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Abstract

Motivated by the high cost of human curation of biological databases, there is an increas-

ing interest in using computational approaches to assist human curators and accelerate

the manual curation process. Towards the goal of cataloging drug indications from FDA

drug labels, we recently developed LabeledIn, a human-curated drug indication resource

for 250 clinical drugs. Its development required over 40 h of human effort across 20

weeks, despite using well-defined annotation guidelines. In this study, we aim to investi-

gate the feasibility of scaling drug indication annotation through a crowdsourcing tech-

nique where an unknown network of workers can be recruited through the technical

environment of Amazon Mechanical Turk (MTurk). To translate the expert-curation task

of cataloging indications into human intelligence tasks (HITs) suitable for the average

workers on MTurk, we first simplify the complex task such that each HIT only involves a

worker making a binary judgment of whether a highlighted disease, in context of a given

drug label, is an indication. In addition, this study is novel in the crowdsourcing interface

design where the annotation guidelines are encoded into user options. For evaluation,

we assess the ability of our proposed method to achieve high-quality annotations in a

time-efficient and cost-effective manner. We posted over 3000 HITs drawn from 706 drug

labels on MTurk. Within 8h of posting, we collected 18 775 judgments from 74 workers,

and achieved an aggregated accuracy of 96% on 450 control HITs (where gold-standard

answers are known), at a cost of $1.75 per drug label. On the basis of these results, we

conclude that our crowdsourcing approach not only results in significant cost and time

saving, but also leads to accuracy comparable to that of domain experts.
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Introduction

A common task in biocuration is to manually extract

knowledge from unstructured texts and transform them

into structured datasets. Manual data curation is very cen-

tral to the contemporary biomedical research, as it gener-

ates computable data that is accessible to both machines

and end users. However, manual curation is inherently ex-

pensive due to the associated time and human labor costs.

In response to the scalability issue of manual curation, re-

cently there has been an increasing interest in using

advanced computer technologies for assistance, including

various text-mining techniques (1, 2) and interactive com-

puter systems (3–5). To our knowledge, existing efforts

have been primarily focused on improving biocuration

workflows (6–8) and common literature curation tasks

such as document triage (9, 10), gene tagging (11), and

Gene Ontology (GO) annotation (12, 13).

Unlike previous studies, the ultimate goal of this work

is to curate medical information, more specifically thera-

peutic relationships between human drugs and diseases,

from the free text descriptions into structured knowledge.

Previous research suggests that such a structured and com-

putable resource is critical for many real-world applica-

tions, ranging from online health information retrieval

(14–16), to translational bioinformatics research (17–20),

to clinical decision support systems (21–23). Given the

lack of such a gold standard, there have been several at-

tempts (24–26) towards creating a comprehensive reposi-

tory of drug–disease relationships in the public domain.

For such a purpose, the drug Structured Product Labeling

(SPL) data (hereafter referred to as drug labels; see Figure 1

for an example) has been more commonly used than the

biomedical literature. Drug labels contain rich textual de-

scriptions of drug indications and clinical trial studies for

marketed drugs. They are submitted to the FDA by the

pharmaceutical manufactures and can be freely down-

loaded from the U.S. National Library of Medicine’s

DailyMed http://dailymed.nlm.nih.gov/dailymed/index.

cfm database.

Towards such a goal, we recently created LabeledIn

(27) based on manual curation of drug labels. To acceler-

ate the manual curation process, we adopted a semiauto-

mated pipeline where all disease occurrences are first

tagged by a text-mining tool. Next, human experts were

asked to select true indications and reject non-indication

disease mentions. The manual annotation process involved

three highly experienced annotators with expertise in phar-

macy and biomedical document indexing, with the assist-

ance of detailed annotation guidelines http://ftp.ncbi.nlm.

nih.gov/pub/lu/LabeledIn/Annotation_Guidelines.pdf. For

cataloging indications of 250 popular human drugs, it

effectively required over 40 h of human labor, spread

across over 20 weeks. With our ultimate goal to scale

LabeledIn with thousands of drugs from DailyMed

and other resources, this study investigate the feasibility

of scaling human curation through a technique of

crowdsourcing, and subsequently evaluate its efficiency,

cost-effectiveness and ability to achieve high-quality

annotations.

