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Abstract

The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting
multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking
dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of
multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations.
Simulations show that stable and robust mode-locked pulses can be produced. However, the
mode-locking can be destabilized by excessive higher-order mode content. Experiments using
large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-
locking can be significantly disturbed in the presence of higher-order modes, resulting in lower
maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to
achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very
sensitive to the presence of multiple waveguide modes when compared to systems such as
amplifiers and continuous-wave lasers.

Index Terms

Large mode area fibers; mode-locked lasers; multi-mode fibers; solitons

I. INTRODUCTION

Over the past two decades, mode-locked lasers have evolved from the confines of
fundamental science to commercial instruments with a wide variety of applications [1], [2].
Currently there is a high level of interest in mode-locked fiber lasers due to the practical
advantages they offer over solid-state lasers. Despite much progress in mode-locked fiber
lasers, their broader impact has been limited due to restrictions on pulse energies, which is a
consequence of the underlying soliton area theorem [1]. Thus the standard and well-known
multi-pulsing instability [1], [3]–[6] prevents the formation of highly-energetic pulses.
Indeed, conventional soliton fiber lasers [7] that rely on the balance between anomalous
group velocity dispersion (GVD) and self-phase modulation (SPM) only generate pulses
with energies up to ~0.1 nJ [1], [2]. Recently, much progress has been made experimentally
to achieve higher energy mode-locked fiber lasers by using segments of normal GVD fiber
so that the net cavity dispersion is near zero or large and normal. These include the
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stretched-pulse laser [8]–[10], self-similar laser [2], [11], and the all-normal dispersion
(ANDi) laser [2], [12]–[15]. When combined with large mode area (LMA) fibers, ANDi
lasers have recently produced pulses with peak powers at the megawatt level [15]–[17]. In
contrast to soliton mode-locked lasers [1], [7], this new generation of high power fiber lasers
depend strongly on dissipative processes as well as phase modulations to shape the pulse,
often resulting in large intra-cavity pulse variations per round trip. Although these
dissipative solitons [14] tolerate nonlinear phase shifts up to ~10π, the build-up of a strong
enough nonlinear phase shift still induces a multi-pulsing instability in these fiber lasers. An
area theorem for dissipative solitons has been derived [18], with energy limits at least two
orders of magnitude above conventional soliton lasers for given mode area.

To further increase mode-locked pulse energies, the fiber nonlinearity must be reduced in
order to avoid multi-pulsing. A conceptually-straightforward way to further increase the
power levels in a laser cavity is by using fibers with larger cores, increasing the pulse energy
while maintaining the nonlinear phase shift incurred. This approach is limited, however, by
the potential onset of multimode waveguiding. The transition from single-mode to multi-
mode operation for step-index fiber can be easily computed [19], thus giving a maximal core
radius for single-mode operation. The lowest-order mode of a multimode fiber can have
large area, and use of multimode fiber in this way has become a popular and practical means
of achieving large mode area. Several mechanisms have been demonstrated to filter out
higher-order modes, including selective bend loss [20], gain filtering [21], and chirally-
coupled core (CCC) fiber [22]. Photonic-crystal fiber (PCF) allows large effectively single-
mode core, either due to large propagation losses for higher-order modes, or weak
intermodal coupling. The use of PCF has been popular in scientific studies, but has had less
impact in practical devices due to high bend sensitivity and difficult integration with
conventional fiber fusion technology. Step index multi-mode fibers offer straightforward
integration potential. Although they have found wide use in amplifiers, there has only been
one isolated demonstration of their use in mode-locked oscillators [23]. It is suspected that
interaction with higher-order modes (HOM) may disrupt stable mode-locking in laser
cavities.

