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Abstract. First-person vision is gaining interest as it offers a unique
viewpoint on people’s interaction with objects, their attention, and even
intention. However, progress in this challenging domain has been rela-
tively slow due to the lack of sufficiently large datasets. In this paper, we
introduce EPIC-KITCHENS, a large-scale egocentric video benchmark
recorded by 32 participants in their native kitchen environments. Our
videos depict non-scripted daily activities: we simply asked each par-
ticipant to start recording every time they entered their kitchen. Record-
ing took place in 4 cities (in North America and Europe) by participants
belonging to 10 different nationalities, resulting in highly diverse cook-
ing styles. Our dataset features 55 hours of video consisting of 11.5M
frames, which we densely labelled for a total of 39.6K action segments
and 454.3K object bounding boxes. Our annotation is unique in that
we had the participants narrate their own videos (after recording), thus
reflecting true intention, and we crowd-sourced ground-truths based on
these. We describe our object, action and anticipation challenges, and
evaluate several baselines over two test splits, seen and unseen kitchens.
Keywords: Egocentric Vision, Dataset, Benchmarks, First-Person Vi-
sion, Egocentric Object Detection, Action Recognition and Anticipation

1 Introduction

In recent years, we have seen significant progress in many domains such as im-
age classification [19], object detection [37], captioning [26] and visual question-
answering [3]. This success has in large part been due to advances in deep learn-
ing [27] as well as the availability of large-scale image benchmarks [11,9, 30, 55].
While gaining attention, work in video understanding has been more scarce,
mainly due to the lack of annotated datasets. This has been changing recently,
with the release of the action classification benchmarks such as [18,1, 54, 38, 46,
14]. With the exception of [46], most of these datasets contain videos that are
very short in duration, i.e., only a few seconds long, focusing on a single action.
Charades [42] makes a step towards activity recognition by collecting 10K videos
of humans performing various tasks in their home. While this dataset is a nice
attempt to collect daily actions, the videos have been recorded in a scripted way,
by asking AMT workers to act out a script in front of the camera. This makes
the videos look oftentimes less natural, and they also lack the progression and
multi-tasking of actions that occur in real life.
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Fig.1: From top: Frames from the 32 environments; Narrations by participants
used to annotate action segments; Active object bounding box annotations

Here we focus on first-person vision, which offers a unique viewpoint on peo-
ple’s daily activities. This data is rich as it reflects our goals and motivation,
ability to multi-task, and the many different ways to perform a variety of im-
portant, but mundane, everyday tasks (such as cleaning the dishes). Egocentric
data has also recently been proven valuable for human-to-robot imitation learn-
ing [34,53], and has a direct impact on HCI applications. However, datasets to
evaluate first-person vision algorithms [16, 41, 6, 13, 36, 8] have been significantly
smaller in size than their third-person counterparts, often captured in a sin-
gle environment [16, 6, 13, 8]. Daily interactions from wearable cameras are also
scarcely available online, making this a largely unavailable source of information.

In this paper, we introduce EPIC-KITCHENS, a large-scale egocentric dataset.
Our data was collected by 32 participants, belonging to 10 nationalities, in
their native kitchens (Fig. 1). The participants were asked to capture all their
daily kitchen activities, and record sequences regardless of their duration. The
recordings, which include both video and sound, not only feature the typi-
cal interactions with one’s own kitchenware and appliances, but importantly
show the natural multi-tasking that one performs, like washing a few dishes
amidst cooking. Such parallel-goal interactions have not been captured in ex-
isting datasets, making this both a more realistic as well as a more challeng-
ing set of recordings. A video introduction to the recordings is available at:
http://youtu.be/Dj6Y3HOubDw.
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Table 1: Comparative overview of relevant datasets *action classes with > 50 samples

Non- |Native Sequ- Action| Action|Object| Object |Partici-| No.
Dataset ‘Ego? Scripted?| Env? |Year Frames|ences|Segments|Classes BBs|Classes| pants |Env.s
[EPIC-KITCHENS [ v [ v [ v [2018] 11.5M] 432 | 39,596] 149% [454,255] 323 [ 32 | 32 |
EGTEA Gaze+ [16] | v X X 2018 2.4M| 86 10,325 106 0 0 32 1
Charades-ego [41]  |7o% v/ x v 2018 2.3M| 2,751 30,516 157 0] 38 71 N/A
BEOID [6] v X X 2014 0.1M| 58 42| 34 0 0 5 1
GTEA Gaze+ [13] v x x 2012 0.4M| 35 3,371 42 0 0 13 1
ADL [36] v x v |2012 1.0M| 20 436| 32 |137,780| 42 20 20
CMU [8] v X X 2009 0.2M| 16 516 31 0 0 16 1
YouCook2 [56] X v v 2018 [asops 15.8M| 2,000 13,829 89 0 0 2K N/A
VLOG [14] x v v 2017 37.2M| 114K o o o 0 10.7K | N/A
Charades [42] X X v 2016 7.4M| 9,848 67,0000 157 0 0 N/A 267
Breakfast [28] x v v 2014 3.0M| 433 3078 50 0 0 52 18
50 Salads [44] X X X 2013 0.6M| 50 2967| 52 0 0 25 1
MPII Cooking 2 [39]| x X X 2012 2.9M| 273 14,105 88 0 0 30 1

