
Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Scaling Hardware Accelerated Network Monitoring
to Concurrent and Dynamic Queries With *Flow

John Sonchack, University of Pennsylvania; Oliver Michel, University of Colorado Boulder;
Adam J. Aviv, United States Naval Academy; Eric Keller, University of Colorado Boulder;

Jonathan M. Smith, University of Pennsylvania

https://www.usenix.org/conference/atc18/presentation/sonchack

This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

Scaling Hardware Accelerated Network Monitoring to Concurrent and
Dynamic Queries With *Flow

John Sonchack?, Oliver Michel†, Adam J. Aviv‡, Eric Keller†, and Jonathan M. Smith?
?University of Pennsylvania, ‡United States Naval Academy, and †University of Colorado, Boulder

Abstract
Measurement plays a key role in network operation

and management. An important but unaddressed prac-
tical requirement in high speed networks is supporting
concurrent applications with diverse and potentially dy-
namic measurement objectives. We introduce *Flow, a
switch accelerated telemetry system for efficient, concur-
rent, and dynamic measurement. The design insight is to
carefully partition processing between switch ASICs and
application software. In *Flow, the switch ASIC imple-
ments a pipeline that exports telemetry data in a flexi-
ble format that allows applications to efficiently compute
many different statistics. Applications can operate con-
currently and dynamically on identical streams without
impacting each other. We implement *Flow as a line rate
P4 program for a 3.2 Tb/s commodity switch and evalu-
ate it with four example monitoring applications. The
applications can operate concurrently and dynamically,
while scaling to measure terabit rate traffic with a single
commodity server.

1 Introduction
Measurement plays a critical role in networking. Moni-
toring systems measure traffic for security [6, 35, 51, 36],
load balancing [1, 26] and traffic engineering [55, 23,
27]; while engineers measure traffic and data plane per-
formance to diagnose problems [14, 59, 25, 58, 56] and
design new network architectures and systems [47, 5].

In high speed networks, which in 2018 have 100 Gb/s
links and multi-Tb/s switches, it is challenging to support
measurement without compromising on important prac-
tical requirements. Traditional switch hardware is inflex-
ible and supports only coarse grained statistics [21, 45],
while servers are prohibitively expensive to scale [50].

Fortunately, advances in switch hardware are present-
ing new opportunities. As the chip space and power cost
of programmability drops [49, 7], switches are quickly
moving towards reconfigurable ASICs [42, 44] that are
capable of custom packet processing at high line rates.

Recent telemetry systems [50, 40] have shown that these
programmable forwarding engines (PFEs) can imple-
ment custom streaming measurement queries for fine-
grained traffic and network performance statistics.

An open question, however, is whether telemetry sys-
tems can harness the flexibility and performance of PFEs
while also meeting requirements for practical deploy-
ment. Current PFE accelerated telemetry systems [50,
40] focus on efficiency, compiling queries to minimize
workload on servers in the telemetry infrastructure. Effi-
ciency matters, but compiled queries do not address two
other practical requirements that are equally important:
concurrent measurement and dynamic queries.

First, support for concurrent measurement. In prac-
tice, there are likely to be multiple applications measur-
ing the network concurrently, with queries for different
statistics. A practical telemetry system needs to multi-
plex the PFE across all the simultaneously active queries.
This is a challenge with compiled queries. Each query
requires different computation that, given the line-rate
processing model of a PFE [49], must map to dedicated
computational resources, which are limited in PFEs.

Equally important for practical deployment is support
for dynamic querying. As network conditions change,
applications and operators will introduce or modify
queries. A practical telemetry system needs to support
these dynamics at runtime without disrupting the net-
work. This is challenging with compiled PFE queries
because recompiling and reloading the PFE is highly dis-
ruptive. Adding or removing a query pauses not only
measurement, but also forwarding for multiple seconds.

Introducing *Flow. We introduce *Flow, a practical
PFE accelerated telemetry system that is not only flexible
and efficient, but also supports concurrent measurement
and dynamic queries. Our core insight is that concur-
rency and disruption challenges are caused by compiling
too much of the measurement query to the PFE, and can
be resolved without significant impact to performance by
carefully lifting parts of it up to software.

USENIX Association 2018 USENIX Annual Technical Conference 823

At a high level, a query can be decomposed into three
logical operations: a select operation that determines
which packet header and metadata features to capture;
a grouping operation that describes how to map pack-
ets to flows; and a aggregation function that defines how
to compute statistics over the streams of grouped packet
features. The primary benefit of using the PFE lies in
its capability to implement the select and grouping op-
erations efficiently because it has direct access to packet
headers and low latency SRAM [40]. The challenge is
implementing aggregation functions in the PFE, which
are computationally complex and query dependent.
*Flow is based on the observation that for servers, the

situation is exactly reversed. A server cannot efficiently
access the headers of every packet in a network, and
high memory latency makes it expensive to group pack-
ets. However, once the packet features are extracted and
grouped, a server can perform coarser grained grouping
and mathematical computation very efficiently.
*Flow’s design, depicted in Figure 2, plays to the

strengths of both PFEs and servers. Instead of compil-
ing entire queries to the PFE, *Flow places parts of the
select and grouping logic that are common to all queries
into a match+action pipeline in the PFE. The pipeline
operates at line rate and exports a stream of records that
software can compute a diverse range of custom stream-
ing statistics from without needing to group per-packet
records. This design maintains the efficiency benefits of
using a PFE while eliminating the root causes of concur-
rency and disruption issues. Further, it increases flexibil-
ity by enabling more complex aggregation functions than
a PFE can support.

Grouped Packet Vectors. To lift the aggregation func-
tion off of the PFE, *Flow introduces a new record for-
mat for telemetry data. In *Flow, PFEs export a stream
of grouped packet vectors (GPVs) to software proces-
sors. A GPV contains a flow key, e.g., IP 5-tuple, and a
variable-length list of packet feature tuples, e.g., times-
tamps and sizes, from a sequence of packets in that flow.

Each application can efficiently measure different ag-
gregate statistics from the packet feature tuples in the
same GPV stream. Applications can also dynamically
change measurement without impacting the network,
similar to what a stream of raw packet headers [25]
would allow, but without the cost of cloning each packet
to a server or grouping in software.

Dynamic in-PFE Cache. Switches generate GPVs at
line rate by compiling the *Flow cache to their PFEs,
alongside other forwarding logic. The cache is an append
only data structure that maps packets to GPVs and evicts
them to software as needed.

To utilize limited PFE memory, e.g., around 10MB as
efficiently as possible, we introduce a key-value cache

that supports dynamic memory allocation and can be
implemented as a sequence of match+action tables for
PFEs. It builds on recent match+action implementations
of fixed width key-value caches [40, 29, 50] by introduc-
ing a line rate memory pool to support variable sized en-
tries. Ultimately, dynamic memory allocation increases
the average number of packet feature tuples that accumu-
late in a GPV before it needs to be evicted, which lowers
the rate of processing that software must support.

Implementation and Evaluation. We implemented the
*Flow cache 1 for a 100BF-32X switch, a 3.2 Tb/s switch
with a Barefoot Tofino [42] PFE that is programmable
with P4 [8]. The cache is compiler-guaranteed to run
at line rate and uses a fixed amount of hardware re-
sources regardless of the number or form of measure-
ment queries.

To demonstrate the practicality of *Flow, we imple-
mented three example monitoring applications that mea-
sure traffic in different ways: a host profiler that collects
packet level timing details; a traffic classifier that mea-
sures complex flow statistics; and a micro-burst attributer
that analyzes per-packet queue depths. Although these
applications measure different statistics, they all can op-
erate concurrently on the same stream of GPVs and dy-
namically change measurements without disrupting the
network. Benchmarks show that the applications can
scale to process GPVs at rates corresponding to Terabit-
rate traffic while using under 10 cores.