One of the most successful mode-locked lasers developed to date is the ring cavity fiber
laser with passive polarizer and waveplate elements [1], [3], [24]–[26]. The combination of
these passive mode-locking elements creates the self-amplitude modulation, which is
generated by Kerr-lensing [27], [28] or a saturable absorber in solid-state lasers. Such a
mode-locking technique is in general referred to as nonlinear polarization rotation or
evolution (NPE), although other physical mechanisms such as nonlinear interferometry
[29]–[32], active modulation [33], [34], or nonlinear mode-coupling [35]–[38] can also be
used to achieve effective intensity discrimination. The best-known theoretical model used to
describe the averaged mode-locking process in ring cavity fiber lasers is the master equation
proposed by H. A. Haus, which is essentially the cubic complex Ginzburg-Landau equation
[1]. A quintic absorption term is commonly added to the master equation to capture the
robust nature of the experimentally observed mode-locking process [3], [39], [40]. Recently,
Leblond et al. [26], [41], [42] and Ding and Kutz [43] have developed split-step modeling
techniques to average the pulse propagation in the cavity subjected to the discrete effects of
the passive polarizer and wave-plates. This resulted in an cubic-quintic complex Ginzburg-
Landau equation where all the coefficients in the equation could be explicitly related to the
settings of the discrete elements. However, this model is only applicable to lasers built with
single-mode fiber. The coupled mode theory describes the co-propagation of different fiber
modes in a multi-mode fiber which is governed by a set of coupled nonlinear Schrödinger
equations (CNLS), and has been considered in numerous earlier works [19], [44]–[48].
However the pulse shaping mechanism, i.e. the effective saturable absorption created by the
wave-plates and polarizer, is not incorporated into the governing equation.
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In this work, we investigate theoretically and experimentally the possibility of mode-locked
operation of an ANDi fiber laser based on large core fibers supporting multiple transverse
modes. Theoretically, we extend the coupled mode theory derived by Kutz and co-workers
[44] to account explicitly for the effects of saturable absorption as well as gain saturation,
thus resulting in a system of coupled complex Ginzburg-Landau equations (CGLEs) with
cubic-quintic dissipation. Thus, we explicitly consider the multi-mode dynamics due to
nonlinear mode coupling in the laser cavity and show that stable mode-locking is indeed
achievable. We use this model to study the destabilizing effect of multimode propagation on
achievable mode-locked pulse energies, as well as the beneficial effects of mode filtering.
The coupled CGLE model considered in this paper is, to our knowledge, the first theoretical
model that treats the averaged evolution in multi-mode fiber lasers and explicitly accounts
for saturable absorption as well as the stabilizing effect of gain saturation [43], [49], [50].
Experimentally, we find that the presence of unsuppressed higher order mode content in
LMA fibers significantly reduces the maximum single pulse energy that can be stabilized in
the cavity, confirming the destabilizing effect of multimode propagation. Careful control of
higher-order mode content can restore full pulse energy scaling. This is shown in the case of
step-index fiber, large core photonic crystal fiber, as well as chirally-coupled core fiber.

The paper is structured as follows: Sec. II describes the extended coupled mode theory that
describes the averaged pulse evolution in a generic multi-mode ring cavity fiber laser.
Extensive numerical simulations showing the mode-locking behavior as a function of the
key physical parameters in the laser cavity are given in Sec. III. The experimental realization
of the laser cavities and their behavior is given in Sec. IV. Sec. V concludes the paper with a
summary of results and highlights the key findings related to the multi-mode operation of
fiber lasers.

II. COUPLED MODE THEORY AND AVERAGE LASER CAVITY DYNAMICS

The theoretical underpinnings of a multi-mode model are presented in this section. Critical
in a quantitative description is a fundamental characterization of the nonlinear mode-
coupling which occurs between the fundamental mode and the second mode of the fiber. A
higher number of modes can be incorporated into the model developed here, but simulations
show that the two-mode case exhibits the key features of a multi-mode laser. Although the
model is constrained to a two-mode analysis, the general trends presented here hold even in
the presence of higher-order mode content. Thus the two-mode model elucidates the
essential features of the multi-mode mode-locking and instability.

A. Fiber Modes

Fig. 1 shows the idealized ring cavity laser consisted of a single-mode fiber (SMF) in
conjunction with an ytterbium-doped multi-mode fiber (MMF), a saturable absorber (a
combination of wave-plates and polarizers), and an output coupler. For the rest of Secs. II
and III, we will treat the entire laser cavity as one single MMF. This is consistent with
experiment (See Fig. 8) as the SMF is short (≈ 30% of the total cavity length), and it is only
used to control the mode excitation in the MMF. This modal excitation however, only
affects the initial second mode content created at each roundtrip, not the pulse propagation
in the system. The effects of bandwidth-limited Yb-doped amplification, fiber losses, and
saturable absorption will be treated with a distributed model so that they are distributed
along the entire cavity length [1], [3].

