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Scaling for quantum tunneling 

current in nano- and subnano-scale 

plasmonic junctions
Peng Zhang

When two conductors are separated by a sufficiently thin insulator, electrical current can flow 
between them by quantum tunneling. This paper presents a self-consistent model of tunneling 

current in a nano- and subnano-meter metal-insulator-metal plasmonic junction, by including the 
effects of space charge and exchange correlation potential. It is found that the J-V curve of the 

junction may be divided into three regimes: direct tunneling, field emission, and space-charge-
limited regime. In general, the space charge inside the insulator reduces current transfer across the 
junction, whereas the exchange-correlation potential promotes current transfer. It is shown that 
these effects may modify the current density by orders of magnitude from the widely used Simmons’ 
formula, which is only accurate for a limited parameter space (insulator thickness >  1 nm and barrier 

height >  3 eV) in the direct tunneling regime. The proposed self-consistent model may provide a more 

accurate evaluation of the tunneling current in the other regimes. The effects of anode emission and 
material properties (i.e. work function of the electrodes, electron affinity and permittivity of the 
insulator) are examined in detail in various regimes. Our simple model and the general scaling for 
tunneling current may provide insights to new regimes of quantum plasmonics.

Electron tunneling between plasmonic resonators is recently found to support quantum plasmon 
resonances1–5, which may introduce new regimes in nano-optoelectronics, nonlinear optics, and 
single-molecule sensing. Tunneling conductivity is also important in the recently proposed transition 
voltage spectroscopy (TVS)6–8, self-assembled monolayer (SAM)-based tunneling junctions9, resistive 
switching10, carbon nanotube (CNT) and graphene based electronics11–13. Tunneling e�ects between 
electrodes separated by thin insulating �lms have been studied extensively by Simmons14–18 in 1960s. 
Simmons’ formula14 have since been used as the basic scaling for evaluating tunneling current. �e 
tunneling current in Al-Al2O3-Al structures has been experimentally studied and evaluated using 
Simmons’ theory19. Tunneling current of metal-oxide-semiconductor structures was also calculated using 
�rst-principle approaches20. An excellent review on the tunneling current in metal-insulator-metal struc-
tures is given in Ref21. However, Simmons’ formulas14 are derived by considering only the emission pro-
cess from the electrodes, where the e�ects of image charge are considered, but the electron space charge 
potential and the electron exchange-correlation potential inside the insulator thin �lms are generally 
ignored. �us, its accuracy in various regimes is largely unknown9,22. On the other hand, the e�ects of 
space charge in a vacuum nanogap have recently been studied extensively4,23,24, with extensions to short 
pulse25 and higher dimensions26,27. However, these studies assumed that current emission was only from 
the cathode (electrode with lower bias). �e current emission from the anode (electrode with higher 
bias) (Fig. 1), which will be shown later (Fig. 2) that sometimes can become comparable with the cathode 
current, was ignored4,28. �us, there is still lack of a self-consistent model to systematically characterize 
the quantum tunneling current in a nano- and subnano-scale tunneling junction, including the e�ects 
of di�erent insulating materials. �is paper provides such a study, over a wide range of insulator �lm 
thickness, applied voltage, and material properties. 
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It is found that Simmons’ formula is only accurate in a limited parameter space in the direct tunne-
ling regime (Figs. 2–5), when the insulating thin �lm is relatively thick (> 1 nm) and the barrier height 
is relatively large (> 3 eV). Its accuracy decreases when the e�ective barrier height decreases (Fig. 4), or 
when the permittivity of the insulator decreases (Fig. 5), where the self-consistent model would provide a 
more accurate prediction of the tunneling current. In the �eld emission regime and space-charge-limited 
regime, the self-consistent model may be used, as Simmons’ formula becomes fairly unreliable. �e 
proposed model reveals the general scaling for quantum tunneling current and its dependence on the 
bias voltage, the dimension and material properties of the tunneling junction. It can be applied to broad 
areas involving tunneling junctions. As an example, its application in quantum plasmonics will be brie�y 
addressed in the Discussion Section.