To further demonstrate the practicality of *Flow, we
also introduce a simple adapter for executing Marple [40]
traffic queries on GPV streams. The adapter, built on top
of RaftLib [3], supports high level query primitives (map,
filter, groupby, and zip) designed for operator-driven
performance monitoring. Using *Flow along with the
adapter allows operators to run many different queries
concurrently, without having to compile them all to the
PFE or pause the network to change queries. Analy-
sis shows that the *Flow PFE pipeline requires only as
many computational resources in the PFE as one com-
piled Marple query. Currently, the adapter scales to mea-
sure 15-50 Gb/s of traffic per core, bottlenecked only by
overheads in our proof-of-concept implementation.

Contributions. This paper has four main contributions.
First, the idea of using grouped packet vectors (GPVs)
to lift the aggregation functions of traffic queries out of
data plane hardware. Second, the design of a novel PFE
cache data structure with dynamic memory allocation for
efficient GPV generation. Third, the evaluation of a pro-
totype of *Flow implemented on a readily available com-
modity P4 switch. Finally, four monitoring applications
that demonstrate the practicality of *Flow.

1https://github.com/jsonch/starflow

824 2018 USENIX Annual Technical Conference USENIX Association

Efficient Flexible Concurrent Dynamic
Netflow 3 7 3 3

Software 7 3 3 3
PFE Queries 3 3 7 7

*Flow 3 3 3 3

Table 1: Practical requirements for PFE supported net-
work queries.

2 Background
In this section, we motivate the design goals of *Flow
and describe prior telemetry systems.

2.1 Design Goals
*Flow is designed to meet four design goals that are im-
portant for a practical PFE accelerated telemetry system.

Efficient. We focus on efficient usage of processing
servers in the telemetry and monitoring infrastructure of
a network. Efficiency is important because telemetry
and monitoring systems need to scale to high through-
puts [50] and network coverage [32]. An inefficient
telemetry system deployed at scale can significantly in-
crease the total cost of a network, in terms of dollars and
power consumption.

Flexible. A flexible telemetry system lets applications
define the aggregation functions that compute traffic and
data plane performance statistics. There are a wide range
of statistics that are useful in different scenario and for
different applications. Customizable aggregation func-
tions allow a telemetry system to offer the broadest sup-
port.

Flexibility is also important for supporting future ap-
plications that may identify new useful metrics and sys-
tems that apply machine learning algorithms to analyze
the network in many dimensions [43].

Concurrent. Concurrency is the capability to support
many measurement queries at the same time. Concur-
rency is important because different applications require
different statistics and, in a real network, there are likely
to be many types of applications in use.

Consider a scenario where an operator is debugging
an incast [15] and a network-wide security system is au-
diting for compromised hosts [36]. These applications
would ideally run concurrently and need to measure dif-
ferent statistics. Debugging, for example, may bene-
fit from measuring the number of simultaneously active
TCP flows in a switch queue over small epochs, while a
security application many require per-flow packet coun-
ters and timing statistics.

Dynamic. Support for dynamic queries is the capabil-
ity to introduce or modify new queries at run time. It is
important for monitoring applications, which may need

0 10 20 30 40 50 60 70
Timestamp (Seconds)

0

10

20

30

40

Th
ro

ug
hp

ut
(G

b/
s)

Figure 1: Network disruption from recompiling a PFE.

to adapt as network conditions change, or themselves
be launched at network run-time. Dynamic queries also
enable interactive measurement [40] that can help net-
work operators diagnose performance issues, e.g., which
queue is dropping packets between these hosts?

2.2 Prior Telemetry Systems
Prior telemetry systems meet some, but not all, of the
above design goals, as summarized in Table 1.

NetFlow Hardware. Many switches integrate hard-
ware to generate NetFlow records [18] that summarize
flows at the granularity of IP 5-tuple. NetFlow records
are compact because they contain fully- computed aggre-
gate statistics. ASICs [60, 20] in the switch data path do
all the work of generating the records, so the overhead for
monitoring and measurement applications is low. Net-
Flow is also dynamic. The ASICs are not embedded into
the forwarding path, so a user can select different Net-
Flow features without pausing forwarding.

However, NetFlow sacrifices flexibility. Flow records
have a fixed granularity and users choose statistics from a
fixed list. Newer NetFlow ASICs [20] offer more statis-
tics, but cannot support custom user-defined statistics or
different granularities.

Software Processing. A more flexible approach is mir-
roring packets, or packet headers, to commodity servers
that compute traffic statistics [19, 24, 22, 37]. Servers
can also support concurrent and dynamic telemetry, as
they are not in-line with data plane forwarding.

The drawback of software is efficiency. Two of
the largest overheads for measurement in software are
I/O [46], to get each packet or header to the measurement
process, and hash table operations, to group packets by
flow [50, 40, 33]. To demonstrate, we implemented a
simple C++ application that reads packets from a PCAP,
using lpcap, and computes the average packet length for
each TCP flow. The application spent an average of 1535
cycles per packet on hash operations alone, using the
relatively efficient C++ std::unordered map [4]. In an-
other application, which computed average packet length
over pre-grouped vectors of packet lengths, the compu-
tation only took an average of 45 cycles per packet.

The benchmarks illustrate that mathematical opera-

USENIX Association 2018 USENIX Annual Technical Conference 825

*Flow Cache
(Feature Selection and Grouping)

Flow Keys Packet Features
packets

Grouped Packet Vectors

Custom Aggregation

ƒ()

∑, σ, x,̅ …Statistics and measurements

MonitoringDebugging Performance
Queries Security

Applications

Figure 2: Overview of *Flow.

tions for computing aggregate statistics are not a signif-
icant bottleneck for measurement in software. Modern
CPUs with vector instructions can perform upwards of 1
trillion floating point operations per second [39].

PFE Compiled Queries. Programmable forwarding
engines (PFEs), the forwarding ASICs in next genera-
tion commodity switches [42, 13, 44, 41, 17, 53], are ap-
pealing for telemetry because they can perform stateful
line-rate computation on packets. Several recent systems
have shown that traffic measurement queries can compile
to PFE configurations [50, 40]. These systems allow ap-
plications (or users) to define custom statistics computa-
tion functions and export records that include the aggre-
gate statistics. Compiled queries provide efficiency and
flexibility. However, they are not well suited for concur-
rent or dynamic measurement.

Concurrency is a challenge because of the processing
models and computational resources available in a PFE.
Each measurement query compiles to its own dedicated
computational and memory resources in the PFE, to run
in parallel at line rate. Computational resources are ex-
tremely limited, particularly those for stateful computa-
tion [49], making it challenging to fit more than a few
queries concurrently.

Dynamic queries are a challenge because PFEs pro-
grams are statically compiled into configurations for the
ALUs in the PFE. Adding a compiled query requires
reloading the entire PFE program, which pauses all for-
warding for multiple seconds, as Figure 1 shows. While
it is possible to change forwarding rules at run-time to di-
rect traffic through different pre-compiled functions, the
actual computation can only be changed at compile time.

3 PFE Accelerated Telemetry with *Flow

*Flow is a PFE accelerated telemetry system that sup-
ports efficient, flexible, concurrent, and dynamic network
measurement. It gains efficiency and flexibility by lever-

key sizets key sizets key sizets

key sizets sizets sizets

Packet Records

Grouped Packet Vectors

key duration
Flow Records

total size

Figure 3: Comparison of grouped packet vectors, flow
records, and packet records.

aging the PFE to select features from packet headers and
group them by flow. However, unlike prior systems,
*Flow lifts the complex and measurement-specific statis-
tic computation, which are difficult to support in the PFE
without limiting concurrent and dynamic measurement,
up into software. Although part of the measurement is
now in software, the feature selection and grouping done
by the PFE reduces the I/O and hash table overheads sig-
nificantly, allowing it to efficiently compute statistics and
scale to terabit rate traffic using a small number of cores.

