 372.92 and 546.26 times larger than that
on 20% nodes for PSL, PSL+, and PSL∗ respectively. Other
graphs show a similar trend. Combining the above experi-
ments on the scalability test, we draw the conclusion that
the proposed methods all show excellent scalability.

For more experiments please see Appendix B.

7 CONCLUSIONS

In this paper, we propose a novel parallelized labeling scheme
for distance queries on small-world networks. Our method
accelerates the index construction by concurrently creating
labels with the same label distances. Moreover, the index size
is further reduced by removing redundant nodes from the
graph and removing labels of local minimum sets from the
index. Extensive experimental results illustrate the superior
e�ciency of our approach. In particular, our approach en-
ables the building of the index for networks at billion scales.
Experimental results verify the near-linear speedup of our
algorithms in a multi-core environment.

PSL PSL
+

PSL
*

10
1

10
2

10
3

10
4

20% 40% 60% 80% 100%

Time Consumption (sec)

(a) DBLP

10
0

10
1

10
2

10
3

10
4

20% 40% 60% 80% 100%

Time Consumption (sec)

(b) POK

10
1

10
2

10
3

10
4

20% 40% 60% 80% 100%

Time Consumption (sec)

(c) LJ

10
2

10
3

10
4

10
5

INF

20% 40% 60% 80% 100%

Time Consumption (sec)

(d) FB

10
1

10
2

10
3

10
4

20% 40% 60% 80% 100%

Time Consumption (sec)

(e) WIKI

10
2

10
3

10
4

20% 40% 60% 80% 100%

Time Consumption (sec)

(f) SK

Figure 11: The Test of Scalability for the Index Time

PSL PSL
+

PSL
*

10
1

10
2

10
3

10
4

10
5

20% 40% 60% 80% 100%

Space Consumption (MB)

(a) DBLP

10
2

10
3

10
4

10
5

20% 40% 60% 80% 100%

Space Consumption (MB)

(b) POK

10
2

10
3

10
4

10
5

20% 40% 60% 80% 100%

Space Consumption (MB)

(c) LJ

10
2

10
3

10
4

10
5

10
6

10
7

INF

20% 40% 60% 80% 100%

Space Consumption (MB)

(d) FB

10
2

10
3

10
4

10
5

20% 40% 60% 80% 100%

Space Consumption (MB)

(e) WIKI

10
3

10
4

10
5

10
6

20% 40% 60% 80% 100%

Space Consumption (MB)

(f) SK

Figure 12: The Test of Scalability for the Index Size

PSL PSL
+

PSL
*

10-8

10-7

10-6

10-5

10-4

20% 40% 60% 80% 100%

Query Time (sec)

(a) DBLP

10-7

10-6

10-5

10-4

20% 40% 60% 80% 100%

Query Time (sec)

(b) POK

10-8

10-7

10-6

10-5

10-4

20% 40% 60% 80% 100%

Query Time (sec)

(c) LJ

10-8
10-7
10-6
10-5
10-4
10-3
INF

20% 40% 60% 80% 100%

Query Time (sec)

(d) FB

10-8

10-7

10-6

10-5

10-4

20% 40% 60% 80% 100%

Query Time (sec)

(e) WIKI

10-8

10-7

10-6

10-5

10-4

20% 40% 60% 80% 100%

Query Time (sec)

(f) SK

Figure 13: The Test of Scalability for the Query Time

Acknowledgements.Miao Qiao is supported by Marsden
Fund UOA1732, Royal Society of New Zealand. Lu Qin is sup-
ported by ARC DP160101513. Ying Zhang is supported by
ARC FT170100128 and DP180103096. Lijun Chang is sup-
ported by ARC DP160101513 and FT180100256. Xuemin
Lin is supported by NSFC 61672235, DP170101628 and
DP180103096.

REFERENCES
[1] Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Wer-

neck. 2012. Hierarchical hub labelings for shortest paths. In European

Symposium on Algorithms. Springer, 24–35.

[2] Takuya Akiba, Yoichi Iwata, Ken-ichi Kawarabayashi, and Yuki Kawata.

2014. Fast shortest-path distance queries on road networks by pruned

highway labeling. In 2014 Proceedings of the Sixteenth Workshop on

Algorithm Engineering and Experiments (ALENEX). SIAM, 147–154.

[3] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact

shortest-path distance queries on large networks by pruned landmark

labeling. In Proceedings of the 2013 ACM SIGMOD International Confer-

ence on Management of Data. ACM, 349–360.

