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SCALING FOR A ONE-DIMENSIONAL DIRECTED POLYMER
WITH BOUNDARY CONDITIONS

BY TIMO SEPPÄLÄINEN1

University of Wisconsin, Madison

We study a (1 + 1)-dimensional directed polymer in a random environ-
ment on the integer lattice with log-gamma distributed weights. Among di-
rected polymers, this model is special in the same way as the last-passage
percolation model with exponential or geometric weights is special among
growth models, namely, both permit explicit calculations. With appropriate
boundary conditions, the polymer with log-gamma weights satisfies an ana-
logue of Burke’s theorem for queues. Building on this, we prove the conjec-
tured values for the fluctuation exponents of the free energy and the poly-
mer path, in the case where the boundary conditions are present and both
endpoints of the polymer path are fixed. For the polymer without boundary
conditions and with either fixed or free endpoint, we get the expected upper
bounds on the exponents.

1. Introduction. The directed polymer in a random environment represents
a polymer (a long chain of molecules) by a random walk path that interacts with
a random environment. Let x� = (xk)k≥0 denote a nearest-neighbor path in Z

d

started at the origin: xk ∈ Z
d , x0 = 0, and |xk − xk−1| = 1. The environment

ω = (ω(s, u) : s ∈ N, u ∈ Z
d) puts a real-valued weight ω(s,u) at space–time

point (u, s) ∈ Z
d × N. For a path segment x0,n = (x0, . . . , xn), Hn(x0,n) is the

total weight collected by the walk up to time n :Hn(x0,n) =∑n
s=1 ω(s, xs). The

quenched polymer distribution on paths, in environment ω and at inverse temper-
ature β > 0, is the probability measure defined by

Qω
n (dx�) = 1

Zω
n

exp{βHn(x0,n)}(1.1)

with normalization factor (partition function) Zω
n =∑

x0,n
eβHn(x0,n). The environ-

ment ω is taken as random with probability distribution P, typically such that the
weights {ω(s,u)} are i.i.d. random variables.

At β = 0, the model is standard simple random walk. The general objective
is to understand how the model behaves as β > 0 and the dimension d varies.
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A key question is whether the diffusive behavior of the walk is affected. “Diffusive
behavior” refers to the fluctuation behavior of standard random walk, characterized
by n−1E(x2

n) → c and convergence of diffusively rescaled walks n−1/2x�nt� to
Brownian motion.

The directed polymer model was introduced in the statistical physics literature
by Huse and Henley in 1985 [17]. The first rigorous mathematical work was by
Imbrie and Spencer [18] in 1988. They proved with an elaborate expansion that
in dimensions d ≥ 3 and with small enough β , the walk is diffusive in the sense
that, for a.e. environment ω, n−1EQω

(|xn|2) → c. Bolthausen [10] strengthened
the result to a central limit theorem for the endpoint of the walk, still d ≥ 3, small
β and for a.e. ω, through the observation that Wn = Zn/E(Zn) is a martingale.
Since then martingale techniques have been a standard fixture in much of the work
on directed polymers.

The limit W∞ = limWn is either almost surely 0 or almost surely > 0. The case
W∞ = 0 has been termed strong disorder and W∞ > 0 weak disorder. There is a
critical value βc such that weak disorder holds for β < βc and strong for β > βc.
It is known that βc = 0 for d ∈ {1,2} and 0 < βc ≤ ∞ for d ≥ 3. In d ≥ 3 and
weak disorder the walk converges to a Brownian motion, and the limiting diffusion
matrix is the same as for standard random walk [15]. There is a further refinement
of strong disorder into strong and very strong disorder. Sharp recent results appear
in [23].

One way to phrase questions about the polymer model is to ask about two scal-
ing exponents, ζ and χ , defined somewhat informally as follows:

fluctuations of the path x0,n are of order nζ(1.2)

and

fluctuations of logZn are of order nχ .(1.3)

Let us restrict ourselves to the case d = 1 for the remainder of the paper. By the
results mentioned above the model is in strong disorder for all β > 0. It is expected
that the one-dimensional exponents are χ = 1/3 and ζ = 2/3 [22]. Precise values
have not been obtained in the past, but during the last decade and a half nontrivial
rigorous bounds have appeared in the literature for some models with Gaussian
ingredients. For a Gaussian random walk in a Gaussian potential, Petermann [29]
proved the lower bound ζ ≥ 3/5 and Mejane [26] provided the upper bound ζ ≤
3/4. Petermann’s proof was adapted to a certain continuous setting in [9]. For an
undirected Brownian motion in a Poissonian potential, Wüthrich obtained 3/5 ≤
ζ ≤ 3/4 and χ ≥ 1/8 [34, 35]. For a directed Brownian motion in a Poissonian
potential, Comets and Yoshida derived ζ ≤ 3/4 and χ ≥ 1/8 [14].

Piza [30] showed generally that the fluctuations of logZn diverge at least loga-
rithmically, and bounds on exponents under curvature assumptions on the limiting
free energy. Related results for first passage percolation appeared in [24, 27].
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Exact exponents and even limit distributions have recently been derived for the
so-called continuum directed random polymer. The partition function Z(t, x) is
the solution of a stochastic heat equation Zt = 1

2 Zxx − ZẆ where Ẇ is space–
time white noise. In [7], the exact scaling exponent is determined for initial data
Z(0, x) = e−B(x) where B is a two-sided Brownian motion: Var(log Z(t,0)) is
of order t2/3. The result comes from corresponding bounds for the current of the
weakly asymmetric simple exclusion process (WASEP). The techniques are re-
lated to the ones used in the present paper. The link from WASEP to log Z that
enables this transfer of estimates is originally due to [8]. Reference [2] obtains
the probability distribution of log Z for an initial delta function Z(0, x) = δ0(x)

and proves a Tracy–Widom limit under the appropriate scaling. The WASEP con-
nection is used again in [2], together with asymptotic analysis of a determinantal
formula from [33]. There is no methodological overlap between [2] and the present
paper.

Let us return to the (1 + 1)-dimensional lattice polymer. For the rest of the
discussion we turn the picture 45 degrees clockwise so that the model lives
in the nonnegative quadrant Z

2+ of the plane, instead of the space–time wedge
{(u, s) ∈ Z × N : |u| ≤ s}. The weights are i.i.d. variables {ω(i, j) : i, j ≥ 0}. The
polymer x� becomes a nearest-neighbor up-right path (see Figure 1). We also fix
both endpoints of the path. So, given the endpoint (m,n), the partition function is

Zω
m,n = ∑

x0,m+n

exp

{
β

m+n∑
k=1

ω(xk)

}
,(1.4)

where the sum is over paths x0,m+n that satisfy x0 = (0,0), xm+n = (m,n) and
xk − xk−1 = (1,0) or (0,1). The polymer measure of such a path is

Qω
m,n(x0,m+n) = 1

Zω
m,n

exp

{
β

m+n∑
k=1

ω(xk)

}
.(1.5)

FIG. 1. An up-right path from (0,0) to (5,5) in Z
2+.
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If we take the “zero temperature limit” β ↗ ∞ in (1.5), then the measure Qω
m,n

concentrates on the paths x0,m+n that maximize the sum
∑m+n

k=1 ω(xk). Thus, the
polymer model has become a last-passage percolation model, also called the cor-
ner growth model. The quantity that corresponds to logZm,n is the passage time

Gm,n = max
x0,m+n

m+n∑
k=1

ω(xk).(1.6)

For certain last-passage growth models, notably for (1.6) with exponential or geo-
metric weights ω(i, j), not only have the predicted exponents been confirmed but
also limiting Tracy–Widom fluctuations for Gm,n have been proved [5, 6, 13, 16,
19, 20]. The recent article [3] verifies a complete picture proposed in [31] that
characterizes the scaling limits of Gm,n with exponential weights as a function of
the parameters of the boundary weights and the ratio m/n.

In the present paper, we study the polymer model (1.4) and (1.5) with fixed
endpoints, with fixed β = 1, and for a particular choice of weight distribution.
Namely, the weights {ω(i, j)} are independent random variables with log-gamma
distributions. Precise definitions follow in the next section. This particular polymer
model turns out to be amenable to explicit computation, similarly to the case of
exponential or geometric weights among the corner growth models (1.6).

We introduce a polymer model with boundary conditions that possesses a
two-dimensional stationarity property. By boundary conditions, we mean that the
weights on the boundaries of Z

2+ are distributionally different from the weights in
the interior, or bulk. For the model with boundary conditions, we prove that the
fluctuation exponents take exactly their conjectured values χ = 1/3 and ζ = 2/3
when the endpoint (m,n) is taken to infinity along a characteristic direction. This
characteristic direction is a function of the parameters of the weight distributions.
In other directions, logZm,n satisfies a central limit theorem in the model with
boundary conditions. As a corollary, we get the correct upper bounds for the ex-
ponents in the model without boundary and with either fixed or free endpoint, but
still with i.i.d. log-gamma weights {ω(i, j)}.

In addition to the β ↗ ∞ limit, there is another formal connection between the
polymer model and the corner growth model. Namely, the definitions of Zm,n and
Gm,n imply the equations

Zm,n = eβω(m,n)(Zm−1,n + Zm,n−1)(1.7)

and

Gm,n = ω(m,n) + max(Gm−1,n,Gm,n−1).(1.8)

These equations can be paraphrased by saying that Gm,n obeys max-plus algebra,
while Zm,n obeys the familiar algebra of addition and multiplication.

This observation informs the approach of the paper. It is not that we can convert
results for G into results for Z. Rather, after the proofs have been found, one
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can detect a kinship with the arguments of [6], but transformed from (max,+) to
(+, ·). The ideas in [6] were originally adapted from the seminal paper [13]. The
purpose was to give an alternative proof of the scaling exponents of the corner
growth model, without the asymptotic analysis of Fredholm determinants utilized
in [19].

Frequently used notation. N = {1,2,3, . . .} and Z+ = {0,1,2, . . .}. Rectan-
gles on the planar integer lattice are denoted by �m,n = {0, . . . ,m} × {0, . . . , n}
and more generally �(k,�),(m,n) = {k, . . . ,m} × {�, . . . , n}. P is the probability dis-
tribution on the random environments or weights ω, and under P the expectation
of a random variable X is E(X) and variance Var(X). Overline means center-
ing: X = X − EX. Qω is the quenched polymer measure in a rectangle. The an-
nealed measure is P(·) = EQω(·) with expectation E(·). P is used for a generic
probability measure that is not part of the polymer model. Paths can be written
xk,� = (xk, xk+1, . . . , x�) but also x� when k, � are understood. Occasionally A and
B denote gamma-distributed random variables. The more usual random variable
symbols X, Y , Z and W have specific meanings in the polymer model.

2. The model and results. We begin with the definition of the polymer model
with boundaries and then state the results. As stated in the Introduction, relative
to the standard description of the polymer model, we turn the picture 45 degrees
clockwise so that the polymer lives in the nonnegative quadrant Z

2+ of the planar
lattice. The inverse temperature parameter β = 1 throughout. We replace the expo-
nentiated weights with multiplicative weights Yi,j = eω(i,j), (i, j) ∈ Z

2+. Then the
partition function for paths whose endpoint is constrained to lie at (m,n) is given
by

Zm,n = ∑
x�∈	m,n

m+n∏
k=1

Yxk
,(2.1)

where 	m,n denotes the collection of up-right paths x� = (xk)0≤k≤m+n inside the
rectangle �m,n = {0, . . . ,m}×{0, . . . , n} that go from (0,0) to (m,n) :x0 = (0,0),
xm+n = (m,n) and xk − xk−1 = (1,0) or (0,1). We adopt the convention that
Zm,n does not include the weight at the origin, and if a value is needed then
set Z0,0 = Y0,0 = 1. The symbol ω will denote the entire random environment:
ω = (Yi,j : (i, j) ∈ Z

2+). When necessary the dependence of Zm,n on ω will be
expressed by Zω

m,n, with a similar convention for other ω-dependent quantities.
We assign distinct weight distributions on the boundaries (N × {0}) ∪ ({0} × N)

and in the bulk N
2. To highlight this, the symbols U and V will denote weights on

the horizontal and vertical boundaries:

Ui,0 = Yi,0 and V0,j = Y0,j for i, j ∈ N.(2.2)

However, in formulas such as (2.1) it is obviously convenient to use a single sym-
bol Yi,j for all the weights.
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Our results rest on the assumption that the weights are reciprocals of gamma
variables. Let us recall some basics. The gamma function is 
(s) = ∫∞

0 xs−1 ×
e−x dx. We shall need it only for positive real s. The Gamma(θ, r) distribution has
density 
(θ)−1rθxθ−1e−rx on R+, mean θ/r and variance θ/r2.

The logarithm log
(s) is convex and infinitely differentiable on (0,∞). The
derivatives are the polygamma functions �n(s) = (dn+1/dsn+1) log
(s), n ∈ Z+,
([1], Section 6.4). For n ≥ 1, �n is nonzero and has sign (−1)n−1 throughout
(0,∞) ([32], Theorem 7.71). Throughout the paper, we make use of the digamma
and trigamma functions �0 and �1, on account of the connections

�0(θ) = E(logA) and �1(θ) = Var(logA)(2.3)

for A ∼ Gamma(θ,1).
Here is the assumption on the distributions. Let 0 < θ < μ < ∞.

Weights {Ui,0,V0,j , Yi,j : i, j ∈ N} are independent with distribu-
tions U−1

i,0 ∼ Gamma(θ,1), V −1
0,j ∼ Gamma(μ − θ,1), and Y−1

i,j ∼
Gamma(μ,1).

(2.4)

We fixed the scale parameter r = 1 in the gamma distributions above for the sake
of convenience. We could equally well fix it to any value and our results would
not change, as long as all three gamma distributions above have the same scale
parameter.

A key property is that under (2.4) each ratio Um,n = Zm,n/Zm−1,n and Vm,n =
Zm,n/Zm,n−1 has the same marginal distribution as U and V in (2.4). This is a
Burke’s theorem of sorts, and appears as Theorem 3.3 below. From this we can
compute the mean exactly: for m,n ≥ 0,

E[logZm,n] = mE(logU) + nE(logV ) = −m�0(θ) − n�0(μ − θ).(2.5)

Together with the choice of the parameters θ,μ goes a choice of “characteristic
direction” (�1(μ − θ),�1(θ)) for the polymer. Let N denote the scaling parame-
ter we take to ∞. We assume that the coordinates (m,n) of the endpoint of the
polymer satisfy

|m − N�1(μ − θ)| ≤ γN2/3 and |n − N�1(θ)| ≤ γN2/3(2.6)

for some fixed constant γ . Now we can state the variance bounds for the free
energy.

THEOREM 2.1. Assume (2.4) and let (m,n) be as in (2.6). Then there exist
constants 0 < C1,C2 < ∞ such that, for N ≥ 1,

C1N
2/3 ≤ Var(logZm,n) ≤ C2N

2/3.
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The constants C1,C2 in the theorem depend on 0 < θ < μ and on γ of (2.6),
and they can be taken the same for (θ,μ, γ ) that vary in a compact set. This holds
for all the constants in the theorems of this section: they depend on the parame-
ters of the assumptions, but for parameter values in a compact set the constants
themselves can be fixed.

The upper bound on the variance is good enough for Borel–Cantelli to give the
strong law of large numbers: with (m,n) as in (2.6),

lim
N→∞N−1 logZm,n = −�0(θ)�1(μ − θ) − �0(μ − θ)�1(θ) P-a.s.(2.7)

As a further corollary, we deduce that if the direction of the polymer deviates
from the characteristic one by a larger power of N than allowed by (2.6), then
logZ satisfies a central limit theorem. For the sake of concreteness, we treat the
case where the horizontal direction is too large.