In this section, we overview the architecture of *Flow,
depicted in Figure 2.

Grouped Packet Vectors. The key to decoupling fea-
ture selection and grouping from statistics computation
is the grouped packet vector (GPV), a flexible and effi-
cient format for telemetry data streamed from switches.
A GPV stream is flexible because it contains per-packet
features. Each application can measure different statis-
tics from the same GPV stream and dynamically change
measurement as needed, without impacting other appli-
cations or the PFE. GPVs are also efficient. Since the
packet features are already extracted from packets and
grouped, applications can compute statistics with mini-
mal I/O or hash table overheads.

*Flow Telemetry Switches. Switches with pro-
grammable forwarding engines [42, 49] (PFEs) compile
the *Flow cache to their PFEs to generates GPVs. The
cache is implemented as a sequence of match+action ta-
bles that applies to packets at line rate and in parallel
with other data plane logic. The tables extract features
tuples from packets; insert them into per-flow GPVs; and
stream the GPVs to monitoring servers, using multicast
if there are more than 1.

GPV Processing. A thin *Flow agent running on a
server receives GPVs from the switch and copies them
to per-application queues. Each application defines its
own statistics to compute over the packet tuples in GPVs
and can dynamically change them as needed. Since
the packet tuples are pre-grouped, the computation is
extremely efficient because the bottleneck of mapping
packets to flows is removed. Further, if fine granular-
ity is needed, the applications can analyze the individual
packet feature themselves, e.g., to identify the root cause
of short lived congestion events, as Section 6.2 describes.

826 2018 USENIX Annual Technical Conference USENIX Association

4 Grouped Packet Vectors (GPVs)
*Flow exports telemetry data from the switch in the
grouped packet vector (GPV) format, illustrated in Fig-
ure 3, a new record format designed to support the de-
coupling of packet feature selection and grouping from
aggregate statistics computation. A grouped packet vec-
tor contains an IP 5-tuple flow key and a variable length
vector of feature tuples from sequential packets in the
respective flow. As Figure 3 shows, a GPV is a hybrid
between a packet record and a flow record. It inherits
some of the best attributes of both formats and also has
unique benefits that are critical for *Flow.

Similar to packet records, a stream of GPVs contains
features from each individual packet. Unlike packet
records, however, GPVs get the features to software in
a format that is well suited for efficient statistics compu-
tation. An application can compute aggregate statistics
directly on a GPV, without paying the overhead of receiv-
ing each packet, extracting features from it, or mapping
it to a flow.

Similar to flow records, each GPV represents multi-
ple packets and deduplicates the IP 5-tuple. They are
around an order of magnitude smaller than packet header
records and do not require software to perform expen-
sive per-packet key value operations to map packet fea-
tures to flows. Flow records are also compact and can
be processed by software without grouping but, unlike
flow records, GPVs do not lock the software into specific
statistics. Instead, they allow the software to compute
any statistics, efficiently, from the per-packet features.
This works well in practice because many useful statis-
tics derive from small, common subsets of packet fea-
tures. For example, the statistics required by the 3 mon-
itoring applications and 6 Marple queries we describe in
Section 6 can all be computed from IP 5-tuples, packet
lengths, arrival timestamps, queue depths, and TCP se-
quence numbers.

5 Generating GPVs
The core of *Flow is a cache that maps packets to GPVs
and runs at line rate in a switch’s programmable for-
warding engine (PFE). A GPV cache would be simple
to implement in software. However, the target plat-
forms for *Flow are the hardware data planes of next-
generation networks; PFE ASICs that process packets
at guaranteed line rates exceeding 1 billion packets per
second [49, 9, 16]. To meet chip space and timing
requirements, PFEs significantly restrict stateful opera-
tions, which makes it challenging to implement cache
eviction and dynamic memory allocation.

In this section, we describe the architecture and lim-
itations of PFEs, cache eviction and memory allocation
policies that can be implemented in a PFE, and our P4
implementation of the *Flow cache for the Tofino.

Packets

Programmable ASIC Forwarding Engine

Pa
rs

er

De
pa

rs
er

S
R
A
M

T
C
A
M

M
at

ch

Ac
tio

n

S
R
A
M

T
C
A
M

M
at

ch

Ac
tio

n

S
R
A
M

T
C
A
M

M
at

ch

Ac
tio

n

S
R
A
M

T
C
A
M

SRAM
Action

Stateful
Processing

Unit
Stateless

Processing
Units

M
at

ch

Ac
tio

n

Packet 1Packet 2Packet 3Packet 4

Packets

Figure 4: PFE architecture.

5.1 PFE Architecture

Figure 4 illustrates the general architecture of a PFE
ASIC. It receives packets from multiple network in-
terfaces, parses their headers, processes them with a
pipeline of match tables and action processors, and fi-
nally deparses the packets and sends them to an out-
put buffer. PFEs are designed specifically to implement
match+action forwarding applications, e.g., P4 [8] pro-
grams, at guaranteed line rates that are orders of magni-
tude higher than other programmable platforms, such as
CPUs, network processors [54], or FPGAs, assuming the
same chip space and power budgets. They meet this goal
with highly specialized architectures that exploit pipelin-
ing and instruction level parallelism [49, 9]. PFEs make
it straightforward to implement custom terabit rate data
planes, so long as they are limited to functionality that
maps naturally to the match+action model, e.g., forward-
ing, access control, encapsulation, or address translation.

It can be challenging to take advantage of PFEs for
more complex applications, especially those that require
state persisting across packets, e.g., a cache. Persistent
arrays, called “register arrays” in P4 programs, are stored
in SRAM banks local to each action processor. They are
limited in three important ways. First, a program can
only access a register array from tables and actions im-
plemented in the same stage. Second, each register array
can only be accessed once per packet, using a stateful
ALU that can implement simple programs for simulta-
neous reads and writes, conditional updates, and basic
mathematical operations. Finally, the sequential depen-
dencies between register arrays in the same stage are lim-
ited. In currently available PFEs [42], there can be no
sequential dependencies; all of the registers in a stage
must be accessed in parallel. Recent work, however, has
demonstrated that future PFEs can ease this restriction
to support pairwise dependencies, at the cost of slightly
increased chip space [49] or lower line rates [16].

USENIX Association 2018 USENIX Annual Technical Conference 827

5.2 Design
To implement the *Flow cache as a pipeline of
match+action tables that can compile to PFEs with the
restrictions described above, we simplified the algo-
rithms used for cache eviction and memory allocation.
We do not claim that these are the best possible heuris-
tics for eviction and allocation, only that they are intu-
itive and empirically effective starting points for a vari-
able width flow cache that operates at multi-terabit line
rates on currently available PFEs.

Cache Eviction. The *Flow cache uses a simple evict
on collision policy. Whenever a packet from an un-
tracked flow arrives and the cache needs to make room
for a new entry, it simply evicts the entry of a currently
tracked flow with the same hash value. This policy
is surprisingly effective in practice, as prior work has
shown [34, 50, 40], because it approximates a least re-
cently used policy.

Memory Allocation. The *Flow cache allocates a nar-
row ring buffer for each flow, which stores GPVs. When-
ever the ring buffer fills up, the cache flushes its contents
to software. When an active flow fills its narrow buffer
for the first time, the cache attempts to allocate a wider
buffer for it, drawn from a pool with fewer entries than
there are cache slots. If the allocation succeeds, the entry
keeps the buffer until the flow is evicted; otherwise, the
entry uses the narrow buffer until it is evicted.

