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Scaling HTM-Supported Database Transactions
to Many Cores

Viktor Leis, Alfons Kemper, and Thomas Neumann

Abstract—So far, transactional memory—although a promising technique—suffered from the absence of an efficient hardware

implementation. Intel’s Haswell microarchitecture introduced hardware transactional memory (HTM) in mainstream CPUs. HTM allows

for efficient concurrent, atomic operations, which is also highly desirable in the context of databases. On the other hand HTM has

several limitations that, in general, prevent a one-to-one mapping of database transactions to HTM transactions.

In this work we devise several building blocks that can be used to exploit HTM in main-memory databases. We show that HTM allows

to achieve nearly lock-free processing of database transactions by carefully controlling the data layout and the access patterns. The

HTM component is used for detecting the (infrequent) conflicts, which allows for an optimistic, and thus very low-overhead execution

of concurrent transactions. We evaluate our approach on a 4-core desktop and a 28-core server system and find that HTM indeed

provides a scalable, powerful, and easy to use synchronization primitive.

Index Terms—hardware transactional memory, synchronization, concurrency control, transaction processing

✦

1 INTRODUCTION

The support for hardware transactional memory (HTM) in

mainstream processors like Intel’s Haswell appears like a

perfect fit for emerging main-memory database systems like

H-Store/VoltDB [1], HyPer [2], SAP HANA [3], SolidDB [4],

Microsoft Hekaton [5], etc. Transactional memory [6] is a

very intriguing concept that allows for automatic atomic and

concurrent execution of arbitrary code. Transactional memory

allows for code like this:

transaction { transaction {
a = a− 10; c = c− 20;

b = b+ 10; a = a+ 20;

} }
Transaction 1 Transaction 2

Semantically, this code behaves quite similar to database

transactions. The code sections are executed atomically and

in isolation from each other. In the case of runtime conflicts

(i.e., read/write conflicts or write/write conflicts) a transaction

might get aborted, undoing all changes performed so far. The

transaction model is a very elegant and well understood idea

that is much simpler than the classical alternative, namely fine-

grained locking. Locking is much more difficult to formulate

correctly. Fine-grained locking is error prone and can lead to

deadlocks due to differences in locking order. Coarse-grained

locking is simpler, but greatly reduces concurrency. Transac-

tional memory avoids this problem by keeping track of read

and write sets and thus by detecting conflicts on the memory

access level. Starting with the Haswell microarchitecture this

is supported by hardware, which offers excellent performance.

Figure 1 sketches the benefits of our HTM-based trans-

action manager in comparison to other concurrency control
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Figure 1. HTM versus 2PL, sequential, partitioned

mechanisms that we investigated. For main-memory database

applications the well-known Two Phase Locking scheme was

proven to be inferior to serial execution [7]! However, serial

execution cannot exploit the parallel compute power of modern

multi-core CPUs. Under serial execution, scaling the through-

put in proportion to the number of cores would require an

optimal partitioning of the database such that transactions do

not cross these boundaries. This allows for “embarrassingly”

parallel execution—one thread within each partition. Unfor-

tunately, this is often not possible in practice; therefore, the

upper throughput curve “opt. manual partitioning” of Figure 1

is only of theoretical nature. HTM, however, comes very close

to an optimal static partitioning scheme as its transaction

processing can be viewed as an adaptive dynamic partitioning

of the database according to the transactional access pattern.

However, transactional memory is no panacea for trans-

action processing. First, database transactions also require

properties like durability, which are beyond the scope of

transactional memory. Second, at least the current hardware
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implementations of transactional memory are limited. For the

Haswell microarchitecture the scope of a transaction is limited,

because the read/write set, i.e., every cache line a transaction

accesses, has to fit into the L1 cache with a capacity of 32KB.

Furthermore, HTM transactions may fail due to a number

of unexpected circumstances like collisions caused by cache

associativity, hardware interrupts, etc. Therefore, it does not

seem to be viable to map an entire database transaction to a

single monolithic HTM transaction. In addition, one always

needs a “slow path” to handle the pathological cases (e.g.,

associativity collisions).

We therefore propose an architecture where transactional

memory is used as a building block for assembling complex

database transactions. Along the lines of the general philoso-

phy of transactional memory we start executing transactions

optimistically, using (nearly) no synchronization and thus

running at full clock speed. By exploiting HTM we get many

of the required checks for free, without complicating the

database code, and can thus reach a much higher degree of

parallelism than with classical locking or latching. In order to

minimize the number of conflicts in the transactional memory

component, we carefully control the data layout and the access

patterns of the involved operations, which allows us to avoid

explicit synchronization most of the time.

Note that we explicitly do not assume that the database is

partitioned in any way. In some cases, and in particular for the

well-known TPC-C benchmark, the degree of parallelism can

be improved greatly by partitioning the database at the schema

level (using the warehouse attribute in the case of TPC-C).

Such a static partitioning scheme is exemplified on the left-

hand side of Figure 2. VoltDB for example makes use of static

partitioning for parallelism [1]. But such a partitioning is hard

to find in general, and users usually cannot be trusted to find

perfect partitioning schemes [8]. In addition, there can always

be transactions that cross partition boundaries, as shown by

the partition boundary overlapping transactions T1, T2, and

T3 in Figure 2 (left-hand side). These transactions have to

be isolated with a serial (or locking-based) approach as the

static partitioning scheme cannot guarantee their isolation. If

available, we could still exploit partitioning information in our

HTM approach, of course, as then conflicts would be even

more unlikely. But we explicitly do not assume the presence

of such a static partitioning scheme and rely on the implicit

adaptive partitioning of the transactions as sketched on the

right-hand side of Figure 2.

This article is an extended version of the conference pa-

per [9]. The new Section 3 experimentally evaluates HTM

and alternative synchronization mechanisms like latching on a

28-core Haswell system. Furthermore, we devise a set of best

practices that allow HTM to scale very well even with a large

number of cores.

2 TRANSACTIONAL MEMORY

Traditional synchronization mechanisms are usually imple-

mented using some form of mutual exclusion (mutex). For

2PL, the DBMS maintains a lock structure that keeps track of

all currently held locks. As this lock structure is continuously

updated by concurrent transactions, the structure itself is pro-

tected by one (or more) mutexes [10]. On top of this, the locks

themselves provide a kind of mutual exclusion mechanism,

and block a transaction if needed.

The serial execution paradigm is even more extreme, there

one lock protects the whole database (or the whole partition

for partitioned execution). The problem with these locks is

that they are difficult to use effectively. In particular, finding

the right lock granularity is difficult. Coarse locks are cheap,

but limit concurrency. Fine-grained locks allow for more

concurrency, but are more expensive and can lead to deadlocks.