Altogether, EPIC-KITCHENS has 55hrs of recording, densely annotated
with start/end times for each action/interaction, as well as bounding boxes
around objects subject to interaction. We describe our object, action and antic-
ipation challenges, and report baselines in two scenarios, i.e., seen and unseen
kitchens. The dataset and leaderboards to track the community’s progress on all
challenges, with held out test ground-truth are at: http://epic-kitchens.github.io.

2 Related Datasets

We compare EPIC-KITCHENS to four commonly-used [6, 13, 36, 8] and two re-
cent [16,41] egocentric datasets in Table 1, as well as six third-person activity-
recognition datasets [14, 42,56, 28, 44, 39] that focus on object-interaction activ-
ities. We exclude egocentric datasets that focus on inter-person interactions [2,
12,40], as these target a different research question.

A few datasets aim at capturing activities in native environments, most of
which are recorded in third-person [18,14,42,41,28]. [28] focuses on cooking
dishes based on a list of breakfast recipes. In [14], short segments linked to inter-
actions with 30 daily objects are collected by querying YouTube, while [18, 42,
41] are scripted — subjects are requested to enact a crowd-sourced storyline [42,
41] or a given action [18], which oftentimes results in less natural looking actions.
All egocentric datasets similarly use scripted activities, i.e. people are told what
actions to perform. When following instructions, participants perform steps in a
sequential order, as opposed to the more natural real-life scenarios addressed in
our work, which involve multi-tasking, searching for an item, thinking what to
do next, changing one’s mind or even unexpected surprises. EPIC-KITCHENS
is most closely related to the ADL dataset [36] which also provides egocentric
recordings in native environments. However, our dataset is substantially larger:
it has 11.5M frames vs 1M in ADL, 90x more annotated action segments, and 4x
more object bounding boxes, making it the largest first-person dataset to date.

3 The EPIC-KITCHENS Dataset

In this section, we describe our data collection and annotation pipeline. We also
present various statistics, showcasing different aspects of our collected data.
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Use any word you prefer. Feel free to vary your words or stick to a few.

Use present tense verbs (e.g. cut/open/close).

Use verb-object pairs (e.g. wash carrot).

You may (if you prefer) skip articles and pronouns (e.g. “cut kiwi” rather than “I cut the kiwi”).
Use propositions when needed (e.g. “pour water into kettle”).

Use ‘and’ when actions are co-occurring (e.g. “hold mug and pour water”).

If an action is taking long, you can narrate again (e.g. “still stirring soup”).

Fig. 2: Instructions used to collect video narrations from our participants
3.1 Data Collection

The dataset was recorded by 32 individuals in 4 cities in different countries
(in North America and Europe): 15 in Bristol/UK, 8 in Toronto/Canada, 8 in
Catania/Italy and 1 in Seattle/USA between May and Nov 2017. Participants
were asked to capture all kitchen visits for three consecutive days, with the
recording starting immediately before entering the kitchen, and only stopped
before leaving the kitchen. They recorded the dataset voluntarily and were not
financially rewarded. The participants were asked to be in the kitchen alone for
all the recordings, thus capturing only one-person activities. We also asked them
to remove all items that would disclose their identity such as portraits or mirrors.
Data was captured using a head-mounted GoPro with an adjustable mounting
to control the viewpoint for different environments and participants’ heights.
Before each recording, the participants checked the battery life and viewpoint,
using the GoPro Capture app, so that their stretched hands were approximately
located at the middle of the camera frame. The camera was set to linear field
of view, 59.94fps and Full HD resolution of 1920x1080, however some subjects
made minor changes like wide or ultra-wide FOV or resolution, as they recorded
multiple sequences in their homes, and thus were switching the device off and
on over several days. Specifically, 1% of the videos were recorded at 1280x720
and 0.5% at 1920x1440. Also, 1% at 30fps, 1% at 48fps and 0.2% at 90/ps.

The recording lengths varied depending on the participant’s kitchen engage-
ment. On average, people recorded for 1.7hrs, with the maximum being 4.6hrs.
Cooking a single meal can span multiple sequences, depending on whether one
stays in the kitchen, or leaves and returns later. On average, each participant
recorded 13.6 sequences. Figure 3 presents statistics on time of day using the
local time of the recording, high-level goals and sequence durations.