This simple memory allocation policy is effective for
*Flow because it leverages the long-tailed nature of
packet inter-arrival time distributions [5]. In any given
time interval, most of the packets arriving will be from
a few highly active flows. A flow that fills up its narrow
buffer in the short period of time before it is evicted is
more likely to be one of the highly active flows. Allocat-
ing a wide buffer to such a flow will reduce the overall
rate of messages to software, and thus its workload, by
allowing the cache to accumulate more packet tuples in
the ring buffer before needing to flush its contents to soft-
ware.

This allocation policy also frees memory quickly once
a flow’s activity level drops, since frees happen automat-
ically with evictions.

5.3 Implementation
Using the above heuristics for cache eviction and mem-
ory allocation, we implemented the *Flow cache as a
pipeline of P4 match+action tables for the Tofino [42].
The implementation consists of approximately 2000
lines of P4 code that implements the tables, 900 lines
of Python code that implements a minimal control pro-
gram to install rules into the tables at runtime, and a
large library that is autogenerated by the Tofino’s com-
piler toolchain. The source code is available at our repos-

itory 2 and has been tested on both the Tofino’s cycle-
accurate simulator and a Wedge 100BF-32X.

Figure 5 depicts the control flow of the pipeline. It ex-
tracts a tuple of features from each packet, maps the tuple
to a GPV using a hash of the packet’s key, and then either
appends the tuple to a dynamically sized ring buffer (if
the packet’s flow is currently tracked), or evicts the GPV
of a prior flow, frees memory, and replaces it with a new
entry (if the packet’s flow is not currently tracked).

We implemented the evict on collision heuristic using
a simultaneous read / write operations when updating the
register arrays that store flow keys. The update action
writes the current packet’s key to the array, using its hash
value as an index, and reads the data at that position into
metadata in the packet. If there was a collision, which
the subsequent stage can determine by comparing the
packet’s key with the loaded key, the remaining tables
will evict and reset the GPV. Otherwise, the remaining
tables will append the packet’s features to the GPV.

We implemented the memory allocation using a stack.
When a cache slot fills its narrow buffer for the first
time, the PFE checks a stack of pointers to free exten-
sion blocks. If the stack is not empty, the PFE pops the
top pointer from the stack. It stores the pointer in a reg-
ister array that tracks which, if any, extension block each
flow owns. For subsequent packets, the PFE loads the
pointer from the array before updating its buffers. When
the flow is evicted, the PFE removes the pointer from the
array and pushes it back onto the free stack.

This design requires the cache to move pointers be-
tween the free stack and the allocated pointer array in
both directions. We implemented it by placing the stack
before the allocated pointer array, and resubmitting the
packet to complete the free operation by pushing its
pointer back onto the stack. The resubmission is nec-
essary on the Tofino because sequentially dependent reg-
ister arrays must be placed in different stages and there
is no way to move “backwards” in the pipeline.

5.4 Configuration

Compile-time. The current implementation of the
*Flow cache has three compile-time parameters: the
number of cache slots; the number of entries in the dy-
namic memory pool; the width of the narrow and wide
vectors; and the width of each packet feature tuple.

Feature tuple width depends on application require-
ments. For the other parameters, we implemented an
OpenTuner [2] script that operates on a trace of packet
arrival timestamps and a software model of the *Flow

cache. The benchmarks in Section 7 show that perfor-
mance under specific parameters is stable for long peri-
ods of time.

2https://github.com/jsonch/starflow

828 2018 USENIX Annual Technical Conference USENIX Association

Read Prior
Key Into
Metadata

and
Replace

Collision?

pktId = 0

PktId =
(pktId+1)%
wideBufLen

ID ==
narrowBuf

Len?

Has Wide
Buffer?

Attempt Wide Buffer
Allocation

Free Buffer

Read Buffer into Metadata,
Write Packet Feature Tuple to

Buffer[pktId]

Buffer full
or collision?

Clone
Metadata

to Software

Yes

No

Yes

Yes

No

No

Yes

Flow Keys
(N X 13 bytes)

Current Buffer Lengths
(N x 1 byte)

Free Wide Buffers Stack
(W x 2 bytes)

Used Wide Buffers
(N x 1 byte)

Narrow Buffers
(N x 16 bytes)

Wide Buffers
(W x 96 bytes)

Legend
N = # of cache slots
W = # of wide buffers

Packet
Key +

Feature
Tuple In

Figure 5: The *Flow cache as a match+action pipeline. White boxes represent sequences of actions, brackets represent
conditions implemented as match rules, and gray boxed represent register arrays.

Run-time. The *Flow cache also allows operators to
configure the following parameters at run-time by in-
stalling rules into P4 match+action tables. Immediately
proceeding the *Flow cache, a filtering table lets opera-
tors install rules that determine which flows *Flow ap-
plies to, and which packet header and metadata fields go
into packet feature tuples. After the *Flow cache, a table
sets the destination of each exported GPV. The table can
be configured to multicast GPVs to multiple servers and
filter the GPV stream that each multicast group receives.

6 Processing GPVs
The *Flow cache streams GPVs to processing servers.
There, measurement and monitoring applications (poten-
tially running concurrently) can compute a wealth of traf-
fic statistics from the GPVs and dynamically change their
analysis without impacting the network.

In this section, we describe the *Flow agent that re-
ceives GPVs from the *Flow cache, three motivating
*Flow monitoring applications, and the *Flow adapter to
execute operator-driven network performance measure-
ment queries on GPV streams.

6.1 The *Flow Agent
The *Flow agent, implemented as a RaftLib [3] appli-
cation, reads GPV packets from queues filled by NIC
drivers and pushes them to application queues. While
applications can process GPVs directly, the *Flow agent
implements three performance and housekeeping func-
tions that are generally useful.

Load Balancing. The *Flow agent supports load bal-
ancing in two directions. First, a single *Flow agent
can load balance a GPV stream across multiple queues
to support applications that require multiple per-core in-
stances to support the rate of the GPV stream. Second,
multiple *Flow agents can push GPVs to the same queue,
to support applications that operate at higher rates than a
single *Flow agent can support.

GPV Reassembly. GPVs from a *Flow cache typi-
cally group packets from short intervals, e.g., under 1
second on average, due to the limited amount of memory
available for caching in PFEs. To reduce the workload of
applications, the *Flow agent can re-assemble the GPVs
into a lower-rate stream of records that each represent a
longer interval.

Cache Flushing. The *Flow agent can also flush the
*Flow cache if timely updates are a priority. The *Flow
agent tracks the last eviction time of each slot based on
the GPVs it receives. It scans the table periodically and,
for any slot that has not been evicted within a threshold
period of time, sends a control packet back to the *Flow
cache that forces an eviction.

6.2 *Flow Monitoring Applications
To demonstrate the practicality of *Flow, we imple-
mented three monitoring applications that require con-
current measurement of traffic in multiple dimensions or
packet-level visibility into flows. These requirements go
beyond what prior PFE accelerated systems could sup-
port with compiled queries. With *Flow, however, they
can operate efficiently, concurrently, and dynamically.

The GPV format for the monitoring applications was a
192 bit fixed width header followed by a variable length
vector of 32 bit packet feature tuples. The fixed width
header includes IP 5-tuple (104 bits), ingress port ID
(8 bits), packet count (16 bits), and start timestamp (64
bits). The packet feature tuples include a 20 bit times-
tamp delta (e.g., arrival time - GPV start time), an 11
bit packet size, and a 1 bit flag indicating a high queue
length during packet forwarding.

Host Timing Profiler. The host timing profiler gen-
erates vectors that each contain the arrival times of all
packets from a specific host within a time interval. Such
timing profiles are used for protocol optimizers [55],
simulators [10], and experiments [52].

Prior to *Flow, an application would build these vec-

USENIX Association 2018 USENIX Annual Technical Conference 829

tors by processing per- packet records in software, per-
forming an expensive hash table operation to determine
which host transmitted each packet.