For quite some time now, transactional memory is being

proposed as an alternative to fine grained locking [6]. The

key idea behind transactional memory is that a number of

operations can be combined into a transaction, which is

then executed atomically. Consider the following small code

fragment for transferring money from one account to another

account (using GCC syntax):

transfer(from,to,amount)

transaction atomic {
account[from]-=amount;

account[to]+=amount;

}

The code inside the atomic block is guaranteed to be exe-

cuted atomically, and in isolation. In practice, the transactional

memory observes the read set and write set of transactions,

and executes transactions concurrently as long as the sets do

not conflict. Thus, transfers can be executed concurrently as

long as they affect different accounts, they are only serialized

if they touch a common account. This behavior is very hard

to emulate using locks. Fine-grained locking would allow for

high concurrency, too, but would deadlock if accounts are

accessed in opposite order. Transactional memory solves this

problem elegantly.

Transactional memory has been around for a while, but has

usually been implemented as Software Transactional Memory

(STM), which emulated this behavior in software. Although

STM does remove the complexity of lock maintenance, it

causes a significant slowdown during execution and thus had

limited practical impact [11].

2.1 Hardware Support for Transactional Memory

This changed with the Haswell microarchitecture from Intel,

which offers Hardware Transactional Memory [12]. Note
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that Haswell was not the first CPU with hardware support

for transactional memory, for example IBM’s Blue Gene/Q

supercomputers [13] and System z mainframes [14] offered it

before, but it is the first mainstream CPU to implement HTM.

And in hardware, transactional memory can be implemented

much more efficiently than in software: Haswell uses its highly

optimized cache coherence protocol, which is needed for all

multi-core processors anyway, to track read and write set

collisions [15]. Therefore, Haswell offers HTM nearly for free.

Even though HTM is very efficient, there are also some

restrictions. First of all, the size of a hardware transaction

is limited. For the Haswell architecture it is limited to the

size of the L1 cache, which is 32 KB. This implies that,

in general, it is not possible to simply execute a database

transaction as one monolithic HTM transaction. Even medium-

sized database transactions would be too large. Second, in

the case of conflicts, the transaction fails. In this case the

CPU undoes all changes, and then reports an error that the

application has to handle. And finally, a transaction might fail

due to spurious implementation details like cache associativity

limits, certain interrupts, etc. So, even though in most cases

HTM will work fine, there is no guarantee that a transaction

will ever succeed (if executed as an HTM transaction).

Therefore, Intel proposes (and explicitly supports by specific

instructions) using transactional memory for lock elision [15].

Conceptually, this results in code like the following:

transfer(from,to,amount)

atomic-elide-lock (lock) {
account[from]-=amount;

account[to]+=amount;

}

Here, we still have a lock, but ideally the lock is not used at

all—it is elided. When the code is executed, the CPU starts an

HTM transaction, but does not acquire the lock as shown on

the left-hand side of Figure 3. Only when there is a conflict the

transaction rolls back, acquires the lock, and is then executed

non-transactionally. The right-hand side of Figure 3 shows

the fallback mechanism to exclusive serial execution, which is

controlled via the (previously elided) lock. This lock elision
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Figure 4. Intel cache architecture

mechanism has two effects: 1) ideally, locks are never acquired

and transactions are executed concurrently as much as possible

2) if there is an abort due to a conflict or hardware-limitation,

there is a “slow path” available that is guaranteed to succeed.

2.2 Caches and Cache Coherency

Even though Intel generally does not publish internal imple-

mentation details, Intel did specify two important facts about

Haswell’s HTM feature [15]:

• The cache coherency protocol is used to detect transac-

tional conflicts.

• The L1 cache serves as a transactional buffer.

Therefore, it is crucial to understand Intel’s cache architecture

and coherency protocol.

Because of the divergence of DRAM and CPU speed, mod-

ern CPUs have multiple caches in order to accelerate memory

accesses. Intel’s cache architecture is shown in Figure 4,

and consists of a local L1 cache (32 KB), a local L2 cache

(256 KB), and a shared L3 cache (2-45 MB). All caches use

64 byte cache blocks (lines) and all caches are transparent,

i.e., programs have the illusion of having only one large main

memory. Because on multi-core CPUs each core generally has

at least one local cache, a cache coherency protocol is required

to maintain this illusion.

Both Intel and AMD use extensions of the well-known

MESI protocol [16]. The name of the protocol derives from the

four states that each cache line can be in (Modified, Exclusive,

Shared, or Invalid). To keep multiple caches coherent, the

caches have means of intercepting (“snooping”) each other’s

load and store requests. For example, if a core writes to a cache

line which is stored in multiple caches (Shared state), the state

must change to Modified in the local cache and all copies in

remote caches must be invalidated (Invalid state). This logic

is implemented in hardware using the cache controller of the

shared L3 cache that acts as a central component where all

coherency traffic and all DRAM requests pass through.

The key insight that allows for an efficient HTM imple-

mentation is that the L1 cache can be used as a local buffer.

All transactionally read or written cache lines are marked and

the propagation of changes to other caches or main memory

is prevented until the transaction commits. Read/write and

write/write conflicts are detected by using the same snooping

logic that is used to keep the caches coherent. And since the
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Figure 5. Aborts from random memory writes

MESI protocol is always active and commits/aborts require

no inter-core coordination, transactional execution on Haswell

CPUs incurs almost no overhead. The drawback is that the

transaction size is limited to the L1 cache. This is fundamen-

tally different from IBM’s Blue Gene/Q architecture, which

allows for up to 20 MB per transaction using a multi-versioned

L2 cache, but has relatively large runtime overhead [13].

Besides the nominal size of the L1 cache, another limiting

factor for the maximum transaction size is cache associativity.

Caches are segmented into sets of cache lines in order to speed

up lookup and to allow for an efficient implementation of

the pseudo-LRU replacement strategy (in hardware). Haswell’s

L1 cache is 8-way associative, i.e., each cache set has 8

entries. This has direct consequences for HTM, because all

transactionally read or written cache lines must be marked and

kept in the L1 cache until commit or abort. Therefore, when

a transaction writes to 9 cache lines that happen to reside in

the same cache set, the transaction is aborted. And since the

mapping from memory address to cache set is deterministic

(bits 7-12 of the address are used), restarting the transaction

does not help, and an alternative fallback path is necessary for

forward progress.

In practice, bits 7-12 of memory addresses are fairly

random, and aborts of very small transactions are unlikely.