Since crowd-sourcing annotations for such long videos is very challenging,
we had our original participants do a coarse first annotation. Each participant
was asked to watch their videos, after completing all recordings, and narrate the
actions carried out, using a hand-held recording device. We opted for a sound
recording rather than written captions as this is arguably much faster for the
participants, who were thus more willing to provide these annotations. These
are analogous to a live commentary of the video. The general instructions for
narrations are listed in Fig. 2. The participant narrated in English if sufficiently
fluent or in their native language. In total, 5 languages were used: 17 narrated in
English, 7 in Italian, 6 in Spanish, 1 in Greek and 1 in Chinese. Figure 3 shows
wordles of the most frequent words in each language.
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Fig.3: Top (left to ): time of day of the recording, pie chart of high-level
goals, histogram of sequence durations and dataset logo; Bottom: Wordles of
narrations in native languages (English, Italian, Spanish, Greek and Chinese)

Table 2: Extracts from 6 transcription files in .sbv format

0:14:44.190,0:14:45.310
pour tofu onto pan
0:14:45.310,0:14:49.540
put down tofu container
0:14:49.540,0:15:02.690
stir vegetables and tofu
0:15:02.690,0:15:06.260
put down spatula
0:15:06.260,0:15:07.820
take tofu container
0:15:07.820,0:15:10.040
throw something into the bin

0:00:02.780,0:00:04.640
lopen the bin
0:00:04.640,0:00:06.100
pick up the bag
0:00:06.100,0:00:09.530
tie the bag
0:00:09.530,0:00:10.610
tie the bag again
0:00:10.610,0:00:14.309
pick up bag
0:00:14.309,0:00:17.520
put bag down

0:04:37.880,0:04:39.620
Take onion
0:04:39.620,0:04:48.160
Cut onion
0:04:48.160,0:04:49.160
Peel onion
0:04:49.160,0:04:51.290
Put peel in bin
0:04:51.290,0:05:06.350
Peel onion
0:05:06.350,0:05:15.200
Put peel in bin

0:06:40.669,0:06:41.669
pick up spatula
0:06:41.669,0:06:45.250
stir potatoes
0:06:45.250,0:06:46.250
put down spatula
0:06:46.250,0:06:50.830
turn down hob
0:06:50.830,0:06:55.819
pick up pan
0:06:55.819,0:06:57.170

tip out paneer

0:12:28.000,0:12:28.000
pour pasta into container
0:12:33.000,0:12:33.000
take jar of pesto

0 :12:39.000,0:12:39.000
take teaspoon
0:12:41.000,0:12:41.000
pour pesto in container
0:12:55.000,0:12:55.000
place pesto bottle on table
0:12:58.000,0:12:58.000
take wooden spoon

0:00:03.280,0:00:06.000
open fridge
0:00:06.000,0:00:09.349
take milk
0:00:09.349,0:00:10.910
put milk
0:00:10.910,0:00:12.690
open cupboard
0:00:12.690,0:00:15.089
take bowl
0:00:15.089,0:00:18.080
open drawer

Our decision to collect narrations from the participants themselves is because
they are the most qualified to label the activity compared to an independent
observer, as they were the ones performing the actions. We opted for a post-
recording narration such that the participant performs her/his daily activities
undisturbed, without being concerned about labelling.

We tested several automatic audio-to-text APIs [17,23,5], which failed to
produce accurate transcriptions as these expect a relevant corpus and complete
sentences for context. We thus collected manual transcriptions via Amazon Me-
chanical Turk (AMT), and used the YouTube’s automatic closed caption align-
ment tool to produce accurate timings. For non-English narrations, we also asked
AMT workers to translate the sentences. To make the job more suitable for
AMT, narration audio files are split by removing silence below a pre-specified
decibel threshold (after compression and normalisation). Speech chunks are then
combined into HITs with a duration of around 30 seconds each. To ensure con-
sistency, we submit the same HIT three times and select the ones with an edit
distance of 0 to at least one other HIT. We manually corrected cases when there
was no agreement. Examples of transcribed and timed narrations are provided in
Table 2. The participants were also asked to provide one sentence per sequence
describing the overall goal or activity that took place.

In total, we collected 39,596 action narrations, corresponding to a narration
every 4.9s in the video. The average number of words per phrase is 2.8 words.
These narrations give us an initial labelling of all actions with rough temporal



6 D. Damen et al

alignment, obtained from the timestamp of the audio narration with respect to
the video. However, narrations are also not a perfect source of ground-truth:

— The narrations can be incomplete, i.e., the participants were selective in which
actions they chose to narrate. We noticed that they labelled the ‘open’ actions
more than their counter-action ‘close’, as the narrator’s attention has already
moved to the next goal. We consider this phenomena in our evaluation, by
only evaluating actions that have been narrated.

— Temporally, the narrations are belated, after the action takes place. This is
adjusted using ground-truth action segments (see Sec. 3.2).

— Participants use their own vocabulary and free language. While this is a chal-
lenging issue, we believe it is important to push the community to go beyond
the pre-selected list of labels (also argued in [55]). We here resolve this issue
by grouping verbs and nouns into minimally overlapping classes (see Sec. 3.4).