With *Flow, however, the application only performs 1
hash operation per GPV, and simply copies timestamps
from the feature tuples of the GPV to the end of the re-
spective host timing vector. The reduction in hash table
operations lets the application scale more efficiently.

Traffic Classifier. The traffic classifier uses machine
learning models to predict which type of application gen-
erated a traffic flow. Many systems use flow classifi-
cation, such as for QoS aware routing [23, 27], secu-
rity [35, 51], or identifying applications using random
port numbers or share ports. To maximize accuracy,
these applications typically rely on feature vectors that
contain dozens or even hundreds of different flow statis-
tics [35]. The high cardinality is an obstacle to using
PFEs for accelerating traffic classifiers, because it re-
quires concurrent measurement in many dimensions.
*Flow is an ideal solution, since it allows an applica-

tion to efficiently compute many features from the GPV
stream generated by the *Flow cache. Our example clas-
sifier, based on prior work [43], measures the packet
sizes of up to the first 8 packets, the means of packet
sizes and inter-arrival times, and the standard deviations
of packet size and inter-arrival times.

We implemented both training and classification ap-
plications, which use the same shared measurement and
feature extraction code. The training application reads
labeled “ground truth” GPVs from a binary file and
builds a model using Dlib [30]; the classifier reads GPVs
and predicts application classes using the model.

Micro-burst Diagnostics. This application detects
micro-bursts [28, 48, 15], short lived congestion events in
the network, and identifies the network hosts with pack-
ets in the congested queue at the point in time when the
micro-burst occurred. This knowledge can help an op-
erator or control application diagnose the root cause of
periodic micro-bursts, e.g., TCP incasts [15], and also un-
derstand which hosts are affected by them.

Micro-bursts are difficult to debug because they occur
at extremely small timescales, e.g., on the order of 10
microseconds [57]. At these timescales, visibility into
host behavior at the granularity of individual packets is
essential. Prior to *Flow, the only way for a monitoring
system to have such visibility was to process a record
from each packet in software [59, 25, 58, 56] and pay the
overhead of frequent hash table operations.

With *Flow, however, a monitoring system can di-
agnose micro-bursts efficiently by processing a GPV
stream, making it possible to monitor much more of the
network without requiring additional servers.

The *Flow micro-burst debugger keeps a cache of

GPVs from the most recent flows. When each GPV first
arrives, it checks if the high queue length flag is set in any
packet tuple. If so, the debugger uses the cached GPVs
to build a globally ordered list of packet tuples, based on
arrival timestamp. It scans the list backwards from the
packet tuple with the high queue length flag to identify
packet tuples that arrived immediately before it. Finally,
the debugger determines the IP source addresses from
the GPVs corresponding with the tuples and outputs the
set of unique addresses.

6.3 Interactive Measurement Framework
An important motivation for network measurement, be-
sides monitoring applications, is operator-driven perfor-
mance measurement. Marple [40] is a recent system that
lets PFEs accelerate this task. It presents a high level
language for queries based around simple primitives (fil-
ter, map, group, and zip) and statistics computation func-
tions. These queries, which can express a rich variety
of measurement objectives, compile directly to the PFE,
where they operate at high rates.

As discussed in Section 2, compiled queries make it
challenging to support concurrent or dynamic measure-
ment. Using *Flow, a measurement framework can gain
the throughput benefits of PFE acceleration without sac-
rificing concurrency or dynamic queries, by implement-
ing measurement queries in software, over a stream of
GPVs, instead of in hardware, over a stream of packets.

To demonstrate, we extended the RaftLib [3] C++
stream processing framework with kernels that imple-
ment each of Marple’s query primitives on a GPV stream.
A user can define any Marple query by connecting the
primitive kernels together in a connected graph defined in
a short configuration file, similar to a Click [31] config-
uration file, but written in C++. The configuration com-
piles to a compact Linux application that operates on a
stream of GPVs from the *Flow agent.

We re-wrote 6 example Marple queries from the orig-
inal publication [40] as RaftLib configurations, listed in
Table 4. The queries are functionally equivalent to the
originals, but can all run concurrently and dynamically,
without impacting each other or the network. These ap-
plications operate on GPVs with features used by the
*Flow monitoring application, plus a 32 bit TCP se-
quence number in each packet feature tuple.

7 Evaluation
In this section, we evaluate our implementations of the
*Flow cache, *Flow agent, and GPV processing appli-
cations. First, we analyze the PFE resource requirements
and eviction rates of the *Flow cache to show that it
is practical on real hardware. Next, we benchmark the
*Flow agent and monitoring applications to quantify the
scalability and flexibility benefits of GPVs. Finally, we

830 2018 USENIX Annual Technical Conference USENIX Association

Key Memory Pkt. Feature Total
Update Management Update

Computational

Tables 3.8% 3.2% 17.9% 25%
sALUs 10.4% 6.3% 58.3% 75%
VLIWs 1.6% 1.1% 9.3% 13%
Stages 8.3% 12.5% 29.1% 50%

Memory

SRAM 4.3% 1.0% 10.9% 16.3%
TCAM 1.1% 1.1% 10.3% 12.5%

Table 2: Resource requirements for *Flow on the Tofino,
configured with 16384 cache slots, 16384 16-byte short
buffers, and 4096 96-byte wide buffers.

compare the *Flow measurement query framework with
Marple, to showcase *Flow’s support for concurrent and
dynamic measurement.

All benchmarks were done with 8 unsampled traces
from 10 Gbit/s core Internet routers taken in 2015 [11].
Each trace contained around 1.5 billion packets.

7.1 The *Flow Cache
We analyzed the resource requirements of the *Flow

cache to understand whether it is practical to deploy and
how much it can reduce the workload of software.

PFE Resource Usage. We analyzed the resource re-
quirements of the *Flow cache configured with a tuple
size of 32-bits, to support the *Flow monitoring applica-
tions, and a maximum GPV buffer length of 28, the max-
imum length possible while still fitting entirely into an
ingress or egress pipeline of the Tofino. We used the tun-
ing script, described in Section 5.4, to choose the remain-
ing parameters using a 60 second trace from the 12/2015
dataset [12] and a limit of 1 MB of PFE memory.

Table 7.1 shows the computational and memory re-
source requirements for the *Flow cache on the Tofino,
broken down by function. Utilization was low for most
resources, besides stateful ALUs and stages. The cache
used stateful ALUs heavily because it striped flow keys
and packet feature vectors across the tofino’s 32 bit reg-
ister arrays, and each register array requires a separate
sALU. It required 12 stages because many of the stateful
operations were sequential: it had to access the key and
packet count before attempting a memory allocation or
free; and it had to perform the memory operation before
updating the feature tuple buffer.

Despite the high sALU and stage utilization, it is still
practical to deploy the *Flow cache alongside other com-
mon data plane functions. Forwarding, access control,
multicast, rate limiting, encapsulation, and many other
common functions do not require stateful operations,

and so do not need sALUs. Instead, they need tables
and SRAM, for exact match+action tables; TCAM, for
longest prefix matching tables; and VLIWs, for modify-
ing packet headers. These are precisely the resources that
*Flow leaves free.

Further, the stage requirements of *Flow do not im-
pact other applications. Tables for functions that are in-
dependent of *Flow can be placed in the same stages
as the *Flow cache tables. The Tofino has high instruc-
tion parallelism and applies multiple tables in parallel,
as long as there are enough computational and memory
resources available to implement them.

PFE Resources Vs. Eviction Rate. Figure 6 shows
the average packet and GPV rates for the Internet router
traces, using the *Flow cache with the Tofino pipeline
configuration described above. Shaded areas represent
the range of values observed. An application operating
on GPVs from the *Flow cache instead of packet head-
ers needed to process under 18% as many records, on
average, while still having access to the features of in-
dividual packets. The cache tracked GPVs for an aver-
age of 640MS and a maximum of 131 seconds. 14% of
GPVs were cached for longer than 1 second and 1.3%
were cached for longer than 5 seconds.