Crowdsourcing is known as a participative online activ-

ity wherein a job of variable complexity and modularity is

outsourced to an undefined, diverse, and large network of

workers (28). Over the years, its definition has evolved to

include many activities, such as analysis of search logs

(14), editing wikis in biology (29), etc. The chief character-

istic of a task to be formulated as a crowdsourcing job is

that it cannot be solved by automated computational

methods. Good and Su (30) focus on directed problems in

bioinformatics and classify the crowdsourcing problems in

biomedicine as (i) megatasks, tasks that are individually

challenging, e.g. open innovation contests (31), and (ii)

microtasks, tasks that are large in number but low in diffi-

culty, e.g. word sense disambiguation (32) and named en-

tity recognition (33). The workers participate in

microtasks for a variety of reasons, such as altruism (sci-

ence service), fun (scientific games), cash rewards (micro-

task markets), or out of necessity (the ReCAPTHA project

for optical character recognition).

Figure 1. An example of an FDA Drug Label in DailyMed; drug names are specified as normalized concepts under the ‘RxNorm Names’ box, and the

drug indications are described as free text in the ‘INDICATIONS AND USAGE’ section.
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With regard to the task of text annotation, the micro-

task markets powered by the Amazon Mechanical Turk or

MTurk (https://www.mturk.com) platform are among the

most popular crowdsourcing mechanisms. In microtasking

with MTurk, a crowdsourcing job is decomposed into

modular units known as a human intelligence task (HIT): a

task that can be quickly accomplished by humans (referred

to as ‘turkers’) who are generally under age 30 and have a

college or advanced degree (34). Successful uses of MTurk

for producing linguistic resources or performing evalu-

ations at a low cost have been reported in the natural lan-

guage processing (NLP) domain. Two biomedical

microtasking studies include the medical named entity

recognition (NER) and linking study (35) and the gene–

mutation relationship study (36, 37). But unlike previous

NLP-oriented tasks, we aim to tackle a problem in biomed-

ical data curation rather than linguistic or corpus annota-

tion with very different objectives and practices (e.g., our

crowdsourced results neither include any linguistic infor-

mation nor are meant for training or evaluating NLP algo-

rithms). Thus our study has more resemblance to (23, 24)

than (22). But compared to (22), we were able to achieve

higher accuracies on this task with several innovations in

design and quality control.

Motivated by the previous success, we also rely on the

microtask market through MTurk but explore its use on a

new problem (curating indications from drug labels) in

biomedicine as opposed to those traditional tasks (e.g. en-

tity tagging). More specifically, we reformulate the com-

plex task of annotating drug–disease treatment

relationships (by domain experts as in LabeledIn) into

HITs suitable for the average turkers in the microtasking

environment. In creating LabeledIn, an expert curator was

shown all pre-computed disease mentions in a drug label

and asked to select the correct indication(s) and reject in-

valid ones. In contrast, in this study the annotation task is

significantly simplified: only one disease is shown in a HIT

at a time to the turkers such that a binary YES/NO judg-

ment will be sufficient. Next, a novel feature of our HIT

design is that to simulate the guided nature of expert

annotation studies, we encode the lengthy annotation

guidelines as multiple-choice answers in a HIT. That is, in

order to assist turkers to reject non-indication disease men-

tions in a drug label, we expanded one NO option into

five, each representing a specific reason for rejection (e.g.

the highlighted disease is a side effect of the drug). Then in

order to optimize the quality of crowdsourced results, we

implemented a number of quality control measures such as

using a high cut-off qualifier test and representative control

items. Finally, the scale of this study (3454 HITs drawn

from 793 drug labels) is comparable to the other MTurk

studies in biomedicine. Our experimental results, including

turnaround time and aggregated HIT accuracy, strongly in-

dicate the practical utility of crowdsourced judgments in

increasing the drug coverage of LabeledIn.