Nevertheless, Figure 5 shows that the abort probability quickly

rises when more than 128 random cache lines (only about one

quarter of the L1 cache) are accessed1. This surprising fact

is caused by a statistical phenomenon related to the birthday

paradox: For example with a transaction size of 16 KB, for any

one cache set it is quite unlikely that it contains more than 8

entries. However, at the same time, it is likely that at least

one cache set exceeds this limit. An eviction of a line from

the cache automatically leads to a failure of this transaction

as it would become impossible to detect conflicting writes to

this cache line.

The previous experiment was performed with accesses to

memory addresses fully covered by the translation lookaside

buffer (TLB). TLB misses do not immediately cause transac-

tions to abort, because, on x86 CPUs, the page table lookup

is performed by the hardware (and not the operating system).

However, TLB misses do increase the abort probability, as they

1. The experiments in this section were performed on an Intel i5 4670T.

0%

25%

50%

75%

100%

10K 100K 1M 10M

transaction duration in cycles (log scale)

a
b

o
rt

 p
ro

b
a

b
ili

ty

Figure 6. Aborts from transaction duration

cause additional memory accesses during page table walks.

Besides memory accesses, another important reason for

transactional aborts is interrupts. Such events are unavoidable

in practice and limit the maximum duration of transactions.

Figure 6 shows that transactions that take more than 1 million

CPU cycles (about 0.3 ms) will likely be aborted, even if

they only compute and execute no memory operations. These

results clearly show that Haswell’s HTM implementation can-

not be used for long-running transactions but is designed for

short critical sections. Despite these limitations we found that

Haswell’s HTM implementation offers excellent scalability as

long as transactions are short and free of conflicts with other

transactions.

3 SYNCHRONIZATION ON MANY-CORE CPUS

Intel’s current medium-level server platform Haswell EP has

up to 18 cores per socket. Commodity servers, which often

have two sockets, will soon commonly have over 50 hardware

threads, so executing transactions using only a single thread

would waste most of this computational power. To execute

transactional workloads, a DBMS must therefore provide (1)

high-level concurrency control to logically isolate transactions,

and (2) a low-level synchronization mechanism to prevent

concurrent threads from corrupting internal data structures.

Both aspects are very important, as any of them may prevent

scalability. Our concurrency control scheme is described in

Section 4. In this section, we instead focus on the low-level

synchronization aspect. We experimentally evaluate HTM on

a Haswell system with 28 cores and compare it with common

synchronization alternatives like latching.

For our experiments we use a Haswell EP system with two

Intel E5-2697 v3 processors that are connected through QPI.

The processor is depicted in Figure 7 and has 14 cores, i.e., in

total, the system has 28 cores (56 HyperThreads). The figure

also shows that the CPU has two internal communication rings

that connect cores and 2.5MB slices of the L3 cache. An

internal link connects these two rings, but is not to be confused

with the QPI interconnect that connects the two sockets of the

system. The system supports two modes, which can be selected

in the systems’ BIOS:

• The hardware can hide the internal ring internal structure,

i.e., our two-socket system would expose two NUMA

nodes with 14 cores each.
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• In the “cluster on die” configuration each internal ring is

exposed as a separate NUMA node, i.e., our two-socket

system has four NUMA nodes with 7 cores each.

Using the first setting, each socket has 35MB of L3 cache but

higher latency, because an L3 access often needs to use the

internal link. The cluster-on-die configuration, which we use

for all experiments, has lower latency and 17.5MB of cache

per “cluster”, each of which consists of 7 threads.

As has been widely reported, all Haswell systems shipped

so far, including both our test systems, contain a hardware

bug in the Transactional Synchronization Extensions (TSX).

According to Intel, this bug occurs “under a complex set of

internal timing conditions and system events“. We have not

encountered this bug during our tests. It seems to be very

rare, as evidenced by the fact that it took Intel over a year

to even find it. Furthermore, Intel has announced that the bug

will be fixed in upcoming CPU generations.

3.1 The Perils of Latching

Traditionally, database systems synchronize concurrent access

to internal data structures (e.g., index structures) with latches.

Internally, a latch is implemented using atomic operations like

compare-and-swap, which allow to exclude other threads from

entering a critical section. To increase concurrency, read/write

latches are often used, which, at any time, allow multiple

concurrent readers but only a single writer. Unfortunately,

latches do not scale on modern hardware as Figure 8, which

performs lookups in an Adaptive Radix Tree [17], shows. The

curve labeled as “rw spin lock” shows the performance when

we add a single read/write latch at the root node of the tree2.

With many cores, using no synchronization is faster by an

order of magnitude! Note that this happens on a read-only

workload without any logical contention, and is not caused

by a bad latch implementation3: When we replace the latch

with a single atomic integer increment operation, which is

the cheapest possible atomic write operation, the scalability is

almost as bad as with the latch.

The reason for this behavior is that to acquire a latch, CPUs

must acquire exclusive access to the cache line where the latch

is stored. As a result, threads compete for this cache line, and

every time the latch is acquired, all copies of this cache line

are invalidated in all other cores (“cache line ping-pong”). This

happens even with atomic operations like atomic increment,

although this operation never fails in contrast to compare-and-

swap, which is usually used to implement latches. Note that

latches also result in some overhead during single-threaded

execution, but this overhead is much lower as the latch cache

line is not continuously invalidated. Cache line ping-pong

is often the underlying problem that prevents systems from

scaling on modern multi-core CPUs.

3.2 Latch-Free Data Structures

As a reaction to the bad scalability of latching some systems

use latch-free data structures. Microsoft’s in-memory trans-

action engine Hekaton, for example, uses a lock-free hash

table and the latch-free Bw-Tree [18] as index structures. In

the latch-free approach read accesses can proceed in a non-

blocking fashion without acquiring any latches and without

waiting. Writes must make sure that any modification is per-

formed using a sequence of atomic operations while ensuring

that simultaneous reads are not disturbed. Since readers do

not perform writes to global memory locations, this approach

generally results in very good scalability for workloads that

mostly consist of reads. However, latch-free data structure have

a number of disadvantages:

• The main difficulty is that, until the availability of Hard-

ware Transactional Memory, CPUs provided only very

primitive atomic operations like compare-and-swap, and a

handful of integer operations. Synchronizing a non-trivial

data structure with this limited tool set is very difficult

and bug-prone, and for many efficient data structures,

including the Adaptive Radix Tree, so far, no latch-

free synchronization protocol exists. In practice, data

structures must be designed with latch-freedom in mind,

and the available atomic operations restrict the design

space considerably.