Note that although the present model is developed for DC condition, it is applicable to plasmonics 
of up to Near Infrared frequency. �e underlying reason is that the transit time for electron tunneling 
through a barrier of nm-scale thickness is typically less than 1 fs4,29–31, which is much shorter than the 
period of the driving �elds (e.g. 10 fs for 0.4 eV optical energy). �is transit time is even shorter for 
insulator of sub-nm thickness. �us, the electron would see an almost constant barrier during its transit 
time, and the DC model applies. Such treatments have been extensively applied in quantum plasmonic 
modeling2–4. �e DC calculation would not be valid if the driving �eld frequency is so high (e.g. Visible 
light frequency or higher) that its period is comparable or less than the electron transit time.

Results
Self-consistent model for tunneling current. Consider two metallic electrodes separated by a thin 
insulating �lm, as shown in Fig.  1. Since the insulating �lm is assumed to be su�ciently thin (in the 
subnano- and nano-meter scale), charge trapping may be ignored17,32. �e electrons in the electrodes 
would see a potential barrier formed between the two electrodes,

Φ( ) = + − + Φ ( ) + ( ) + Φ ( ), ( )x E W X x eV x x 1F image xc

where EF and W  are the Fermi level and the work function of the metal electrodes respectively; X is 
electron a�nity of the insulator; πΦ ( ) = (− / ) / + ∑ ( /( − ) − / )=

∞
є єx e x nD n D x nD8 [1 2 1 ]image r

2
0 n 1

2 2 2  
is the image charge potential energy including the e�ect of anode screening4,14,33, where e is the electron 
charge, є0 is the permittivity of free space, є r is the relative permittivity of the insulator, and D is the gap 
distance; ( )eV x  is the electric potential, which is the sum of the potential due to the external applied 
voltage V g  and the potential due to the electron space charge; and Φ ( )xxc  is the electron exchange-correlation 
potential, where the exchange potential is related to the Pauli Exclusion Principle, and the correlation 
potential denotes the quantum-mechanical part of the Coulomb interaction between electrons. �e term 
Φ ( ) = ( − ( / ) / ) ×є єx r d dr E3xc xc s xc s H is calculated by Kohn-Sham local density approximation 
(LDA)34, where ( )r xs  is the local Seitz radius π ( )( ) / =n x r a[4 3 1]s 0

3  in terms of the Bohr radius 
π= /є a me40 0

2 2 =  0.0529 nm, ( )n x  is the electron density, = /E maH
2

0
2 =  27.2 eV is the Hartree 

energy, m is the electron rest mass,  is the reduced Planch constant, and = +є є єxc x c is the 
exchange-correlation energy34–36. Here, π= − ( / )( / ) ( / )/

є r3 4 3 2 1x s
2 3 , and 

κ= − ( + ) + /є A a r A2 1 ln[1 1 2 ]c s1  are the exchange energy35 and the correlation energy34 respectively, 

Figure 1. Metal-insulator-metal tunneling junction. �e metal electrodes have Fermi level EF and work 
function W . �e insulator thin �lm has electron a�nity X, relative permittivity єr, and thickness D. �e 
applied voltage bias is V g , the e�ective potential between the electrodes is Φ( )x . �e current densities 
emitted from the cathode and the anode into the gap are J1 and J2, respectively.
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for a uniform electron gas of density n under the Kohn-Sham LDA assumption, where 
κ = + + +/ / +b r b r b r b rs s s s

c
1

1 2
2 3

3 2
4

1, and c, A, a1, b1, b2, b3, and b4 are parametrized constants obtained 
using the random phase approximation34.

Following Simmons14, the probability ( )D E x  that an electron with longitudinal energy E x (normal to 
the surface) can penetrate the potential barrier of height Φ (x) is given by the WKBJ approximation37,

∫( ) =





− Φ( ) −




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
,
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2

where x1 and x 2 are the two roots of Φ− ( ) =E x 0x . �e current density tunneling through the barrier 
from electrode 1 to the right is calculated by4,14,28,38,39,
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Figure 2. Current density as a function of applied gap voltage V g , for two gold (Au) electrodes 
( = .W 5 1 eV)39 separated by a vacuum gap ( = , =є X1 0r  eV) of width =D  1 nm, at =T 300 K, (a) in 
normalized form in terms of CL law, JCL, (b) in unit of A/cm2. �e calculations in (a) are from three 
methods: direction integration of eqs 3 and 5 (or 12 and 13), SCM with no V xc included, and full SCM with 
both space charge and V xc included. Simmons is for eq. 14, Simmons (V ~ 0) is for eq. 15.
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where ( )N E dEx x1  is the total number of electrons inside electrode 1 with longitudinal energy between 
E x and +E dEx x impinging on the surface of electrode 1 across a unit area per unit time, calculated by 
free-electron theory of metal40, with kB and T  being the Boltzmann constant and the temperature, respec-
tively.