The derivation of the transverse mode fields supported by the multi-mode fiber and the
corresponding envelope equations has been considered in earlier works [19], [44]–[48], and
hence we will only highlight the key results here. It has been shown [19] that the mode
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fields Ψj (j = 1, …, N, where N is the total number of modes) supported by the multi-mode
fiber satisfy the eigenvalue problem

(1)

where  is the transverse Laplacian, k = 2π/λ is the wave number in the propagation
direction z, n(x, y) is the effective refractive index profile of the fiber’s cross-section, and Λj

is the propagation constant (eigenvalue) of the jth mode. As a leading-order approximation,
only radially symmetric modes Ψj (r) are considered since the refractive index profile is
radially symmetric, i.e. n(x, y) = n(r). The above eigenvalue problem then becomes:

(2)

Normalization of the eigenfunctions can be achieved by requiring the inner product
condition

(3)

where * denotes complex conjugation and δij is the Kronecker delta. The brackets denote the
standard inner-product notation. The mode fields Ψj and the propagation constants Λj can be
determined numerically from Eq. (2) for a given function n(r). Since the entire cavity is
treated as one MMF, one can calculate Ψj and Λj using the design specifications of the
MMF only. To be consistent with experiment, we assume the numerical aperture (NA) of
the MMF to be 0.07, which is related to the core index n1 and cladding index n2 through the

relationship . For silica fibers, we assume n1 = 1.5008 and n2 = 1.4992 which
gives a bulk index of n = 1.5. With a core radius of 10µm, the index profile in the cavity is
then:

(4)

Fig. 2 shows the solutions to the eigenvalue problem (2), with wavelength λ = 1.03µm. For
the parameters considered only two radially-symmetric modes are found (LP01 and LP02).
These numerically found modes are consistent with the optical fiber specifications.
Although coupling can occur between the LP01 mode and any of the LP11, LP21 or LP02
modes, a two-mode model is sufficient to characterize the essential multi-mode dynamics
observed from simulations and experiments.

B. Envelope Equations

The averaged intra-cavity propagation for the two modes q1,2(z, t) of the electric field
envelope corresponding to the transverse mode fields Ψ1,2(x, y) can be represented by a
system of coupled Ginzburg-Landau equations (CGLEs) in dimensionless form [44]:

(5)
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(6)

with Rj (j = 1, 2) given by:

(7)

and the non-local function Gj (z) is:

(8)

In the above formalism, z is the propagation distance divided by the total cavity length, and t
is the retarded time normalized by the typical full-width at half-maximum of mode-locked
pulses, i.e. 200fs. The parameter D denotes the normalized group-velocity-dispersion
(GVD), and is negative (positive) for normal (anomalous) dispersion. The effective self- and
cross-phase modulations γij depend on the overlap-integrals between the transverse modal
structures as well as the setting of the saturable absorber. Strictly speaking the saturable
absorber can produce effective quintic modifications to the nonlinear index, but numerical
simulations show that they do not affect the pulse dynamics significantly and hence are
neglected in the present model. The linear coupling term C describes the interchange of
energy between the modes which arises from fluctuations of refractive index in the
propagating direction as well as microbending of the fiber core.

The dissipative effects are captured in expressions (6) and (7). Here Gj (z) represents the
gain with pumping strength 2gj experienced by the jth mode, and it is saturated by the total
cavity energy given by the integral in the denominator. The bandwidth of the gain is denoted
by the parameter τ. βj and µ j are positive quantities that model the distributed effective
saturable absorption in the cavity. The cross-saturations between the modes have been
neglected since they don’t have significant impact on the dynamics. In the simulations that
follow it is assumed that τ, βj and µ j are small. In practice, it is hard to change g1 and g2
independently. Roughly speaking, both fiber modes q1,2 compete to saturate the same
population inversion. More precisely, they have different spatial profiles Ψ1,2 and spatially
deplete the gain in a different way. This is a very complicated effect that requires using a
spatial gain profile across the fiber [21], and will not be considered here. For simplicity we
will assume a fixed ratio between the gain parameters g1 and g2.