Methods

Figure 2 shows our overall framework of cataloging drug–

disease relationships from FDA drug labels using MTurk

in five modules:

Select the drug labels from DailyMed.

Use NER tools to tag all diseases and drugs in a given drug

label.

Design and generate atomic tasks, or HITs.

Configure the MTurk platform and submit the HITs for

crowdsourcing.

Collect, aggregate, and evaluate the turkers’ judgments

(based on the control items).

The first two modules are adopted from the original

LabeledIn study pipeline, wherein identical drug labels are

grouped to minimize overall workload, and NER tools are

applied to aid the annotation process. For the remaining

modules, we translate the task of domain expert annota-

tion into microtasks for use within the environment and

technical limitations associated with MTurk. We designed

this study and prepared the datasets for crowdsourcing

within a span of 3 months.

Figure 2. Crowdsourced Microtasking Pipeline for Cataloging Drug Indications from FDA Drug Labels. Part II shows the drug and disease mentions

identified using named-entity recognition (NER) tools.

Database, Vol. 2015, Article ID bav016 Page 3 of 10

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/d
a
ta

b
a
s
e
/a

rtic
le

/d
o
i/1

0
.1

0
9
3
/d

a
ta

b
a
s
e
/b

a
v
0
1
6
/2

4
3
3
1
4
8
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://www.mturk.com
or a 
``
''
-
,
-
-
,
,
-
three 


Part I. Drug label selection

DailyMed contains drug SPL data for many kinds of medi-

cations such as human prescription drugs, over-the-counter

drugs, animal drugs, vaccines, homeopathic drugs, etc. In

this study, we focus on human prescription and over-the-

counter drugs. We downloaded the August 2012 release of

DailyMed, which contains 28 178 applicable drug labels,

i.e. drug labels that have non-empty indication and drug

concept sections. These drug labels are associated with

2025 different ingredients as computed from the linked

RxNorm names (RxNorm is a standardized nomenclature

for clinical drugs produced by the National library

of Medicine: http://www.nlm.nih.gov/research/umls/

rxnorm/) and identifiers (see for example the green box in

Figure 1).

Our drug label selection process takes into account the

popularity of drugs in terms of their online access in

PubMed Health (http://www.ncbi.nlm.nih.gov/pubmed-

health/). Earlier in LabeledIn (27), we included 8151

drug labels corresponding to 250 highly accessed drugs

(e.g., Alprazolam, Citalopram) accounting for 72.81% of

the total drug access on PubMed Health. In this study,

through crowdsourcing, we aim to increase the coverage

of LabeledIn to 95% of total drug access. Accordingly,

we identified 276 drugs that account for an additional

22.19% of total drug access. These 276 drugs

correspond to 6488 drug labels (many are redundant

due to submissions by different pharmaceutical

manufacturers).

To minimize annotation workload and avoid informa-

tion loss downstream, we adopted a drug label grouping

mechanism (27), where we group the drug labels having

almost identical textual descriptions together, and choose

a representative from each group for human annotation.

In particular, we considered two drug labels to be identical

if their Dice coefficient measure was above a threshold

of 0.87 (empirically determined). In this manner, we

reduced the 6488 drug labels to 706 unique drug labels.

Finally, for these 706 drug labels, we extract their indica-

tion sections and use them as input for the next part of the

framework. We also maintain the information about the

linked drug concepts (in RxNorm identifiers) for these

drug labels.

Part II. Named entity recognition

We utilize the high-recall disease NER method from our

previous work (27) to highlight all disease names in a

given drug label. In addition, we also highlight the

relevant drug names in the drug labels. Figure 2 (Part II)

shows the results of applying our NER modules on a drug

label.