Similarly, the current density tunneling through the barrier from electrode 2 to the le� is14,41,

∫= ( ) ( ) , ( )−∞

+∞
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where ( )D E x  is given in eq. (2), and ( )N E dEx x2  is the total number of electrons inside electrode 2 with 
longitudinal energy between E x and +E dEx x impinging on the surface of electrode 1 across a unit area 
per unit time, calculated by free-electron theory of metal40.

Inside the insulator between the two electrodes, < <x D0 , we use the mean-�eld theory23–25 to solve 
the electric potential ( )eV x  and the exchange-correlation potential Φ ( )xxc , as appeared in eq. (1). �us, 
we solve the coupled Shrodinger equation and the Poisson equation23–25,

ψ
ψ ψ− − ( ) − Φ ( ) = ,

( )

m

d

dx
eV x x E

2
[ ] 7xc

2 2

2 0

ψψ( )
= ,

( )є є

⁎d V x

dx

e

8r

2

2
0

where ψ is the complex electron wave function, ψψ= ⁎n  is the electron density, and E0 is the electron 
emission energy (with respect to the Fermi energy EF). Note that ψ is the superposition of two streams 
of electrons, one travelling from electrode 1 to electrode 2, and the other from electrode 2 to electrode 
1 (Fig. 1), both with emission energy of E0. We assume E0 =  0 in the calculation4,23,24,28.

a b

Figure 3. �e e�ects of gap width D on the −J V  characteristics of the Au-Vacuum-Au junction. (a) Jnet as 
a function of V g , for various D, (b) Jnet as a function of D, for various V g . Solid lines are from SCM, dashed 
lines are from direct integration of eqs. (3) and (5). For gold (Au) electrodes39, = .W 5 1 eV, for vacuum gap, 

= , =є X1 0r  eV.
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For a given gap bias voltage V g , we have ( ) =V 0 0, and ( ) =V D V g . �e boundary conditions on 
the wave function ψ are derived from the conditions that ψ and ψ/d dx are continuous at =x 0, and 

=x D. Charge conservation requires that the current density Jnet = e(iħ/2m) (ψψ∗′ − ψ∗ψ ′) = J1 − J2 be 
constant for all x, where a prime denotes a derivative with respect to x, and = −i 1 .

It is convenient to introduce nondimensional quantities, = /x x D, φ = ( )/V x V g , φ = /eV E
g g H, 

λ λ= /D 0, γ = /J JCL, = /E E eV g0 0 , ψψ= / = /⁎n n n n0 0, φ = Φ /E
xc xc H, where λ = / emV2 g0

2 , 

= ( / ) / //
єJ e m V D4 9 2CL g0

3 2 2 is the Child-Langmuir law42,43, = ( / ) /єn e V D2 3 g0 0
2, and E H is the 

Hartree energy. �e wave function may be expressed in the normalized form to read23, 
ψ ( ) = ( ) θ ( )x n q x e i x

0 , where ( )q x  and θ ( )x  are respectively the nondimensional amplitude and phase, 
both assumed real. �us, the coupled Shrodinger equation and the Poisson equation, eqs 7 and 8, are 
expressed in their normalized form as,
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where γ γ γ= −net 1 2 is the net normalized current density in the metal-insulator-metal (MIM) tunne-
ling junction. �e boundary conditions to eqs. (9) and (10) read,

Figure 4. �e e�ects of work function W  on the −J V  characteristics of a MIM junction with =D 1 nm 
Vacuum gap. Top to bottom, =W  2 eV (Cs)49, 2.9 eV (Ca)49, 4.08 eV (Al)50, 5.1 eV (Au)39. For Vacuum gap, 

= , =є X1 0r  eV. Solid lines are from SCM, dashed lines are from direct integration of eqs. (3) and (5).
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where eqs. 11c and 11d are derived by matching the wave function and its derivative at =x 1. �e nor-
malized emission current density J1 and J 2 in eqs. (3) and (5) are,
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Figure 5. �e e�ects of the relative permittivity єr of insulating thin �lm on the −J V  characteristics of a 
MIM junction with insulator thin �lm thickness =D  1 nm, for �xed apparent barrier height of 

− =W X 3 eV. Solid lines are from SCM, dashed lines are from direct integration of eqs. (3) and (5).
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where = /T k T eVB g , = /E E eVx x g . Note that the integrations in eqs. (12) and (13) are independent of 
the Fermi level EF.