The specific coupled fiber modes chosen in what follows are the LP01 and LP02 radially
symmetric modes. The specific modes chosen are largely irrelevant as their overlap integrals
calculated for use in the coefficients of the nonlinearities in Eq. (5) are only slightly
modified. What is of primary importance is the linear coupling coefficient C and the induced
loss δ2, which we use here as independent variables to study their effects on mode-locking
performance. Simulations performed of the mode-locked laser cavity using other coupled
modes should show little essential change from those presented here.

III. NUMERICAL SIMULATIONS

The numerical procedure employed for solving the CGLEs (5) uses a fourth-order Runge-
Kutta method in z and spectral (Fourier) transforms in the time variable t. Fig. 3 shows the
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ideal mode-locking behavior starting from white-noise. Stable mode-locked pulses are
formed after approximately a hundred round-trips of the laser cavity. The same mode-locked
state is achieved regardless of the initial condition used, thus confirming that the solution is
a global attractor and the mode-locking process is self-starting.

It is well known that multi-pulsing can occur in single-mode fiber lasers when too much
energy is injected into the cavity. This kind of multi-pulsing instability is also observed for
the MMF laser considered in this paper. Fig. 4 shows the mechanism for which a single
pulse splits into two or more pulses when the pumping strength is increased. For the
parameters used in Fig. 4, stable single-pulse mode-locking can be achieved up to g1 = 4.4.
When the pumping strength exceeds this value, the pulse starts to shred energy in the form
of radiation, which is the first step towards multi-pulsing instability. At higher values of g1 a
periodic solution is formed. This periodic solution consists of two peaks that undergo
tunneling indefinitely, i.e. one peak reaches its maximum when the other one reaches the
minimum. When the gain is large enough, such periodic solution is unstable. In this case the
initial condition quickly evolves into two identical pulses with constant separation. Three or
more pulses can be achieved by ramping up g1.

It is useful to study how the second mode content affects the multi-pulsing instability. In the
simulations, there are three ways to change the amount of second mode q2 circulating in the
cavity. The first way is to change the ratio between g1 and g2, i.e. varying a = g1/g2. The
gain received by the second mode can be increased by decreasing a. In practice, however,
this method may be difficult to perform since the relationship between g1 and g2 is fixed
once the spatial profile of the dopant is determined [21]. Adjusting a may require changing
the doping material, and therefore this will not be further investigated in this paper. The
second way to control the second mode content is to adjust the linear coupling C between
the modes, which controls the energy transfer between q1 and q2 in the cavity. The third way
to change the second mode content is to control the higher-order mode loss parameter δ2.
Experimentally this can be done by coiling the gain fiber as shown in Fig. 1 [20]. A smaller
diameter induces a larger suppression to the higher modes in the cavity while the
fundamental mode q1 is almost unaffected above a certain radius. Strictly speaking,
changing the coiling diameter may modify the linear coupling C between the modes. In this
paper we assume their correlation is weak so that δ2 and C can be tuned independently.

The first column of Fig. 5 shows the performance of the MMF laser as a function of the
linear coupling C. The total cavity energy, which is defined as

(9)

is recorded right before multi-pulsing instability occurs. In general, a larger linear coupling
promotes the energy transfer from the fundamental mode to the second mode (and other
higher modes if they exist) and hence allowing for a higher second mode content in the
cavity. In the extreme case where linear coupling between the modes is absent, i.e. C = 0,
the second mode locks into the zero solution and the energy (E = 6.8998) is the smallest
among all the recorded values. When C is nonzero, q2 contributes to −34 dB of the total
cavity energy at C = 0.05, and around −16 dB at C = 0.45 (see bottom left of Fig. 5).
Meanwhile the maximum total cavity energy before multi-pulsing first increases from E =
6.97 to a maximum of E = 7.733 at C = 0.3, and then decreases again to E = 7.52 at C =
0.45. In other words, in the region 0.05 ≤ C ≤ 0.3, adding more second mode content to the
cavity actually improves the performance of the laser as higher pulse energy can be
achieved. In contrary, further increasing the linear coupling beyond the value C = 0.3
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destabilizes the mode-locking operation and hinders the maximum pulse energy obtained.
This corresponds to an MPI of ~−20 dB, within the same order of magnitude as the
experimental threshold for reduced single pulse energies.