COROLLARY 2.2. Assume (2.4). Suppose m,n → ∞. Define parameter N by
n = �1(θ)N , and assume that

N−α(m − �1(μ − θ)N
)→ c1 > 0 as N → ∞

for some α > 2/3. Then as N → ∞,

N−α/2{logZm,n − E(logZm,n)}
converges in distribution to a centered normal distribution with variance c1�1(θ).

The quenched polymer measure Qω
m,n is defined on paths x� ∈ 	m,n by

Qω
m,n(x�) = 1

Zm,n

m+n∏
k=1

Yxk
(2.8)

remembering convention (2.2). Integrating out the random environment ω gives
the annealed measure

Pm,n(x�) =
∫

Qω
m,n(x�)P(dω).

When the rectangle �m,n is understood, we drop the subscripts and write P =
EQω. Notation will be further simplified by writing Q for Qω.

We describe the fluctuations of the path x� under P . The next result shows that
N2/3 is the correct order of magnitude of the fluctuations of the path. Let v0(j)

and v1(j) denote the left- and rightmost points of the path on the horizontal line
with ordinate j :

v0(j) = min
{
i ∈ {0, . . . ,m} :∃k such that xk = (i, j)

}
(2.9)

and

v1(j) = max
{
i ∈ {0, . . . ,m} :∃k such that xk = (i, j)

}
.(2.10)



26 T. SEPPÄLÄINEN

THEOREM 2.3. Assume (2.4) and let (m,n) be as in (2.6). Let 0 ≤ τ < 1.
Then there exist constants C1,C2 < ∞ such that for N ≥ 1 and b ≥ C1,

P {v0(�τn�) < τm − bN2/3 or v1(�τn�) > τm + bN2/3} ≤ C2b
−3.(2.11)

The same bound holds for the vertical counterparts of v0 and v1.
Let 0 < τ < 1. Then given ε > 0, there exists δ > 0 such that

lim
N→∞P {∃k such that |xk − (τm, τn)| ≤ δN2/3 } ≤ ε.(2.12)

Presently we do not have sharp quenched results. From Lemma 4.3 and the
proof of Theorem 2.3 in Section 6, one can extract estimates on the P-tails of the
quenched probabilities of the events in (2.11) and (2.12).

We turn to results for the model without boundaries, by restricting ourselves
to the positive quadrant N

2. Define the partition function of a general rectangle
{k, . . . ,m} × {�, . . . , n} by

Z(k,�),(m,n) = ∑
x�∈	(k,�),(m,n)

m−k+n−�∏
i=1

Yxi
,(2.13)

where 	(k,�),(m,n) is the collection of up-right paths x� = (xi)
m−k+n−�
i=0 from

x0 = (k, �) to xm−k+n−� = (m,n). Admissible steps are always xi+1 − xi = e1 =
(1,0) or xi+1 − xi = e2 = (0,1). We have chosen not to include the weight
of the southwest corner (k, �). The earlier definition (2.1) is the special case
Zm,n = Z(0,0),(m,n). Also we stipulate that when the rectangle reduces to a point,
Z(k,�),(k,�) = 1.

In particular, Z(1,1),(m,n) gives us partition functions that only involve the bulk
weights {Yi,j : i, j ∈ N}. The assumption on their distribution is as before, with a
fixed parameter 0 < μ < ∞:

{Yi,j : i, j ∈ N} are i.i.d. with common distribution Y−1
i,j ∼ Gamma(μ,1).(2.14)

We define the limiting free energy. The identity (see, e.g., (2.11) in [4] or Sec-
tion 6.4 in [1])

�1(x) =
∞∑

k=0

1

(x + k)2

shows that �1(0+) = ∞. Thus, given 0 < s, t < ∞, there is a unique θ = θs,t ∈
(0,μ) such that

�1(μ − θ)

�1(θ)
= s

t
.(2.15)

Define

fs,t (μ) = −(s�0(θs,t ) + t�0(μ − θs,t )
)
.(2.16)
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It can be verified that for a fixed 0 < μ < ∞, fs,t (μ) is a continuous function of
(s, t) ∈ R

2+ with boundary values

f0,t (μ) = ft,0(μ) = −t�0(μ).

Here is the result for the free energy of the polymer without boundary but still with
fixed endpoint. The constants in this theorem depend on (s, t,μ).

THEOREM 2.4. Assume (2.14) and let 0 < s, t < ∞. We have the law of large
numbers

lim
N→∞N−1 logZ(1,1),(�Ns�,�Nt�) = fs,t (μ) P-a.s.(2.17)

There exist finite constants N0 and C0 such that, for b ≥ 1 and N ≥ N0,

P
[∣∣logZ(1,1),(�Ns�,�Nt�) − Nfs,t (μ)

∣∣≥ bN1/3]≤ C0b
−3/2.(2.18)

In particular, we get the moment bound

E

{∣∣∣∣ logZ(1,1),(�Ns�,�Nt�) − Nfs,t (μ)

N1/3

∣∣∣∣p}≤ C(s, t,μ,p) < ∞(2.19)

for N ≥ N0(s, t,μ) and 1 ≤ p < 3/2. The theorem is proved by relating
Z(1,1),(�Ns�,�Nt�) to a polymer with a boundary. Equation (2.15) picks the cor-
rect boundary parameter θ . Presently we do not have a matching lower bound for
(2.18).

In a general rectangle the quenched polymer distribution of a path x� ∈
	(k,�),(m,n) is

Q(k,�),(m,n)(x�) = 1

Z(k,�),(m,n)

m−k+n−�∏
i=1

Yxi
.(2.20)

As before, the annealed distribution is P(k,�),(m,n)(·) = EQ(k,�),(m,n)(·). The upper
fluctuation bounds for the path in the model with boundaries can be extended to the
model without boundaries. Here we can again allow the endpoint (m,n) to deviate
from the characteristic direction:

|m − Ns| ≤ γN2/3 and |n − Nt | ≤ γN2/3(2.21)

for a constant γ . The constants in this theorem depend on (s, t,μ, γ ).

THEOREM 2.5. Assume (2.14), fix 0 < s, t < ∞, and assume (2.21). Let 0 ≤
τ < 1. Then there exist finite constants C, C0 and N0 such that for N ≥ N0 and
b ≥ C0,

P(1,1),(m,n){v0(�τn�) < τm − bN2/3(2.22)

or v1(�τn�) > τm + bN2/3} ≤ Cb−3.

The same bound holds for the vertical counterparts of v0 and v1.
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Next we drop the restriction on the endpoint, and extend the upper bounds to
the polymer with unrestricted endpoint and no boundaries. Given the value of the
parameter N ∈ N, the set of admissible paths is

⋃
1≤k≤N−1 	(1,1),(k,N−k), namely

the set of all up-right paths x� = (xk)0≤k≤N−2 that start at x0 = (1,1) and whose
endpoint xN−2 lies on the line x + y = N . The quenched polymer probability of
such a path is

Qtot
N (x�) = 1

Ztot
N

N−2∏
k=1

Yxk

with the “total” partition function

Ztot
N =

N−1∑
k=1

Z(1,1),(k,N−k).

The annealed measure is P tot
N (·) = EQtot

N (·). We collect all the results in one theo-
rem, proved in Section 8. In particular, (2.25) below shows that the fluctuations of
the endpoint of the path are of order at most N2/3. Statement (8.20) in the proof
gives bounds on the quenched probability of a deviation.

THEOREM 2.6. Fix 0 < μ < ∞ and assume weight distribution (2.14). We
have the law of large numbers

lim
N→∞N−1 logZtot

N = f1/2,1/2(μ) = −�0(μ/2) P-a.s.(2.23)

Let C(μ) be a constant that depends on μ alone. For b ≥ 1, there exists N0(μ, b) <

∞ such that

sup
N≥N0(μ,b)

P[|logZtot
N − Nf1/2,1/2(μ)| ≥ bN1/3] ≤ C(μ)b−3/2(2.24)

and

sup
N≥N0(μ,b)

P tot
N

{∣∣∣∣xN−2 −
(

N

2
,
N

2

)∣∣∣∣≥ bN2/3
}

≤ C(μ)b−3.(2.25)

The last case to address is the polymer with boundaries but free endpoint. This
case is perhaps of less interest than the others for the free energy scales diffusively,
but we record it for the sake of completeness. Fix 0 < θ < μ and let assumption
(2.4) on the weight distributions be in force. The fixed-endpoint partition function
Zm,n = Z(0,0),(m,n) is the one defined in (2.1). Define the partition function of all
paths from (0,0) to the line x + y = N by

Ztot
N (θ,μ) =

N∑
�=0

Z�,N−�.



SCALING FOR A POLYMER 29

Define a limiting free energy

g(θ,μ) = max
0≤s≤1

(−s�0(θ) − (1 − s)�0(μ − θ)
)= {−�0(θ), θ ≤ μ/2,

−�0(μ − θ), θ ≥ μ/2.

Set also

σ 2(θ,μ) =
{

�1(θ), θ ≤ μ/2,
�1(μ − θ), θ ≥ μ/2,

and define random variables ζ(θ,μ) as follows: for θ = μ/2, ζ(θ,μ) has centered
normal distribution with variance σ 2(θ,μ), while

ζ(μ/2,μ) =
√

2�1(μ/2)(M1/2 ∨ M ′
1/2),(2.26)

where Mt = sup0≤s≤t B(s) is the running maximum of a standard Brownian mo-
tion and M ′

t is an independent copy of it.

THEOREM 2.7. Let 0 < θ < μ and assume (2.4). We have the law of large
numbers

lim
N→∞N−1 logZtot

N (θ,μ) = g(θ,μ) P-a.s.(2.27)

and the distributional limit

N−1/2(logZtot
N (θ,μ) − Ng(μ/2,μ)

) d−→ ζ(θ,μ).(2.28)

When θ = μ/2, the axis with the larger −�0 value completely dominates, while
if θ = μ/2 all directions have the same limiting free energy. This accounts for the
results in the theorem.

Organization of the paper. Before we begin the proofs of the main theorems,
Section 3 collects basic properties of the model, including the Burke-type prop-
erty. The upper and lower bounds of Theorem 2.1 are proved in Sections 4 and 5.
Corollary 2.2 is proved at the end of Section 4. The bounds for the fixed-endpoint
path with boundaries are proved in Section 6, and the results for the fixed-endpoint
polymer model without boundaries in Section 7. The results for the polymer with
free endpoint are proved in Section 8.

3. Basic properties of the polymer model with boundaries. This section
sets the stage for the proofs with some preliminaries. The main results of this
section are the Burke property in Theorem 3.3 and identities that tie together the
variance of the free energy and the exit points from the axes in Theorem 3.7.

Occasionally we will use notation for the partition function that includes the
weight at the starting point, which we write as

Z�
(i,j),(k,�) = ∑

x�∈	(i,j),(k,�)

k−i+�−j∏
r=0

Yxr = Yi,jZ(i,j),(k,�).(3.1)
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Let the initial weights {Ui,0,V0,j , Yi,j : i, j ∈ N} be given. Starting from the
lower left corner of N

2, define inductively for (i, j) ∈ N
2

Ui,j = Yi,j

(
1 + Ui,j−1

Vi−1,j

)
, Vi,j = Yi,j

(
1 + Vi−1,j

Ui,j−1

)
and

(3.2)

Xi−1,j−1 =
(

1

Ui,j−1
+ 1

Vi−1,j

)−1

.

The partition function satisfies

Zm,n = Ym,n(Zm−1,n + Zm,n−1) for (m,n) ∈ N
2(3.3)

and one checks inductively that

Um,n = Zm,n

Zm−1,n

and Vm,n = Zm,n

Zm,n−1
(3.4)

for (m,n) ∈ Z
2+ \{(0,0)}. Equations (3.3) and (3.4) are also valid for Z�

m,n because
the weight at the origin cancels from the equations.

It is also natural to associate the U - and V -variables to undirected edges of
the lattice Z

2+. If f = {x − e1, x} is a horizontal edge, then Tf = Ux , while if
f = {x − e2, x} then Tf = Vx .

The following monotonicity property can be proved inductively.

LEMMA 3.1. Consider two sets of positive initial values {Ui,0,V0,j , Yi,j : i,
j ∈ N} and {Ũi,0, Ṽ0,j , Ỹi,j : i, j ∈ N} that satisfy Ui,0 ≥ Ũi,0, V0,j ≤ Ṽ0,j , and
Yi,j = Ỹi,j . From these define inductively the values {Ui,j ,Vi,j : (i, j) ∈ N

2} and
{Ũi,j , Ṽi,j : (i, j) ∈ N

2} by equation (3.2). Then Ui,j ≥ Ũi,j and Vi,j ≤ Ṽi,j for all
(i, j) ∈ N

2.

3.1. Propagation of boundary conditions. The next lemma gives a reversibil-
ity property that we can regard as an analogue of reversibility properties of M/M/1
queues and their last-passage versions. (A basic reference for queues is [21]. Re-
lated work appears in [6, 12, 13, 28].)

LEMMA 3.2. Let U , V and Y be independent positive random variables. De-
fine

U ′ = Y(1 + UV −1), V ′ = Y(1 + V U−1) and
(3.5)

Y ′ = (U−1 + V −1)−1.

Then the triple (U ′,V ′, Y ′) has the same distribution as (U,V,Y ) iff there exist
positive parameters 0 < θ < μ and r such that

U−1 ∼ Gamma(θ, r), V −1 ∼ Gamma(μ − θ, r) and
(3.6)

Y−1 ∼ Gamma(μ, r).
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PROOF. Assuming (3.6), define independent gamma variables A = U−1, B =
V −1 and Z = Y−1. Then set

A′ = ZA

A + B
, B ′ = ZB

A + B
and Z′ = A + B.

We need to show that (A′,B ′,Z′) d= (A,B,Z). Direct calculation with Laplace
transforms is convenient. Alternatively, one can reason with basic properties of
gamma distributions as follows. The pair (A/(A + B),B/(A + B)) has distribu-
tions Beta(θ,μ − θ) and Beta(μ − θ, θ), and is independent of the Gamma(μ, r)-
distributed sum A + B = Z′. Hence, A′ and B ′ are a pair of independent variables
with distributions Gamma(θ, r) and Gamma(μ − θ, r), and by construction also
independent of Z′.

Assuming (A′,B ′,Z′) d= (A,B,Z), A′/B ′ = A/B is independent of Z′ = A +
B . By Theorem 1 of [25] A and B are independent gamma variables with the same

scale parameter r . Then Z
d= Z′ = A + B determines the distribution of Z. �

From this lemma, we get a Burke-type theorem. Let z� = (zk)k∈Z be a nearest-
neighbor down-right path in Z

2+, that is, zk ∈ Z
2+ and zk − zk−1 = e1 or −e2.

Denote the undirected edges of the path by fk = {zk−1, zk}, and let

Tfk
=
{

Uzk
, if fk is a horizontal edge,

Vzk−1, if fk is a vertical edge.

Let the (lower left) interior of the path be the vertex set I = {(i, j) ∈ Z
2+ :∃m ∈

N : (i + m,j + m) ∈ {zk}} (see Figure 2). I is finite if the path z� coincides with
the axes for all but finitely many edges. Recall the definition of Xi,j from (3.2).

THEOREM 3.3. Assume (2.4). For any down-right path (zk)k∈Z in Z
2+, the

variables {Tfk
,Xz :k ∈ Z, z ∈ I} are mutually independent with marginal distrib-

utions

U−1 ∼ Gamma(θ,1), V −1 ∼ Gamma(μ − θ,1) and
(3.7)

X−1 ∼ Gamma(μ,1).