By solving eqs. (9)-(13) iteratively, we are able to self-consistently obtain the numerically converged 
results of the complete potential barrier pro�le of Φ (x) [eq (1)], the current density emitted from both 
electrodes J1, J 2, and therefore the net current density J net, for any given materials of the electrodes (EF

, W), thin �lm insulator (є r, X), �lm thickness (D), and external applied bias voltage (V g). �is is referred 
as the self-consistent method (SCM) therea�er.

Main results. Figure 2a shows the normalized current density γ (in terms of CL law) as a function of 
applied gap voltage V g , for two gold (Au) electrodes ( = .W 5 1 eV)39 separated by a =D  1 nm vacuum gap 
( = , =є X1 0r  eV). �e current density in A/cm2 is shown in Fig. 2b. �e current densities are calcu-
lated from three methods: (1) direct integration using eqs 3 and 5, where space charge potential and 
exchange correlation potential V xc are not included in eq 1, (2) SCM without V xc, i.e. only space charge 
potential is included, and (3) complete SCM with both space charge potential and exchange correlation 
potential V xc included. As shown in Fig. 2, the −J V  curves may be roughly divided into three regimes: 
direct tunneling regime ( <V 1g  V), �eld emission regime (1 V < <V 10g  V), and space-charge-limited 
regime ( >V 10g  V).

In the direct tunneling regime, the tunneling current density from cathode γ1 and that from anode 
γ 2 are comparable, where the latter was ignored in Refs. 4,25,28. �e net current density, which is the 
di�erence between γ1 and γ 2, γ γ γ= −net 1 2, may therefore be orders of magnitude lower than both γ1 
and γ 2. �us, in the direct tunneling regime, both anode emission and cathode emission have to be 
considered to give an accurate evaluation in the tunneling current of the junction. �e di�erence between 
γ1and γ 2 increases as V g  increases. �e three methods mentioned above give almost identical results for 
the current densities γ1, γ 2, and γnet when <V 1g  V, which implies that the space charge potential and 
exchange-correlation potential are not important in the direct tunneling regime, for the given 
Au-vacuum-Au junction with 1 nm gap spacing. �e −J V  characteristic in the direct tunneling regime 
is linear, which indicates that the tunneling junction acts like an ohmic resister. �e results are compared 
with the Simmons formula14,19,21 for general V g ,

( )∆ ϕ ϕ

∆ ϕ

= ( . × / )


− + 


× ( + × / ), ( )

∆ ϕ ∆ ϕ− . − . +

−

J x e V e

x T

6 2 10

1 3 10 14

I
x

I g
x V

I

10 2 1 025 1 025

9 2 2

I I g

where ( )ϕ ϕ ∆= − / ( + ) − ( . / ) ( − )/ ( − )єV D x x x x D x x D x2 5 75 2 ln[ ]I g r0 1 2 2 1 1 2 , ∆ = −x x x2 1, 

ϕ= /єx 3 r1 0
, and ( )ϕ= 


− / + − 


+є єx D D V D x1 46 6 20 4r g r2 0 1 if ϕ<V g 0

, and 

ϕ= ( − )/є єx D V14r r g2 0
 if ϕ>V g 0

, with ϕ = −e W X0
. In the limit of small bias voltage, ~V 0g , 

Simmons derived a simpler formula14,21,

∆ ϕ ∆ ϕ= ( . × / ) × ( + × / ),
( )