The performance of the laser as a function of the second mode loss δ2 is shown in the second
column of Fig. 5. The pulse energy increases monotonically from E = 7.4 at δ2 = 1.2 to E =
8.1013 at δ2 = 1.8. Further suppressing the second mode (δ2 > 1.8) results in a drop of pulse
energy. In the limiting case where δ2 → ∞, the second mode content in the cavity is so
small that the single-mode approximation becomes valid. In this situation the pulse energy
approaches E = 6.8998, which is the same as that obtained by setting C = 0. On the other
hand, it maybe difficult or even impossible to achieve mode-locking if the second mode
suppression is not enough. Fig. 6 shows the small mode-locked region when δ2 = 1.2.
Specifically, stable single pulse mode-locking is only possible in a small window in the
range 4.79 < g1 < 4.81. We were not able to find other operating regimes for stable single
pulse mode-locking outside this region. The range of g1 values for which stable single-pulse
mode-locking can occur is shown in Fig. 7. One can see that the operating regime is
extended when the suppression of q2 increases. The window of admissible g1 values is
largest in the limiting case where q2 is completely removed from the cavity, ranging from g1
= 3.9 to below 1.5. A similar trend is also observed when the linear coupling C is varied. In
general, the window of single-pulse operating regime is the largest when C = 0, and the
width of the window decreases monotonically with increasing C. These observations
indicate that excessive amounts of the second mode can have deleterious effects on the
stability of mode-locking dynamics, confirming the experimental observation of lower
maximum single pulse energies in LMA fiber lasers propagating multiple modes.

IV. EXPERIMENTAL FINDINGS

The experimental behavior of mode-locked lasers based on multimode fibers will now be
studied. Different fiber designs and mode control mechanisms will be considered.

The most straightforward way to scale to larger fiber cores is by using large mode-area step-
index MMF while attempting to strip off higher-order modes. We built the ANDi cavity
presented in Fig. 8. The gain medium is about 1.2 m of Yb-doped double-clad fiber with a
core diameter of 20 µm (Liekki Yb1200-20/125). The 125 µm cladding diameter offers
simple integration to telecommunication grade fiber components. The numerical aperture
(NA) is 0.07, yielding a mode-field diameter (MFD) of 17 µm and a V-number of 4.3,
supporting four waveguide modes. By solving the waveguide eigenvalue problem [19], the
HOM closest to the fundamental LP01 mode is found to be LP11, with a group-velocity
mismatch (GVM) of 0.80 ps/m. Light from a 975 nm pump diode is injected into the
cladding of the gain fiber using a homemade side-fused pump-signal combiner. To favor
fundamental mode excitation, the combination of 0.35 m of fiber with an 8 µm core
diameter and 0.14 NA and 0.45 m of 10 µm core diameter single-mode fiber (SMF) with a
NA of 0.08 are spliced to the gain fiber through a tapered mode-field adapter inside the
combiner. The total cavity length is brought to 2.6 m by splicing 0.6 m of matching passive
20 µm multimode fiber after the gain fiber. A cladding mode stripper after the gain fiber
removes residual pump light. Nonlinear polarization rotation in the fibers is converted to
self-amplitude modulation by three waveplates and a polarizing beamsplitter. This NPE port
also serves as the output coupler. A polarizing isolator ensures unidirectional ring operation.
A quartz plate placed before the isolator creates a birefringent spectral filter, enabling
dissipative soliton pulse shaping. Two perpendicular coils in the gain fiber provide high loss
to the higher order modes with little loss to the fundamental mode [20]. An external grating
pair acts as a dispersive delay line to compensate the chirp of the output pulses.
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We first operate the laser without coiling the gain fiber and thus without higher-order mode
filtering. After tuning the NPE waveplates, the laser provides a stable, self-starting mode-
locked pulse train at a repetition rate of 77 MHz. The mode-locked spectrum and dechirped
interferometric autocorrelation (AC) using a 15-nm filter are presented in Fig. 9(a) and (b).
The single-pulse energy is 4.4 nJ, and the full-width at half-maximum (FWHM) of the AC is
250 fs, giving a pulse duration of 177 fs using a gaussian deconvolution factor. Two smaller
pulses are visible ~1.5 ps away from the main pulse. This agrees with a calculated
intermodal delay of 1.4 ps between LP01 and LP11. The spectrum shows strong modulations
with a few nm period due to multi-path interference (MPI). The Fourier transform of the
spectrum shown in Fig. 9(c) qualitatively confirms the fringes correspond to the LP11
intermodal delay. A quantitative assessment of the HOM content would require a spatially
resolved measurement such as the S2 method [51]. The M2 parameter was measured to be
1.33, confirming the multimode nature of the beam. If the pump power is raised further, the
mode-locked state becomes unstable, then locks into similar double- and triple-pulsing states
as shown in Fig. 9(d). In the multi-pulsing states, the energy of each individual pulse is
always nearly 4.2 nJ.