3.2 Action Segment Annotations

For each narrated sentence, we adjust the start and end times of the action using
AMT. To ensure the annotators are trained to perform temporal localisation, we
use a clip from our previous work’s understanding [33] that explains temporal
bounds of actions. Each HIT is composed of a maximum of 10 consecutive nar-
rated phrases p;, where annotators label A; = [ts,, te,] as the start and end times
of the " action. Two constraints were added to decrease the amount of noisy
annotations: (1) action has to be at least 0.5 seconds in length; (2) action can-
not start before the preceding action’s start time. Note that consecutive actions
are allowed to overlap. Moreover, the annotators could indicate that the action
does not appear in the video. This handles occluded, impossible to distinguish
or out-of-bounds cases.

To ensure consistency, we ask K, = 4 annotators to annotate each HIT.
Given one annotation A;(j) (¢ is the action and j indexes the annotator), we
calculate the agreement as follows: «;(j) = 1% E’,f;l ToU(A;(5), A;(k)). We first
find the annotator with the maximum agreement j = arg max; a;(j), and find
k = argmaxy, IoU(A;(7), A;(k)). The ground-truth action segment A; is then
defined as:

a {Uni?n(Ai(3)7Ai(l%))7 if ToU(A:(5), Ai(k)) > 0.5 0

Ai(9), otherwise

We thus combine two annotations when they have a strong agreement, since
in some cases the single (best) annotation results in a too tight of a segment.
Figure 4 shows examples of combining annotations.

In total, we collected such labels for 39, 564 action segments (lengths: pn = 3.7s,
o = 5.6s). These represent 99.9% of narrated segments. The missed annotations
were those labelled as “not visible” by the annotators, though mentioned in
narrations.
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Fig.4: An example of annotated action segments for 2 consecutive actions

Fig.5: Object annotation from three AMT workers (orange, blue and green).
The green participant’s annotations are selected as the final annotations

3.3 Active Object Bounding Box Annotations

The narrated nouns correspond to objects relevant to the action [29, 6]. Assume
O; is the set of one or more nouns in the phrase p; associated with the action
segment A; = [ts,,t.;]. We consider each frame f within [ts, — 2s,t., + 2s] as
a potential frame to annotate the bounding box(es), for each object in O;. We
build on the interface from [49] for annotating bounding boxes on AMT. Each
HIT aims to get an annotation for one object, for the maximum duration of 25s,
which corresponds to 50 consecutive frames at 2fps. The annotator can also note
that the object does not exist in f. We particularly ask the same annotator to
annotate consecutive frames to avoid subjective decisions on the extents of ob-
jects. We also assess annotators’ quality by ensuring that the annotators obtain
an IoU > 0.7 on two golden annotations at the start of every HIT. We request
Ko = 3 workers per HIT, and select the one with maximum agreement 3:

)

Bla) = 3 mikx max ToU(BB(j. f. k). BB(g. f. 1) (2)
f

where BB(q, f, k) is the k™" bounding box annotation by annotator ¢ in frame f.
Ties are broken by selecting the worker who provides the tighter bounding boxes.
Figure 5 shows multiple annotations for four keyframes in a sequence.

Overall, 77% of requested annotations resulted in at least one bounding box.
In total, we collected 454,255 bounding boxes (u = 1.64 boxes/frame, o = 0.92).
Sample action segments and object bounding boxes are shown in Fig. 6.

3.4 Verb and Noun Classes

Since our participants annotated using free text in multiple languages, a variety
of verbs and nouns have been collected. We group these into classes with minimal
semantic overlap, to accommodate the more typical approaches to multi-class de-
tection and recognition where each example is believed to belong to one class
only. We estimate Part-of-Speech (POS), using SpaCy’s English core web model.
We select the first verb in the sentence, and find all nouns in the sentence ex-
cluding any that match the chosen verb. When a noun is absent or replaced by a
pronoun (e.g. ‘it’), we use the noun from the directly preceding narration (e.g.
p;: ‘rinse cup’, p;v1: ‘place it to dry’).
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Fig. 6: Sample consecutive action segments with keyframe object annotations

We refer to the set of minimally-overlapping verb classes as Cy/, and similarly
Cy for nouns. We attempted to automate the clustering of verbs and nouns
using combinations of WordNet [32], Word2Vec [31], and Lesk algorithm [4],
however, due to limited context there were too many meaningless clusters. We
thus elected to manually cluster the verbs and semi-automatically cluster the
nouns. We preprocessed the compound nouns e.g. ‘pizza cutter’ as a subset of
the second noun e.g. ‘cutter’. We then manually adjusted the clustering, merging
the variety of names used for the same object, e.g. ‘cup’ and ‘mug’, as well as
splitting some base nouns, e.g. ‘washing machine’ vs ‘coffee machine’.