∆ ϕ− . −J x V e x T3 16 10 1 3 10
15L g

x
L

10 1 025 9 2 2
L

where ϕ ϕ ∆= − ( . / ) ( − )/ ( − )є x x D x x D x5 75 2 ln[ ]L r0 2 1 1 2 , ϕ= / єx 6 2 r1 0
, and = −x D x2 1. �e 

last term in eqs 14 and 15 shows the temperature dependence of the tunneling current. In eqs 14 and 
15, J  is in A/cm2, ϕ in V, x in Å, and T  is in K. Equation 15 show clearly a linear −J V  dependence, 
which is also plotted in Fig. 2. Despite a slight down shi� (< 30%) in results of the Simmons formulas 
(which can be easily adjusted, e.g. by replacing the constants with larger values), eqs. (14) and (15) give 
a fairly good estimation in the −J V  behavior of the given Au-Vacuum-Au structure when the applied 
bias <V 1g  V. It has been checked that the −J V  curves for the Au-Vacuum-Au structure in Fig. 2 is 
very insensitive to temperature: only with an increase of <  2% from =T 0 K to 600 K, which is consistent 
with the relative small T dependence in eqs. 14 and 15. Physically, this is because the apparent barrier 
height of the Au-Vacuum-Au structure ( −W X =  5.1 eV) is much higher than the width change of the 
Fermi function (~0.5 eV), so that the majority electrons would still see an almost unchanged tunneling 
barrier for =T 0 K to 600 K. �e temperature dependence would become important for junctions with 
small barrier heights (e.g. −W X ~1 eV).

In the regime of 1 V < <V 10g  V, the tunneling current from anode γ 2 is much smaller compared to 
the cathode current γ1. By applying an appreciable bias voltage V g , the e�ective barrier height for the 
cathode is reduced, indicating an increase of current J1 or γ1 with V g . However, due to the down shi� of 
the “e�ective” Fermi level (Fig. 1), the e�ective barrier height seen by electrons in the anode is increased, 
leading to a dramatic drop of current J 2 or γ 2 with V g . �e tunneling behavior of the junction resembles 
�eld emission, thus we denote this regime the �eld emission regime. Field emission is most widely 
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modeled by Fowler-Nordheim (FN) law38,44,45, = /( ( )) − ( ) //J A E Wt y B v y W Eexp[ ]FN FN c FN c
2 2 3 2 , where 

= . × −A 1 5414 10FN
6AeVV−2 and = . ×B 6 8308 10FN

9 eV−3/2Vm−1, ( )t y2  and ( )v y  are Nordheim 
parameters with = . × /−y E W3 79 10 c

5 , and = /E V Dc g  is the applied electric �eld. FN law is 
derived by assuming no anode screening. As shown in Figure 2, although the net current density γnet is 
approaching the FN law as V g  increases, in general FN law is not su�ciently accurate to model the 
tunneling current in such a nano-scale junction28. In this regime, Simmons formula, eq. (14), gives a 
more accurate �t to the self-consistent SCM result. Note the breakdown of eq. (14) around ~V 10g  V, 
where the e�ective barrier height is depressed by V g  below the Fermi level of the cathode. When V g  is 
approaching 10 V, the current from direct integration (eqs. (3) and (5)) is closely �tted by Simmons 
formula, eq. (14). �e current calculated from SCM by including only the space charge e�ect is slightly 
reduced. However, when both exchange-correlation V xc and space charge e�ects are included in the 
SCM, the resulting current is enhanced by one order of magnitude, indicating the profound e�ect of 
exchange-correlation energy in the �eld emission regime.

In the space-charge-limited regime of >V 10g  V, the direct integration method, which ignores both 
the space charge e�ect and the exchange-correlation e�ect, cannot provide a reliable estimate of the 
current. When only the space charge potential is included in the SCM calculation, the resulting current 
is reduced and is approaching classical Child-Langmuir (CL) law, JCL. However, when exchange-correlation 
potential is also included in the SCM calculation, the emitted current is enhanced in general. When V g  
reaches 100 V, the cathode current γ1(and therefore the net current γnet) approaches the quantum CL law 
(QCL)23,24, which gives the maximum current density that can be transported across a vacuum nano-gap 
for a given V g  and D, with quantum corrections.