2. In reality, one would use lock-coupling and one latch at each node, so
the performance would be even worse.

3. We used spin_rw_mutex from the Intel Thread Building Blocks
library.
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• And even if one succeeds in designing a latch-free data

structure, this may not guarantee optimal performance.

The reason is that usually additional indirections must

be introduced, which often add significant overhead in

comparison with an unsynchronized variant of the data

structure. The Bw-tree [18], for example, requires a page

table indirection, which must be used on each node access

and incurs additional cache misses.

• Finally, memory reclamation is an additional problem,

because a thread can never be sure when it is safe

to reclaim memory, because concurrent readers might

still be active. An additional mechanism (e.g., epoch-

based reclamation), which again adds some overhead, is

required to allow for safe memory reclamation.

For these reasons, and because database systems internally

use many different custom data structures, we find latch-

freedom too difficult in practice. Hardware Transactional

Memory offers an easy to use, and, as we will show, efficient

alternative. In particular, HTM has no memory reclamation

issues and one can simply wrap each data structure access in

a hardware transaction. This means that data structures can

be designed without spending too much thought on how to

synchronize them—though some understanding of how HTM

works and its limitations is certainly beneficial.

3.3 Hardware Transactional Memory on Many-Core

Systems

Figure 9 shows the performance of HTM on the same read-

only workload as Figure 8. We compare different lock elision

approaches (with a single global, elided latch), and we again

show the performance without synchronization as a theoretical

upper bound. Surprisingly, the built-in hardware lock elision

(HLE) instructions do not scale well when more than 4 cores

are used. The internal implementation of HLE is not disclosed,

but the reason for its bad performance is likely an insufficient

number of restarts. As we have mentioned previously, a

transaction can abort spuriously for many reasons, thus a

transaction should retry a number of times instead of giving up

immediately and acquiring the fallback latch. The graph shows

that for a read-only workload, restarting at least 7 times is

necessary, though a higher number of restarts also works fine.
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Therefore, we implemented lock elision manually using the

restricted transactional memory (RTM) primitives xbegin,

xend, xabort, but with a configurable number of restarts.

Figure 10 shows the state diagram of our implementation.

Initially the optimistic path (left-hand side of the diagram) is

taken, i.e., the critical section is simply wrapped by xbegin

and xend instructions. If an abort happens in the critical

section (e.g, due to a read/write conflict), the transaction is

restarted a number of times before falling back to actual latch

acquisition (right-hand side of the diagram). Furthermore,

transactions add the latch to their read set and only proceed

into the critical section optimistically when the latch is free.

When it is not free, this means that another thread is in the

critical section exclusively (e.g., due to a code that cannot

succeed transactionally). In this case, the transaction has to

wait for the latch to become free, but can then continue to

proceed optimistically using RTM. Note that all this logic is

completely hidden behind a typical acquire/release latch inter-

face, and—once it has been implemented—it can be used just

as easily as ordinary latches or HLE. Furthermore, as Diegues

and Romano [19] have shown, the configuration parameters of

the restart strategy can be determined dynamically.

When sufficient restarts are used, the overhead of HTM in

comparison to unsynchronized access is quite low. Further-

more, we found that HyperThreading improves performance

for many workloads, though one has to keep in mind that

because each pair of HyperThreads shares one L1 cache, the

effective maximum working set size is halved, so there might

be workloads where it is beneficial to avoid this feature.

Good scalability on read-only workloads should be ex-

pected, because only infrequent, transient failures occur, thus

we now turn our attention to more challenging workloads.

Figure 11 reports the results for a random insert workload

with 30 restarts and different memory allocators. The default

glibc memory allocator completely prevents scalability. The

tcmalloc4 (Thread-Caching Malloc) allocator improves perfor-

4. http://goog-perftools.sourceforge.net/doc/tcmalloc.html
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Figure 11. 64M random inserts using different memory

allocators and 30 restarts

mance considerably, but the speedup with 28 threads is still

only 12.2×. Optimal scalability is only achieved with pre-

allocated and initialized memory, which results in a speedup

of 26.0× with 28 cores. Initialization is important, because

the first write to a freshly-allocated memory page always

causes the transaction to abort as an operating system trap that

initializes the page happens. Although these page initialization

operations are quite infrequent (less than 5% of the single-

threaded execution time), they cause the elided latch to be

acquired and therefore full serialization of all threads occurs.

So far, in all experiments the memory was interleaved

between the four memory nodes. In order to investigate the

NUMA effects on HTM, we repeated the insert and lookup

experiments with 1 and 7 threads, but forced the threads and

memory allocations to one cluster, one socket, or two sockets:

1 cluster 1 socket 2 sockets

insert (1 thread) 5.3 4.3 3.0

insert (7 threads) 30.6 26.8 20.2

lookup (1 thread) 9.2 5.4 3.6

lookup (7 threads) 53.0 36.0 24.5

The results are in M ops/s and show that there are significant

NUMA effects: remote accesses are up to a factor 2.5 more

expensive than local accesses. At the same time, HTM scales

very well even across clusters or sockets. To some extent,

this is not very surprising, because NUMA systems have an

effective cache coherency protocol implementation, which is

also used for efficient transactional conflict detection.

Finally, let us close with an experiment that shows that mod-

ern CPUs do not scale under very high contention regardless

which synchronization primitives are used. Figure 12 shows

the performance for an extreme workload where there is a

single atomic counter that is incremented by all threads. In all

cases performance degrades with more cores due to cache line

ping-pong. For workloads with high contention one needs an

approach that solves the root cause, physical contention, e.g.,

by duplicating the contended item [20].

3.4 Discussion

Figure 13 schematically compares the scalability and the ease

of use (for the database system programmer) of latching, lock-

free data structures, and HTM. The great advantage of HTM
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Figure 12. Incrementing a single, global counter (extreme

contention)
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HTMlatch-free

Figure 13. Schematic comparison of different synchro-

nization approaches

is that it is the only synchronization approach that offers

good performance and scalability while being easy to use.

Our experiments with hardware transactional memory on a

28-core system with Non-Uniform Memory Access (NUMA)

have shown that HTM can indeed scale to large systems.

However, we have also seen that to get good performance

a number of important points must be considered:

• The built-in Hardware Lock Elision feature does not scale

when many cores are used.

• Instead, one should implement lock elision using the

Restricted Transactional Memory primitives, and set the

number of retries to 20 or more.

• Additionally, one has to make sure that the percentage

of transactions that cannot be executed transactionally,

e.g., due to kernel traps, is very low. Otherwise failed

lock elision will cause serialization, and Amdahl’s Law

severely limits scalability.