In total, we have 125 Cy, classes and 331 C classes. Table 3 shows a sample
of grouped verbs and nouns into classes. These classes are used in all three
defined challenges. In Fig. 7, we show Cy ordered by frequency of occurrence in
action segments, as well as Cy ordered by number of annotated bounding boxes.
These are grouped into 19 super categories, of which 9 are food and drinks, with
the rest containing kitchen essentials from appliances to cutlery. Co-occurring
classes are presented in Fig. 8.

3.5 Annotation Quality Assurance

To analyse the quality of annotations, we choose 300 random samples, and man-

ually assess correctness. We report:

— Action Segment Boundaries (A;): We check that the start/end times fully
enclose the action boundaries, with any additional frames not part of other
actions - error: 5.7%.

— Object Bounding Boxes (O;): We check that the bounding box encapsu-
lates the object or its parts, with minimal overlap with other objects, and
that all instances of the class in the frame have been labelled — error: 6.3%.

— Verb classes (Cy): We check that the verb class is correct — error: 3.3%.

— Noun classes (Cy): We check that the noun class is correct — error : 6.0%.

These error rates are comparable to recently published datasets [54].
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Fig. 8: Left: Frequently co-occurring verb/nouns in action segments [e.g. (open/close,
cupboard/drawer /fridge), (peel, carrot/onion/potato/peach), (adjust, heat)]; Mid-
dle: Next-action excluding repetitive instances of the same action [e.g. peel — cut,
turn-on — wash, pour — mix].; Right: Co-occurring bounding boxes in one frame
[e.g. (pot, coffee), (knife, chopping board), (tap, sponge)]

4 Benchmarks and Baseline Results

EPIC-KITCHENS offers a variety of potential challenges from routine under-
standing, to activity recognition and object detection. As a start, we define three
challenges for which we provide baseline results, and avail online leaderboards.
For the evaluation protocols, we hold out ground truth annotations for 27% of
the data (Table 4). We particularly aim to assess the generalizability to novel
environments, and we thus structured our test set to have a collection of seen
and previously unseen kitchens:

Seen Kitchens (S1): In this split, each kitchen is seen in both training and
testing, where roughly 80% of sequences are in training and 20% in testing. We
do not split sequences, thus each sequence is in either training or testing.
Unseen Kitchens (S2): This divides the participants/kitchens so all sequences
of the same kitchen are either in training or testing. We hold out the complete
sequences for 4 participants for this testing protocol. The test set of S2 is only 7%
of the dataset in terms of frame count, but the challenges remain considerable.
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Table 3: Sample Verb and Noun Classes

ClassNo (Key)|Clustered Words
M0 (take) take, grab, pick, get, fetch, pick-up, ...
5 3 (close) close, close-off, shut
|12 (turn-on) |turn-on, start, begin, ignite, switch-on, activate, restart, light, ...
z|1 (pan) pan, frying pan, saucepan, wok, ...
D|8 (cupboard) |cupboard, cabinet, locker, flap, cabinet door, cupboard door, closet, ...
% 51 (cheese) cheese slice, mozzarella, paneer, parmesan, ...
78 (top) top, counter, counter top, surface, kitchen counter, kitchen top, tiles, ...

Table 4: Statistics of test splits: seen (S1) and unseen (S2) kitchens
‘ ‘#Subjects‘#Sequences‘Duration (s)‘ % ‘Narrated Segments‘Action Segments‘Bounding Boxes

Train/Val] 28 272 141731 28,587 28,561 326,388
ST Test 28 106 39084 |20% 3,069 3,064 97,872
S2 Test 1 51 13231 | 7% 2,939 2,939 29,995

We now evaluate several existing methods on our benchmarks, to gain an
understanding of how challenging our dataset is.

4.1 Object Detection Benchmark

Challenge: This challenge focuses on object detection for all of our Cy classes.
Note that our annotations only capture the ‘active’ objects pre-, during- and
post- interaction. We thus restrict the images evaluated per class to those where
the object has been annotated. We particularly aim to break the performance
down into multi-shot and few-shot class groups, so as to analyse the capabilities
of the approaches to quickly learn novel objects (with only a few examples). Our
challenge leaderboard reflects the methods’ abilities on both sets of classes.
Method: We evaluate object detection using Faster R-CNN [37] due to its state-
of-the-art performance. Faster R-CNN uses a region proposal network (RPN)
to first generate class agnostic object proposals, and then classifies these and
outputs refined bounding box predictions. We use the implementation from [21,
22] with a base architecture of ResNet-101 [19] pre-trained on MS-COCO [30].
Implementation Details: Learning rate is initialised to 0.0003 decaying by a
factor of 10 after 90K and stopped after 120K iterations. We use a mini-batch
size of 4 on 8 Nvidia P100 GPUs on a single compute node (Nvidia DGX-1) with
distributed training and parameter synchronisation — i.e. overall mini-batch size
of 32. As in [37], images are rescaled such that their shortest side is 600 pixels
and the aspect ratio is maintained. We use a stride of 16 on the last convolution
layer for feature extraction and for anchors we use 4 scales of 0.25, 0.5, 1.0 and
2.0; and aspect ratios of 1:1, 1:2 and 2:1. To reduce redundancy, NMS is used
with an IoU threshold of 0.7. In training and testing we use 300 RPN proposals.
Evaluation Metrics: For each class, we only report results on I1°€C~ | these
are all images where class ¢, has been annotated. We use the mean average
precision (mAP) metric from PASCAL VOC [11], using IoU thresholds of 0.05,
0.5 and 0.75 similar to [30].