Disease NER

We used MetaMap (38) to tag all disease names mentioned

in the indication section of the drug labels. In the LabeledIn

study (27), we configured MetaMap to deliver a high recall

on disease mentions and achieved 94% recall on 500 drug

labels. We limited the semantic types to the disorder seman-

tic group in the UMLS, and the source vocabularies to

SNOMED CT and MeSH, previously found to be useful in

annotating clinical documents and biomedical research art-

icles, respectively (39–42). We also take advantage of other

MetaMap features such as word sense disambiguation, term

processing and Metathesaurus candidates. Finally, we ob-

tain the disease mentions from the drug labels, including

their corresponding offsets and UMLS identifiers (i.e. CUIs).

Overall, 3004 <drug-label, disease-CUI> pairs were re-

turned using this method. In addition, we further refine the

NER results by including the disease abbreviations identi-

fied using an abbreviation resolution tool (43), e.g. ‘MDD’

for ‘major depressive disorder.’

Drug NER

We also tag the drug names mentioned in the drug label

using a lexical method based on RxNorm: Since each drug

label is already linked to a list of precise RxNorm drug

concepts (see an example in Figure 1), we simply derive a

list of active ingredients and brand names in RxNorm asso-

ciated with each drug label. We then use a dictionary look-

up method to identify the occurrences of these names in

the drug label. Note that for each drug label, we only iden-

tify and highlight the drug names associated with the

linked drug concepts.

Part III. Human intelligence task (HIT) design

and generation

The main challenge, thereafter, was to translate the com-

plex task of expert annotation into manageable atomic

units, aka, HITs that can be solved by an unknown net-

work of turkers. We randomly selected 95 drug labels out

of 500 drug labels previously annotated in LabeledIn, and

used the MTurk Developer Sandbox tool to conduct a pilot

study to iteratively brainstorm and study various design al-

ternatives among the investigators of this study.

The first key outcome of our pilot study was to display

one disease concept at a time (instead of showing all dis-

eases at once) in a single HIT. This is in contrast to the ori-

ginal expert-annotation pipeline where all diseases are

shown together (e.g., three different disease concepts in the

drug label in Figure 1) and the domain experts were

required to make multiple judgments at once within a
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single drug label; this often led to disagreements or errors

especially in case of dense labels (26). This design decision

is also motivated by the previous crowdsourcing study (36,

37) and ensures that one HIT corresponds to making only

one decision, i.e. to judge whether the drug in question is

used in managing the highlighted disease. Figure 3 demon-

strates that three HITs are generated for the drug label in

Figure 2. Note that the two mentions, ‘major depressive

disorder’ and ‘depression,’ correspond to two different dis-

ease concepts, and hence translate into separate HITs.

The second key outcome of the pilot study is motivated

by the fact that in the previous LabeledIn study (27), the

domain experts relied heavily on the standalone annotation

guidelines (i.e. not part of the annotation interface) to

make their judgments based on multiple inclusion (i.e.

what to annotate) and exclusion (i.e. what not to annotate)

criteria. In the crowdsourcing interface, we initially incor-

porated all these guidelines into the instructions. However,

in the pilot study we found it very inconvenient to fre-

quently switch back and forth between the actual HIT and

the instructions. We realized that this would not only slow

down the process but also discourage turkers from

pursuing our crowdsourcing job correctly. Hence, we

incorporated the annotation guidelines into the HIT itself,

in particular, by embedding major scenarios into user op-

tions while still keeping the number of options manageable

for human processing (44). Specifically, we designed the

HIT question to facilitate turkers in thinking about reasons

for rejecting a certain disease as an indication, making this

problem a six-way classification task as shown in Figure 4

(see bottom; an additional option is also reserved for users

with uncertain answers but is rarely used in our results).

Table 1 shows an example of each of the five categories of

non-indication diseases mentioned in drug labels corres-

ponding to the NO user option. Note that unlike the usual

multi-way classification task for capturing different classes

of answers, our design of six categories specifically intends

to facilitate users in ultimately making correct binary YES

or NO judgments.

Finally, based on the pilot study, we decided to also

highlight the drug mentions in order to provide better read-

ability of the HITs, unlike the previous LabeledIn study

where we only highlighted the disease mentions. For the

drug labels with no occurrences of drug names in their in-

dication field, we simply added a title with its generic

name highlighted above the indication field.