FIG. 2. Illustration of a down-right path (zk) and its set I of interior points. Interior point (i, j) is
represented by a dot centered at (i + 1/2, j + 1/2).
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PROOF. This is proved first by induction for down-right paths with finite in-
terior I . If z� coincides with the x- and y-axes then I is empty, and the statement
follows from assumption (2.4). The inductive step consists of adding a “growth
corner” to I and an application of Lemma 3.2, namely, suppose z� goes through
the three points (i − 1, j), (i − 1, j − 1) and (i, j − 1). Flip the corner over to
create a new path z′

� that goes through (i − 1, j), (i, j) and (i, j − 1). The new
interior is I ′ = I ∪ {(i − 1, j − 1)}. Apply Lemma 3.2 with

U = Ui,j−1, V = Vi−1,j , Y = Yi,j , U ′ = Ui,j , V ′ = Vi,j

and

Y ′ = Xi−1,j−1

to see that the conclusion continues to hold for z′
� and I ′.

To prove the theorem for an arbitrary down-right path it suffices to consider a
finite portion of z� and I inside some large square B = {0, . . . ,M}2. Apply the
first part of the proof to the modified path that coincides with z� inside B but
otherwise follows the coordinate axes and connects up with z� on the north and
east boundaries of B . �

To understand the sense in which Theorem 3.3 is a “Burke property,” note its
similarity with Lemma 4.2 in [6] whose connection with M/M/1 queues in series
is immediate through the last-passage representation.

3.2. Reversal. In a fixed rectangle � = {0, . . . ,m} × {0, . . . , n}, define the re-
versed partition function

Z∗
i,j = Zm,n

Zm−i,n−j

for (i, j) ∈ �.(3.8)

Note that for the partition function of the entire rectangle,

Z∗
m,n = Zm,n.

Recalling (3.2) make these further definitions:

U∗
i,j = Um−i+1,n−j for (i, j) ∈ {1, . . . ,m} × {0, . . . , n},

V ∗
i,j = Vm−i,n−j+1 for (i, j) ∈ {0, . . . ,m} × {1, . . . , n},(3.9)

Y ∗
i,j = Xm−i,n−j for (i, j) ∈ {1, . . . ,m} × {1, . . . , n}.

The mapping ∗ is an involution, that is, inside the rectangle �, Z∗∗
i,j = Zi,j and

similarly for U , V and Y .

PROPOSITION 3.4. Assume distributions (2.4). Then inside the rectangle �

the system {Z∗
i,j ,U

∗
i,j , V

∗
i,j , Y

∗
i,j } replicates the properties of the original system

{Zi,j ,Ui,j ,Vi,j , Yi,j }. Namely, we have these facts:
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(a) {U∗
i,0,V

∗
0,j , Y

∗
i,j : 1 ≤ i ≤ m,1 ≤ j ≤ n} are independent with distributions

(U∗
i,0)

−1 ∼ Gamma(θ,1), (V ∗
0,j )

−1 ∼ Gamma(μ − θ,1) and
(3.10)

(Y ∗
i,j )

−1 ∼ Gamma(μ,1).

(b) These identities hold: Z∗
0,0 = 1, Z∗

i,j = Y ∗
i,j (Z

∗
i−1,j + Z∗

i,j−1),

U∗
i,j = Z∗

i,j

Z∗
i−1,j

, V ∗
i,j = Z∗

i,j

Z∗
i,j−1

,

U∗
i,j = Y ∗

i,j

(
1 + U∗

i,j−1

V ∗
i−1,j

)
and V ∗

i,j = Y ∗
i,j

(
1 + V ∗

i−1,j

U∗
i,j−1

)
.

PROOF. Part (a) is a consequence of Theorem 3.3. Part (b) follows from defi-
nitions (3.8) and (3.9) of the reverse variables and properties (3.2), (3.3) and (3.4)
of the original system. �

Define a dual measure on paths x0,m+n ∈ 	m,n by

Q∗,ω(x0,m+n) = 1

Zm,n

m+n−1∏
k=0

Xxk
(3.11)

with the conventions Xi,n = Ui+1,n for 0 ≤ i < m and Xm,j = Vm,j+1 for 0 ≤ j <

n. This convention is needed because inside the fixed rectangle �, (3.2) defines the
X-weights only away from the north and east boundaries. The boundary weights
are of the U - and V -type.

Define a reversed environment ω∗ as a function of ω in � by

ω∗ = (
U∗

i,0,V
∗
0,j , Y

∗
i,j : (i, j) ∈ {1, . . . ,m} × {1, . . . , n}).

Part (a) of Proposition 3.4 says that ω∗ d= ω. As before, utilize also the definitions
Y ∗

i,0 = U∗
i,0 and Y ∗

0,j = V ∗
0,j . Write

x∗
k = (m,n) − xm+n−k

for the reversed path. For an event A ⊆ 	m,n on paths let A∗ = {x0,m+n :x∗
0,m+n ∈

A}.
LEMMA 3.5. Q∗,ω(A) and Qω(A∗) have the same distribution under P.

PROOF. By the definitions,

Q∗,ω(A) = 1

Zm,n

∑
x0,m+n∈A

m+n−1∏
k=0

Xxk
= 1

Z∗
m,n

∑
x0,m+n∈A

m+n∏
j=1

Y ∗
x∗
j

(3.12)
= Qω∗

(A∗).

By Proposition 3.4, Qω∗
(A∗) d= Qω(A∗). �
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REMARK 3.6. Q∗,ω(A) and Qω(A) do not in general have the same distribu-
tion because their boundary weights are different.

Under the dual measure the path x0,m+n is a Markov chain. This can be seen by
rewriting (3.11) as

Q∗,ω(x0,m+n) =
m+n−1∏

k=0

Xxk
Zxk

Zxk+1

=
m+n−1∏

k=0

π∗
xk,xk+1

,(3.13)

where the last equality defines the Markov kernel π∗
x,y on the state space �. At

points x away from the north and east boundaries we can write the kernel as

π∗
x,x+e = XxZx

Zx+e

= Z−1
x+e

Z−1
x+e1

+ Z−1
x+e2

, e ∈ {e1, e2}.(3.14)

On the north and east boundaries [i.e., either x = (i, n) for some 0 ≤ i < m or
x = (m, j) for some 0 ≤ j < n] the kernel is degenerate because there is only one
admissible step.

3.3. Variance and exit point. Let

ξx = max{k ≥ 0 :xi = (i,0) for 0 ≤ i ≤ k}(3.15)

and

ξy = max{k ≥ 0 :xj = (0, j) for 0 ≤ j ≤ k}(3.16)

denote the exit points of a path from the x- and y-axes. For any given path, exactly
one of ξx and ξy is zero. In terms of (2.10), ξx = v1(0).

For θ, x > 0 define the function

L(θ, x) =
∫ x

0

(
�0(θ) − logy

)
x−θyθ−1ex−y dy.(3.17)

The observation

L(θ, x) = −
(θ)x−θ ex
Cov[logA,1{A ≤ x}]

for A ∼ Gamma(θ,1) shows that L(θ, x) > 0. Furthermore, EL(θ,A) = �1(θ).

THEOREM 3.7. Assume (2.4). Then for m,n ∈ Z+ we have these identities:

Var[logZm,n] = n�1(μ − θ) − m�1(θ) + 2Em,n

[ ξx∑
i=1

L(θ,Y−1
i,0 )

]
(3.18)

and

Var[logZm,n] = −n�1(μ − θ) + m�1(θ)
(3.19)

+ 2Em,n

[ ξy∑
j=1

L(μ − θ,Y−1
0,j )

]
.
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When ξx = 0 the sum
∑ξx

i=1 is interpreted as 0, and similarly for ξy = 0.

PROOF. We prove (3.18). Identity (3.19) then follows by a reflection across
the diagonal. Let us abbreviate temporarily, according to the compass directions of
the rectangle �m,n,

SN = logZm,n − logZ0,n, SS = logZm,0,

SE = logZm,n − logZm,0, SW = logZ0,n.

Then

Var[logZm,n] = Var(SW + SN )

= Var(SW ) + Var(SN ) + 2 Cov(SW , SN )
(3.20)

= Var(SW ) + Var(SN ) + 2 Cov(SS + SE − SN , SN )

= Var(SW ) − Var(SN ) + 2 Cov(SS , SN ).

The last equality came from the independence of SE and SN , from Theorem 3.3
and (3.4). By assumption (2.4) Var(SW ) = n�1(μ − θ), and by Theorem 3.3
Var(SN ) = m�1(θ).

To prove (3.18) it remains to work on Cov(SS , SN ). In the remaining part of the
proof, we wish to differentiate with respect to the parameter θ of the weights Yi,0
on the x-axis (term SS ) without involving the other weights. Hence, now think of a
system with three independent parameters θ , ρ and μ and with weight distributions
(for i, j ∈ N)

Y−1
i,0 ∼ Gamma(θ,1), Y−1

0,j ∼ Gamma(ρ,1)

and

Y−1
i,j ∼ Gamma(μ,1).

We first show that

Cov(SS , SN ) = − ∂

∂θ
E(SN ).(3.21)

The variable SS is a sum

SS =
m∑

i=1

logUi,0.

The joint density of the vector of summands (logU1,0, . . . , logUm,0) is

gθ (y1, . . . , ym) = 
(θ)−m exp

(
−θ

m∑
i=1

yi −
m∑

i=1

e−yi

)
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on R
m. This comes from the product of Gamma(θ,1) distributions. The density of

SS is

fθ (s) = 
(θ)−me−θs
∫

Rm−1
exp

(
−

m−1∑
i=1

e−yi − e−s+y1+···+ym−1

)
dy1,m−1.

We also see that, given SS , the joint distribution of (logU1,0, . . . , logUm,0) does
not depend on θ . Consequently, in the calculation below, the conditional expecta-
tion does not depend on θ ,

∂

∂θ
E(SN ) = ∂

∂θ

∫
R

E(SN |SS = s)fθ (s) ds

=
∫

R

E(SN |SS = s)
∂fθ (s)

∂θ
ds

=
∫

R

E(SN |SS = s)

(
−s − m


′(θ)


(θ)

)
fθ (s) ds

(3.22)
= −E(SN SS ) + E(SN )mE(logU)

= −E(SN SS ) + E(SN )E(SS )

= −Cov(SN , SS ).

To justify taking ∂/∂θ inside the integral, we check that for all 0 < θ0 < θ1,∫
R

E(|SN ||SS = s) sup
θ∈[θ0,θ1]

∣∣∣∣∂fθ (s)

∂θ

∣∣∣∣ds < ∞.(3.23)

Since

sup
θ∈[θ0,θ1]

∣∣∣∣∂fθ (s)

∂θ

∣∣∣∣≤ C(1 + |s|)(fθ0(s) + fθ1(s)
)

it suffices to get a bound for a fixed θ > 0:∫
R

E(|SN ||SS = s)(1 + |s|)fθ (s) ds

= E[|SN |(1 + |SS |)] ≤ ‖SN ‖L2(P)‖1 + SS ‖L2(P) < ∞,

because SN and SS are sums of i.i.d. random variables with all moments. Dom-
inated convergence and this integrability bound (3.23) also give the continuity of
θ �→ Cov(SN , SS ).

The next step is to calculate (∂/∂θ)E(SN ) by a coupling. Sometimes we add
a sub- or superscript θ to expectations and covariances to emphasize their depen-
dence on the parameter θ of the distribution of the initial weights on the x-axis.
We also introduce a direct functional dependence on θ in Zm,n by realizing the
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weights Ui,0 as functions of uniform random variables. Let

Fθ(x) =
∫ x

0

yθ−1e−y


(θ)
dy, x ≥ 0,(3.24)

be the c.d.f. of the Gamma(θ,1) distribution and Hθ its inverse function, defined
on (0,1), that satisfies η = Fθ(Hθ(η)) for 0 < η < 1. Then if η is a Uniform(0,1)

random variable, U−1 = Hθ(η) is a Gamma(θ,1) random variable. Let η1,m =
(η1, . . . , ηm) be a vector of Uniform(0,1) random variables. We redefine Zm,n as
a function of the random variables {η1,m;Yi,j : (i, j) ∈ Z+ × N} without changing
its distribution:

Zm,n(θ) = ∑
x�∈	m,n

ξx∏
i=1

Hθ(ηi)
−1 ·

m+n∏
k=ξx+1

Yxk
.(3.25)

Next, we look for the derivative:

∂

∂θ
logZm,n(θ) = 1

Zm,n(θ)

∑
x�∈	m,n

(
−

ξx∑
i=1

∂Hθ(ηi)

∂θ
Hθ(ηi)

−1

)

×
ξx∏

i=1

Hθ(ηi)
−1 ·

m+n∏
k=ξx+1

Yxk
.

Differentiate implicitly η = F(θ,H(θ, η)) to find

∂H(θ, η)

∂θ
= − (∂F/∂θ)(θ,H(θ, η))

(∂F/∂x)(θ,H(θ, η))
.(3.26)

[We write F(θ, x) = Fθ(x) and H(θ,η) = Hθ(η) when subscripts are not conve-
nient.] If we define

L(θ, x) = −1

x
· ∂F (θ, x)/∂θ

∂F (θ, x)/∂x
, θ, x > 0,(3.27)

we can write

∂

∂θ
logZm,n(θ) = 1

Zm,n(θ)

∑
x�∈	m,n

{
−

ξx∑
i=1

L(θ,Hθ(ηi))

}
(3.28)

×
ξx∏

i=1

Hθ(ηi)
−1 ·

m+n∏
k=ξx+1

Yxk
.

Direct calculation shows that (3.27) agrees with the earlier definition (3.17) of L.
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Since �0(θ) = 
(θ)−1 ∫∞
0 (logy)yθ−1e−y dy, we also have

L(θ, x) =
∫ ∞
x

(−�0(θ) + logy
)
x−θyθ−1ex−y dy.(3.29)

For x ≤ 1 drop e−y and compute the integrals in (3.17), while for x ≥ 1 apply
Hölder’s inequality judiciously to (3.29). This shows

0 < L(θ, x) ≤
{

C(θ)(1 − logx), for 0 < x ≤ 1,
C(θ)x−1/4, for x ≥ 1.

(3.30)

In particular, L(θ,Hθ(η)) with η ∼ Uniform(0,1) has an exponential moment: for
small enough t > 0,

E
[
etL(θ,Hθ (η))]= ∫ ∞

0
etL(θ,x) x

θ−1e−x


(θ)
dx < ∞.(3.31)

Let Ẽ denote expectation over the variables {Yi,j }(i,j)∈Z+×N (i.e., excluding the
weights on the x-axis). From (3.22), we get

−
∫ θ1

θ0

Covθ (SN , SS ) dθ = E
θ1(SN ) − E

θ0(SN )

= Ẽ

∫
(0,1)m

dη1,m

(
logZm,n(θ1) − logZm,n(θ0)

)
(3.32)

= Ẽ

∫
(0,1)m

dη1,m

∫ θ1

θ0

∂

∂θ
logZm,n(θ) dθ

=
∫ θ1

θ0

dθ Ẽ

∫
(0,1)m

dη1,m

∂

∂θ
logZm,n(θ).

The last equality above came from Tonelli’s theorem, justified by (3.28) which
shows that (∂/∂θ) logZm,n(θ) is always negative.

From (3.28), upon replacing H(θ,ηi) with Y−1
i,0 ,

∂

∂θ
logZm,n(θ) = 1

Zm,n(θ)

∑
x�∈	m,n

{
−

ξx∑
i=1

L(θ,Y−1
i,0 )

}
m+n∏
k=1

Yxk

(3.33)

= −EQω
m,n

[
ξx∑

i=1

L(θ,Y−1
i,0 )

]
.