To analyze workload reduction with other configura-
tions, we measured eviction ratio: the ratio of evicted
GPVs to packets. Eviction ratio depends on the con-
figuration of the cache: the amount of memory it has
available; the maximum possible buffer length; whether
it uses the dynamic memory allocator; and its eviction
policy. We measured eviction ratio as these parameters
varied using a software model of the *Flow cache. The
software model allowed us to evaluate how *Flow per-
forms on not only today’s PFEs, but also on future archi-
tectures. We analyzed configurations that use up to 32
MB of memory, pipelines long enough to store buffers
for 32 packet feature tuples, and hardware support for
an 8 way LRU eviction policy. Larger memories, longer
pipelines, and more advanced eviction policies are all
proposed features that are practical to include in next
generation PFEs [9, 16, 40].

Figure 7 plots eviction ratio as cache memory size
varies, for 4 configurations of caches: with or without
dynamic memory allocation; and with either a hash on
collision eviction policy or an 8 way LRU. Division of
memory between and buffer slots between the narrow
and wide buffers was selected by the AutoTuner script.
With dynamic memory allocation, the eviction ratio was
between 0.25 and 0.071. This corresponds to an event
rate reduction of between 4X and 14X for software, com-
pared to processing packet headers directly.

On average, dynamic memory allocation reduced the
amount of SRAM required to achieve a target eviction
ratio by a factor of 2. It provided as much benefit as an 8

USENIX Association 2018 USENIX Annual Technical Conference 831

0 1000 2000 3000
Time (Seconds)

0

200

400

600

800
R

at
e

(T
ho

us
an

ds
)

Packets GPVs

Figure 6: Min/avg./max of packet and
GPV rates with *Flow for Tofino.

0.5 2.0 8.0 32.0
Cache Size (MB)

0.10

0.15

0.20

0.25

0.30

E
vi

ct
io

n
R

at
io

Static, Hash
Static, LRU
Dynamic, Hash
Dynamic, LRU

Figure 7: PFE memory vs eviction ra-
tio.

15 20 25 30
Max Buffer Len (# Pkt Feature Tuples)

0.08

0.10

0.12

0.14

E
vi

ct
io

n
R

at
io

Static, Hash
Static, LRU

Dynamic, Hash
Dynamic, LRU

Figure 8: GPV buffer length vs evic-
tion ratio.

Cores Agent Profiler Classifier Debugger

1 0.60M 1.51M 1.18M 0.16M
2 1.12M 3.02M 2.27M 0.29M
4 1.85M 5.12M 4.62M 0.55M
8 3.07M 8.64M 7.98M 1.06M
16 3.95M 10.06M 11.43M 1.37M

Table 3: Average throughput, in GPVs per second, for
*Flow agent and applications.

way LRU, but without requiring new hardware.
Figure 8 shows eviction rates as the maximum buffer

length varied. Longer buffers required more pipeline
stages, but significantly reduced eviction ratio when dy-
namic memory allocation was enabled.

7.2 *Flow Agent and Applications
We benchmarked the *Flow agent and monitoring ap-
plications, described in Section 6.2, to measure their
throughput and quantify the flexibility of GPVs.

Experimental Setup. Our test server contained a In-
tel Xeon E5-2683 v4 CPU (16 cores) and 128 GB of
RAM. We benchmarked maximum throughput by pre-
populating buffers with GPVs generated by the *Flow

cache. We configured the *Flow agent to read from
these buffers and measured its throughput for reassem-
bling the GPVs and writing them to a placeholder appli-
cation queue. We then measured the throughput of each
application individually, driven by a process that filled
its input queue from a pre-populated buffer of reassem-
bled GPVs. To benchmark multiple cores, we divided
the GPVs across multiple buffers, one per core, that was
each serviced by separate instances of the applications.

Throughput. Table 7.2 shows the average through-
put of the *Flow agent and monitoring applications, in
units of reassembled GPVs processed per second. For
perspective, the average reassembled GPV rates for the
2015 10 Gbit/s Internet router traces, which are equal to
their flow rates, are under 20 thousand per second [11].

HTTPS SSH RTMP DNS
Traffic Class

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

er
R

ec
al

l
NetFlow Marple *Flow

Figure 9: Recall of *Flow and baseline classifiers.

The high throughput makes it practical for a single server
to scale to terabit rate monitoring. A server using 10
cores, for example, can scale to cover over 100 such 10
Gb/s links by dedicating 8 cores to the *Flow agent and
2 cores to the profiler or classifier.

Throughput was highest for the profiler and classifier.
Both applications scaled to over 10 M reassembled GPVs
per second, each of which contained an average of 33
packet feature tuples. This corresponds to a process-
ing rate of over 300 M packet tuples per second, around
750X the average packet rate of an individual 10 Gb/s
Internet router link.

Throughput for the *Flow agent and debugging ap-
plication was lower, bottlenecked by associative opera-
tions. The bottleneck in the *Flow agent was the C++
std::unordered map that it used to map each GPV to a
reassembled GPV. The reassembly was expensive, but al-
lowed the profiler and classifier to operate without simi-
lar bottlenecks, contributing to their high throughput.

In the debugger, the bottleneck was the C++ std::map

it used to globally order packet tuples. In our bench-
marks, we intentionally stressed the debugger by setting
the high queue length flag in every packet feature tu-
ple, forcing it to apply the global ordering function fre-
quently. In practice, throughput would be much higher
because high queue lengths only occur when there are
problems in the network.

832 2018 USENIX Annual Technical Conference USENIX Association

Configuration # Stages # Atoms Max Width

*Flow cache 11 33 5

Marple Queries

Concurrent Connections 4 10 3
EWMA Latencies 6 11 4
Flowlet Size Histogram 11 31 6
Packet Counts per Source 5 7 2
TCP Non-Monotonic 5 6 2
TCP Out of Sequence 7 14 4

Table 4: Banzai pipeline usage for the *Flow cache and
compiled Marple queries.

Classifier Accuracy. To quantify the flexibility ben-
efits of GPVs, we compared the *Flow traffic classifier
to traffic classifiers that only use features that prior, less
flexible, telemetry systems can measure. The NetFlow
classifier uses metrics available from a traditional Net-
Flow switch: duration, byte count, and packet count.
The Marple classifier also includes the average and max-
imum packet sizes as features, representing a query that
compiles to use approximately the same amount of PFE
resources as the *Flow cache.

Figure 9 shows the recall of the traffic classifiers on the
12/2015 Internet router trace. The *Flow classifier per-
formed best because it had access to additional features
from the GPVs. This demonstrates the inherent benefit
of *Flow, and flexible GPV records, for monitoring ap-
plications that rely on machine learning and data mining.
Also, as Table 7.2 shows, the classifier was performant
enough to classify >1 million GPVs per second per core,
making it well suited to live processing.

7.3 Comparison with Marple
Finally, to showcase *Flow’s support for concurrent and
dynamic measurement, we compare the resource require-
ments for operator driven measurements using compiled
Marple queries against the requirements using *Flow

and the framework described in Section 6.3.

PFE Resources. For comparison, we implemented the
*Flow cache for the same platform that Marple queries
compile to: Banzai [49], a configurable machine model
of PFE ASICs. In Banzai, the computational resources
of a PFE are abstracted as atoms, similar to sALUs, that
are spread across a configurable number of stages. The
pipeline has a fixed width, which defines the number of
atoms in each stage.

Table 4 summarizes the resource usage for the Banzai
implementation. The requirements for *Flow were simi-
lar to those of a single statically compiled Marple query.
Implementing all 6 queries, which represent only a small
fraction of the possible queries, would require 79 atoms,
over 2X more than the *Flow cache. A GPV stream con-

tains the information necessary to support all the queries
concurrently, and software can dynamically change them
as needed without interrupting the network.