Part IV. The crowdsourcing job

Our crowdsourcing experimental dataset includes 706

FDA drug labels corresponding to 276 ingredients as

described in the ‘Part I. Drug Label Selection’ section. The

total number of corresponding HITs was 3004, i.e. equal

to the number of <drug-label, disease-CUI> pairs identi-

fied in the ‘Part II. Disease NER’ subsection. A HIT screen-

shot of the MTurk interface is shown in Figure 4.

Before posting the HITs on MTurk, we implemented

several quality-control measures as recommended by ear-

lier studies (35–37). Since the SPL data represents the drug

package inserts for U.S. consumers, we restricted the job to

turkers from the US with English language ability, al-

though we are aware that this cannot be guaranteed (45).

We designed a 10 HIT-qualifier test, drawn from the gold

standard in LabeledIn, to ensure that only the turkers with

clear understanding of the task and the associated instruc-

tions are permitted to work on our HITs. The 10 test cases

are distributed into 4 YES and 6 NO HITs, drawn from

different NO categories of the annotation guidelines. We

only allowed turkers obtaining 80% or higher score on this

test to proceed further. This high cut-off also ensures that

the English language requirement is met given the variety

of language descriptions in the test cases.

To measure the performance of turkers, we utilized

the control item feature of MTurk wherein some HITsFigure 3. HITs corresponding to the drug label in Figure 2.
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with known or gold answers are inserted after every few

new HITs. We were able to utilize this critical feature

because of the availability of our previous expert-anno-

tated LabeledIn dataset. We selected a subset of

LabeledIn: 450 disease concepts in 87 drug labels with

60/40 distribution of YES/NO judgments. We had to re-

annotate the NO judgments in this LabeledIn subset to

further classify them into one of the five categories as

shown in Table 1. Figure 5 shows the distribution of

gold answers across the control items. We configured

this study such that the 450 control HITs accounted for

approximately 20% of total HITs.

Part V. Judgment collection and consensus

building

Finally, we employed redundancy of judgments and accepted

five judgments per HIT. We paid six cents per HIT to each

turker based on a small cost determination experiment. The

full MTurk study, for collecting judgments for 3004 new

Figure 4. Screenshot of the drug indication micro task on MTurk.

Table 1. Examples of non-indication disease mentions

Category Example

Characteristic or

risk factor

Doxazosin mesylate is indicated for the treatment of both the urinary

outflow obstruction and obstructive and irritative symptoms associated

with BPH: obstructive symptoms (hesitation, intermittency, dribbling,

weak urinary stream, incomplete emptying of the bladder)

Side effect A physician considering bupropion hydrochloride tablets for the

management of a patient’s first episode of depression should be

aware that the drug may cause generalized seizures in a dose-dependent

manner with an approximate incidence of 0.4%

Contraindication Carbamazepine is not a simple analgesic and should not be used for

the relief of trivial aches

Unrelated Ranitidine is indicated in the treatment of GERD. Concomitant antacids should be

given as needed for pain relief to patients with GERD

Not a disease Promethazine hydrochloride tablets are useful for the prevention and control of nausea

and vomiting associated with certain types of anesthesia and surgery
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HITs and 450 control HITs, cost $1239.15. For aggregating

turkers’ judgments, we used two commonly used methods:

majority voting and expectation maximization (46, 47). The

majority-voting scheme makes the assumption that every

turker is equally accurate and takes the majority class among

all judgments as the adjudicated judgment.

The expectation maximization algorithm (hereafter

referred to as the EM algorithm) was proposed to address

a mixture of expertise levels that is often observed in

crowdsourced labels. It is an iterative method used to de-

termine maximum likelihood parameters with latent or un-

known variables. In our task, the gold standard labels

(YES or NO) are the unknown values, while we estimate

each annotator’s sensitivity and specificity in order to

maximize the likelihood of seeing our data. For this study,

we implemented the version described in Raykar et al.(46).