Results: We report results in Table 5 for many-shot classes (those with > 100
bounding boxes in training) and few shot classes (with > 10 and < 100 bound-
ing boxes in training), alongside AP for the 15 most frequent classes. There
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Table 5: Baseline results for the Object Detection challenge
15 Most Frequent Object Classes Totals
mAP pan plate bowl onion tap pot knife spoon meat food potato cup pasta cupboard lid |few-shot|{many-shot| all
ToU > 0.05|78.40 74.34 66.86 65.40 86.40 68.32 49.96 45.79 39.59 48.31 58.59 61.85 77.65 52.17 62.46| 31.59 51.60 |47.84
5 IoU > 0.5 |70.63 68.21 61.93 41.92 73.04 62.90 33.77 26.96 27.69 38.10 50.07 51.71 69.74 36.00 58.64| 20.72 38.81 |35.41
ToU > 0.75|22.26 46.34 36.98 3.50 26.59 20.47 4.13 2.48 5.53 9.39 13.21 11.2522.61 7.37 30.53| 2.70 10.07 8.69
ToU > 0.05(80.35 88.38 66.79 47.65 83.40 71.17 63.24 46.36 71.87 29.91 N/A 55.36 78.02 55.17 61.55| 23.19 49.30  |46.64
% ToU > 0.5 |67.42 85.62 62.75 26.27 65.90 59.22 44.14 30.30 56.28 24.31 N/A 47.00 73.82 39.49 51.56| 16.95 34.95 |33.11
ToU > 0.75|18.41 60.43 33.32 2.21 6.41 14.55 4.65 1.77 12.80 740 N/A 7.54 36.94 9.45 22.1| 2.46 8.68 8.05

Fig.9: Qualitative results for the object detection challenge

are a total of 202 many-shot classes and 88 few-shot classes. One can see that
our objects are generally harder to detect than in most existing datasets, with
performance at the standard IoU > 0.5 below 40%. Even at a very small ToU
threshold, the performance is relatively low. The more challenging classes are
“meat”, “knife”, and “spoon”, despite being some of the most frequent ones.
Notice that the performance for the low-shot regime is substantially lower than
in the many-shot regime. This points to interesting challenges for the future.
However, performances for the Seen and Unseen splits in object detection are
comparable, thus showing generalization capability across environments.
Figure 9 shows qualitative results with detections shown in colour and ground
truth shown in black. The examples in the right-hand column are failure cases.

4.2 Action Recognition Benchmark

Challenge: Given an action segment A; = [ts,,t.,], we aim to classify the seg-
ment into its action class, where classes are defined as C,, = {(¢, € Cy, ¢, € Cn)},
and ¢, is the first noun in the narration when multiple nouns are present. Note
that our dataset supports more complex action-level challenges, such as action
localisation in the videos of full duration. We decided to focus on the classifi-
cation challenge first (the segment is provided) since most existing works tackle
this challenge.

Network Architecture: We train the Temporal Segment Network (TSN) [48]
as a state-of-the-art architecture in action recognition, but adjust the output
layer to predict both verb and noun classes jointly, with independent losses, as
n [25]. We use the PyTorch implementation [51] with the Inception architec-
ture [45], batch normalization [24] and pre-trained on ImageNet [9].
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Table 6: Baseline results for the action recognition challenge

Top-1 Accuracy Top-5 Accuracy Avg Class Precision| Avg Class Recall
VERB NOUN ACTION|VERB NOUN ACTION|VERB NOUN ACTION|VERB NOUN ACTION
Chance/Random | 12.62 1.73 00.22 | 43.39 08.12 03.68 |03.67 01.15 00.08 |03.67 01.15 00.05

Largest Class 22.41 0450 01.59 |70.20 18.89 14.90 |00.86 00.06 00.00 |03.84 01.40 00.12
~ 2SCNN (FUSION)| 42.16 29.14  13.23 |80.58 53.70  30.36 |29.39 30.73 5.35 14.83 21.10  04.46
“ TSN (RGB) 45.68 36.80 19.86 |85.56 64.19 41.89 |61.64 34.32 09.96 [23.81 31.62 08.81