• HTM, just like latching or atomic operations, does not

scale under very high contention workloads.

Nevertheless, HTM is a powerful and efficient new synchro-

nization primitive for many-core systems.
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4 HTM-SUPPORTED TRANSACTION MANAGE-
MENT

As databases are expected to offer ACID transactions, they

have to implement a mechanism to synchronize concurrent

transactions. The traditional concurrency control method used

in most database systems is some variant of two-phase locking

(2PL). Before accessing a database item (tuple, page, etc.),

the transaction acquires a lock in the appropriate lock mode

(shared, exclusive, etc.). Conflicting operations, i.e., conflict-

ing lock requests, implicitly order transactions relative to each

other and thus ensure serializability.

In the past this model worked very well. Concurrent transac-

tion execution was necessary to hide I/O latency, and the costs

for checking locks was negligible compared to the processing

costs in disk-based systems. However, this has changed in

modern systems, where large parts of the data are kept in

main memory, and where query processing is increasingly

CPU bound. In such a setup, lock-based synchronization con-

stitutes a significant fraction of the total execution time, in

some cases even dominates the processing [7], [21].

In particular, it is very hard to decide at which gran-

ularity latching/locking should be performed: if very fine-

grained latching is used, the additional overhead will annihilate

any speedup from parallelism; with coarse-grained latches,

parallelism is, limited. For non-trivial programs, this is a

very difficult problem, and the most efficient choice can

often only be decided empirically. The granularity problem

is even more difficult for a database system because it must

efficiently support arbitrary workloads. With hardware support,

transactional memory offers an elegant solution: As long as

conflicts are infrequent, HTM offers the parallelism of fine-

grained latching, but without its overhead; if hotspots occur

frequently, the best method in main-memory databases is

serial execution, which is exactly the fallback path for HTM

conflicts. Therefore, HTM is a highly promising building block

for high performance database systems.

4.1 Mapping Database Transactions to HTM Trans-

actions

As the maximum size of hardware transactions is limited, only

a database transaction that is small can directly be mapped

to a single hardware transaction. Therefore, we assemble

complex database transactions by using hardware transactions

as building blocks, as shown in Figure 14. The key idea

here is to use a customized variant of timestamp ordering

(TSO) to “glue” together these small hardware transactions.

TSO is a classic concurrency control technique, which was

extensively studied in the context of disk-based and distributed

database systems [22], [23]. For disk-based systems, TSO is

not competitive to locking because most read accesses result

in an update of the read timestamp, and thus a write to

disk. These timestamp updates are obviously much cheaper

in RAM. On the opposite, fine-grained locking is much more

expensive than maintaining timestamps in main memory, as

we will show in Section 6.

Timestamp ordering uses read and write timestamps to

identify read/write and write/write conflicts. Each transaction

HTM transaction

conflict detection: read/write sets in hardware

elided lock: latch

single tuple access

verify/update tuple timestamps

...

...

database transaction

conflict detection: read/write sets via timestamps

elided lock: serial execution
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verify/update tuple timestamps
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Figure 14. Transforming database transactions into HTM

transactions

is associated with a monotonically increasing timestamp,

and whenever a data item is read or updated its associated

timestamp is updated, too. The read timestamp of a data

item records the youngest reader of this particular item,

and the write timestamp records the last writer. This way,

a transaction recognizes if its operation collides with an

operation of a “younger” transactions (i.e., a transaction with

a larger timestamp), which would be a violation of transaction

isolation. In particular, an operation fails if a transaction tries

to read data from a younger transaction, or if a transaction

tries to update a data item that has already been read by a

younger transaction. Note that basic TSO [22] has to be refined

to prevent phantoms. Furthermore, some care is needed to

prevent non-recoverable schedules, as by default transactions

are allowed to read data from older, but potentially non-

committed, transactions.

To resolve both issues (phantoms and dirty reads), we

deviate from basic TSO by introducing a “safe timestamp”,

i.e., a point in time where it is known that all older transactions

have already been committed. With classical TSO, when a

transaction tries to read a dirty data item (marked by a dirty

bit) from another transaction, it must wait for that transaction

to finish. In main-memory database systems running at full

clock speed, waiting is very undesirable.

We avoid both waiting and phantom problems with the

safe timestamp concept. The safe timestamp TSsafe is the

youngest timestamp for which holds: All transactions with

an older timestamp TSold with old ≤ safe have already been

committed or aborted. While regular TSO compares transac-

tion timestamps directly, we compare timestamps to the safe

timestamp of each transaction: Everything that is older than the

safe timestamp can be safely read, and everything that has been
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read only by transactions up to the safe timestamp can safely

be modified. Note that we could also access or modify some

tuples with newer timestamps, namely those from transactions

that have already committed in between this transaction’s

begin and now. But this would require complex and expensive

checks during tuple access, in particular if one also wants to

prevent phantoms. We therefore use the safe timestamp as a

cheap, though somewhat conservative, mechanism to ensure

serializability. In the scenario

TS1

TS2

TS3

TS4

TS5

the safe timestamp of TS5 would be set to TS2. So transaction

TS5 would validate its read access such that only data items

with a write timestamp TSW ≤ TS2 are allowed. Write

accesses on behalf of TS5 must additionally verify that the

read timestamp of all items to be written satisfies the condition

TSR ≤ TS2. Obviously, a read or write timestamp TS = TS5
is permitted as well—in case a transaction accesses the same

data item multiple times.

4.2 Conflict Detection and Resolution

In our scheme, the read and the write timestamps are stored

at each tuple. After looking up a tuple in an index, its

timestamp(s) must be verified and updated. Each single tuple

access, including index traversal and timestamp update, is

executed as a hardware transaction using lock elision. The

small granularity ensures that false aborts due to hardware

limitations are very unlikely, because Haswell’s hardware

transactions can access dozens of cache lines (cf. Section 2).

Nevertheless, two types of conflicts may occur: If HTM

detects a conflict (short blue arrows in Figure 14), the hardware

transaction is restarted, but this time the latch is acquired.

Rolling back a hardware transaction is very cheap, as it only

involves invalidating the transactionally modified cache lines,

and copies of the original content can still be found in the L2

and/or L3 cache.

For timestamp conflicts, which are detected in software

(long red arrows in Figure 14), the system must first roll back

the database transaction. This rollback utilizes the “normal”

logging and recovery infrastructure of the database system,

i.e., the undo-log records of the partial database transaction

are applied in an ARIES-style compensation [24]. Then,

the transaction is executed serially by using a global lock,

rolling the log forward again. This requires logical logging

and non-interactive transactions, as we cannot roll a user

action backward or forward. We use snapshots to isolate

interactive transactions from the rest of the system [21]. The

fallback to serial execution ensures forward progress, because

in serial execution a transaction will never fail due to conflicts.