The EM algorithm’s first iteration is equivalent to majority

voting, except that it retrieves soft labels (i.e. 3/5 yes votes

is a soft label of 0.6 for the HIT). It then uses these labels

to update each turker’s sensitivity and specificity, where

each one is a weighted average of that turker’s responses.

Soft labels are then recalculated using the Bayes theorem

given the turker’s labels and sensitivity/specificity esti-

mates. Essentially, the algorithm measures each turker

against its current best guesses for the true labels, and as-

signs accuracy values based on how often the turker

matches its estimate. In both methods, uncertain judg-

ments (option #7 in Figure 4) were discarded.

Evaluation

We computed the accuracy of the crowdsourced judgments

on the 450 control HITs (gold answers are available) at dif-

ferent levels: First, we computed the judgment-wise accur-

acy: average accuracy of each judgment against the gold

standard. Next, we computed the turker-wise accuracy:

the average accuracy of individual turkers. We not only

calculate this for all turkers, but also for prolific turkers

(e.g. turkers who worked on more than 50 control HITs,

i.e. 50þ Turker Accuracy). Finally, we reported HIT-wise

accuracies for both aggregation methods. Although our ul-

timate goal is to assess accuracy of binary classification

(YES or NO), we also compute results of six-way classifi-

cation where judgments of different NO categories are

used separately.

Results

The drug indication crowdsourcing job was finished in 7 h

and 58min of job posting. A total of 113 turkers took the

qualifier test, out of which 92 passed the test. A total of 74

turkers worked on at least one HIT, and 64 turkers worked

on at least one control item. Overall, 18 775 judgments,

including 3755 control item judgments, were collected

through this job. The 3004 new HITs each received five

judgments per our request. Among the 450 control HITs,

each HIT received 5 or 10 judgments each, as per MTurk’s

internal mechanism of feeding control HITs to turkers.

When any turker worked on the same item more than

once, we preferred their most recent judgment, leading to

3470 control item judgments. All 3470 judgments were

used for judgment-wise and turker-wise accuracy calcula-

tions, but only 3417 were used for HIT-wise accuracy cal-

culations because 53 uncertain judgments (1.53%) were

not used in consensus building methods.

Table 2 shows the turker performance on the control

items computed using various methods, and includes the

number of applicable HITs, total judgments, total turkers,

YES/NO accuracy, and six-way classification accuracy.

The judgment-wise accuracy of the turkers was 90.95%. In

general, the turker-wise accuracy increased along with the

number of HITs submitted by a turker, and the most pro-

lific turker achieved 93.25% accuracy. The EM algorithm,

after 20 iterations achieved an accuracy of 95.78%. We

stopped updates after 20 iterations as there were no more

Figure 5. Distrbution of gold answers across control items.
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changes in the estimated results thereafter. The majority

voting across turkers achieved 96% accuracy.

We performed further analysis of the 18 HITs where our

best consensus building method (majority voting) differed

from the gold standard answers. There were eight cases that

could be considered ambiguous in that these scenarios were

not described or explained in our instructions/examples, e.g.

in the statement ‘Attention Deficit Disorders: Other terms

being used to describe the behavioral syndrome include

Hyperkinetic Child Syndrome, Minimal Brain Damage, . . . ’

the turkers judged the ‘behavioral syndrome’ concept as

YES as it was the only highlighted disease concept in the

HIT. On the other hand, in our gold standard, this disease

concept was specified as NO since a more specific concept

(‘Attention Deficit Disorders’) was included as an indica-

tion. There were seven cases where the aggregated turker re-

sults were not correct, e.g. selecting ‘hyperthyroidism’ as an

indication from ‘Thyroid hormone drugs are used as diag-

nostic agents in suppression tests to differentiate suspected

mild hyperthyroidism or thyroid gland autonomy.’ Also,

there were three cases where the gold standard was incor-

rect, raising our final accuracy to 96.67% effectively.