TSN (FLOW) 42.75 17.40  09.02 | 79.52 39.43 21.92 |21.42 13.75 02.33 |15.58 09.51 02.06
TSN (FUSION) 48.23 36.71 20.54 |84.09 62.32 39.79 |47.26 35.42 10.46 |22.33 30.53 08.83
Chance/Random | 10.71 01.89  00.22 |38.98 09.31 03.81 |[03.56 01.08 00.08 |03.56 01.08 00.05

Largest Class 22.26 04.80 00.10 |63.76 19.44 17.17 |00.85 00.06 00.00 |03.84 01.40 00.12
« 2SCNN (FUSION)| 36.16 18.03 07.31 |71.97 38.41 19.49 |18.11 15.31 02.86 |10.52 12.55 02.69
N TSN (RGB) 34.89 21.82 10.11 |74.56 45.34 25.33 | 19.48 14.67 04.77 |11.22 17.24  05.67

TSN (FLOW) 40.08 14.51 06.73 | 73.40 33.77 18.64 |19.98 09.48 02.08 |13.81 08.58 02.27
TSN (FUSION) 39.40 22.70 10.89 | 74.29 45.72 25.26 |22.54 15.33 05.60 |13.06 17.52 05.81

Table 7: Sample baseline action recognition per-class metrics (using TSN fusion)
15 Most Frequent (in Train Set) Verb Classes

put take wash open close cut mix pour move turn-on remove turn-off throw dry peel

~ RECALL 67.51 48.27 83.19 63.32 25.45 77.64 50.20 26.32 00.00 08.28 05.11 05.45 24.18 36.49 30.43

® PRECISION |36.29 43.21 63.01 69.74 75.50 68.71 68.51 60.98 -  46.15 53.85 66.67 75.86 81.82 51.85
a RECALL 74.23 34.05 83.67 43.64 18.40 33.90 35.85 13.13 00.00 00.00 00.00 00.00 00.00 2.70 00.00
® PRECISION|29.60 30.68 67.06 56.28 66.67 88.89 70.37 76.47 - - 00.00 - - 100.0 00.00

Implementation Details: We train both spatial and temporal streams, the
latter on dense optical flow at 30fps extracted using the TV-L; algorithm [52]
between RGB frames using the formulation TV-Lj (1o, I2¢43) to eliminate op-
tical flicker, and released the computed flow as part of the dataset. We do not
perform stratification or weighted sampling, allowing the dataset class imbalance
to propagate into the mini-batch. We train each model on 8 Nvidia P100 GPUs
on a single compute node (Nvidia DGX-1) for 80 epochs with a mini-batch size
of 512. We set learning rate to 0.01 for spatial and 0.001 for temporal streams
decreasing it by a factor of 10 after epochs 20 and 40. After averaging the 25 sam-
ples within the action segment each with 10 spatial croppings as in [48], we fuse
both streams by averaging class predictions with equal weights. All unspecified
parameters use the same values as [48].

Evaluation Metrics: We report two sets of metrics: aggregate and per-class,
which are equivalent to the class-agnostic and class-aware metrics in [54]. For
aggregate metrics, we compute top-1 and top-5 accuracy for correct predictions
of ¢y, ¢, and their combination (c¢,,c,) — we refer to these as ‘verb’, ‘noun’
and ‘action’. Accuracy is reported on the full test set. For per-class metrics, we
compute precision and recall, for classes with more than 100 samples in training,
then average the metrics across classes - these are 26 verb classes, 71 noun classes,
and 819 action classes. Per-class metrics for smaller classes are ~ 0 as TSN is
better suited for classes with sufficient training data.

Results: We report results in Table 6 for aggregate metrics and per-class met-
rics. We compare TSN (3 segments) to 2SCNN [43] (1 segment), chance and
largest class baselines. Fused results perform best or are comparable to the best
stream (spatial/temporal). The challenge of getting both verb and noun labels
correct remains significant for both seen (top-1 accuracy 20.5%) and unseen
(top-1 accuracy 10.9%) environments. This implies that for many examples, we
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Fig. 10: Qualitative results for the action recognition and anticipation challenges
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only get one of the two labels (verb/noun) right. Results also show that gen-
eralising to unseen environments is a harder challenge for actions than it is for
objects. We give a breakdown per-class metrics for the 15 largest verb classes in
Table 7.

Fig. 10 reports qualitative results, with success highlighted in green, and
failures in red. In the first column both the verb and the noun are correctly
predicted, in the second column one of them is correctly predicted, while in the
third column both are incorrect. Challenging cases like distinguishing ‘adjust
heat’ from turning it on, or pouring soy sauce vs oil are shown.