Consequently from (3.32),

∫ θ1

θ0

Covθ (SN , SS ) dθ =
∫ θ1

θ0

E
θEQω

m,n

[
ξx∑

i=1

L(θ,Y−1
i,0 )

]
dθ.
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Earlier we justified the continuity of Covθ (SN , SS ) as a function of θ > 0. The
same is true for the integrand on the right. Hence, we get

Covθ (SN , SS ) = Eθ
m,n

[
ξx∑

i=1

L(θ,Y−1
i,0 )

]
.(3.34)

Putting this back into (3.20) completes the proof. �

4. Upper bound for the model with boundaries. In this section, we prove
the upper bound of Theorem 2.1. Assumption (2.4) is in force, with 0 < θ < μ

fixed. While keeping μ fixed, we shall also consider an alternative value λ ∈ (0,μ)

and then assumption (2.4) is in force but with λ replacing θ . Since μ remains fixed,
we omit dependence on μ from all notation. At times dependence on λ and θ has to
be made explicit, as, for example, in the next lemma where Varλ denotes variance
computed under assumption (2.4) with λ replacing θ .

LEMMA 4.1. Consider 0 < δ0 < θ < μ fixed. Then there exists a constant
C < ∞ such that for all λ ∈ [δ0, θ ],

Varλ[logZm,n] ≤ Varθ [logZm,n] + C(m + n)(θ − λ).(4.1)

A single constant C works for all δ0 < θ < μ that vary in a compact set.

PROOF. Identity (3.19) will be convenient for λ < θ :

Varλ[logZm,n] − Varθ [logZm,n]
= −n�1(μ − λ) + m�1(λ) + n�1(μ − θ) − m�1(θ)(4.2)

+ 2E
λEQω

m,n

[ ξy∑
j=1

L(μ − λ,Y−1
0,j )

]
(4.3)

− 2E
θEQω

m,n

[ ξy∑
j=1

L(μ − θ,Y−1
0,j )

]
.

�1 is continuously differentiable and so

line (4.2) ≤ C(m + n)(θ − λ).

We work on the difference (4.3). As in the proof of Theorem 3.7 we replace
the weights on the x- and y-axes with functions of uniform random variables. We
need explicitly only the ones on the y-axis, denote these by ηj . Write Ẽ for the
expectation over the uniform variables and the bulk weights {Yi,j : i, j ≥ 1}. This
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expectation no longer depends on λ or θ . The quenched measure Qω does carry
dependence on these parameters, and we express that by a superscript θ or λ:

Difference (4.3) without the factor 2

= ẼEQ
λ,ω
m,n

[ ξy∑
j=1

L
(
μ − λ,Hμ−λ(ηj )

)]

− ẼEQ
θ,ω
m,n

[ ξy∑
j=1

L
(
μ − θ,Hμ−θ (ηj )

)]

= ẼEQ
λ,ω
m,n

[ ξy∑
j=1

L
(
μ − λ,Hμ−λ(ηj )

)]
(4.4)

− ẼEQ
λ,ω
m,n

[ ξy∑
j=1

L
(
μ − θ,Hμ−θ (ηj )

)]

+ ẼEQ
λ,ω
m,n

[ ξy∑
j=1

L
(
μ − θ,Hμ−θ (ηj )

)]
(4.5)

− ẼEQ
θ,ω
m,n

[ ξy∑
j=1

L
(
μ − θ,Hμ−θ (ηj )

)]
.

We first show that difference (4.5) is ≤ 0, by showing that, as the parameter
ρ in Q

ω,ρ
m,n increases, the random variable ξy increases stochastically. Write Bj =

Hμ−ρ(ηj ) for the Gamma(μ − ρ,1) variable that gives the weight Y0,j = B−1
j in

the definition of Q
ω,ρ
m,n. For a given μ, Bj decreases as ρ increases. Thus, it suffices

to show that, for 1 ≤ k, � ≤ n,

(∂/∂B�)Q
ω{ξy ≥ k} ≤ 0.(4.6)

Write W =∏ξy

j=1 B−1
j ·∏m+n

k=ξy+1 Yxk
for the total weight of a path x (the numerator

of the quenched polymer probability of the path)

∂

∂B�

Qω{ξy ≥ k} = ∂

∂B�

(
1

Zm,n

∑
x�

1{ξy ≥ k}W
)

= 1

Zm,n

∑
x�

1{ξy ≥ k}1{ξy ≥ �}(−B−1
� )W

− 1

Z2
m,n

(∑
x�

1{ξy ≥ k}W
)

·
(∑

x�
1{ξy ≥ �}(−B−1

� )W

)
= −B−1

� CovQω [1{ξy ≥ k},1{ξy ≥ �}] < 0.
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Thus, we can bound difference (4.5) above by 0.
In difference (4.4) inside the brackets only ξy is random under Qω,λ

m,n. We re-
place ξy with its upper bound n and then we are left with integrating over uniform
variables ηj ,

|line (4.4)| ≤ ẼEQ
λ,ω
m,n

[ ξy∑
j=1

∣∣L(μ − λ,Hμ−λ(ηj )
)− L

(
μ − θ,Hμ−θ (ηj )

)∣∣]

≤ n

∫ 1

0

∣∣L(μ − λ,Hμ−λ(η)
)− L

(
μ − θ,Hμ−θ (η)

)∣∣dη(4.7)

= n

∫ 1

0

∫ μ−λ

μ−θ

∣∣∣∣ d

dρ
L(ρ,Hρ(η))

∣∣∣∣dρ dη.

From (3.26) and (3.27),

d

dρ
L(ρ,Hρ(η)) = ∂L

∂ρ
+ ∂L

∂x

∂Hρ(η)

∂ρ

=
(

∂L(ρ, x)

∂ρ
+ xL(ρ, x)

∂L(ρ, x)

∂x

)∣∣∣∣
x=Hρ(η)

.

Utilizing (3.30) and explicit computations leads to bounds∣∣∣∣∂L(ρ, x)

∂ρ
+ xL(ρ, x)

∂L(ρ, x)

∂x

∣∣∣∣
(4.8)

≤
{

C(ρ)
(
1 + (logx)2), for 0 < x ≤ 1,

C(ρ)x1/2, for x ≥ 1.

With ρ restricted to a compact subinterval of (0,∞), these bounds are valid for a
fixed constant C. Continue from (4.7), letting Bρ denote a Gamma(ρ,1) random
variable:

difference (4.4) ≤ n

∫ μ−λ

μ−θ

∫ 1

0

∣∣∣∣ d

dρ
L(ρ,Hρ(η))

∣∣∣∣dη dρ

≤ Cn

∫ μ−λ

μ−θ
E[1 + (logBρ)2 + B1/2

ρ ]dρ
≤ Cn(θ − λ).

To summarize, we have shown that difference (4.3) ≤ Cn(θ − λ) and thereby
completed the proof of the lemma. �

The preliminaries are ready and we turn to the upper bound. Let the scaling
parameter N ≥ 1 be real valued. We assume that the dimensions (m,n) ∈ N

2 of
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the rectangle satisfy

|m − N�1(μ − θ)| ≤ κN and |n − N�1(θ)| ≤ κN(4.9)

for a sequence κN ≤ CN2/3 with a fixed constant C < ∞.
For a walk x� such that ξx > 0, weights at distinct parameter values are related

by

W(θ) =
ξx∏

i=1

Hθ(ηi)
−1 ·

m+n∏
k=ξx+1

Yxk

= W(λ) ·
ξx∏

i=1

Hλ(ηi)

Hθ(ηi)
.

For λ < θ , Hλ(η) ≤ Hθ(η) and consequently

Qθ,ω{ξx ≥ u} = 1

Z(θ)

∑
x�

1{ξx ≥ u}W(θ)

(4.10)

≤ Z(λ)

Z(θ)
·

�u�∏
i=1

Hλ(ηi)

Hθ(ηi)
.

We bound the P-tail of Qω{ξx ≥ u} separately for two ranges of a positive real u.
Let c, δ > 0 be constants. Their values will be determined in the course of the
proof. For future use of the estimates developed here, it is to be noted that c and δ,
and the other constants introduced in this upper bound proof, are functions of
(μ, θ) and nothing else, and furthermore, fixed values of the constants work for
0 < θ < μ in a compact set.

Case 1. (1 ∨ cκN) ≤ u ≤ δN .
Pick an auxiliary parameter value

λ = θ − bu

N
.(4.11)

We can assume b > 0 and δ > 0 small enough so that bδ < θ/2 and then λ ∈
(θ/2, θ). Let

α = exp
[
u
(
�0(λ) − �0(θ)

)+ δu2/N
]
.(4.12)

Consider 0 < s < δ. First, split into two probabilities:

P[Qω{ξx ≥ u} ≥ e−su2/N ] ≤ P

{�u�∏
i=1

Hλ(ηi)

Hθ(ηi)
≥ α

}
(4.13)

+ P

(
Z(λ)

Z(θ)
≥ α−1e−su2/N

)
.(4.14)
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Recall that E(logHθ(η)) = �0(θ) and that overline denotes a centered random
variable. Then for the second probability on line (4.13),

P

{�u�∏
i=1

Hλ(ηi)

Hθ(ηi)
≥ α

}

= P

{�u�∑
i=1

(
logHλ(ηi) − logHθ(ηi)

)

≥ (u − �u�)(�0(λ) − �0(θ)
)+ δu2/N

}
(4.15)

≤ 4N2

δ2u3 Var[logHλ(η) − logHθ(η)]

≤ C
N2

u3 .

The extra term with the integer part correction goes away because

�0(λ) − �0(θ) ≥ −C(θ)(θ − λ) = −C(θ)
bu

N
≥ −δu2

2N
,

u ≥ 1, and we can choose b small enough.
Rewrite the probability from line (4.14) as

P
(
logZ(λ) − logZ(θ) ≥ −E[logZ(λ)] + E[logZ(θ)]

(4.16)
− logα − su2/N

)
.

Recall the mean from (2.5). Rewrite the right-hand side of the inequality inside the
probability above as follows:

−E[logZ(λ)] + E[logZ(θ)] − logα − su2/N

= (
n�0(μ − λ) + m�0(λ)

)− (
n�0(μ − θ) + m�0(θ)

)
− logα − su2/N

≥ (u − N�1(μ − θ)
)(

�0(θ) − �0(λ)
)

− N�1(θ)
(
�0(μ − θ) − �0(μ − λ)

)− (δ + s)u2/N

− κN |�0(λ) − �0(θ)| − κN |�0(μ − λ) − �0(μ − θ)|
≥ u�1(θ)(θ − λ) + 1

2N
(
�1(μ − θ)� ′

1(θ)(4.17)

+ �1(θ)� ′
1(μ − θ)

)
(θ − λ)2

− (δ + s)u2/N − C1(θ,μ)
(
u(θ − λ)2 + N(θ − λ)3)

− C1(θ,μ)κN(θ − λ)
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≥ (b�1(θ) − C2(θ,μ)b2 − 2δ(4.18)

− C1(θ,μ)δ(b2 + b3)
)u2

N
− C1(θ,μ)κN

bu

N

≥ c1u
2

N
.(4.19)

Inequality (4.17) with a constant C1(θ,μ) > 0 came from the expansions

�0(θ) − �0(λ) = �1(θ)(θ − λ) − 1
2� ′

1(θ)(θ − λ)2 + 1
6� ′′

1 (ρ0)(θ − λ)3

and

�0(μ − θ) − �0(μ − λ) = −�1(μ − θ)(θ − λ) − 1
2� ′

1(μ − θ)(θ − λ)2

− 1
6� ′′

1 (ρ1)(θ − λ)3

for some ρ0, ρ1 ∈ (λ, θ). For inequality (4.18), we defined

C2(θ,μ) = −1
2

(
�1(μ − θ)� ′

1(θ) + �1(θ)� ′
1(μ − θ)

)
> 0,

substituted in λ = θ − bu/N from (4.11), and recalled that s < δ and u ≤ δN . To
get (4.19), we fixed b > 0 small enough, then δ > 0 small enough, defined a new
constant c1 > 0, and restricted u to satisfy

u ≥ cκN(4.20)

for another constant c. We can also restrict to u ≥ 1 if the condition above does not
enforce it.

Substitute line (4.19) on the right-hand side inside probability (4.16). This prob-
ability came from line (4.14). Apply Chebyshev, then (4.1), and finally (3.18):

line (4.14) ≤ P
(
logZ(λ) − logZ(θ) ≥ c1u

2/N
)

(4.21)

≤ CN2

u4 Var[logZ(λ) − logZ(θ)]

≤ CN2

u4

(
Var[logZ(λ)] + Var[logZ(θ)])

≤ CN2

u4

(
Var[logZ(θ)] + N(θ − λ)

)
≤ CN2

u4 E

[
ξx∑

i=1

L(θ,Y−1
i,0 )

]
+ CN2

u3 .(4.22)

Collecting (4.13), (4.14), (4.15) and (4.22) gives this intermediate result: for 0 <

s < δ, N ≥ 1, and 1 ∨ cκN ≤ u ≤ δN ,

P[Qω{ξx ≥ u} ≥ e−su2/N ] ≤ CN2

u4 E

[
ξx∑

i=1

L(θ,Y−1
i,0 )

]
+ CN2

u3 .(4.23)
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LEMMA 4.2. There exists a constant 0 < C < ∞ such that

E

[
ξx∑

i=1

L(θ,Y−1
i,0 )

]
≤ C

(
E(ξx) + 1

)
.(4.24)

PROOF. Write again Ai = Y−1
i,0 for the Gamma(θ,1) variables. Abbreviate

Li = L(θ,Ai), L̄i = Li − ELi and Sk =∑k
i=1 L̄i

E

[
ξx∑

i=1

Li

]
= E(L1)E(ξx) + E

[
ξx∑

i=1

L̄i

]

= E(L1)E(ξx) +
m∑

k=1

E[Qω{ξx = k}Sk]

≤ (
E(L1) + 1

)
E(ξx) +

m∑
k=1

E[1{Sk ≥ k}Sk]

≤ CE(ξx) + C.

The last bound comes from the fact that {L̄i} are i.i.d. mean zero with all moments
[recall (3.31)]:

E[1{Sk ≥ k}Sk] ≤ (kE(L̄2))1/2(P{Sk ≥ k})1/2

≤ Ck1/2(k−8E(S8
k ))1/2

≤ Ck−3/2

and these are summable. �

Since u ≥ 1, we can combine (4.23) and (4.24) to give

P[Qω{ξx ≥ u} ≥ e−su2/N ] ≤ CN2

u4 E(ξx) + CN2

u3(4.25)

still for 0 < s < δ and (1 ∨ cκN) ≤ u ≤ δN .

Case 2. (1 ∨ cκN ∨ δN) ≤ u < ∞.
The constant δ > 0 is now fixed small enough by Case 1. Take new constants

ν > 0 and δ1 > 0 and set

λ = θ − ν

and

α = exp
[
u
(
�0(λ) − �0(θ)

)+ δ1u
]
.(4.26)
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Consider 0 < s < δ1. First, use again (4.10) to split the probability

P[Qω{ξx ≥ u} ≥ e−su]

≤ P

{�u�∏
i=1

Hλ(ηi)

Hθ(ηi)
≥ α

}
+ P

(
Z(λ)

Z(θ)
≥ α−1e−su

)

≤ P

{�u�∑
i=1

(
logHλ(ηi) − logHθ(ηi)

)≥ 1

2
δ1u

}
(4.27)

+ P
(
logZ(λ) − logZ(θ) ≥ −E[logZ(λ)] + E[logZ(θ)]

− logα − su
)
.

Logarithms of gamma variables have an exponential moment:

E
[
et |logHθ(η)|]< ∞ if t < θ .