Discussion and conclusions

With the ultimate goal of scaling, the curation of a unique

and computable resource on drug indications, this study

uses the crowdsourcing microtask market to investigate

whether accurate annotations could be achieved in a man-

ner more efficient than contemporary expert-annotation

pipelines. More specifically, we posted 3004 HITs corres-

ponding to 706 new drug labels on the MTurk platform,

and also injected 450 controls HITs drawn from previously

annotated 87 drug labels to assess the turkers’ perform-

ances (35). All judgments were collected within 8 h of job

posting, in contrast to over 40 h of human expert effort

that was required to annotate 500 drug labels in our previ-

ous study (27). In addition to time saving, the crowd-

sourced judgments were collected at a minimal cost of

$1.75 per drug label compared to the cost of $10 to $50

when expert curation is needed. Finally, compared to a

small group of experts in traditional biocuration projects,

this crowdsourcing study recruited 74 turkers offering

more diversity in annotation (34).

Note that the 96% of accuracy in our results is also con-

sistent with that of (36) where the turkers were 90% accur-

ate on gene-mutation relation judgment. Our relatively

higher performance in this study suggests that the drug in-

dication curation task is perhaps more suitable for the

crowdsourcing approach. After all, drug labels are for use

by the general public while scientific articles are mostly

written for professionals (e.g. researchers) to comprehend.

Despite success, several technical limitations of MTurk

(48) previously noted in producing linguistic resources or

performing NLP evaluations are worth noticing. For in-

stance, several past studies show that it is difficult to have

turkers perform complex tasks with results comparable to

experts or standard machine learning techniques. Motivated

by these earlier observations and our own experience of cre-

ating LabeledIn (a complex expert-annotation task), we

took specialized simplification steps in designing the micro-

task itself (only a binary decision is required per HIT) and in

the design of the HIT user interface (inserting annotation

guidelines into the HIT interface). Together with other qual-

ity control measures (e.g. qualifier test), we achieved higher

performance than that of an automatic classification method

(49), which was also developed to address the scalability in

drug indication annotation.

With regards to the ethical issues noted in the past re-

search, we would like to add that we value ethics over cost

savings, and are fully aware of the finding that the majority

of active turkers rely on MTurk as a primary or secondary

source of income (48). In our study, the workload for each

HIT was kept minimal using several measures, and we

approved the payments for all turkers who worked on at

least one control HIT. We are also aware of the legal and

ethical consequences of MTurk (50), but these issues are

beyond the scope of this study.

Finally, we acknowledge several remaining issues in this

study: First, there is the recall limitation of our NER tools

despite our best efforts; improving the disease NER task re-

mains a future task (38, 51). Next, we would like to

Table 2. Performance on control items

Method Number of HITs Number of Judgments Number of Turkers Yes/no accuracy (%) Six-way accuracy (%)

Judgment wise 450 3470 64 90.95 83.22

Turker wise 450 3470 64 88.39 81.14

50þ turker wise 450 2953 26 91.54 83.98

100þ turker wise 450 2252 15 90.21 82.83

Most prolific turker 341 341 1 93.25 85.63

EM 450 3417 64 95.78 88.44

Majority voting 450 3417 64 96.00 88.66
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distinguish specific versus generic disease mentions in a

drug label. Also, we plan to use the EM algorithm to esti-

mate and select which HITs would most benefit from add-

itional expert review (e.g. the HITs that received uncertain

or conflicted judgments) whereby we can further improve

of the quality of the crowdsourced judgments. Lastly, we

acknowledge that the design of this study largely depends

on the earlier study to produce LabeledIn that was de-

signed and conducted in a span of 6 months, and the design

of this crowdsourcing study was brainstormed and final-

ized in a span of 3 months. However, the time spent in the

design of this study is a one-time effort as we could re-use

the methodology for remaining drug labels and re-adapt

for other drug indication sources.

In summary, we have introduced a crowdsourcing frame-

work that recruits unknown workers to judge whether a

highlighted disease is an indicated use for a given drug.

Through our unique design of the crowdsourcing task and

multiple quality control measures, we successfully demon-

strated that it is feasible to achieve high-quality results using

the MTurk platform for the drug indication curation task in

a cost-effective and time-efficient manner.
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