[4] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2014. Dynamic and

historical shortest-path distance queries on large evolving networks

by pruned landmark labeling. In Proceedings of the 23rd international

conference on World wide web. ACM, 237–248.

[5] Takuya Akiba, Christian Sommer, and Ken-ichi Kawarabayashi. 2012.

Shortest-path queries for complex networks: exploiting low tree-width

outside the core. In Proceedings of the 15th International Conference on

Extending Database Technology. ACM, 144–155.

[6] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011.

Layered Label Propagation: A MultiResolution Coordinate-Free Or-

dering for Compressing Social Networks. In Proceedings of the 20th

international conference on World Wide Web, Sadagopan Srinivasan,

Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and

Ravi Kumar (Eds.). ACM Press, 587–596.

[7] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework

I: Compression Techniques. In Proc. of the Thirteenth International

World Wide Web Conference (WWW 2004). ACM Press, Manhattan,

USA, 595–601.

[8] Wei Chen, Christian Sommer, Shang-Hua Teng, and Yajun Wang. 2012.

A compact routing scheme and approximate distance oracle for power-

law graphs. ACM Transactions on Algorithms (TALG) 9, 1 (2012), 4.

[9] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2002. Reach-

ability and distance queries via 2-hop labels. In Proceedings of the thir-

teenth annual ACM-SIAM symposium on Discrete algorithms. Society

for Industrial and Applied Mathematics, 937–946.

[10] Daniel Delling, Andrew V Goldberg, and Renato F Werneck. 2013.

Hub label compression. In International Symposium on Experimental

Algorithms. Springer, 18–29.

[11] Ada Wai-Chee Fu, Huanhuan Wu, James Cheng, and Raymond Chi-

Wing Wong. 2013. Is-label: an independent-set based labeling scheme

for point-to-point distance querying. Proceedings of the VLDB Endow-

ment 6, 6 (2013), 457–468.

[12] Takanori Hayashi, Takuya Akiba, and Ken-ichi Kawarabayashi. 2016.

Fully dynamic shortest-path distance query acceleration on massive

networks. In Proceedings of the 25th ACM International on Conference

on Information and Knowledge Management. ACM, 1533–1542.

[13] Minhao Jiang, Ada Wai-Chee Fu, Raymond Chi-Wing Wong, and

Yanyan Xu. 2014. Hop doubling label indexing for point-to-point

distance querying on scale-free networks. Proceedings of the VLDB

Endowment 7, 12 (2014), 1203–1214.

[14] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In

Proceedings of the 22nd International Conference on World Wide Web.

ACM, 1343–1350.

[15] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large

Network Dataset Collection. http://snap.stanford.edu/data.

[16] Jianxin Li, Xinjue Wang, Ke Deng, Xiaochun Yang, Timos Sellis, and

Je�rey Xu Yu. 2017. Most in�uential community search over large so-

cial networks. In Data Engineering (ICDE), 2017 IEEE 33rd International

Conference on. IEEE, 871–882.

[17] Ye Li, Man Lung Yiu, Ngai Meng Kou, et al. 2017. An experimental

study on hub labeling based shortest path algorithms. Proceedings of

the VLDB Endowment 11, 4 (2017), 445–457.

[18] Mark EJ Newman. 2005. A measure of betweenness centrality based

on random walks. Social networks 27, 1 (2005), 39–54.

[19] Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and

Qing Zhu. 2018. When Hierarchy Meets 2-Hop-Labeling: E�cient

Shortest Distance Queries on Road Networks. In Proceedings of the

2018 International Conference on Management of Data. ACM, 709–724.

[20] Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides

Gionis. 2009. Fast shortest path distance estimation in large networks.

In Proceedings of the 18th ACM conference on Information and knowledge

management. ACM, 867–876.

[21] Miao Qiao, Hong Cheng, Lijun Chang, and Je�rey Xu Yu. 2014. Approx-

imate shortest distance computing: A query-dependent local landmark

scheme. IEEE Transactions on Knowledge and Data Engineering 26, 1

(2014), 55–68.

[22] Yongrui Qin, Quan Z Sheng, Nickolas JG Falkner, Lina Yao, and Simon

Parkinson. 2017. E�cient computation of distance labeling for decre-

mental updates in large dynamic graphs. World Wide Web 20, 5 (2017),

915–937.