Server Resources. The throughput of the *Flow analyt-
ics framework was between 40 to 45K GPVs/s per core.
This corresponded to a per-core monitoring capacity of
15 - 50 Gb/s, depending on trace. Analysis suggested
that the bottleneck in our current prototype is message
passing overheads in the underlying stream processing
library that can be significantly optimized [38].

Even without optimization, the server resource re-
quirements of the *Flow analytics framework are similar
to Marple, which required around one 8 core server per
640 Gb/s switch [40] to support measurement of flows
that were evicted from the PFE early.

8 Conclusion
Measurement is important for both network monitoring
applications and operators alike, especially in large and
high speed networks. Programmable forwarding engines
(PFEs) can enable flexible telemetry systems that scale to
the demands of such environments. Prior systems have
focused on leveraging PFEs to scale efficiently with re-
spect to throughput, but have not addressed the equally
important requirement of scaling to support many con-
current applications with dynamic measurement needs.
As a solution, we introduced *Flow, a PFE-accelerated
telemetry system that supports dynamic measurement
from many concurrent applications without sacrificing
efficiency or flexibility. The core idea is to intelligently
partition the query processing between a PFE and soft-
ware. In support of this, we introduced GPVs, or grouped
packet vectors, a flexible format for network telemetry
data that is efficient for processing in software. We de-
signed and implemented a *Flow cache that generates
GPVs and operates at line rate on the Barefoot Tofino, a
commodity 3.2 Tb/s P4 forwarding engine. To make the
most of limited PFE memory, the *Flow cache features
the first implementation of a dynamic memory allocator
in a line rate P4 program. Evaluation showed that *Flow
was practical in the switch hardware and enabled power-
ful GPV based applications that scaled efficiently to ter-
abit rates with the capability for flexible, dynamic, and
concurrent measurement.

Acknowledgements

We thank the anonymous reviewers for their input on
this paper. This research was supported in part by
the National Science Foundation under grants 1406192,
1406225, and 1406177 (SaTC) and 1652698 (CA-
REER); ONR under grant N00014-15-1-2006; and
DARPA under contract HR001117C0047.

USENIX Association 2018 USENIX Annual Technical Conference 833

References
[1] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B.,

HUANG, N., AND VAHDAT, A. Hedera: Dynamic flow schedul-
ing for data center networks. In 7th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 10) (2010),
vol. 7, pp. 19–19.

[2] ANSEL, J., KAMIL, S., VEERAMACHANENI, K., RAGAN-
KELLEY, J., BOSBOOM, J., O’REILLY, U.-M., AND AMARAS-
INGHE, S. Opentuner: An extensible framework for program
autotuning. In Proceedings of the 23rd international conference
on Parallel architectures and compilation (2014), ACM, pp. 303–
316.

[3] BEARD, J. C., LI, P., AND CHAMBERLAIN, R. D. Raftlib: a
c++ template library for high performance stream parallel pro-
cessing. In Proceedings of the Sixth International Workshop
on Programming Models and Applications for Multicores and
Manycores (2015), ACM, pp. 96–105.

[4] BELTON, J. Hash table shootout. https://jimbelton.

wordpress.com/2015/11/27/hash-table-shootout-

updated/.

[5] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traf-
fic characteristics of data centers in the wild. In Proceedings of
the 10th ACM SIGCOMM conference on Internet measurement
(2010), ACM, pp. 267–280.

[6] BHUYAN, M. H., BHATTACHARYYA, D. K., AND KALITA,
J. K. Network anomaly detection: methods, systems and tools.
IEEE Communications Surveys & Tutorials 16, 1 (2014), 303–
336.

[7] BJORNER, N., CANINI, M., AND SULTANA, N. Report on net-
working and programming languages 2017. ACM SIGCOMM
Computer Communication Review 47, 5 (2017), 39–41.

[8] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAH-
DAT, A., VARGHESE, G., AND WALKER, D. P4: Programming
Protocol-independent Packet Processors. ACM SIGCOMM Com-
puter Communication Review 44, 3 (July 2014), 87–95.

[9] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKE-
OWN, N., IZZARD, M., MUJICA, F., AND HOROWITZ, M. For-
warding metamorphosis: Fast programmable match-action pro-
cessing in hardware for sdn. In ACM SIGCOMM Computer Com-
munication Review (2013), vol. 43, ACM, pp. 99–110.

[10] BOTTA, A., DAINOTTI, A., AND PESCAPÉ, A. Do you trust
your software-based traffic generator? IEEE Communications
Magazine 48, 9 (2010).

[11] CAIDA. Statistics for caida 2015 chicago direction b
traces. https://www.caida.org/data/passive/trace_

stats/, 2015.

[12] CAIDA. Trace statistics for caida passive oc48 and oc192 traces
– 2015-12-17. https://www.caida.org/data/passive/

trace_stats/, December 2015.

[13] CAVIUM. Cavium / xpliant cnx880xx product brief. https://

www.cavium.com/pdfFiles/CNX880XX_PB_Rev1.pdf?x=2,
2015.

[14] CHEN, A., WU, Y., HAEBERLEN, A., ZHOU, W., AND LOO,
B. T. The good, the bad, and the differences: Better network
diagnostics with differential provenance. In Proceedings of the
2016 conference on ACM SIGCOMM 2016 Conference (2016),
ACM, pp. 115–128.

[15] CHEN, Y., GRIFFITH, R., LIU, J., KATZ, R. H., AND JOSEPH,
A. D. Understanding tcp incast throughput collapse in datacenter
networks. In Proceedings of the 1st ACM workshop on Research
on enterprise networking (2009), ACM, pp. 73–82.

[16] CHOLE, S., FINGERHUT, A., MA, S., SIVARAMAN, A., VAR-
GAFTIK, S., BERGER, A., MENDELSON, G., ALIZADEH, M.,
CHUANG, S.-T., KESLASSY, I., ET AL. drmt: Disaggregated
programmable switching. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (2017),
ACM, pp. 1–14.

[17] CISCO. The cisco flow processor: Cisco’s next gen-
eration network processor solution overview. http:

//www.cisco.com/c/en/us/products/collateral/

routers/asr-1000-series-aggregation-services-

routers/solution_overview_c22-448936.html.

[18] CISCO. Introduction to cisco ios netflow. https:

//www.cisco.com/c/en/us/products/collateral/

ios-nx-os-software/ios-netflow/prod_white_

paper0900aecd80406232.html, 2012.

[19] CISCO. Cisco netflow generation appliance 3340 data
sheet. http://www.cisco.com/c/en/us/products/

collateral/cloud-systems-management/netflow-

generation-3000-series-appliances/data_sheet_

c78-720958.html, July 2015.

[20] CISCO. Cisco nexus 9200 platform switches archi-
tecture. https://www.cisco.com/c/dam/en/us/

products/collateral/switches/nexus-9000-series-

switches/white-paper-c11-737204.pdf, 2016.

[21] CLAISE, B. Cisco systems netflow services export version 9.
https://tools.ietf.org/html/rfc3954, 2004.

[22] DERI, L., AND SPA, N. nprobe: an open source netflow probe
for gigabit networks. In TERENA Networking Conference (2003).

[23] EGILMEZ, H. E., CIVANLAR, S., AND TEKALP, A. M. An op-
timization framework for qos-enabled adaptive video streaming
over openflow networks. IEEE Transactions on Multimedia 15, 3
(2013), 710–715.

[24] ENDACE. Endaceflow 4000 series netflow generators. https://
www.endace.com/endace-netflow-datasheet.pdf, 2016.