Note that it is often beneficial to optimistically restart the

transaction a number of times instead of resorting to serial

execution immediately, as serial execution is very pessimistic

and prevents parallelism.

Figure 15 details the implementation of a database transac-

tion using lock elision and timestamps. The splitting of stored

procedures into smaller HTM transactions is fully automatic

(done by our compiler) and transparent for the programmer.

As shown the example, queries or updates (within a database

transaction) that access a single tuple through a unique index

are directly translated into a single HTM transaction. Larger

statements like non-unique index lookups should be split into

multiple HTM transactions, e.g., one for each accessed tuple.

The index lookup and timestamp checks are protected using

an elided latch, which avoids latching the index structures

themselves. The implementation of the HTM latch is described

in Section 3.3.

4.3 Optimizations

How the transaction manager handles timestamp conflicts is

very important for performance. If the conflict is only caused

by the conservatism of the safe timestamp (i.e., regular TSO

would have no conflict), it is sometimes possible to avoid

rolling back the transaction. If the conflicting transaction has

a smaller timestamp and has already finished, the apparent

conflict can be ignored. This optimization is possible because

the safe timestamp cannot overtake a currently running trans-

action’s timestamp.

As mentioned before, it is often beneficial to restart an

aborted transaction a number of times, instead of immediately

falling back to serial execution. In order for the restart to suc-

ceed, the safe timestamp must have advanced past the conflict

timestamp. Since this timestamp is available (it triggered the

abort), the transaction can wait, while periodically recomput-

ing the safe timestamp until it has advanced sufficiently. Then

the transaction can be restarted with a new timestamp and safe

timestamp. The disadvantage of this approach is that during

this waiting period no useful work is performed by the thread.

A more effective strategy is to suspend the aborted trans-

action and execute other transactions instead. Once the safe

timestamp has advanced past the conflicting transaction’s

timestamp that transaction can be resumed. This strategy

avoids wasteful waiting. We found rollback and re-execution

to be quite cheap because the accessed data is often in

cache. Therefore, our implementation immediately performs

an abort after a timestamp conflict, as shown in Figure 15, and

executes other transactions instead, until the safe timestamp

has sufficiently advanced. We additionally limit the number

of times a transaction is restarted before falling back to serial

execution—thus ensuring forward progress.

While our description here and also our initial implementa-

tion uses both read and write timestamps, it is possible to avoid

read timestamps. Read timestamps are a bit unfortunate, as

they can cause “false” HTM conflicts due to parallel timestamp

updates, even though the read operations themselves would

not conflict. Semantically the read timestamps are used to

detect if a tuple has already been read by a newer transaction,

which prohibits updates by older transactions (as they would

destroy serializability). However, the read timestamps can be

avoided by keeping track of the write timestamps of all data

items accessed (read or written) by a certain transaction.
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acquireHTMLatch(account.latch)

tid=uniqueIndexLookup(account, ...)

verifyRead(account, tid)

balance=loadAttribute(account, ..., tid)

releaseHTMLatch(account.latch)

acquireHTMLatch(account.latch) 

tid=uniqueIndexLookup(account, ...)

verifyWrite(account, tid)

logUpdate(account, tid, ...)

updateTuple(account, tid, ...)

releaseHTMLatch(account.latch)

BEGIN TRANSACTION;

   SELECT balance

   FROM account

   WHERE id=from;

   IF balance>amount

      UPDATE account

      SET balance=balance-amount

      WHERE id=from;

      UPDATE account

      SET balance=balance+amount

      WHERE id=to;

COMMIT TRANSACTION;

tuple=getTuple(account, tid)

if ((tuple.writeTS>safeTSand tuple.writeTS!=now) OR

    (tuple.readTS>safeTS and tuple.readTS!=now)) {

   releaseHTMLatch(accout.latch)

   rollback()

   handleTSConflict()

}

tuple.writeTS=max(tuple.writeTS, now)

primary key index

Figure 15. Implementing database transactions with timestamps and lock elision

Then, at commit time, the transaction re-examines the write

timestamps of all data items and aborts if any one of them has

changed [25], ensuring serializability. We plan to implement

this technique in future work, and expect to get even better

performance in the case of read hotspots.

It is illustrative to compare our scheme to software trans-

actional memory (STM) systems. Indeed, our scheme can

be considered an HTM-supported implementation of STM.

However, we get significantly better performance than pure

STM by exploiting DBMS domain knowledge. For example,

index structures are protected from concurrent modifications

by the HTM transaction, but are not tracked with timestamps,

as full transaction isolation would in fact be undesirable there.

This is similar to B-tree latching in disk-based systems—

however, at minimal cost. The indexed tuples themselves

are isolated via timestamps to ensure serializable transaction

behavior. Note further that our interpretation of timestamps

is different from regular TSO [22]: Instead of deciding about

transaction success and failure as in TSO, we use timestamps

to detect intersecting read/write sets, just like the hardware

itself for the HTM part. In the case of conflicts, we do not abort

the transaction or retry with a new timestamp an indefinite

number of times, but fall back to the more restrictive sequential

execution mode that ensures forward progress and guarantees

the eventual success of every transaction.

5 HTM-FRIENDLY DATA STORAGE

Transactional memory synchronizes concurrent accesses by

tracking read and write sets. This avoids the need for fine-

grained locking and greatly improves concurrency as long as

objects at different memory addresses are accessed. However,

because HTM usually tracks accesses at cache line granularity,

false conflicts may occur. For example, if the two data items A

and B happen to be stored in a single cache line, a write to A

causes a conflict with B. This conflict would not have occurred

if each data item had its own dedicated lock. Therefore, HTM

presents additional challenges for database systems that must

be tackled in order to efficiently utilize this feature.

Ti: insert

Tj: insert

N

main

Ti: insert

Tj: insert

N

N1 Zone1

Zone2

B1

N2

B2

free

free

free

Figure 16. Avoiding hotspots by zone segmentation

5.1 Data Storage with Zone Segmentation

With a straightforward contiguous main-memory data layout,

which is illustrated on the left-hand side of Figure 16, an insert

into a relation results in appending the tuple to the end of the

relation. It is clear that such a layout does not allow concurrent

insertions, because each insert writes to the end of the relation.

Additionally, all inserts will try to increment some variable N

which counts the number of tuples. The memory location at

the end of the table and the counter N are hotspots causing

concurrent inserts to fail.