4.3 Action Anticipation Benchmark

Challenge: Anticipating the next action is a well-mastered skill by humans, and
automating it has direct implications in assertive living. Given any of the up-
coming wearable system (e.g. Microsoft Hololens or Google Glass), anticipating
the wearer’s next action, from a first-person view, could trigger smart home ap-
pliances, providing a seamless achievement of the wearer’s goals. Previous works
have investigated different anticipation tasks from an egocentric perspective, e.g.
predicting future localisation [35] or next-active object [15]. We here consider the
task of forecasting an action before it happens. Let 7, be the ‘anticipation time’,
how far in advance to recognise the action, and 7, be the ‘observation time’,
the length of the observed video segment preceding the action. Given an action
segment A; = [ts,,t.,], we predict the action class C, by observing the video
segment preceding the action start time t,, by 7,, that is [ts, — (7o + 7o), ts; — Tal-
Network Architecture: As in Sec. 4.2, we train TSN [48] to provide baseline
action anticipation results and compare with 2SCNN [43]. We feed the model
with the video segments preceding annotated actions and train it to predict verb
and noun classes jointly as in [25]. Similarly to [47], we set 7, = 1s. We report
results with 7, = 1s, and note that performance drops with longer segments.
Implementation Details: Models for both spatial and temporal modalities
are trained using a single Nvidia Titan X with a batch size of 64, for 80 epochs,
setting the initial learning rate to 0.001 and dropping it by a factor of 10 after
30 and 60 epochs. Fusion weights spatial and temporal streams with 0.6 and 0.4
respectively. All other parameters use the values specified in [48].

Evaluation Metrics: We use the same evaluation metrics as in Sec. 4.2.
Results: Table 8 reports baseline results for the action anticipation challenge.
As expected, this is a harder challenge than action recognition, and thus we
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Table 8: Baseline results for the action anticipation challenge
Top-1 Accuracy Top-5 Accuracy Avg Class Precision | Avg Class Recall
VERB NOUN ACTION|VERB NOUN ACTION|VERB NOUN ACTION|VERB NOUN ACTION
2SCNN (RGB) |29.76 15.15 04.32 |76.03 3856 15.21 |13.76 17.19 0248 |07.32 10.72 01.81
TSN (RGB) 31.81 16.22 06.00 |76.56 42.15 18.21 |23.91 19.13 03.13 |09.33 11.93 02.39
~ TSN (FLOW) |29.64 10.30 0293 |73.70 30.09 10.92 |18.34 10.70 01.41 |06.99 05.48 01.00
TSN (FUSION)| 30.66 14.86 04.62 |75.32 40.11 16.01 |08.84 21.85 02.25 |06.76 09.15 01.55
2SCNN (RGB) | 25.23 09.97 02.29 |68.66 27.38 09.35 |16.37 06.98 00.85 |05.80 06.37 01.14

TSN (RGB) 25.30 10.41 02.39 |68.32 29.50 09.63 |07.63 08.79 00.80 |06.06 06.74 01.07
a TSN (FLOW) [25.61 0840 01.78 |67.57 24.62 08.19 |10.80 04.99 01.02 |06.34 04.72 00.84
U TSN (FUSION)| 25.37 09.76  01.74 |68.25 27.24 09.05 |13.03 05.13 00.90 |05.65 05.58 00.79

note a drop in performance throughout. Unlike the case of action recognition,
the flow stream and fusion do not generally improve performances. TSN often
offers small, but consistent improvements over 2SCNN.

Fig. 10 reports qualitative results. Success examples are highlighted in green,
and failure cases in red. As the qualitative figure shows, the method over-predicts
‘put’ as the next action. Once an object is picked up, the learned model has a
tendency to believe it will be put down next. Methods that focus on long-term
understanding of the goal, as well as multi-scale history would be needed to
circumvent such a tendency.

Discussion: The three defined challenges form the base for higher-level under-
standing of the wearer’s goals. We have shown that existing methods are still
far from tackling these tasks with high precision, pointing to exciting future di-
rections. Our dataset lends itself naturally to a variety of less explored tasks.
We are planning to provide a wider set of challenges, including action localisa-
tion [50], video parsing [42], visual dialogue [7], goal completion [20] and skill
determination [10] (e.g. how good are you at making your eggs for breakfast?).
Since real-time performance is crucial in this domain, our leaderboard will reflect
this, pressing the community to come up with efficient and effective solutions.

5 Conclusion and Future Work

We present the largest and most varied dataset in egocentric vision to date,
EPIC-KITCHENS, captured in participants’ native environments. We collect 55
hours of video data recorded on a head-mounted GoPro, and annotate it with
narrations, action segments and object annotations using a pipeline that starts
with live commentary of recorded videos by the participants themselves. Baseline
results on object detection, action recognition and anticipation challenges show
the great potential of the dataset for pushing approaches that target fine-grained
video understanding to new frontiers. Dataset and online leaderboard for the
three challenges are available from http://epic-kitchens.github.io.
Acknowledgement: Annotations sponsored by a charitable donation from Nokia
Technologies and UoB’s Jean Golding Institute. Research supported by EPSRC
DTP, EPSRC GLANCE (EP/N013964/1), EPSRC LOCATE (EP/N033779/1)
and Piano della Ricerca 2016-2018 linea di Intervento 2 of DMI. The object
detection baseline helped by code from, and discussions with, Davide Acuna.
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