[25] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., MAZIÈRES,
D., AND MCKEOWN, N. I know what your packet did last hop:
Using packet histories to troubleshoot networks. In 11th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 14) (2014), vol. 14, pp. 71–85.

[26] HELLER, B., SEETHARAMAN, S., MAHADEVAN, P., YIAK-
OUMIS, Y., SHARMA, P., BANERJEE, S., AND MCKEOWN,
N. Elastictree: Saving energy in data center networks. In NSDI
(2010), vol. 10, pp. 249–264.

[27] HICKS, M., MOORE, J. T., WETHERALL, D., AND NETTLES,
S. Experiences with capsule-based active networking. In DARPA
Active NEtworks Conference and Exposition, 2002. Proceedings
(2002), IEEE, pp. 16–24.

[28] JEYAKUMAR, V., ALIZADEH, M., GENG, Y., KIM, C., AND
MAZIÈRES, D. Millions of little minions: Using packets for low
latency network programming and visibility. In ACM SIGCOMM
Computer Communication Review (2014), vol. 44, ACM, pp. 3–
14.

[29] JIN, X., LI, X., ZHANG, H., SOULÉ, R., LEE, J., FOSTER, N.,
KIM, C., AND STOICA, I. Netcache: Balancing key-value stores
with fast in-network caching. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (2017), ACM, pp. 121–
136.

[30] KING, D. E. Dlib-ml: A machine learning toolkit. Journal of
Machine Learning Research 10 (2009), 1755–1758.

[31] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The click modular router. ACM Trans. Com-
put. Syst. 18, 3 (Aug 2000), 263–297.

834 2018 USENIX Annual Technical Conference USENIX Association

[32] LI, Y., MIAO, R., KIM, C., AND YU, M. Flowradar: a better
netflow for data centers. In 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 16) (2016),
pp. 311–324.

[33] LIM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY, M.
Silt: A memory-efficient, high-performance key-value store. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (2011), ACM, pp. 1–13.

[34] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M.
Mica: A holistic approach to fast in-memory key-value storage.
USENIX.

[35] LIVADAS, C., WALSH, R., LAPSLEY, D., AND STRAYER, W. T.
Using machine learning technliques to identify botnet traffic. In
Local Computer Networks, Proceedings 2006 31st IEEE Confer-
ence on (2006), IEEE, pp. 967–974.

[36] LU, W., AND GHORBANI, A. A. Network anomaly detection
based on wavelet analysis. EURASIP Journal on Advances in
Signal Processing 2009 (2009), 4.

[37] MARTINS, J., AHMED, M., RAICIU, C., OLTEANU, V.,
HONDA, M., BIFULCO, R., AND HUICI, F. Clickos and the
art of network function virtualization. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Imple-
mentation (2014), USENIX Association, pp. 459–473.

[38] MICHEL, O., SONCHACK, J., KELLER, E., AND SMITH, J. M.
Packet-level analytics in software without compromises. In Hot-
Cloud (2018).

[39] MICROWAY. Detailed specifications of the skylake-sp intel xeon
processor family. https://www.microway.com/knowledge-
center-articles/detailed-specifications-of-the-

skylake-sp-intel-xeon-processor-scalable-family-

cpus/.
[40] NARAYANA, S., SIVARAMAN, A., NATHAN, V., GOYAL, P.,

ARUN, V., ALIZADEH, M., JEYAKUMAR, V., AND KIM, C.
Language-directed hardware design for network performance
monitoring. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (2017), ACM, pp. 85–98.

[41] NETRONOME. Agilio cx intelligent server adapters agilio cx
intelligent server adapters. https://www.netronome.com/

products/agilio-cx/, 2018.
[42] NETWORKS, B. Barefoot tofino. https://www.

barefootnetworks.com/technology/#tofino.
[43] NGUYEN, T. T., AND ARMITAGE, G. A survey of techniques

for internet traffic classification using machine learning. IEEE
Communications Surveys & Tutorials 10, 4 (2008), 56–76.

[44] OZDAG, R. Intel R© ethernet switch fm6000 series-software de-
fined networking, 2012.

[45] PHAAL, P., PANCHEN, S., AND MCKEE, N. Inmon corpora-
tion’s sflow: A method for monitoring traffic in switched and
routed networks. Tech. rep., 2001.

[46] RIZZO, L., AND LANDI, M. Netmap: Memory Mapped Access
to Network Devices. In Proc. ACM SIGCOMM (2011).

[47] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND SNOEREN,
A. C. Inside the social network’s (datacenter) network. In ACM
SIGCOMM Computer Communication Review (2015), vol. 45,
ACM, pp. 123–137.

[48] SHAN, D., JIANG, W., AND REN, F. Absorbing micro-burst
traffic by enhancing dynamic threshold policy of data center
switches. In Computer Communications (INFOCOM), 2015
IEEE Conference on (2015), IEEE, pp. 118–126.

[49] SIVARAMAN, A., CHEUNG, A., BUDIU, M., KIM, C., AL-
IZADEH, M., BALAKRISHNAN, H., VARGHESE, G., MCKE-
OWN, N., AND LICKING, S. Packet transactions: High-level
programming for line-rate switches. In Proceedings of the 2016
ACM SIGCOMM Conference (2016), ACM, pp. 15–28.

[50] SONCHACK, J., AVIV, A. J., KELLER, E., AND SMITH, J. M.
Turboflow: Information rich flow record generation on commod-
ity switches. In Proceedings of the Thirteenth EuroSys Confer-
ence (New York, NY, USA, 2018), EuroSys ’18, ACM, pp. 11:1–
11:16.

[51] SPEROTTO, A., SCHAFFRATH, G., SADRE, R., MORARIU, C.,
PRAS, A., AND STILLER, B. An overview of ip flow-based in-
trusion detection. IEEE communications surveys & tutorials 12,
3 (2010), 343–356.

[52] VANINI, E., PAN, R., ALIZADEH, M., TAHERI, P., AND ED-
SALL, T. Let it flow: Resilient asymmetric load balancing with
flowlet switching. In NSDI (2017), pp. 407–420.

[53] WHEELER, B. A new era of network processing. The Linley
Group, Technical Report (2013).

[54] WHEELER, B. A new era of network processing. The Linley
Group, Tech. Rep (2013).

[55] WINSTEIN, K., AND BALAKRISHNAN, H. Tcp ex machina:
Computer-generated congestion control. In ACM SIGCOMM
Computer Communication Review (2013), vol. 43, ACM,
pp. 123–134.

[56] WU, Y., CHEN, A., HAEBERLEN, A., ZHOU, W., AND LOO,
B. T. Automated bug removal for software-defined networks. In
NSDI (2017), pp. 719–733.

[57] ZHANG, Q., LIU, V., ZENG, H., AND KRISHNAMURTHY, A.
High-resolution measurement of data center microbursts. In Pro-
ceedings of the 2017 Internet Measurement Conference (New
York, NY, USA, 2017), IMC ’17, ACM, pp. 78–85.

[58] ZHOU, W., SHERR, M., TAO, T., LI, X., LOO, B. T., AND
MAO, Y. Efficient querying and maintenance of network prove-
nance at internet-scale. In Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of data (2010),
ACM, pp. 615–626.

[59] ZHU, Y., KANG, N., CAO, J., GREENBERG, A., LU, G., MA-
HAJAN, R., MALTZ, D., YUAN, L., ZHANG, M., ZHAO, B. Y.,
ET AL. Packet-level telemetry in large datacenter networks.
In ACM SIGCOMM Computer Communication Review (2015),
vol. 45, ACM, pp. 479–491.

[60] ZOBEL, D. Does my cisco device support netflow export?
https://kb.paessler.com/en/topic/5333-does-my-

cisco-device-router-switch-support-netflow-

export, June 2010.

USENIX Association 2018 USENIX Annual Technical Conference 835