The linear coupling between fiber modes is determined by random refractive index
variations and microbends in the fiber core, and can only be addressed during fiber
fabrication. We instead control the higher order mode loss by coiling the fiber on two
perpendicular axes [20]. We found mode-locked states with coiling diameters from 8 cm to
4 cm, with prohibitive bending losses at smaller diameters. Fig. 10(a) and (b) shows a
single-pulsing mode-locked state at a coiling diameter of 4 cm with a 15 nm filter. The pulse
energy is 21 nJ, and from the dechirped AC we infer a dechirped pulse duration of 115 fs.
Filtering of the higher-order modes clearly allows higher pulse energies. This wide-
bandwidth mode is similar to the highly structured mode in Fig. 12(h) of [13]. Up to its
sensitivity limit, the autocorrelation trace shows no secondary pulse at the LP11 delay,
confirming lower HOM content. Fig. 10(c) and (d) present a similarly stabilized mode-
locked state with a coiling diameter of 4 cm and a 20 nm filter. The pulse energy and
inferred dechirped duration are 12 nJ and 150 fs. Secondary LP11 pulses are again not
detected above the noise floor of the autocorrelation.

Although energies of up to 21 nJ are achieved in this multimode step-index fiber cavity, this
performance is well below that of a previously-built laser with 10 µm core diameter single-
mode fiber [52]. This laser provided pulse energies up to 31 nJ with a similar 2 m cavity. By
scaling the MFD from 11 µm to 17 µm, we would expect pulse energies up to 75 nJ from
the 20 µm core ANDi. This indicates that despite coiling, higher-order modes are not
sufficiently controlled in the step-index LMA cavity, and their presence limits the maximum
single pulsing energy that can be stabilized.

An optimal mode control mechanism should be built into the fiber design rather than depend
on external manipulations. One such mechanism is the large mode-area photonic crystal
fiber. We present results from a laser built around such a LMA PCF. The details of the setup
as well as representative mode-locked states are discussed elsewhere [17]. The central
element is 1.25 m of Yb-doped LMA PCF with a core diameter of 40 µm, an effective NA
of 0.03 and a MFD of ~33 µm. The photonic lattice is hexagonal with a pitch of 12.3 µm
and a hole diameter of 1.1 µm [53]. Although this seven missing hole design is not endlessly
single mode, the modal propagation constants are far enough to suppress intermodal
coupling over the length of the fiber. This results in effectively single-mode behavior if the
fundamental mode is properly seeded.

Two lasers were built using the same cavity design and distinct PCFs with essentially
identical specifications (Crystal Fibre DC-170-40-Yb and DC-170-40-Yb-2). Fig. 11 shows
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self-starting mode-locked states obtained using each fiber. The first fiber is presented in Fig.
11(a)–(b) and yields a single pulsing state with energy 124 nJ, and the state from the second
fiber in Fig. 11(c)–(d) is double pulsing with an average energy of 47 nJ per pulse. The first
PCF laser shows very weak spectral modulations and no visible secondary pulse on its
autocorrelation, indicating essentially singlemode propagation. Although the fibers are
essentially singlemode by specification, the second fiber clearly displays significant higher-
order mode content as evidenced by the strong modulations on the mode-locked spectrum.
This could be due to inconsistencies in the fabrication process allowing higher-order modes
to be guided. Excitation of multiple modes at the fiber input could also seed secondary
modes, although identical setups and alignment procedures were used for both lasers. The
singlemode PCF yields single pulse energies of up to 154 nJ, limited by available pump
power, while the effectively multimode PCF only provides up to 60 nJ before the onset of
multipulsing instabilities. This corroborates the conclusions from the step-index ANDi laser
that the presence of unfiltered higher-order mode content limits the maximum single pulse
energy accessible in the cavity.