In order to allow for concurrent inserts, we use multiple

zones per relation, as shown on the right-hand side of Figure

16. Each relation has a constant number of these zones, e.g.,

two times the number of hardware threads. A random zone

number is assigned to each transaction, and all inserts of that

transaction use this local zone. The same zone number is

also used for inserts into other relations. Therefore, with an

appropriately chosen number of zones, concurrent inserts can

proceed with only a small conflict probability, even if many

relations are affected. Besides the relatively small insert zones,

each relation has a main zone where, for large relations, most

tuples are stored.

The boundary is stored in a counter N . For each zone i, the
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Figure 17. Declustering surrogate key generation

base Bi and the next insert position Ni are maintained. When a

zone becomes full (i.e., when Ni reaches Bi+1), it is collapsed

into the neighboring zone, and a new zone at the end of the

table is created. Note that no tuples are copied and the tuple

identifiers do not change, only the sizes of zones need to be

adjusted. As a consequence, collapsing zones does not affect

concurrent access to the tuples. Eventually, the insert zones

are collapsed with the large contiguous main area. For a main-

memory databases this guarantees very fast scan performance

at clock speed during query processing. The counters Ni and

Bi should be stored in separate cache lines for each zone,

as otherwise unnecessary conflicts occur while updating these

values.

5.2 Index Structures

Besides the logical isolation of transactions using 2PL or TSO,

database systems must isolate concurrent accesses to index

structures. In principle, any data structure can be synchronized

using HTM by simply wrapping each access in a transaction.

In this section we first discuss how scalability can be improved

by avoiding some common types of conflicts, before showing

that HTM has much better performance than traditional index

synchronization via fine-grained latches.

One common problem is that indexes often have a counter

that stores the number of key/value pairs and prevents con-

current modifications. Fortunately, this counter is often not

needed and can be removed. For data structures that allocate

small memory chunks, another source of HTM conflicts is

memory allocation. This problem can be solved by using an

allocator that has a thread-local buffer.

Surrogate primary keys are usually implemented as ascend-

ing integer sequences. For tree-based index structures, which

maintain their data in sorted order, this causes HTM conflicts

because all concurrent inserts try to access memory locations

in the same vicinity, as illustrated on the left-hand side of

Figure 17. This problem is very similar to the problem of

concurrently inserting values into a table discussed above, and

indeed the solution is similar: If permitted by the application,

the integer sequence is partitioned into multiple constant-sized

chunks and values are handed out from one of the chunks

depending on the transactions’ zone number. This prevents

interference of parallel index tree insertions as they are spread

across different memory locations—as shown on the right of

Figure 17. Once all values from a chunk are exhausted, the

next set of integers is assigned to it. Note that hash tables

are not affected by this problem because the use of a hash

function results in a random access pattern which leads to a

low conflict probability. But of course, as a direct consequence

of this randomization, hash tables do not support range scans.

6 EVALUATION

For most experiments we used an Intel i5 4670T Haswell

processor with 4 cores, 6 MB shared L3 cache, and full

HTM support through the Intel Transactional Synchronization

Extensions. The maximum clock rate is 3.3 GHz, but can

only be achieved when only one core is fully utilized. When

utilizing all cores, we measured a sustained clock rate of

2.9 GHz.

By default, HyPer uses serial execution similar to

VoltDB [1]; multiple threads are only used if the schema has

been partitioned by human intervention. In the following we

will call these execution modes serial and partitioned. Note

that the partitioned mode used by HyPer (as in other systems)

is somewhat cheating, since the partitioning scheme has to

be explicitly provided by a human, and a good partitioning

scheme is hard to find in general. In addition to these execution

modes we included a 2PL implementation, described in [21],

as baseline for comparisons to standard database systems,

and the hardware transactional memory approach (HTM) pro-

posed here. We also include TSO with coarse-grained latches

(optimistic) instead of HTM to show that TSO alone is not

sufficient for good performance.

For most experiments we used the well-known TPC-C

benchmark as basis (without “think times”, the only deviation

from the benchmark rules). We set the number of warehouses

to 32, and for the partitioning experiments the strategy was

to partition both the data and the transactions by the main

warehouse. We used the Adaptive Radix Tree [17] as index

structure, although the scalability is similar with hash tables

and red-black trees. In the following, we first look at scalability

results for TPC-C and then study the interaction with HTM in

microbenchmarks.

6.1 TPC-C Results

In a first experiment, we ran TPC-C and varied the number of

threads up to the number of available cores. The results are

shown in Figure 18 and reveal the following: First, classical

2PL is clearly inferior to all other approaches. Its overhead is

too high, and it is even dominated by single-threaded serial

execution. The latching-based optimistic approach has less

overhead than 2PL, but does not scale because the coarse-

grained (relation-level) latches severely limit concurrency.

Both the partitioned scheme and HTM scale very well, with

partitioning being slightly faster. But note that this is a com-

parison of a human-assisted approach with a fully automatic

approach. Furthermore, the partitioning approach works so

well only because TPC-C is “embarrassingly partitionable” in

this low MPL setup, as we will see in the next experiment.

The reason that partitioning copes well with TPC-C is that

most transactions stay within a single partition. By default,

about 11% of all transactions cross partition boundaries (and

therefore require serial execution to prevent collisions in a

lock-free system). The performance depends crucially on the

ability of transactions to stay within one partition. As shown

in Figure 19, varying the percentage of partition-crossing

transactions has a very deteriorating effect on the partitioning
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Figure 18. Scalability of TPC-C on desktop system
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Figure 19. TPC-C with modified partition-crossing rates

approach, while the other transaction managers are largely un-

affected because, in the case of TPC-C, partition-crossing does

not mean conflicting. Therefore, picking the right partitioning

scheme would be absolutely crucial; however, it is often hard

to do—in particular if transactions are added to the workload

dynamically.

Figure 20 shows results for TPC-C on the 28-core system

described in Section 3. To reduce the frequent write conflicts,

which occur in TPC-C at high thread counts, we set the

number of warehouses to 200, the number of insert zones

to 64, and the number of restarts to 30. With these settings,

our HTM-supported concurrency control scheme achieves a

speedup of 15× and around 1 million TPC-C transactions

per second with 28 threads. The other concurrency control

schemes show similar performance and scalability character-

istics as on the 4-core system. The figure also shows the

performance of the Silo system [26] which we measured by

using the publicly available source code that includes a hand-

coded TPC-C implementation in C++. Silo shows very good

scalability, even at high thread counts, but is about 3x slower

than HTM-supported HyPer with single-threaded execution.