[23] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repos-

itory with Interactive Graph Analytics and Visualization. In Proceed-

ings of the Twenty-Ninth AAAI Conference on Arti�cial Intelligence.

http://networkrepository.com

[24] Polina Rozenshtein, Aris Anagnostopoulos, Aristides Gionis, and Niko-

laj Tatti. 2014. Event detection in activity networks. In Proceedings of

the 20th ACM SIGKDD international conference on Knowledge discovery

and data mining. ACM, 1176–1185.

[25] Chih-Ya Shen, Liang-Hao Huang, De-Nian Yang, Hong-Han Shuai,

Wang-Chien Lee, and Ming-Syan Chen. 2017. On �nding socially

tenuous groups for online social networks. In Proceedings of the 23rd

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. ACM, 415–424.

[26] Je�rey Travers and Stanley Milgram. 1967. The small world problem.

Phychology Today 1, 1 (1967), 61–67.

[27] Konstantin Tretyakov, Abel Armas-Cervantes, Luciano García-

Bañuelos, Jaak Vilo, and Marlon Dumas. 2011. Fast fully dynamic

landmark-based estimation of shortest path distances in very large

graphs. In Proceedings of the 20th ACM international conference on

Information and knowledge management. ACM, 1785–1794.

[28] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of

‘small-world’ networks. nature 393, 6684 (1998), 440.

[29] Fang Wei. 2010. TEDI: e�cient shortest path query answering on

graphs. In Proceedings of the 2010 ACM SIGMOD International Confer-

ence on Management of data. ACM, 99–110.

[30] Lingkun Wu, Xiaokui Xiao, Dingxiong Deng, Gao Cong, Andy Diwen

Zhu, and Shuigeng Zhou. 2012. Shortest path and distance queries on

road networks: An experimental evaluation. Proceedings of the VLDB

Endowment 5, 5 (2012), 406–417.

http://snap.stanford.edu/data
http://networkrepository.com

A PROOF OF LEMMA 2.3

According to triangle inequality, for any node u ∈ V ,
dist(s,u) + dist(u, t) ≥ dist(s, t). For a node u ′ on a shortest
path from s to t , dist(s, t) = dist(s,u ′) + dist(u ′, t). Since
C(s) ∩ C(t) shares a node with a shortest path from s to t ,
minv ∈C(s)∩C(t) dist(s,v) + dist(v, t) = dist(s, t).

B ADDITIONAL EXPERIMENTS

Exp 9: The Impact of Node Order. Theorem 3.1 shows
that the index structure of PSL and PLL is determined by the
node order. Apart from the degree-based node order engaged
by Exp 1-8 in Section 6, a popular node order is based on
the betweenness centrality of each node u — the fraction of
shortest paths between node pairs that pass through u [18].
Paper [17] also mentioned a signi�cant-path-based node
order generated from an iterative process. For each i ∈ [1,n],
the i-th iteration has the following steps.

(1) Ci denotes the candidate set. C1 = V is the node set of
the graph. For i ∈ [2,n], Ci is determined in the (i −
1)-th round. Si denotes the set of previously selected
signi�cant nodes where S1 = ∅.

(2) ri , the signi�cant node, is the highest-degree node in
Ci . Denote by T (ri) the shortest path tree rooted at ri .

(3) Compute the trimmed shortest path treeTi , the largest
subtree of T (ri) rooted at ri without a node in Si .

(4) Computepi , the root to leaf path inTi where each node
v in pi is the maximum-degree child inTi of prec(v,pi)
— the predecessor of v in pi ;

(5) If pi has only one node, then let Ci+1 be V \ Si+1, oth-
erwise, let Ci+1 be the nodes in pi with ri excluded.

The iteration terminates in n = |V | rounds. The signi�cant-
path-based node order is r1, r2, · · · , rn .

This experiment computes the three node orders:

D Degree-based node order,
B Betweenness-centrality-based node order, and
S Signi�cant-path-based node order,

using existed source code9 and then compares the perfor-
mance of our proposed approaches, PSL, PSL+ and PSL∗ un-
der the three node orders. PSLD denotes PSL under node or-
der D and this notation similarly applies to other approaches
and node orders. Note that it is necessary to list the com-
putation time of a node order — the betweenness centrality
of nodes in V and the signi�cant path of the graph requires
heavy computation.

Table. 6 shows the index time (with the node order compu-
tation timeOT), index size, and query time of PSL, PSL+, and
PSL∗ under di�erent node orders D, B, and S, respectively,
on four graphs DELI, GP, LAST, GOOG. The node order of
a bold number wins the corresponding comparison.