Another distributed and built-in mode filtering mechanism is provided by chiraly-coupled
core (CCC) fibers [22]. In such a fiber, a secondary core is wrapped in a helix around the
main core. The pitch and chirality of the helix are chosen to selectively couple out modes
other than the fundamental through quasi-phasematched resonances.We show results from
an ANDi laser based on 3.9 m of Yb-doped CCC fiber. The fiber core diameter is 33.5 µm
with a NA of 0.06. This yields a MFD of 21 µm and V = 6.03, supporting six modes. The
LP11 mode has a calculated GVM of 0.5 ps/m with LP01. A detailed characterization of the
performance of the laser is presented elsewhere [54]. Here we put the results in the context
of multimode propagation. Fig. 12 presents a self-starting single-pulsing state obtained with
an 8 nm filter. The pulse energy is 47 nJ and we infer a dechirped pulse duration of 225 fs
from the AC. The small spectral modulation at the center indicate low HOM content,
confirmed by the absence of any secondary pulse up to the 30 dB noise floor of the
autocorrelation trace. The M2 is measured to be 1.1 to 1.15 in CW and mode-locked states,
confirming HOM filtering. When normalized to the mode-area of the fiber, these results are
comparable to those a single-mode ANDi laser with similar dispersion and output spectral
bandwidth. Pulse energies of about 4–5 nJ and 200 fs dechirped durations are shown in Fig.
12(f) and Fig. 13 of [13], using a fiber with a mode area 12 times smaller. This confirms that
the robust and continuous mode filtering in the CCC fiber helps stabilize a multimode core
to singlemode mode-locked performance.

The presented experimental findings clearly indicate that unsuppressed higher-order spatial
modes severely affect the performance of mode-locked fiber lasers. Whereas HOM content
in amplifiers and CW lasers mainly affects beam quality, the experiments presented here
show that the maximum stable single pulse energy achievable in mode-locked oscillators is
greatly reduced from the limit expected by scaling the core size. This is consistent with the
numerical simulations above, which indicate that mode-locking is fundamentally
destabilized when secondary mode content becomes significant enough. Experimentally,
large core step-index fiber shows the largest performance degradation, yielding about 4 nJ of
pulse energy compared to an expected energy of 75 nJ. Mode-filtering using selective bend
loss raises the maximum pulse energy to 20 nJ, but still underperforms singlemode sources.
In practice, full pulse energy scaling is achievable only with careful mode management
mechanisms. This is demonstrated for large mode-area PCF as well as chirally-coupled core
fibers whose mode-locked performance scales as expected with core size. It should be noted
that PCFs with core diameters larger than 40 µm require the addition of extra mode filtering
in the cavity. Indeed, photonic crystal rod lasers, such as in [15], [16], use a piece of single
mode fiber as an intracavity spatial mode filter.
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V. CONCLUSION

The influence of multiple transverse modes on a mode-locked large mode area fiber laser
cavity has been investigated both theoretically and experimentally. The motivation for using
large core multi-mode fiber is to reduce the non-linear phase-shift for a given peak power in
the mode-locked cavity. Excessive non-linear phase induces multi-pulsing instabilities in the
laser cavity, thus limiting the total energy delivered in a single pulse. This multi-pulsing
instability presents a fundamental limit that must be avoided in order to increase the
performance of mode-locked lasers. We compared the performance of lasers based on coiled
20 µm core diameter step-index fiber, 40 µm core endlessly single-mode photonic crystal
fiber and 33 µm core chirally-coupled core fiber.

Although the peak intensities are indeed reduced, the higher-order mode content that results
from mode-coupling induces multi-pulsing instabilities. These prevent the scaling to higher
peak powers with mode area. A detailed theoretical model, the first to characterize multi-
mode laser mode-locking, is developed and shows that mode-locking is destabilized by
excessive higher-order mode content. This results in a narrower range of stable single-pulse
solutions and reduced maximum pulse energy when compared to single-mode fibers,
consistent with the experimental findings. This model provides a framework to optimize the
performance of the multi-mode fiber laser as a function of the various cavity parameters
such as the suppression of higher-order mode content and coupling between modes.
Experimentally, cavities with excessive higher-order mode content were found to have
lowered normalized single pulse energies than equivalent single-mode lasers, consistent with
the multi-pulsing instabilities observed in the numerical model. This is a much stronger
drawback than in amplifiers or continuous-wave lasers, where multiple modes mainly affect
beam quality. Selective bend loss in a step-index fiber is found to be insufficient to attain
full single-mode performance. The expected pulse energies are achieved with fibers
incorporating continuous mode filtering in their design, such as effectively single-mode PCF
and chirally-coupled core fibers. Our findings confirm that, due to presence of higher-order
mode content, large mode area fiber lasers must be carefully engineered to continuously
suppress higher-order modes in order for their performance to surpass that of standard
single-mode fiber lasers.
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Fig. 1.