Figure  3a shows the net current density J net as a function of V g , for various gap width D for the 
Au-Vacuum-Au tunneling junction. Similar to Figure 2, the −J V  curve may be roughly divided into 
three regimes: direct tunneling regime, �eld emission regime, and space-charge-limited regime. As gap 
width D decreases, the voltage range for both the direct tunneling regime and the space-charge-limited 
regime expands towards the �eld emission regime, whose voltage range decreases with D. In the direct 
tunneling regime, when >D 1 nm, the direct integration method and the SCM give almost identical 
results, where the Simmons formula (eq. (14)), which �ts the direct integration well, is a very good 
approximation. However, when the gap width is in the sub nanometer range, <D 1 nm, the direct inte-
gration method (and therefore Simmons formula) underestimates the net current, thus the SCM includ-
ing the e�ects of both space charge and exchange-correlation needs to be used to give more accurate 
calculation. In general, direct integration method would not be accurate in the �eld emission regime and 
space-charge-limited regime, where the SCM has to be applied. In the space-charge-limited regime, J net 
approaches QCL limit as V g  increases.

Figure 3b shows the net current density J net as a function of insulator thin �lm thickness D, for var-
ious V g  for the Au-Vacuum-Au tunneling junction. It is important to see that the tunneling current, 
therefore the tunneling conductivity, is extremely sensitive to the thickness of the insulating thin �lm in 
MIM tunnel junctions. It is clear that for the limited parameter space, e.g. >D 1 nm and <V 10g  V, the 
direct integration calculation is accurate. Note that the values of gap voltage V g  and gap spacing D in 
Fig. 3 are within the typical range of quantum plasmonic applications3,4,39.

�e −J V  characteristics of a MIM junction (Figure 1) is very sensitive to its apparent barrier height, 
−W X. Figure 4 shows J net as a function of V g  for MIM junctions formed by various metal electrodes 

separated by a 1 nm wide vacuum gap. When the work function of the electrodes increases from 
=W 2 eV (Cs) to 5.1 eV (Au), J net in the direct tunneling regime ( <V 1 Vg ) decreases by 6 orders of 

magnitude for a given bias. Simmons formula (eq. (14)) and the direct integration method are only 
accurate when − >W X 4 eV for a junction with vacuum gap =D 1 nm. When V g  approaches 100 V, 
the current density J net converges to the same asymptotic value of QCL, since the space-charge-limited 
current density depends only on V g  and D, but not on W . �e e�ect of the electron a�nity X of the 
insulating thin �lm (Fig.  1) on −J V would be similar, that is, increasing X would be equivalent to 
decreasing W , provided the relative permittivity єr of the insulator is unchanged.

It is interesting to note the nonmonotonic behavior of some curves in Fig.  3a (D =  0.5 nm when 
V g < 1 V) and Fig.  4 (W  =  2 eV when <V 1Vg ). �is is due to the profound e�ects of the nonlinear 

exchange-correlation potential, where the normalized insulating gap space λ/ = / / ≥D D emV2 1g0
2 , 

and the normalized gap voltage φ = /eV E
g g H <<  1 so that the space charge potential is not important 

compared to the exchange-correlation potential24,25,28,36,46.
�e e�ect of relative permittivity єr of the insulating thin �lm is shown in Fig. 5. In the direct tunne-

ling regime ( <V 1g  V), J net decreases as єr increases for a given V g . �is is due to the fact that the image 
charge potential Φ image decreases as єr increases, as seen from the second line a�er eq. (1). �us, the 
overall potential barrier will increase, leading to smaller tunneling current. In contrast, in the 
space-charge-limited regime ( >V 10g  V), J net calculated by SCM (solid lines) increases with єr, as clearly 
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seen from Figure 5. �is is because a larger єr reduces the e�ect of space charge, as seen from eq. (8) or 
(10), thus resulting in a larger SCL current. Note that J net calculated by direct integration (dashed lines) 
shows very di�erent trends from that of SCM, indicating the dominant e�ects of space charge, which 
have to be included to give reliable predictions in the space-charge-limited regime. �us, Simmons for-
mula and the direct integration method are only accurate in the direct tunneling regime, when >є 2r  
for junctions with 1 nm thickness and − =W X 3 eV. It is important to note that if єr is temperature 
dependent, the −J V  behavior would also be temperature dependent14, even for tunneling junctions 
with relative big barrier height.