Hence, standard large deviations apply and for some constant c4 > 0,

P

{�u�∑
i=1

(
logHλ(ηi) − logHθ(ηi)

)≥ 1

2
δ1u

}
≤ e−c4u.(4.28)

Following the pattern that led to (4.19), the right-hand side inside probability
(4.27) is bounded as follows:

−E[logZ(λ)] + E[logZ(θ)] − logα − su

≥ u�1(θ)(θ − λ) − NC2(θ)(θ − λ)2 − (δ1 + s)u

− C1(θ)
(
u(θ − λ)2 + N(θ − λ)3)− C1(θ)κN(θ − λ)

≥ u

[
�1(θ)ν − C2(θ)ν2

δ
− 2δ1 − C1(θ)(ν2 + ν3/δ)

]
− C1(θ)κNν

≥ c5u

for a constant c5 > 0, when we fix ν and δ1 small enough and again also enforce
(4.20) u ≥ cκN for a large enough c. By standard large deviations, since logZ(λ)

and logZ(θ) can be expressed as sums of i.i.d. random variables with an exponen-
tial moment, and for u ≥ δN ,

probability (4.27) ≤ P
(
logZ(λ) − logZ(θ) ≥ c5u

)≤ e−c6u.(4.29)

Combining (4.28) and (4.29) gives the bound

P[Qω{ξx ≥ u} ≥ e−su] ≤ 2e−c7u(4.30)
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for 0 < s < δ1 and u ≥ δN . Integrate and use (4.30):∫ ∞
δN

P (ξx ≥ u)du =
∫ ∞
δN

du

∫ 1

0
dt P[Qω(ξx ≥ u) ≥ t]

=
∫ ∞
δN

du

∫ ∞
0

ds ue−su
P[Qω(ξx ≥ u) ≥ e−su](4.31)

≤ 2c−1
7 e−c7δN + δ−1

1 e−δ1δN ≤ C.

Now we combine the two cases to finish the proof of the upper bound. Let r ≥ 1
be large enough so that cκN ≤ rN2/3 for all N for the constant c that appeared in
(4.20):

E(ξx) ≤ rN2/3 +
∫ δN

rN2/3
P(ξx ≥ u)du +

∫ ∞
δN

P (ξx ≥ u)du

≤ C + rN2/3 +
∫ δN

rN2/3
du

∫ 1

0
P[Qω(ξx ≥ u) ≥ t]dt

≤ C + rN2/3 +
∫ δN

rN2/3
du

∫ δ

0
P[Qω{ξx ≥ u} ≥ e−su2/N ]u

2

N
e−su2/N ds

[substitute in (4.25) and integrate away the s-variable]

≤ C + rN2/3 + C

∫ ∞
rN2/3

(
N2

u4 E(ξx) + N2

u3

)
du

= C + rN2/3 + C

3r3 E(ξx) + CN2/3

2r2 .

If r is fixed large enough relative to C, we obtain, with a new constant C

E(ξx) ≤ CN2/3.(4.32)

This is valid for all N ≥ 1. The constant C depends on (μ, θ) and the other con-
stants δ, δ1, b introduced along the way. A single constant works for 0 < θ < μ

that vary in a compact set.
Combining (3.18), (4.24) and (4.32) gives the upper variance bound for the free

energy:

Var[logZm,n] ≤ CN2/3.(4.33)

Combining (4.25) and (4.30) with (4.32) gives this lemma.

LEMMA 4.3. Assume weight distributions (2.4) and rectangle dimensions
(4.9). Then there are finite positive constants δ, δ1, c, c1 and C such that for N ≥ 1
and (1 ∨ cκN) ≤ u ≤ δN ,

P[Qω{ξx ≥ u} ≥ e−δu2/N ] ≤ C

(
N8/3

u4 + N2

u3

)
,(4.34)
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while for N ≥ 1 and u ≥ (1 ∨ cκN ∨ δN),

P[Qω{ξx ≥ u} ≥ e−δ1u] ≤ e−c1u.(4.35)

The same bounds hold for ξy . The same constants work for 0 < θ < μ that vary in
a compact set.

Integration gives the annealed bounds in the following corollary.

COROLLARY 4.4. There are constants 0 < δ, c, c1,C < ∞ such that for
N ≥ 1,

P {ξx ≥ u} ≤
⎧⎨⎩C

(
N8/3

u4 + N2

u3

)
, (1 ∨ cκN) ≤ u ≤ δN ,

2e−c1u, u ≥ (1 ∨ cκN ∨ δN).
(4.36)

The same bounds hold for ξy .

From the upper variance bound (4.33) and Theorem 3.3, we can easily deduce
the central limit theorem for off-characteristic rectangles.

PROOF OF COROLLARY 2.2. Set m1 = ��1(μ − θ)N�. Recall that overline
means centering at the mean. Since Zm,n = Zm1,n ·∏m

i=m1+1 Ui,n,

N−α/2logZm,n = N−α/2logZm1,n + N−α/2
m∑

i=m1+1

logUi,n.

Since (m1, n) is of characteristic shape, (4.33) implies that the first term on the
right is stochastically O(N1/3−α/2). Since α > 2/3 this term converges to zero
in probability. The second term is a sum of approximately c1N

α i.i.d. terms and
hence satisfies a CLT. �

5. Lower bound for the model with boundaries. In this section, we fin-
ish the proof of Theorem 2.1 by providing the lower bound. For subsets A ⊆
	(i,j),(k,�) of paths, let us introduce the notation

Z(i,j),(k,�)(A) = ∑
x�∈A

k−i+�−j∏
r=1

Yxr(5.1)

for a restricted partition function. Then the quenched polymer probability can be
written Qm,n(A) = Zm,n(A)/Zm,n.

LEMMA 5.1. For m ≥ 2 and n ≥ 1 we have this comparison of partition func-
tions:

Zm,n(ξy > 0)

Zm−1,n(ξy > 0)
≤ Z(1,1),(m,n)

Z(1,1),(m−1,n)

≤ Zm,n(ξx > 0)

Zm−1,n(ξx > 0)
.(5.2)
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PROOF. Ignore the original boundaries given by the coordinate axes. Consider
these partition functions on the positive quadrant N

2 with boundary {(i,1) : i ∈
N} ∪ {(1, j) : j ∈ N}. The boundary values for Z(1,1),(m,n) are {Yi,1 : i ≥ 2} ∪
{Y1,j : j ≥ 2}.

From the definition of Zm,n(ξy > 0),

Z1,1(ξy > 0) = V0,1Y1,1 and V1,2 = Z1,2(ξy > 0)

Z1,1(ξy > 0)
= Y1,2

(
1 + V0,2

Y1,1

)
.

For j ≥ 3, apply (3.2) inductively to compute the vertical boundary values V1,j =
Y1,j (1 + U−1

1,j−1V0,j ), V1,j ≥ Y1,j for all j ≥ 2. The horizontal boundary values
for Zm,n(ξy > 0) are simply Ui,1 = Yi,1 for i ≥ 2. Lemma 3.1 gives

Zm,n(ξy > 0)

Zm−1,n(ξy > 0)
≤ Z(1,1),(m,n)

Z(1,1),(m−1,n)

and
Zm,n(ξy > 0)

Zm,n−1(ξy > 0)
≥ Z(1,1),(m,n)

Z(1,1),(m,n−1)

.

The second inequality of (5.2) comes by transposing the second inequality above.
�

Relative to a fixed rectangle �m,n = {0, . . . ,m} × {0, . . . , n}, define distances
of entrance points on the north and east boundaries from the corner (m,n) as duals
of the exit points (3.15) and (3.16):

ξ∗
x = max{k ≥ 0 :xm+n−i = (m − i, n) for 0 ≤ i ≤ k}(5.3)

and

ξ∗
y = max{k ≥ 0 :xm+n−j = (m,n − j) for 0 ≤ j ≤ k}.(5.4)

The next observation will not be used in the sequel, but it is curious to note the
following effect of the boundary conditions: the chance that the last step of the
polymer path is along the x-axis does not depend on the endpoint (m,n), but the
chance that the first step is along the x-axis increases strictly with m.

PROPOSITION 5.2. For all m,n ≥ 1 these hold:

Qω
m,n{ξ∗

x > 0} d= A

A + B
,(5.5)

where A ∼ Gamma(θ,1) and B ∼ Gamma(μ − θ,1) are independent. On the
other hand,

Qω
m,n{ξx > 0} d= Qω

m+1,n{ξx > 1} < Qω
m+1,n{ξx > 0}.(5.6)

PROOF. By the definitions,

Qω
m,n{ξ∗

x > 0} = Zm−1,nUm,n

Zm,n

= U−1
m,n

U−1
m,n + V −1

m,n

.
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The distributional claim (5.5) follows from the Burke property Theorem 3.3.
For the distributional claim in (5.6) observe first directly from definition (3.11)

that Q∗,ω
m,n{ξ∗

x > 0} = Q
∗,ω
m+1,n{ξ∗

x > 1}. Note that in this equality we have dual
measures defined in distinct rectangles �m,n and �m+1,n. Then appeal to Lem-
ma 3.5. The last inequality in (5.6) is immediate. �

Recall the notations v0(j) and v1(j) defined in (2.9), (2.10), and introduce their
vertical counterparts:

w0(i) = min{j ∈ Z+ :∃k :xk = (i, j)}(5.7)

and

w1(i) = max{j ∈ Z+ :∃k :xk = (i, j)}.(5.8)

Implication v0(j) > k ⇒ w0(k) < j holds, and transposition (i.e., reflection across
the diagonal) interchanges v0 and w0. Similar properties are valid for v1 and w1.

PROPOSITION 5.3. Assume weight distributions (2.4) and rectangle dimen-
sions (2.6). Then

lim
δ↘0

lim
N→∞P {1 ≤ ξx ≤ δN2/3} = 0.

The same result holds for ξy .

PROOF. We prove the result for ξx , and transposition gives it for ξy . Take
δ > 0 small and abbreviate u = �δN2/3�. By Fatou’s lemma, it is enough to show
that for all 0 < h < 1,

lim
δ↘0

lim
N→∞ P[Q(0 < ξx ≤ u) > h] = 0.(5.9)

Fix a small η > 0. By writing

Q(0 < ξx ≤ u)

Q(ξx > 0)
= 1

1 + Q(ξx > u)/Q(0 < ξx ≤ u)

we decompose the probability as follows:

P[Q(0 < ξx ≤ u) > h]
≤ P

[
Q(0 < ξx ≤ u)

Q(ξx > 0)
> h

]

= P

[
Q(ξx > u)

Q(0 < ξx ≤ u)
<

1 − h

h

]

= P

[ Zm,n(ξx > u) · Z�
(1,1),(m,n)

Zm,n(0 < ξx ≤ u) · Z�
(1,1),(m,n)

<
1 − h

h

]
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≤ P

[
Zm,n(ξx > u)

Z�
(1,1),(m,n)

< eηN1/3
]

(5.10)

+ P

[
Zm,n(0 < ξx ≤ u)

Z�
(1,1),(m,n)

>
heηN1/3

1 − h

]
.(5.11)

We show separately that for small δ, η can be chosen so that probabilities (5.10)
and (5.11) are asymptotically small.

Step 1: Control of probability (5.10).
First, decompose according to the value of ξx :

Zm,n(ξx > u)

Z�
(1,1),(m,n)

=
m∑

k=u+1

(
k∏

i=1

Ui,0

)
· Z�

(k,1),(m,n)

Z�
(1,1),(m,n)

.

Construct a new system ω̃ in the rectangle �m,n. Fix a parameter a > 0 that we
will take large in the end. The interior weights of ω̃ are Y ω̃

i,j = Ym−i+1,n−j+1 for

(i, j) ∈ {1, . . . ,m} × {1, . . . , n}. The boundary weights {Uω̃
i,0,V

ω̃
0,j } obey the stan-

dard setting (2.4) with a new parameter λ = θ − aN−1/3 (but μ stays fixed), and
they are independent of the old weights ω. Define new dimensions for a rectangle
by

(m̄, n̄) = (
m + �N�1(μ − λ)� − �N�1(μ − θ)�, n + �N�1(λ)� − �N�1(θ)�).

We have the bounds

n̄ − n = �N�1(λ)� − �N�1(θ)� ≥ a|� ′
1(θ)|N2/3 − 1 ≥ c1aN2/3

for a constant c1 = c1(θ), and

ū = m− m̄ = �N�1(μ − θ)�− �N�1(μ − λ)� ≥ a|� ′
1(μ−λ)|N2/3 − 1 ≥ bN2/3

for another constant b. By taking a large enough, we can guarantee that b > δ. (It
is helpful to remember here that � ′

1 < 0 and � ′′
1 > 0.)

By (5.2) and (3.4),

Z�
(k,1),(m,n)

Z�
(1,1),(m,n)

= Z
�,ω̃
(1,1),(m−k+1,n)

Z
�,ω̃
(1,1),(m,n)

≥ Zω̃
m−k+1,n(ξx > 0)

Zω̃
m,n(ξx > 0)

= Qω̃
m−k+1,n(ξx > 0)Zω̃

m−k+1,n

Qω̃
m,n(ξx > 0)Zω̃

m,n

≥ Qω̃
m−k+1,n(ξx > 0)

(
k−1∏
i=1

Uω̃
m−i+1,n

)−1

.
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After these transformations,

(5.10) ≤ P

[
U1,0

m∑
k=u+1

(
k∏

i=2

Ui,0

Uω̃
m−i+2,n

)
Qω̃

m−k+1,n(ξx > 0) < eηN1/3

]
.

Inside this probability {Ui,0} are independent of ω̃. Next, apply the distribution-
preserving reversal ω̃ �→ ω̃∗ and recall (3.12), to turn the probability above into

P

[
U1,0

m∑
k=u+1

(
k∏

i=2

Ui,0

Uω̃∗
m−i+2,n

)
Q

∗,ω̃
m−k+1,n(ξ

∗
x > 0) < eηN1/3

]
.

By the definition (3.11) of the dual measure, Q
∗,ω̃
m−k+1,n(ξ

∗
x > 0) = Q∗,ω̃

m,n(ξ
∗
x ≥ k).

Restrict the sum in the probability to k ≤ ū, and we get the bound

(5.10) ≤ P

[
Q∗,ω̃

m,n{ξ∗
x ≥ ū}U1,0

ū∑
k=u+1

(
k∏

i=2

Ui,0

Uω̃∗
m−i+2,n

)
< eηN1/3

]

≤ P

[
Q∗,ω̃

m,n{ξ∗
x ≥ ū} ≤ 1

2

]
(5.12)

+ P

[
U1,0

ū∑
k=u+1

(
k∏

i=2

Ui,0

Uω̃∗
m−i+2,n

)
≤ 2eηN1/3

]
.(5.13)

We treat first probability (5.12). Going over to complements,

(5.12) = P
[
Q∗,ω̃

m,n{ξ∗
x < ū} > 1

2

]
.