9http://degroup.cis.umac.mo/sspexp

In terms of the total index time — the summation of the in-
dex time and node order computation time — under one core,
node order D wins over all the comparisons. This attributes
to the fast computation time of the node order D. Node order
B allows smaller index time at a cost of a far more expensive
node order computation. The computation of node order S
is on average 40% cheaper than that of node order B but is
still far more expensive than that of node order D.

Node order D produces index with sizes comparable and
even lower than that of node orders B and S. Though for
PSL, the index size under node order B is on average 37%
smaller than that under node order D; for PSL+ and PSL∗,
node order D wins the comparisons on, respectively, 2 out of
4 and 3 out of 4 datasets, which is surprising in considering
its low computation cost.

The wining node order (typically node orders B and S) in
query time spends, compared to node order D on average,
29% less query time. For PSL∗, node order D wins the query
time on 2 out of 4 datasets.

The degree-based node order has a comparable or even
smaller index size and query time than that of betweenness-
centrality-based and signi�cant-path-based node orders.
Betweenness-centrality-based node order shows better index
size and query time but is expensive to compute.

Exp 10: Comparisonwith other Index Reduction Tech-

niques. This experiment compares the two index reduction
techniques proposed in Section 4 (PSL+ utilises the �rst re-
duction technique while PSL∗ applies both) to the existing
index reduction technique HLC [10]. HLC compresses the
index by coding the common labels into reusable tokens
while restoring the labels in query time. The code of HLC
was from the authors of [17].

The performance gained by applying an index reduction
technique can be captured by the ratio of the costs (index
time, index size, or query time) before and after the technique
is applied. A ratio greater than 1 if and only if the index
reduction technique is reducing the cost.

Fig. 14 shows the index time ratio, index size ratio and
query time ratio of the three index reduction techniques on
four datasets DELI, GP, LAST and GOOG.

The index time ratio of HLC is constantly smaller than 1:
HLC pays 36%more time than PLL in compressing the index
of PLL. In contrast, the index time of PSL+ (and PSL∗) is 64%
(and 75%) less than that of the baseline.

HLC, PSL+ and PSL∗ can all reduce the index size; however,
the index reduction of HLC is not for free — the query time
of HLC becomes much longer (ratio much smaller than 1).
In contrast, PSL+ reduces the query time of the baseline.

In conclusion, HLC achieves smaller index size at a cost of
a much longer index and query time while PSL+ reduces the

Table 6: The E�ect of Node Order on Index Time (IT), Index Size (IS), and Query Time (QT)

Dataset
PSL PSL+ PSL∗

PSLD(OT) PSLB(OT) PSLS(OT) PSL+D(OT) PSL+B(OT) PSL+S(OT) PSL∗D(OT) PSL∗B(OT) PSL∗S(OT)

IT (sec)

DELI 23.9(0.1) 20.9(173.4) 24.6(81.5) 16.1(0.1) 17.7(173.4) 19.5(81.5) 9.6(0.1) 13.1(173.4) 12.2(81.5)

GP 53.8(0.1) 22.2(118.8) 23.6(62.3) 53.8(0.1) 21.0(118.8) 21.5(62.3) 38.4(0.1) 24.6(118.8) 20.9(62.3)

LAST 282.6(0.3) 228.9(1481) 287.4(1040) 182.6(0.3) 162.8(1481) 209.2(1040) 75.2(0.3) 86.9(1481) 85.0(1040)

GOOG 74.5(0.2) 34.7(123.4) 39.2(87.6) 39.2(0.2) 26.7(123.4) 33.1(87.6) 33.6(0.2) 23.9(123.4) 26.9(87.6)

IS (MB)

DELI 364.0 319.4 338.9 184.0 244.4 255.9 114.5 180.8 183.7

GP 355.2 143.1 158.8 341.8 141.0 156.3 235.4 107.5 123.9

LAST 1997.5 1778.7 1958.8 1182.1 1242.8 1343.6 351.8 461.3 473.8

GOOG 589.1 366.1 399.9 331.6 324.0 343.0 245.0 283.3 291.5

QT (sec)