Discussion
Recently, the quantum-corrected model (QCM)2,4 has been introduced to study charge transfer plasmon 
(CTP)47,48 due to quantum tunneling, by accounting for the tunneling current across the gap via the inser-
tion of an e�ective conductive medium in the gap. With the classical description, the permittivity ω( )є g  of 
the e�ective medium is related to its DC conductivity σ g as ω σ ω( ) = + /є єi1g g 0, where є0 is the free 
space permittivity, and ω is the oscillating frequency. In the Drude model, the dielectric response of the 
e�ective conducting medium in the gap is characterized by ( )ω ω ω ω γ( ) = − /


+ 


є i1g g g

2 , where ω g is 

the plasmon frequency (typically set to the bulk plasma frequency of the surrounding resonators), and γ g  
is the tunneling damping parameter, which can thus be calculated as γ ω σ= /єg g g0

2 , under the assumption 
that γg>>ω. �e optical responses and the induced local �elds of the quantum plasmon system are then 
obtained by standard classical approaches solving Maxwell’s equations2,47. �e validity of the calculation is 
crucially dependent on the two key parameters σ g and γ g, which describe the quantum tunneling resistance 
introduced by the presence of the gap.

As an example, in Fig.  6, σ g  and γ g  obtained from the proposed self-consistent model (SCM) are 
compared to those by direction integration (eqs. 3 and 5), and by the SCM but switching o� the emission 
from anode (similar to Refs.4,28), for a tunneling junction with =D  1 nm vacuum gap, and electrode work 
function = .W 2 9 eV. For simplicity, we estimate the DC quantum gap conductivity as σ = /J Eg net g , 
where = /E V Dg g  is the applied electric �eld across the tunneling gap. In direct tunneling regime 
( <E 109 V/m) and the �eld emission regime ( < < ×E10 3 109 9 V/m), direct integration method (or 
Simmons formula) underestimates the gap conductivity and overestimates the tunneling damping. In the 
space-charge-limited regime ( > ×E 3 109 V/m), direct integration method is generally not reliable. 
Ignoring the current emission form anode (i.e. set =J 02  in eq 5) would result in a much higher σ g  and 
much lower γ g  in the direct tunneling regime. �e relative large damping γ g  calculated from SCM in the 
direct tunneling regime suggests that CTP via quantum tunneling in this regime would be very di�cult 
to observe experimentally. Instead, for a given junction, by simply increasing the driving �eld E to reach 
the �eld emission or space-charge-limited regime, the damping γ g  can be signi�cantly reduced so that 
the experimental realization of CTP via tunneling could be relatively easier.

Figure 6. Quantum tunneling gap DC conductivity σ g  and the tunneling damping parameter γ g  for a MIM 
plasmonic tunneling junction, as a function of applied electric �eld E, with a vacuum gap of D =  1 nm, 
X =  0, and work function of the electrodes W  =  2.9 eV at 300 K. �e plasmon frequency is assumed to be 
ω π= × ( × )2 2 10g

15 rad/s for the calculation of γ g . �e solid lines are for SCM, dashed lines for direct 
integration of eqs 3 and 5, and dotted lines for SCM with anode emission being switched o� (i.e. set J2 =  0 
in eq 5 and γ2 =  0 in eq 13).
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In summary, we have developed a self-consistent model to characterize the tunneling current of nano- 
and subnano-scale plasmonic junctions, by taking into account of the e�ects of both space charge and 
exchange-correlation potential. �e e�ects of material properties, including the work function of the 
electrodes W , the permittivity є r and the electron a�nity X of the insulator, are examined in detail. In 
general, the −J V  curves may be divided into three regimes: direct tunneling regime, �eld emission 
regime, and space-charge-limited regime. It is found that Simmons formula (eqs. (14) and (15)) are good 
approximations of the tunneling current for a limited parameter space in the direct tunneling regime 
only. �eir accuracy decreases when the e�ective barrier height decreases, i.e. W  decreases or X increases, 
or when the permittivity of the insulator є r decreases. �ey become unreliable when the insulator thick-
ness is in the sub-nanometer scale, <D 1 nm, where the self-consistent model would give a more accu-
rate evaluation.

In this formulation, we have made the following widely used assumptions: 1) the electron transmis-
sion probability during the emission process is approximated by the WKBJ solution, where the metal 
electrodes are based on the free electron gas model; 2) the surfaces of the electrodes are �at and the 
problem is assumed one-dimensional; 3) the image potential is approximated by the classical image 
charge methods. �e e�ects of electrodes geometry, nature of the ion lattice of the electrodes, possible 
charge trapping inside the insulator �lm, frequency dependence, and dissimilar electrodes will be sub-
jects of future studies.

Methods
N. A.
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