We claim that

Q∗,ω̃
m,n{ξ∗

x ≤ ū} = Q
∗,ω̃
m̄,n̄{ξ∗

y > n̄ − n}.(5.14)

Equality (5.14) comes from the next computation that utilizes the Markov property
(3.13) of the dual measure. In the rectangle �m,n event {ξ∗

x ≤ ū} says that the path
does not touch the segment {0, . . . , m̄ − 1} × {n}. Consequently, the path uses one
of the edges ((m̄ − 1, �), (m̄, �)) for 0 ≤ � < n:

Q∗,ω̃
m,n{ξ∗

x ≤ ū} =
n−1∑
�=0

Q∗,ω̃
m,n{xm̄+�−1 = (m̄ − 1, �), xm̄+� = (m̄, �)}

=
n−1∑
�=0

∑
x�∈	m̄−1,�

(
m̄+�−1∏

k=0

Xω̃
xk

)
1

Zω̃
m̄,�

=
n−1∑
�=0

∑
x�∈	m̄−1,�

(
m̄+�−1∏

k=0

Xω̃
xk

)(
n̄−1∏
j=�

Xω̃
m̄,j

)
1

Zω̃
m̄,n̄

= Q
∗,ω̃
m̄,n̄{ξ∗

y > n̄ − n}.
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The second-last equality above relies on the convention Xω̃
m̄,j = V ω̃

m̄,j+1 for the
dual variables defined in the rectangle �m̄,n̄. This checks (5.14). Now appeal to
Lemma 4.3, for N ≥ 1 and large enough a to ensure e−δ(c1a)2N1/3 ≤ 1/2:

(5.12) ≤ P
[
Q

∗,ω̃
m̄,n̄{ξ∗

y > c1aN2/3} ≥ 1
2

]
(5.15)

= P
[
Qω̃

m̄,n̄{ξy > c1aN2/3} ≥ 1
2

]≤ C(θ)a−3.

To treat probability (5.13), let Ai = U−1
i+1,0 ∼ Gamma(θ,1) and Ãi =

(Uω̃∗
m−i+1,n)

−1 ∼ Gamma(λ,1) so that we can write

(5.13) = P

[
ū−1∑
k=u

(
k∏

i=1

Ãi

Ai

)
≤ 2eηN1/3

A0

]

≤ P

[
sup

u≤k<ū

exp

{
k∑

i=1

(log Ãi − logAi)

}
≤ 2eηN1/3

A0

]
.

We approximate the sum in the exponent by a Brownian motion. Compute the
mean

E(log Ãi − logAi) = �0(λ) − �0(θ) ≥ −a1N
−1/3

for a positive constant a1 ≈ �1(θ)a. (Recall that �1 = � ′
0 > 0.) Define a continu-

ous path {SN(t) : t ∈ R+} by

SN(kN−2/3) = N−1/3
k∑

i=1

(log Ãi − logAi − E log Ãi + E logAi), k ∈ Z+,

and by linear interpolation. Then rewrite the probability from above:

(5.13) ≤ P

[
sup

δ≤t≤b

(
SN(t) − ta1

)≤ η + N−1/3 log 2A0

]
.

As N → ∞, SN converges to a Brownian motion B and so

lim
N→∞ (5.13) ≤ P

[
sup

δ≤t≤b

(
B(t) − ta1

)≤ η
]
↘ 0 as δ, η ↘ 0.(5.16)

Combining (5.15) and (5.16) shows that, given ε > 0, we can first pick a

large enough to have limN→∞(5.12) ≤ ε/2. Fixing a fixes a1, and then we fix
η and δ small enough to have limN→∞(5.13) ≤ ε/2. This is possible because
sup0<t≤b(B(t) − ta1) is a strictly positive random variable by the law of the it-
erated logarithm. Together these give limN→∞ (5.10) ≤ ε.

Step 2: Control of probability (5.11).
For later use, we prove a lemma that gives more than presently needed.
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LEMMA 5.4. Assume weight distributions (2.4) and rectangle dimensions
(2.6). Let a, b, c > 0.

(i) Let 0 < ε < 1. There exists a constant C(θ) < ∞ such that, if

b ≥ C(θ)ε−1/2(a + √
a
)
,(5.17)

then

lim
N→∞ P

[
Zm,n(0 < ξx ≤ aN2/3)

Z�
(1,1),(m,n)

≥ cebN1/3
]

≤ ε.(5.18)

(ii) There exist finite constants N0(θ, c) and C(θ) such that, for N ≥ N0(θ, c)

and b ≥ 1,

P

[
Zm,n(0 < ξx ≤ √

bN2/3)

Z�
(1,1),(m,n)

≥ cebN1/3
]

≤ C(θ)b−3/2.(5.19)

PROOF. Let u = �aN2/3�. First decompose

Zm,n(0 < ξx ≤ u)

Z�
(1,1),(m,n)

=
u∑

k=1

(
k∏

i=1

Ui,0

)
Z�

(k,1),(m,n)

Z�
(1,1),(m,n)

.

Construct a new environment ω̃ in the rectangle �m,n. The interior weights of ω̃

are Y ω̃
i,j = Ym−i+1,n−j+1. The boundary weights {Uω̃

i,0,V
ω̃
0,j } obey a new parameter

λ = θ + rN−1/3 with r > 0. They are independent of the old weights ω. By (5.2)
and (3.4),

Z�
(k,1),(m,n)

Z�
(1,1),(m,n)

= Z
�,ω̃
(1,1),(m−k+1,n)

Z
�,ω̃
(1,1),(m,n)

≤ Zω̃
m−k+1,n(ξy > 0)

Zω̃
m,n(ξy > 0)

= Qω̃
m−k+1,n{ξy > 0}Zω̃

m−k+1,n

Qω̃
m,n{ξy > 0}Zω̃

m,n

≤ 1

Qω̃
m,n{ξy > 0}

(
k−1∏
i=1

Uω̃
m−i+1,n

)−1

.

Write Ai = U−1
i+1,0 ∼ Gamma(θ,1) and Ãi = (Uω̃

m−i+1,n)
−1 ∼ Gamma(λ,1),

probability in (5.18) ≤ P

[
U1,0

Qω̃
m,n{ξy > 0}

u∑
k=1

(
k∏

i=2

Ui,0

Uω̃
m−i+2,n

)
≥ cebN1/3

]

≤ P

[
Qω̃

m,n{ξy > 0} <
1

2

]
(5.20)

+ P

[
A−1

0

u∑
k=1

(
k−1∏
i=1

Ãi

Ai

)
≥ 1

2
cebN1/3

]
.(5.21)
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To treat the probability in (5.20), define a new scaling parameter M =
N�1(θ)/�1(λ) and new dimensions

(m̄, n̄) = (
m + �M�1(μ − λ)� − �N�1(μ − θ)�, n).

The deviation from characteristic shape is the same:

(m̄, n̄) − (�M�1(μ − λ)�, �M�1(λ)�)= (m,n) − (�N�1(μ − θ)�, �N�1(θ)�).
There exists a constant c2 = c2(θ) > 0 such that

m̄ − m = �M�1(μ − λ)� − �N�1(μ − θ)� ≥ c2rM
2/3.

Consider the complement {ξx > 0} of the inside event in (5.20). Apply ω̃ �→ ω̃∗,
and use the definition (3.11) of the dual measure to go from �m,n to the larger
rectangle �m̄,n = �m̄,n̄

Qω̃∗
m,n{ξx > 0} = Q∗,ω̃

m,n{ξ∗
x > 0} = Q

∗,ω̃
m̄,n{ξ∗

x > m̄ − m} = Q
∗,ω̃
m̄,n̄{ξ∗

x > c2rM
2/3}.

By Lemmas 3.5 and 4.3, provided that

e−δ(c2r)
2M1/3 ≤ 1

2 ⇐⇒ N1/3r2 ≥ c3(θ) log 2,(5.22)

we have

(5.20) = P
[
Qω̃

m,n{ξx > 0} > 1
2

]= P
[
Q

∗,ω̃
m̄,n̄{ξ∗

x > c2rM
2/3} > 1

2

]
(5.23)

= P
[
Qω̃

m̄,n̄{ξx > c2rM
2/3} > 1

2

]≤ r−3.

For probability (5.21), we rewrite the event in terms of mean zero i.i.d.’s. Com-
pute the mean:

E(log Ãi − logAi) = �0(λ) − �0(θ) ≤ r1N
−1/3

for a positive constant r1 ≈ �1(θ)r . Let

Sk =
k∑

i=1

(log Ãi − logAi − E log Ãi + E logAi).

By Kolmogorov’s inequality,

(5.21) ≤ P

[
sup

0≤k≤u

Sk ≥ bN1/3 − r1aN1/3 + log
cA0

2aN2/3

]

≤ P

[
sup

0≤k≤u

Sk ≥ bN1/3 − r1aN1/3 + log
cb1

2aN2/3

]
+ P(A0 < b1)

≤ E(S2
u)

(bN1/3 − r1aN1/3 + log(cb1/(2aN2/3)))2 +
∫ b1

0

xθ−1e−x


(θ)
dx

≤ Ca

(b − r1a + N−1/3 log(cb1/(2aN2/3)))2 + Cbθ
1,
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assuming that the quantity inside the parenthesis in the denominator is positive.
Collecting the bounds from (5.23) and above we have, provided (5.22) holds,

P

[
Zm,n(0 < ξx ≤ aN2/3)

Z�
(1,1),(m,n)

≥ cebN1/3
]

(5.24)

≤ C

r3 + Ca

(b − r1a + N−1/3 log(cb1/(2aN2/3)))2 + Cbθ
1 .

For statement (i) of the lemma choose r = (3Cε)−1/3 and b1 = (ε/(3C))1/θ for
a large enough constant C. Then by assumption (5.17),

lim
N→∞ P

[
Zm,n(0 < ξx ≤ aN2/3)

Z�
(1,1),(m,n)

≥ cebN1/3
]

≤ 2ε

3
+ Ca

b2 ≤ ε.

For statement (ii) take a = √
b, r = √

b/(4�1(θ)), and b1 = b−3/(2θ). Then,
since b ≥ 1, for N ≥ N0(θ, c) the long denominator on line (5.24) is ≥ (b/2)2 and
the entire bound becomes

P

[
Zm,n(0 < ξx ≤ √

bN2/3)

Z�
(1,1),(m,n)

≥ cebN1/3
]

≤ Cb−3/2.(5.25)

With this choice of r , (5.22) also holds for N ≥ N0(θ, c). This concludes the proof
of Lemma 5.4. �

Now apply part (i) of Lemma 5.4 with a = δ and b = η to show

lim
N→∞ P

[
Zm,n(0 < ξx ≤ δN2/3)

Z�
(1,1),(m,n)

>
heηN1/3

1 − h

]
≤ ε.

Step 1 already fixed b = η > 0 small. Given ε > 0, we can then take a = δ small
enough to satisfy (5.17). Shrinking δ does not harm the conclusion from Step 1
because the bound in (5.16) becomes stronger. This concludes Step 2.

To summarize, we have shown that if δ is small enough, then

lim
N→∞ P[Q(0 < ξx ≤ δN2/3) > h] ≤ 2ε.

This proves (5.9) and thereby Proposition 5.3. �

From Proposition 5.3 we extract the lower bound on the variance of logZm,n.

COROLLARY 5.5. Assume weight distributions (2.4) and rectangle dimen-
sions (2.6). Then there exists a constant c such that for large enough N ,
Varθ [logZm,n] ≥ cN2/3.
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PROOF. Adding equations (3.18) and (3.19) gives

Var[logZm,n] = Em,n

[
ξx∑

i=1

L(θ,Y−1
i,0 )

]
+ Em,n

[ ξy∑
j=1

L(μ − θ,Y−1
0,j )

]
.

Fix δ > 0 so that

P {0 < ξx < δN2/3} + P {0 < ξy < δN2/3} < 1/2

for large N . Then for a particular N either P {ξx ≥ δN2/3} ≥ 1/4 or P {ξy ≥
δN2/3} ≥ 1/4. Suppose it is ξx . (Same argument for the other case.) Abbreviate
Li = L(θ,Y−1

i,0 ) and pick a > 0 small enough so that for some constant b > 0,

P

[�δN2/3�∑
i=1

Li < aN2/3

]
≤ e−bN2/3

for N ≥ 1.

This is possible because {Li} are strictly positive, i.i.d. random variables.
It suffices now to prove that for large N ,

E

[
ξx∑

i=1

Li

]
≥ a

8
N2/3.

This follows now readily:

E

[
ξx∑

i=1

Li

]
≥ E

[
1{ξx ≥ δN2/3}

�δN2/3�∑
i=1

Li

]

≥ aN2/3 · P
{
ξx ≥ δN2/3,

�δN2/3�∑
i=1

Li ≥ aN2/3

}

≥ aN2/3
(

1

4
− e−bN2/3

)
≥ a

8
N2/3. �

The corollary above concludes the proof of Theorem 2.1.

6. Fluctuations of the path in the model with boundaries. Fix two rectan-
gles �(k,�),(m,n) ⊆ �(k0,�0),(m,n), with 0 ≤ k0 ≤ k ≤ m and 0 ≤ �0 ≤ � ≤ n. As
before define the partition function Z(k0,�0),(m,n) and quenched polymer measure
Q(k0,�0),(m,n) in the larger rectangle. In the smaller rectangle �(k,�),(m,n), impose
boundary conditions on the south and west boundaries, given by the quantities
{Ui,�,Vk,j : i ∈ {k + 1, . . . ,m}, j ∈ {� + 1, . . . , n}} computed in the larger rectan-
gle as in (3.4):

Ui,� = Z(k0,�0),(i,�)

Z(k0,�0),(i−1,�)

and Vk,j = Z(k0,�0),(k,j)

Z(k0,�0),(k,j−1)

.(6.1)
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Let Z
(k,�)
m,n and Q

(k,�)
m,n denote the partition function and quenched polymer measure

in �(k,�),(m,n) under these boundary conditions. Then

Z(k,�)
m,n =

m∑
s=k+1

(
s∏

i=k+1

Ui,�

)
Z�

(s,�+1),(m,n)

+
n∑

t=�+1

(
t∏

j=�+1

Vk,j

)
Z�

(k+1,t),(m,n)(6.2)

= Z(k0,�0),(m,n)

Z(k0,�0),(k,�)

.

For a path x� ∈ 	(k,�),(m,n) with x1 = (k + 1, �), in other words x� takes off hori-
zontally,

Q(k,�)
m,n (x�) = 1

Z
(k,�)
m,n

ξ
(k,�)
x∏
i=1

Uk+i,� ·
m−k+n−�∏
i=ξ

(k,�)
x +1

Yxi
.

We wrote ξ
(k,�)
x for the distance x� travels on the x-axis from the perspective of the

new origin (k, �): for x� ∈ 	(k,�),(m,n)

ξ (k,�)
x = max{r ≥ 0 :xi = (k + i, �) for 0 ≤ i ≤ r}.(6.3)

Consider the distribution of ξ
(k,�)
x under Q

(k,�)
m,n : adding up all the possible path

segments from (k + r, � + 1) to (m,n) and utilizing (6.1) and (6.2) gives

Q(k,�)
m,n {ξ (k,�)

x = r}

= 1

Z
(k,�)
m,n

(
k+r∏

i=k+1

Ui,�

)
Z�

(k+r,�+1),(m,n)

= Z(k0,�0),(k+r,�)Z
�
(k+r,�+1),(m,n)

Z(k0,�0),(m,n)

(6.4)

= Q(k0,�0),(m,n){x� goes through (k + r, �) and (k + r, � + 1)}
= Q(k0,�0),(m,n){v1(�) = k + r}.

Thus ξ
(k,�)
x under Q

(k,�)
m,n has the same distribution as v1(�)−k under Q(k0,�0),(m,n).

We can now give the proof of Theorem 2.3.

PROOF OF THEOREM 2.3. If τ = 0, then the results are already contained in
Corollary 4.4 and Proposition 5.3. Let us assume 0 < τ < 1.

Set u = �bN2/3�. Take (k0, �0) = (0,0) and (k, �) = (�τm�, �τn�) above. The
system in the smaller rectangle �(k,�),(m,n) is a system with boundary distributions
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(2.4) and dimensions (m − k,n − �) that satisfy (2.6) for a new scaling parameter
(1 − τ)N . By (6.4),

Qm,n{v1(�τn�) ≥ �τm� + u} = Q(k,�)
m,n

{
ξ (k,�)
x ≥ u

}
(6.5)

d= Qm−k,n−�{ξx ≥ u}.
Hence, bounds (4.34) and (4.35) of Lemma 4.3 are valid as they stand for the
quenched probability above. The part of (2.11) that pertains to v1(�τn�) now fol-
lows from Corollary 4.4.