6.2 Microbenchmarks

Our transaction manager was designed to be lightweight.

Nevertheless, there is some overhead in comparison with an
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Figure 20. Scalability of TPC-C on server system

unsynchronized, purely single-threaded implementation. We

determined the overhead by running the TPC-C benchmark

using only one thread and enabling each feature separately:

The HTM-friendly memory layout, including zone segmen-

tation (with 8 zones), added 5% overhead, mostly because

of reduced cache locality. The HLE spinlocks, which are

acquired for each tuple access, added 7% overhead. Checking

and updating the timestamps, slowed down execution by 10%.

Finally, transaction management, e.g., determining the safe

timestamp, the transaction ID, etc. caused 7% overhead. In

total, these changes amounted to a slowdown of 29%. HyPer

compiles transactions to very efficient machine code, so any

additional work will have noticeable impact. However, this

is much lower than the overhead of the 2PL implementation,

which is 61%! And of course the overhead is completely paid

off by the much superior scalability of the HTM approach.

One interesting question is if it would be possible to

simply execute a database transaction as one large HTM

transaction. To analyze this, we used binary instrumentation of

the generated transaction code to record the read and write sets

of all TPC-C transactions. We found that only the delivery and

order-status transactions have a cacheline footprint of less than

7 KB and could be executed as HTM transactions. The other

transactions access between 18 KB and 61 KB, and would

usually exhaust the transactional buffer. Therefore, executing

TPC-C transactions as monolithic HTM transactions is not

possible. And other workloads will have transactions that are

much larger than the relatively simple TPC-C transactions.

Therefore, a mechanism like our timestamp scheme is required

to cope with large transactions.

As we discussed in Section 4, there are two types of

conflicts: timestamp conflicts and HTM conflicts. Timestamp

conflicts must be handled by the transaction manager and

usually result in a rollback of the transaction. We measured

that 12% of all TPC-C transactions were aborted due to

a timestamp conflict, but only 0.5% required more than 2

restarts. Most aborts occur at the warehouse relation, which

has only 32 tuples but is updated frequently.

While HTM conflicts do not result in a rollback of the

entire transaction, they result in the acquisition of relation-

level latches—greatly reducing concurrency. Using hardware
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counters, we measured the HLE abort rate of TPC-C, and

found that 6% of all HLE transactions were aborted. This rate

can be reduced by manually restarting transactions after abort

by using Restricted Transaction Memory (RTM) instructions

instead of HLE. As Figure 21 shows, the abort rate can be

reduced greatly by restarting aborted transaction, i.e., most

aborts are transient. With 4 threads, restarting has only a small

positive effect on the overall transaction rate (1.5%), because

a 6% abort rate is still “small enough” for 4 threads.

These low abort rates are the outcome of our HTM-friendly

storage layout from Section 5. Because TPC-C is very insert-

heave, with only one zone, the HLE abort rate rises from 6%

to 14%, and the clashes often do not vanish after restarts.

Therefore, a careful data layout is absolutely mandatory to

benefit from HTM. Note though that we did not decluster

surrogate key generation, which makes conflicts even more

unlikely, but would have required changes to the benchmark.

7 RELATED WORK

Optimizing the transaction processing for modern multi-core

and in-memory database systems is a vibrant topic within the

database community. In the context of H-Store/VoltDB [7],

[27] several approaches for automatically deriving a database

partitioning scheme from the pre-defined workload were de-

vised [28], [29] and methods of optimizing partition-crossing

transactions were investigated [30]. The partitioning research

focused on distributed databases, but is also applicable to

shared memory systems. Partitioning the database allows for

scalable serial transaction execution as long as the transactions

do not cross partition boundaries, which in general is hard

to achieve. In [31] a data-oriented transaction processing

architecture is devised, where transactions move from one

processing queue to another instead of being assigned to a

single thread. The locking-based synchronization is optimized

via speculative lock inheritance [32]. Ren et al. [33] found that

the lock manager is a critical performance bottleneck for main

memory database systems. They propose a more lightweight

scheme, where, instead of locks in a global lock manager data

structure, each tuple has two counters that indicate how many

transactions requested read or write access. In an earlier eval-

uation we showed that timestamp-based concurrency control

has become a promising alternative to traditional locking [34].

Tu et al. [26] recently designed an in-memory OLTP system

that uses optimistic concurrency control and a novel B-Tree

variant [35] optimized for concurrent access. Lomet et al. [36]

and Larson et al. [8] devised multi-version concurrency control

schemes that, like our approach, use a timestamp-based version

control to determine conflicting operations. Unlike our pro-

posal, their concurrency control is fully software-implemented,

therefore it bears some similarity to software transactional

memory [37].

Herlihy and Moss [6], [38] proposed HTM for lock-free

concurrent data structures. Shavit and Touitou [39] are credited

for the first STM proposal. A comprehensive account on

transactional memory is given in the book by Larus and

Rajwar [40]. Due to the entirely software-controlled validation

overhead, STM found little resonance in the database systems

community—while, fueled by the emergence of the now com-

mon many-core processors, it was a vibrant research activity

in the parallel computing community [41].

Wang et al. [42] combine Haswell’s HTM with optimistic

concurrency control to build a scalable in-memory database

systems. Their approach similar to ours, but requires a final

commit phase that is executed in a single hardware transaction

and which encompasses the meta data of the transactions’

read and write set. Karnagel et al. [43] performed a careful

evaluation of HTM for synchronizing B-Tree access. Litz et

al. [44] use multi-versioning, an old idea from the database

community, to speed up TM in hardware.

8 SUMMARY AND FUTURE WORK

There are two developments—one from the hardware vendors,

and one from the database software developers—that appear

like a perfect match: the emergence of hardware transactional

memory (HTM) in modern processors, and main-memory

database systems. The data access times of these systems are

so short that the concurrency control overhead, in particular

for locking/latching, is substantial and can be optimized by

carefully designing HTM-supported transaction management.

Even though transactions in main-memory databases are of-

ten of short duration, the limitations of HTM’s read/write

set management precludes a one-to-one mapping of DBMS

transactions to HTM transactions.

We therefore devised and evaluated a transaction manage-

ment scheme that transforms a (larger) database transaction

into a sequence of more elementary, single tuple access/update

HTM transactions. Our approach relies on the well-known

timestamp ordering technique to “glue” the sequence of HTM

transactions into an atomic and isolated database transaction.

Our quantitative evaluation on a mainstream Haswell processor

showed that our approach has low overhead and excellent

scalability.

In future work we will investigate our approach on other

hardware platforms with HTM like IBM’s Power8.
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