DELI 1.3E-06 1.1E-06 1.2E-06 1.2E-06 1.0E-06 1.1E-06 1.4E-06 1.6E-06 1.5E-06

GP 3.2E-06 1.4E-06 1.3E-06 3.1E-06 1.2E-06 1.3E-06 3.8E-06 2.6E-06 2.0E-06

LAST 3.3E-06 2.9E-06 3.2E-06 3.1E-06 2.8E-06 3.1E-06 5.9E-06 6.4E-06 6.5E-06

GOOG 1.1E-06 7.4E-07 8.6E-07 9.4E-07 7.7E-07 8.2E-07 2.3E-06 1.6E-06 1.6E-06

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

DELI GP LAST GOOG

In
de

x
T

im
e

R
at

io

HLC PSL+ PSL*

(a) Index Time Ratio

10-2

10-1

100

101

102

DELI GP LAST GOOG

In
de

x
Si

ze
 R

at
io

HLC PSL+ PSL*

(b) Index Size Ratio

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

DELI GP LAST GOOG

Q
ue

ry
 T

im
e

R
at

io

HLC PSL+ PSL*

(c) Query Time Ratio

Figure 14: The Comparison of Size Reduction Techniques

Table 7: The Description of the Road Networks

Name Dataset n m D

BO road-belgium-osm10 1,441,295 1,549,970 1987

CA roadNet-CA11 1,971,281 2,766,607 865

PA roadNet-PA11 1,090,920 1,541,898 794

TX roadNet-TX11 1,393,383 1,921,660 1064

index size, index time and query time simultaneously. PSL∗

reduces the index time and index size at cost of a moderate
increase on the query time.

Exp 11: Performance on Road Networks.We evaluated
our approaches on graphs with large diameters. A majority
of real graphs with large diameters are weighted, we thus
downloaded 4 Road Networks (RN) from Network Reposi-
tory10 and Stanford Large Network Dataset Collection11and
then turned them into unweighted graphs by letting the
weight of each edge be 1. Table 7 shows the details of the
four RNs.

We performed PSL, PSL+ and PSL∗ on the four road net-
works. The index time, index space and query time on 1 core
are shown in Fig. 15. PSL+ performed identically with PSL

since on road networks, it is hard to �nd non-trivial equiva-
lent node classes. In contrast, PSL∗ can still reduce the index
time and index size of PSL at a cost of a slight increase of
query time. On 45 cores, the speedup of the three approaches

10http://networkrepository.com/index.php [23]
11http://snap.stanford.edu/data/ [15]

stays stably within 16-21. This means that our parallelization
also works for graphs with large diameters.

We carried out the state-of-the-art road network distance
labeling approach, the hierarchical 2-hop labeling method
(H2H) [19]. H2H makes full use of the graph structure of
road networks to achieve the superior e�ciency in index
time and query time by combining the 2-hop labeling with
the additional node hierarchy. We obtained the source code
from the authors of [19] and adopted default parameters.

Fig. 16 compares the performance ofH2Hwith that of PSL-
1 and PSL-45, the PSL on one core and 45 cores, respectively.
PSL-1 takes up to two orders of magnitude longer index
time than H2H and one order of magnitude longer query
time. The index size of PSL is also larger than that of H2H.
Even equipped with 45 cores, the index time of PSL-45 is still
slower than H2H on 2 out of 4 datasets. This result echoes
the fact that PLL was not designed for road networks.

C EXTEND PSL TO DIRECTED GRAPHS

For directed graphs, each node v ∈ V is associated with
a set of hub nodes CIN(v), where w ∈ CIN(v) can reach v

and another set of hub nodes COUT(v), where v can reach
w ∈ COUT(v). Combined with the distance, we obtain two
labels LIN(v) = {(u,dist(u,v))|u ∈ CIN(v)} and LOUT(v) =

{(u,dist(v,u))|u ∈ COUT(v)} for the node v . To compute
the labels LOUT(v), we run PSL on G; To compute LIN(v),
we reverse the edge direction of graph and run PSL on the

103

104

105

BO CA PA TX

T
im

e
C

on
su

m
pt

io
n

(s
ec

)

PSL PSL+ PSL*

(a) Index Time

103

104

105

BO CA PA TX

Sp
ac

e
C

on
su

m
pt

io
n

(M
B

)

PSL PSL+ PSL*

(b) Index Space

10-7

10-6

10-5

10-4

BO CA PA TX

Q
ue

ry
 T

im
e

(s
ec

)

PSL PSL+ PSL*

(c) Query Time

Figure 15: Performance of PSL-Based Approaches on Road Networks

100

101

102

103

104

105

106

BO CA PA TX

T
im

e
C

on
su

m
pt

io
n

(s
ec

)

H2H PSL-1 PSL-45

(a) Index Time

103

104

105

BO CA PA TX

Sp
ac

e
C

on
su

m
pt

io
n

(M
B

)

H2H PSL-1 PSL-45

(b) Index Space

10-7

10-6

10-5

10-4

BO CA PA TX

Q
ue

ry
 T

im
e

(s
ec

)

H2H PSL-1 PSL-45

(c) Query Time

Figure 16: Compare PSL to the State-Of-The-Art Road Network Labeling Approach

reversed graph. To process the distance query q(s, t), we
make use of Query(s, t ,L) de�ned in the following equation.