Recall definition (5.8) of w1. To get control of the left tail of v0, first note the
implication

Qm,n{v0(�τn�) < �τm� − u} ≤ Qm,n{w1(�τm� − u) ≥ �τn�}.
Let k = �τm� − u and � = �τn� − �nu/m�. Then up to integer-part corrections,
k/� = m/n. For a constant C(θ) > 0, �τn� ≥ � + C(θ)bN2/3. By (6.4), applied to
the vertical counterpart w1 of v1,

Qm,n{w1(�τm� − u) ≥ �τn�} = Q(k,�)
m,n

{
ξ (k,�)
y ≥ b1N

2/3}
d= Qm−k,n−�{ξy ≥ C(θ)bN2/3}.

The part of (2.11) that pertains to v0(�τn�) now follows from Corollary 4.4, ap-
plied to ξy .

Last we prove (2.12). By a calculation similar to (6.4), the event of pass-
ing through a given edge at least one of whose endpoints lies in the interior of
�(k,�),(m,n) has the same probability under Q

(k,�)
m,n and under Qm,n. Put (k, �) =

(�τm� − 2�δN2/3�, �τn� − 2�cδN2/3�) where the constant c is picked so that
c > m/n for large enough N . If the path x� comes within distance δN2/3 of
(τm, τn), then it necessarily enters the rectangle

�(k+1,�+1),(k+4�δN2/3�,�+4�cδN2/3�)
through the south or the west side. This event of entering decomposes into a
disjoint union according to the unique edge that is used to enter the rectangle,
and consequently the probabilities under Q

(k,�)
m,n and Qm,n are again the same.

From the perspective of the polymer model Q
(k,�)
m,n , this event implies that either

0 < ξ
(k,�)
x ≤ 4δN2/3 or 0 < ξ

(k,�)
y ≤ 4cδN2/3. The following bound arises:

Qm,n{∃k such that |xk − (τm, τn)| ≤ δN2/3}
≤ Q(k,�)

m,n

{
0 < ξ

(k,�)
x ≤ 4δN2/3 or 0 < ξ

(k,�)
y ≤ 4cδN2/3}

d= Qm−k,n−�{0 < ξx ≤ 4δN2/3 or 0 < ξy ≤ 4cδN2/3}.
Proposition 5.3 now gives (2.12). �

7. Polymer with fixed endpoint but without boundaries. Throughout this
section, for given 0 < s, t < ∞, let θ = θs,t as determined by (2.15) and (m,n)
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satisfy (2.21). Up to corrections from integer parts, (2.5) and definition (2.16) give

Nfs,t (μ) = E logZ�Ns�,�Nt�.
Define the scaling parameter M by

M = Ns

�1(μ − θ)
= Nt

�1(θ)
.(7.1)

Then (Ns,Nt) = (M�1(μ − θ),M�1(θ)) is the characteristic direction for para-
meters M and θ .

LEMMA 7.1. Let P satisfy assumption (2.4) and (m,n) satisfy (2.21). There
exist finite constants N0,C,C0 such that, for b ≥ C0 and N ≥ N0,

P
[∣∣logZm,n − logZ�

(1,1),(m,n)

∣∣≥ bN1/3]≤ Cb−3/2.

PROOF. Separating the paths that go through the point (1,1) gives

Zm,n = (U1,0 + V0,1)Z
�
(1,1),(m,n) + Zm,n(ξx > 1) + Zm,n(ξy > 1).(7.2)

Consequently,

P

[
Zm,n

Z�
(1,1),(m,n)

≤ e−bN1/3
]

≤ P(U1,0 + V0,1 ≤ e−bN1/3
)

≤ C(θ)e−bN1/3
.

For the other direction, abbreviate u = √
b(�1(θ)/t)1/6M2/3,

P

[
Zm,n

Z�
(1,1),(m,n)

≥ ebN1/3
]

= P

[
Zm,n({0 < ξx ≤ u} ∪ {0 < ξy ≤ u})

Z�
(1,1),(m,n)Qm,n({0 < ξx ≤ u} ∪ {0 < ξy ≤ u}) ≥ ebN1/3

]

≤ P

[
Zm,n(0 < ξx ≤ u)

Z�
(1,1),(m,n)

≥ 1

4
ebN1/3

]
(7.3)

+ P

[
Zm,n(0 < ξy ≤ u)

Z�
(1,1),(m,n)

≥ 1

4
ebN1/3

]
(7.4)

+ P

[
Qm,n({0 < ξx ≤ u} ∪ {0 < ξy ≤ u}) ≤ 1

2

]
.(7.5)

By part (ii) of Lemma 5.4, (7.3)+(7.4) is bounded by Cb−3/2. By Lemma 4.3

line (7.5) ≤ P
[
Qm,n{ξx > u} > 1

4

]+ P
[
Qm,n{ξy > u} > 1

4

]≤ Cb−3/2

provided e−δb(�1(θ)/t)1/3M1/3 ≤ 1/4 and u ≥ cκM . M is now the scaling parameter
and comparison of (4.9) and (2.21) shows κM = γN2/3. The requirements are
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satisfied with N ≥ N0 and b ≥ C0.
To summarize, we have for b ≥ C0 and N ≥ N0, and for a finite constant C,

P

[
Zm,n

Z�
(1,1),(m,n)

≥ ebN1/3
]

≤ Cb−3/2.(7.6)

This furnishes the remaining part of the conclusion. �

PROOF OF THEOREM 2.4. By Chebyshev, variance bound (4.33) and Lem-
ma 7.1, and with a little correction to take care of the difference between
Z(1,1),(�Ns�,�Nt�) and Z�

(1,1),(�Ns�,�Nt�),

P
[∣∣logZ(1,1),(�Ns�,�Nt�) − Nfs,t (μ)

∣∣≥ bN1/3]
≤ P

(|logY1,1| ≥ 1
4bN1/3)

+ P
[∣∣logZ�

(1,1),(�Ns�,�Nt�) − logZ�Ns�,�Nt�
∣∣≥ 1

2bN1/3]
+ P

[∣∣logZ�Ns�,�Nt� − Nfs,t (μ)
∣∣≥ 1

4bN1/3]
≤ Ce−1/4bN1/3 + Cb−3/2 + Cb−2 ≤ Cb−3/2.

This bound implies convergence in probability in (2.17). One can apply the subad-
ditive ergodic theorem to upgrade the statement to a.s. convergence. We omit the
details. �

PROOF OF THEOREM 2.5. Let (k, �) = (�τm�, �τn�) and u = bN2/3 =
b(�1(θ)/t)2/3M2/3. Decompose the event {v1(�) ≥ k + u} according to the verti-
cal edge {(i, �), (i, � + 1)}, k + u ≤ i ≤ m, taken by the path, and utilize (7.2):

Q(1,1),(m,n){v1(�) ≥ k + u}

= ∑
i : k+u≤i≤m

Z�
(1,1),(i,�)Z

�
(i,�+1),(m,n)

Z�
(1,1),(m,n)

≤ ∑
i : k+u≤i≤m

Zi,�Z
�
(i,�+1),(m,n)

(U1,0 + V0,1)Z
�
(1,1),(m,n)

= Qm,n{v1(�) ≥ k + u}
U1,0 + V0,1

· Zm,n

Z�
(1,1),(m,n)

.

As explained in the paragraph of (6.5) above,

Qm,n{v1(�) ≥ k + u} d= Qm−k,n−�{ξx ≥ u}.
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Let b−3 < h < 1. From above, remembering (7.1),

P
[
Q(1,1),(m,n){v1(�) ≥ k + u} > h

]
≤ P(U1,0 + V0,1 ≤ b−3)

+ P

[
Zm,n

Z�
(1,1),(m,n)

≥ exp
(

δb2�1(θ)N1/3

2(1 − τ)t

)]

+ P

[
Qm−k,n−�{ξx ≥ u} > hb−3 exp

(
−1

2
δu2

/
(1 − τ)M

)]
≤ Cb−3.

The justification for the last inequality is as follows. With a new scaling parameter
(1 − τ)M , bound (4.34) applies to the last probability above and bounds it by
Cb−3 for all h > b−3 and b ≥ 1, provided N ≥ N0. Apply (7.6) to the second last
probability, valid if b ≥ C0 and N ≥ N0. We obtain

P(1,1),(m,n){v1(�) ≥ k + u}

≤ b−3 +
∫ 1

b−3
P
[
Q(1,1),(m,n){v1(�) ≥ k + u} > h

]
dh

≤ Cb−3.

The corresponding bound from below on v0(�) comes by reversal. If Ỹi,j =
Ym−i+1,n−j+1 for (i, j) ∈ �(1,1),(m,n), then Qω̃

(1,1),(m,n)(x�) = Qω
(1,1),(m,n)(x̃�)

where x̃j = (m + 1, n + 1) − xm+n−2−j for 0 ≤ j ≤ m + n − 2. This mapping
of paths has the property v0(�, x�) − k = m + 1 − k − v1(n + 1 − �, x̃�), and it
converts an upper bound on v1 into a lower bound on v0. �

8. Polymer with free endpoint. In this final section, we prove Theorems 2.6
and 2.7, beginning with the three parts of Theorem 2.6.

PROOF OF LIMIT (2.23). The claimed limit is the maximum over directions
in the first quadrant:

−�0(μ/2) = f1/2,1/2(μ) ≥ fs,1−s(μ) for 0 ≤ s ≤ 1.

One bound for the limit comes from Ztot
N ≥ Z(1,1),(�N/2�,N−�N/2�). To bound

logZtot
N from above, fix K ∈ N and let δ = 1/K . For 1 ≤ k ≤ K set (sk, tk) =

(kδ, (K − k + 1)δ). Partition the indices m ∈ {1, . . . ,N − 1} into sets

Ik = {
m ∈ {1, . . . ,N − 1} : (m,N − m) ∈ ��Nsk�,�Ntk�

}
.
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The {Ik} cover the entire set of m’s because N(k−1)δ ≤ m ≤ Nkδ implies m ∈ Ik .
Overlap among the Ik’s is not harmful:

Ztot
N ≤

K∑
k=1

∑
m∈Ik

Z(1,1),(m,N−m)

Z(m,N−m),(�Nsk�,�Ntk�)
Z(m,N−m),(�Nsk�,�Ntk�)

≤
{

min
1≤k≤K,m∈Ik

Z(m,N−m),(�Nsk�,�Ntk�)
}−1

×
K∑

k=1

Z(1,1),(�Nsk�,�Ntk�).

For each m ∈ Ik , fix a specific path x
(m)
� ∈ 	(m,N−m),(�Nsk�,�Ntk�). Since

Z(m,N−m),(�Nsk�,�Ntk�) ≥
�Nsk�+�Ntk�−N∏

i=1

Y
x

(m)
i

,

we get the bound

N−1 logZtot
N ≤ max

1≤k≤K,m∈Ik

N−1
∑
i

logY−1
x

(m)
i

+ N−1 logK

(8.1)
+ max

1≤k≤K
N−1 logZ(1,1),(�Nsk�,�Ntk�).

The sum
∑

i logY−1
x

(m)
i

has �Nsk� + �Ntk� − N ≤ Nδ i.i.d. terms. Given ε > 0, we

can choose δ = K−1 small enough to guarantee that P{∑i logY−1
x

(m)
i

≥ Nε} decays

exponentially with N . Thus, P-a.s. the entire first term after the inequality in (8.1)
is ≤ ε for large N . In the limit we get, utilizing law of large numbers (2.17),

lim
N→∞N−1 logZtot

N ≤ ε + max
1≤k≤K

fsk,tk (μ) ≤ ε + sup
0≤s≤1

fs,1−s+δ(μ).

Let δ ↘ 0 utilizing the continuity of fs,t (μ) in (s, t), and then let ε ↘ 0. This gives
limN−1 logZtot

N ≤ −�0(μ/2) and completes the proof of the limit (2.23). �

PROOF OF BOUND (2.24). Let

(m,n) = (N − �N/2�, �N/2�).(8.2)

An upper bound on the left tail in (2.24) comes immediately from (2.18):

P{logZtot
N ≤ Nf1/2,1/2(μ) − bN1/3}

≤ P
{
logZ(1,1),(m,n) ≤ Nf1/2,1/2(μ) − bN1/3}

≤ Cb−3/2.
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To get a bound on the right tail, start with

Ztot
N =

N−1∑
�=1

Z(1,1),(�,N−�)

≤ N

(
Z(1,1),(m,n) · max

0≤k<n

Z(1,1),(m+k,n−k)

Z(1,1),(m,n)

)
(8.3)

∨
(
Z(1,1),(n,m) · max

0≤�<m

Z(1,1),(n−�,m+�)

Z(1,1),(n,m)

)
.

The terms in the large parentheses are transposes of each other, so we spell out the
details only for the first case. In one spot below it is convenient to have m ≥ n,
hence the choice in (8.2). Thus, considering b ≥ 2, and once N is large enough so
that logN < N1/3/3, bounding

P{logZtot
N ≥ Nf1/2,1/2(μ) + bN1/3}

boils down to bounding the sum

P

{
logZ(1,1),(m,n) ≥ Nf1/2,1/2(μ) + 1

3
bN1/3

}
(8.4)

+ P

{
log max

0<k<n

Z(1,1),(m+k,n−k)

Z(1,1),(m,n)

≥ 1

3
bN1/3

}
.(8.5)

The probability on line (8.4) is again taken care of with (2.18). Utilizing both
inequalities in (5.2), the first one transposed, we deduce for 1 ≤ k < n,

Z(1,1),(m+k,n−k)

Z(1,1),(m,n)

=
k∏

j=1

Z(1,1),(m+j,n−j)

Z(1,1),(m+j−1,n−j)

· Z(1,1),(m+j−1,n−j)

Z(1,1),(m+j−1,n−j+1)

≤
k∏

j=1

Zm+j,n−j (ξx > 0)

Zm+j−1,n−j (ξx > 0)
· Zm+j−1,n−j (ξx > 0)

Zm+j−1,n−j+1(ξx > 0)

(8.6)

= Zm+k,n−k(ξx > 0)

Zm,n(ξx > 0)
≤ 1

Qm,n(ξx > 0)
· Zm+k,n−k

Zm,n

= 1

Qm,n(ξx > 0)
·

k∏
j=1

Um+j,n−j

Vm+j−1,n−j+1
.

The last equality used (3.4). In the calculation above, we switched from parti-
tion functions Z(1,1),(i,j) that use only bulk weights to partition functions Zi,j =
Z(0,0),(i,j) that use both bulk and boundary weights, distributed as in assump-
tion (2.4). The parameter θ is at our disposal. We take θ = μ/2 + rN−1/3 with
r > 0 and link r to b in the next lemma. The choice θ > μ/2 makes the U/V

ratios small which is good for bounding the last line of (8.6). However, this choice
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also makes Qm,n(ξx > 0) small which works against us. To bound Qm,n(ξx > 0)

from below we switch from θ = μ/2 + rN−1/3 to λ = μ/2 − rN−1/3 and pay
for this by bounding the Radon–Nikodym derivative. Under parameter λ the event
{ξx > 0} is favored at the expense of {ξy > 0}, and we can get a lower bound.

Utilizing (8.6), the probability in (8.5) is bounded as follows:

P

{
log max

1≤k≤n

Z(1,1),(m+k,n−k)

Z(1,1),(m,n)

≥ 1

3
bN1/3

}
≤ P{Qm,n(ξx > 0) ≤ e−bN1/3/6}(8.7)

+ P

{
max

1≤k≤n

k∑
j=1

(logUm+j,n−j − logVm+j−1,n−j+1) ≥ bN1/3/6

}
.(8.8)

We treat first the right-hand side probability on line (8.7).