Idealized experimental setup based upon Fig. 8. The entire laser cavity is approximated by a
single MMF.
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Fig. 2.

Radially symmetric mode fields for the eigenvalue problem (2). Here n(r) is the index
profile given by (4) and k = 2π/λ, where λ = 1.03µm is the wavelength.
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Fig. 3.

Top: Evolution of fiber modes from white-noise where the second mode q2 is initially zero.
Stable mode-locked state is achieved after about a hundred dispersion scales. The
parameters used are D = −0.4, s2 = 1, (γ11, γ22, γ12) = (1.2, 1.1, 2.3), (β1, β2) = (0.3, 0.28),
(µ1,µ2) = (0.023, 0.022), C = 0.15, (g1, g2) = (4, 3.077), τ = 0.1, and (δ1, δ2) = (1, 1.2).
Bottom: The corresponding spectrum of the mode-locked state.
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Fig. 4.

Top left: Shredding of energy at g1 = 5, which is the onset of multi-pulsing instability. Top
right: Periodic solution at g1 = 6.5. Bottom left: Stable double-pulse solution at g1 = 7.
Bottom right: Stable triple-pulse solution at g1 = 12. The rest of the parameters are D =
−0.4, s2 = 1, (γ11, γ22, γ12) = (1.2, 1.1, 2.3), (β1, β2) = (0.3, 0.28), (µ1,µ2) = (0.023, 0.022), C
= 0.15, g2 = g1/1.3, τ = 0.1, and (δ1, δ2) = (1, 1.2).
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Fig. 5.

Top: Maximum total cavity energy obtained right before the onset of multi-pulsing
instability as a function of different cavity parameters. Bottom: The corresponding second
mode content in the cavity. Unless otherwise specified, the parameters used are D = −0.4, s2
= 1, (γ11, γ22, γ12) = (1.2, 1.1, 2.3), (β1, β2) = (0.3, 0.28), (µ1,µ2) = (0.023, 0.022), C = 0.5,
g1/g2 = 1.3, τ = 0.1, and (δ1, δ2) = (1, 1.2).
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Fig. 6.

Small window of stable mode-locking when the suppression of the second mode is
insufficient. Left: g1 = 4.79. Middle: g1 = 4.8. Right: g1 = 4.85. δ2 = 1.2 and C = 0.5 for all
the simulations.
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Fig. 7.

Stable single-pulse regime (shaded area) of the MMF laser as a function of δ2 (loss of the
second mode) and g1 (gain pumping strength of the first mode). As is expected, the
operating regime increases as the MMF laser becomes more single mode in nature, i.e., the
second mode content is more strongly filtered.
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Fig. 8.

Step-index LMA ANDi laser setup. SMF/MMF: singlemode/multimode fiber, QWP/HWP:
quarter/half waveplate, PBS: polarizing beam splitter, BRP: birefringent plate, and DDL:
dispersive delay line.
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Fig. 9.

Mode-locked states of a step-index LMA ANDi laser without coiling: (a) spectrum and (b)
dechirped interferometric AC of single pulsing state at 4.0 W of pump, (c) Fourier transform
of (a) showing secondary pulse, and (d) double pulsing at 4.9 W pump.
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Fig. 10.

Mode-locked states of a step-index LMA ANDi laser with the gain fiber coiled to a diameter
of 4 cm. Spectrum and dechirped interferometric AC using: (a) and (b) 15 nm filter, (c) and
(d) 20 nm filter.
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Fig. 11.

Mode-locked states of a LMA PCF based ANDi laser. (a) and (b) Spectrum and dechirped
interferometric AC of the effectively single mode PCF. (c) and (d) Spectrum and its Fourier
transform for the effectively multimode PCF.
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Fig. 12.

Mode-locked state of a LMA CCC fiber ANDi laser: (a) spectrum and (b) dechirped
interferometric AC.
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