Query(s, t ,L) =minu ∈COUT(s)∩CIN(t)(dist(s,u) + dist(u, t)).

D DISCUSSIONS

Empower PLL with two index reduction techniques.

PLL adopts the equivalence relation reduction technique
by initializing with a graph reduction: map each node to
the smallest node in the non-trivial equivalent class (De�ni-
tion 4.5) and then remove the nodeswith f (u) , u. According
to Theorem 4.17, PLL on the reduced graph is identical to
PSL on the reduced graph which is the index of PSL+.

PLL adopts the local minimum set reduction by adapting
the graph G(V ,E) to G ′(V ′,E ′). Speci�cally, let M(G) be the
local minimal set of G. For each node v ∈ M(G), let Ev =
{(u,w) ∈ E |u,w ∈ N (v)}. The new graph G ′ has V ′ = V \ S
and E ′ = E ∪

⋃
v ∈M(G) Ev . We assign to each newly added

edge a weight of 2 and perform PLL onG ′ under the original
node order. It can be easily proved that for any two nodes
u,v < M(G), their shortest distance on G ′ is the same with
that on G. According to Theorem 3.1, u is a hub of v on G ′

if and only if u is a hub of v on G. Besides, according to the
local minimality, nodes in M(G) do not contribute to any
label of other nodes on G, thus, the PLL labels of a node v
on G ′ is identical to that of v on G. The index of PLL on G ′,
therefore, is identical to the index of PSLwith local minimum
set technique on G. The query processing in Section 4.2 can
be directly applied. Since the degree of a local minimal node
is not larger than that of its neighbors, the size of G ′ can be
well bounded. For example, on GOOG, |E ′ | = 2.29|E |, and
the number of |E ′ | is no more than 3|E | over all the datasets
in Table 5.

Extend PSL to Dynamic Graphs. Extending PLL to dy-
namic graphs has been studied in the literature and the
existing results show that maintaining the PLL index for
both edge insertion and edge deletion is challenging. For the
distance label maintenance under edge insertion, existing
technique [4] fails in eliminating the outdated labels and
thus breaks the minimal property of PLL. For the distance la-
bel maintenance under edge deletion, existing approach [22]
needs to conduct BFS from a�ected nodes and the speedup
over the baseline of recomputing all the labels is thus mar-
ginal (up to one order of magnitude). Due to the challenges
to maintain the PLL index, it is non-trivial to extend PSL to
handle dynamic graphs using multiple cores. We will further
explore how to parallelize PLL to handle dynamic graphs as
our future work.

Extend PSL to Weighted Graphs. To handle weighted
graphs, we need to modify the pruning condition in
Lemma 3.17 as follows:

Lemma D.1. A hub w in the label set
⋃

v ∈N (u) L
PSL
d−1
(v)

is not a hub of u in LPSL
d
(u) if Query(w,u,LPSL

<d
) ≤

minx ∈LPSL
d−1
(u)∩N (w) dist(w,x) + lenдth(Label

PSL
d−1
(u,x)).

Since x ∈ LPSL
d−1
(u), there is a label ofu with d−1 hops from

x . Here its weighted length recorded by the label is denoted
as lenдth(LabelPSL

d−1
(u,x)).

Since the labels are generated based on the increasing
order of number of hops other than the weighted distances,
it is possible that a label with more hops may be shorter
than the label with fewer hops. Consequently, some labels
that can be pruned by PLL may not be pruned by PSL. As a
result, PSL will produce a super set of labels of PLL although
PSL still guarantees the correctness of query processing. It
remains hard to trim the labels e�ciently.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Shortest Distance Problem
	2.2 2-Hop Labeling for Distance Queries
	2.3 Prune Landmark Labeling Approach

	3 Parallelized Distance Labeling
	3.1 Label Property
	3.2 Order Dependency
	3.3 Distance Dependency
	3.4 The Parallelized Labeling Method

	4 Index Size Reduction
	4.1 Equivalence Relation Reduction
	4.2 Local Minimum Set Elimination

	5 Related work
	6 Experimental Results
	7 Conclusions
	References
	A Proof of Lemma 2.3
	B Additional Experiments
	C Extend PSL to Directed Graphs
	D Discussions