LEMMA 8.1. Let 0 < μ < ∞ be fixed, r > 0, b ≥ 1, θ = μ/2 + rN−1/3,
weight distributions as in (2.4) and (m,n) as in (8.2). Then there exist finite con-
stants κ(μ), C(μ) and N0(μ, b) such that the following holds: if r = κ(μ)b1/2 and
N ≥ N0(μ, b) then

P{Qm,n(ξx > 0) ≤ e−bN1/3/6} ≤ C(μ)b−3/2.(8.9)

PROOF. Let Ui,0,V0,j be the boundary weights with parameter θ = μ/2 +
rN−1/3 as specified in (2.4). Let Ũi,0, Ṽ0,j denote boundary weights with parame-
ter λ = μ/2 − rN−1/3 in place of θ . We ensure μ/4 ≤ λ < θ ≤ 3μ/4 by consider-
ing only N ≥ N1(μ, r) for N1(μ, r) = (4r/μ)3. All along bulk weights have dis-
tribution Y−1

i,j ∼ Gamma(μ,1). The coupling of the boundary weights {Ui,0,V0,j }
with {Ũi,0, Ṽ0,j } is such that Ui,0 ≤ Ũi,0. Tildes mark quantities that use Ũi,0, Ṽ0,j .
Let u = �tN2/3� with t determined later. Recall that �0 is strictly increasing and
�1 strictly decreasing,

Qm,n(ξx > 0) ≥ Qm,n(0 < ξx ≤ u) = 1

Zm,n

u∑
k=1

(
k∏

i=1

Ui,0

)
Z�

(k,1),(m,n)

= 1

Z̃m,n

u∑
k=1

(
k∏

i=1

Ũi,0 ·
k∏

i=1

Ui,0

Ũi,0

)
Z�

(k,1),(m,n) · Z̃m,n

Zm,n

(8.10)

≥ Q̃m,n(0 < ξx ≤ u)

(
u∏

i=1

Ui,0

Ũi,0

)
Z̃m,n

Zm,n

.

We derive tail bounds for each of the three factors on line (8.10), working our way
from right to left. C(μ) denotes a constant that depends on μ and can change from
one line to the next, while Ci(μ) denote constants specific to the cases.
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Since θ > λ sit symmetrically around μ/2 and m ≥ n,

E(log Z̃m,n) − E(logZm,n)

= m
(−�0(λ) + �0(θ)

)+ n
(−�0(μ − λ) + �0(μ − θ)

)≥ 0

and in fact vanishes for even N . By Chebyshev and the variance bound of Theo-
rem 2.1,

P

[
Z̃m,n

Zm,n

≤ e−bN1/3/18
]

= P[log Z̃m,n − logZm,n ≤ −bN1/3/18]

≤ 182

N2/3b2

(
Var(log Z̃m,n) + Var(logZm,n)

)
(8.11)

≤ C(μ)(1 + r)b−2.

To understand the last inequality above for the first variance, let first a scaling para-
meter M be determined by n = M�1(λ). Set m̄ = �M�1(μ − λ)� which satisfies
m − C1(μ)rN2/3 ≤ m̄ < m. Since (m̄, n) is the characteristic direction for λ,

Var(log Z̃m,n) = Var

(
log Z̃m̄,n +

m∑
i=m̄+1

log Ũi,n

)

≤ 2 Var(log Z̃m̄,n) + 2 Var

(
m∑

i=m̄+1

log Ũi,n

)

≤ C(μ)(M2/3 + m − m̄) ≤ C(μ)(1 + r)N2/3.

We used above the variance bound of Theorem 2.1 together with the feature that
fixed constants work for parameters varying in a compact set. This is now valid
because we have constrained λ and θ to lie in [μ/4,3μ/4]. A similar argument
works for the second variance in (8.11).

Next,

E(logU1,0 − log Ũ1,0) = −�0(θ) + �0(λ) ≥ −C2(μ)rN−1/3.

By Chebyshev, provided we ensure b > 36C2(μ)rt ,

P

[
u∏

i=1

Ui,0

Ũi,0
≤ e−bN1/3/18

]

= P

[
u∑

i=1

(logUi,0 − log Ũi,0) ≤ −
(

1

18
b − C2(μ)rt

)
N1/3

]
(8.12)

≤ C(μ)tb−2.

For the probability on line (8.10), write

Q̃m,n{0 < ξx ≤ tN2/3} = 1 − Q̃m,n{ξx > tN2/3} − Q̃m,n{ξy > 0}.(8.13)
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To both probabilities on the right, we apply Lemma 4.3 after adjusting the parame-
ters. Let M and m̄ be as above so that (m̄, n) is the characteristic direction for λ.
Reasoning as for the distributional equality in (5.6) and picking t ≥ 2C1(μ)r ,

Q̃m,n{ξx > tN2/3} d= Q̃m̄,n{ξx > tN2/3 − (m − m̄)}
≤ Q̃m̄,n{ξx > tN2/3/2}.

Consequently by (4.34),

P
[
Q̃m̄,n{ξx > tN2/3/2} ≥ e−δt2N4/3/(4M)]≤ C(μ)t−3.

For the last probability on line (8.13), we get the same kind of bound by defining
K through m = K�1(μ − λ), and n̄ = �K�1(λ)� ≥ n + C4(μ)rN2/3. Then

Q̃m,n{ξy > 0} d= Q̃m,n̄{ξy > n̄ − n} ≤ Q̃m,n̄{ξy > C4(μ)rN2/3},
and again by (4.34)

P
[
Q̃m,n̄{ξy > C4(μ)rN2/3} ≥ e−δC4(μ)2r2N4/3/K ]≤ C(μ)r−3.

The upshot of this paragraph is that if N ≥ N1(μ, r) and we pick t = 2C3(μ)r ,

P
[
Q̃m,n{0 < ξx ≤ u} ≤ 1

2

]≤ C(μ)(t−3 + r−3) ≤ C(μ)r−3.(8.14)

Put bounds (8.11), (8.12) and (8.14) back into (8.10). Choose t = 2C3(μ)r as
in the last paragraph. We can ensure that b ≥ 36C2(μ)rt needed for (8.12) by
choosing b = κ(μ)−2r2 for a small enough κ(μ). The constraint N ≥ N1(μ, r)

can then be written in the form N ≥ N0(μ, b). Adding up the bounds gives

P[Qm,n{ξx > 0} ≤ e−bN1/3/6] ≤ C(μ)
(
(1 + r)b−2 + tb−2 + r−3)

≤ C(μ)b−3/2. �

We turn to probability (8.8). By the Burke property Theorem 3.3 inside the
probability, we have a sum of i.i.d. terms with mean

E(logUm+1,n−1 − logVm,n) = −�0(θ) + �0(μ − θ)
(8.15)

≤ −C5(μ)rN−1/3.

Consequently, if we let

ηj = logUm+j,n−j − logVm+j−1,n−j+1 + �0(θ) − �0(μ − θ),(8.16)

then

(8.8) ≤ P

{
max

1≤k≤n

k∑
j=1

(
ηj − C5(μ)rN−1/3)≥ bN1/3/6

}
.(8.17)
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The variables ηj have all moments. Apply part (a) of Lemma 8.2 below to the
probability above with t = N1/3, α = C5(μ)r and β = b/6. With r = κ(μ)b1/2

and p large enough, this gives

(8.8) ≤ C(μ)b−3/2.(8.18)

Insert bounds (8.9) and (8.18) into (8.7), (8.8), and this in turn back into (8.5).
This completes the proof of (2.24). �

Before the third and last part of the proof of Theorem 2.6, we state and prove
the random walk lemma used to derive (8.18) above. It includes a part (b) for
subsequent use.

LEMMA 8.2. Let Z,Z1,Z2, . . . be i.i.d. random variables that satisfy E(Z) =
0 and E(|Z|p) < ∞ for some p > 2. Set Sk = Z1 + · · · + Zk . Below C = C(p) is
a constant that depends only on p.

(a) For all α,β, t > 0,

P
{
sup
k≥0

(Sk − kαt−1) ≥ βt
}

≤ CE(|Z|p)α−p2/(2(p−1))β−p(p−2)/(2(p−1)).

(b) For all α,β, t > 0 and M ∈ N such that 2β ≤ Mα,

P
{

sup
k>Mt2

(Sk − kαt−1) ≥ −βt
}

≤ CE(|Z|p)α−pM−(p/2)+1.

PROOF. Part (a). Pick an integer m > 0 and split the probability:

P
{
sup
k≥0

(Sk − kαt−1) ≥ βt
}

≤ P
{

max
0<k≤mt2

Sk ≥ βt
}

(8.19)

+ ∑
j≥m

P
{

max
j t2<k≤(j+1)t2

(Sk − kαt−1) ≥ βt
}
.

Recall that the Burkholder–Davis–Gundy inequality ([11], Theorem 3.2) gives
E|Sk|p ≤ CpE|Z|pkp/2. Doob’s inequality together with BDG gives

P
{

max
0<k≤mt2

Sk ≥ βt
}

≤ CE|Z|pmp/2β−p,

where we now write C for a constant that depends only on p. For the last proba-
bility in (8.19),

P
{

max
j t2<k≤(j+1)t2

(Sk − kαt−1) ≥ βt
}

≤ P
{

max
0<k≤(j+1)t2

Sk ≥ jαt
}

≤ CE|Z|pj−p/2α−p.
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Putting the bounds back into (8.19) gives

P
{
sup
k≥0

(Sk − kαt−1) ≥ βt
}

≤ CE|Z|p
(

mp/2

βp
+ α−p

∑
j≥m

j−p/2
)

≤ CE|Z|p(mp/2β−p + α−pm−(p/2)+1).
Choosing m a constant multiple of (β/α)p/(p−1) gives the conclusion for part (a).

Part (b). Proceeding as above:

P
{

sup
k>Mt2

(Sk − kαt−1) ≥ −βt
}

≤ ∑
j≥M

P
{

max
j t2<k≤(j+1)t2

(Sk − kαt−1) ≥ −βt
}

≤ ∑
j≥M

P
{

max
0<k≤(j+1)t2

Sk ≥ 1

2
jαt

}
≤ CE|Z|pα−p

∑
j≥M

j−p/2

≤ CE(|Z|p)α−pM−(p/2)+1. �

Next, the last part of the proof of Theorem 2.6.

PROOF OF BOUND (2.25). We shall show the existence of constants c0(μ) > 0
and C(μ),N0(μ, s) < ∞ such that, for s ≥ 1 and N ≥ N0(μ, s),

P

[
Qtot

N

{∣∣∣∣xN−2 −
(

N

2
,
N

2

)∣∣∣∣≥ 2sN2/3
}

≥ e−c0(μ)s2N1/3
]

≤ C(μ)s−3.(8.20)

Abbreviating AN = {|xN−2 − (N
2 , N

2 )| ≥ 2sN2/3}, then (2.25) follows from

P tot
N (AN) = EQtot

N (AN)

≤ e−c0(μ)s2N1/3 + P
[
Qtot

N (AN) ≥ e−c0(μ)s2N1/3]
≤ C(μ)s−3.

To show (8.20), we control sums of ratios of partition functions:

Qtot
N

{∣∣∣∣xN−2 −
(

N

2
,
N

2

)∣∣∣∣≥ 2sN2/3
}

≤ ∑
0<�<N/2−sN2/3

Z(1,1),(�,N−�)

Ztot
N

+ ∑
N/2+sN2/3<�<N

Z(1,1),(�,N−�)

Ztot
N

.
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We treat the second sum from above. The first one develops the same way. With
(m,n) as in (8.2) and utilizing (8.6), write∑

N/2+sN2/3<�<N

Z(1,1),(�,N−�)

Ztot
N

≤ ∑
sN2/3≤k<N/2

Z(1,1),(m+k,n−k)

Z(1,1),(m,n)

≤ 1

Qm,n(ξx > 0)

∑
sN2/3≤k<N/2

k∏
j=1

Um+j,n−j

Vm+j−1,n−j+1

≤ N

Qm,n(ξx > 0)
· max
sN2/3≤k<N/2

k∏
j=1

Um+j,n−j

Vm+j−1,n−j+1
.

As in (8.2), we introduced again boundary weights with parameter θ = μ/2 +
rN−1/3. Let c0 = c0(μ) be a small constant whose value will be determined below.
Consider N large enough so that N ≤ ec0N

1/3
and take s ≥ 1. Define ηj as in (8.16)

and let C5(μ) be as in (8.15). Then

P

[ ∑
N/2+sN2/3<�<N

Z(1,1),(�,N−�)

Ztot
N

≥ e−c0s
2N1/3

]

≤ P[Qm,n(ξx > 0) ≤ e−c0s
2N1/3](8.21)

+ P

[
max

sN2/3≤k≤N/2

k∑
j=1

(
ηj − C5(μ)rN−1/3)≥ −3c0s

2N1/3

]
(8.22)

≤ C(μ)s−3.

The justification for the last inequality is in the previous lemmas. Apply Lem-
ma 8.1 with b = 6c0s

2 to the probability on line (8.21) to bound it by C(μ)s−3.
For this purpose, set r = κ(μ)b1/2 = κ(μ)s

√
6c0. Then apply Lemma 8.2(b) to

the probability on line (8.22) to bound it also by C(μ)s−3. The condition 2β ≤
Mα of that lemma is equivalent to

√
6c0 ≤ C5(μ)κ(μ), and we can fix c0 small

enough to satisfy this. This completes the proof of (8.20) and thereby the proof of
Theorem 2.6. �

PROOF OF THEOREM 2.7. Case 1: θ = μ/2. We do the subcase 0 < θ < μ/2.
By (3.4),

logZtot
N (θ,μ) = logZN,0 + log

(
1 +

N∑
k=1

k∏
i=1

VN−i+1,i

UN−i+1,i

)
.(8.23)
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Since

E(logVN−i+1,i − logUN−i+1,i ) = −�0(μ − θ) + �0(θ) < 0

the random variable

log

(
1 +

∞∑
k=1

k∏
i=1

VN−i+1,i

UN−i+1,i

)

is positive and finite. Since logZN,0 is a sum of i.i.d. variables logUi,0 with U−1
i,0 ∼

Gamma(θ,1), the conclusions follow for the case 0 < θ < μ/2.
Case 2: θ = μ/2. Let (m,n) = (N − �N/2�, �N/2�). Separate the partition

function in the characteristic direction and use (3.4):

logZtot
N (μ/2,μ)

(8.24)

= logZm,n + log

(
m∑

k=0

k∏
i=1

Vm−i+1,n+i

Um−i+1,n+i

+
n∑

k=1

k∏
i=1

Um+i,n−i+1

Vm+i,n−i+1

)
.

By the Burke property, the mean zero random variables ηi = logUm+i,n−i+1 −
logVm+i,n−i+1 for i ∈ Z are i.i.d. For k ≥ 1, define sums

Sk =
k∑

i=1

ηi, S0 = 0 and S−k = −
k∑

i=1

η−i+1.

At θ = μ/2, E(logZm,n) = Ng(μ/2,μ). Consequently, (8.24) gives

logZtot
N (μ/2,μ) − Ng(μ/2,μ)

(8.25)
= logZm,n + O(logN) + max−m≤k≤n

Sk.

By the usual strong law of large numbers, N−1 max−m≤k≤n Sk → 0 a.s. and so
together with (2.7), (8.25) gives the law of large numbers (2.27) in the case θ =
μ/2. Second, since logZm,n is stochastically of order O(N1/3) by Theorem 2.1
and since N−1/2 max−m≤k≤n Sk converges weakly to ζ(μ/2,μ) defined in (2.26),
(8.25) implies also the weak limit (2.28). �
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