
PHYSICAL REVIEW E 91, 062125 (2015)

Scaling hypothesis for the Euclidean bipartite matching problem. II. Correlation functions
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We analyze the random Euclidean bipartite matching problem on the hypertorus in d dimensions with
quadratic cost and we derive the two-point correlation function for the optimal matching, using a proper ansatz
introduced by Caracciolo et al. [Phys. Rev. E 90, 012118 (2014)] to evaluate the average optimal matching
cost. We consider both the grid-Poisson matching problem and the Poisson-Poisson matching problem. We
also show that the correlation function is strictly related to the Green’s function of the Laplace operator on the
hypertorus.
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I. THE MATCHING PROBLEM: AN INTRODUCTION

The assignment problem, or bipartite matching problem, is
a classical combinatorial optimization problem in which two
sets of N elements, B = {bi}i=1,...,N and R := {ri}i=1,...,N ,
are considered. An assignment is an element π ∈ SN of the
set SN of permutations of N elements, such that ri "→ bπ(i).
Moreover, a cost function, w : R × B → R+, (ri ,bj ) "→ wij ,
is given, from which we can define the total cost of a certain
assignment π as

EN [π ; w] := 1
N

N∑

i=1

wiπ(i). (1)

In the bipartite matching problem we want to find the
permutation π∗ that minimizes the previous quantity for a
given function w. From a computational point of view, the
problem belongs to the P computational complexity class
and it can be efficiently solved using fast algorithms [1–3].
If random instances are considered, i.e., wij are random
quantities, we are usually interested on the average optimal
cost,

EN := EN [π∗; w], (2)

where we denoted by • the expectation over all the possible
instances w. If the values {wij } are independent and identically
distributed random variables, the problem is usually called
random assignment problem: in this case, the average optimal
cost and its properties in the large N limit were investigated
both with statistical physics techniques [4] and probability
arguments [5].

In a more complicated variation of the random assignment
problem, the so-called Euclidean bipartite matching problem
(EBMP), the two sets R and B are in one-to-one corre-
spondence with uniformly generated random points on the
unit hypercube "d := [0,1]d ⊂ Rd , while the weight wij is a
function of the Euclidean distance ∥ri − bj∥ (for simplicity,
we identify the elements bi and rj with the corresponding
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geometric points in "d ): in this case correlations between
different values {wij } appear and a proper mathematical
treatment is more complicated. In the following we will
consider weight functions in the form

wij := ∥ri − bj∥p, p ∈ R+. (3)

Mézard and Parisi [6] considered the previous problem on
the hypercube "d for any value of d in the large N limit,
assuming that correlations can be treated as perturbations to the
purely random case and evaluating approximately the average
optimal cost through replica arguments. An exact solution
to the problem for the d = 1 and p > 1 case is provided in
[7,8], where the average optimal cost and correlation functions
are computed; moreover, the correspondence between the
matching problem and the Brownian bridge process on the
line and the circle is proved.

Denoting by π∗ the optimal permutation for a given
instance, we introduce the optimal matching ray:

m(ri) := bπ∗(i) − ri , i = 1, . . . N. (4)

The optimal cost is

E
(p)
N [m; {R,B}] := 1

N

N∑

i=1

∥m(ri)∥p, (5)

E
(p)
N (d) := E

(p)
N [m; {R,B}], (6)

where d is the dimensionality of the Euclidean space and the
average • is performed over the positions of the points.

The scaling properties of the optimal matching ray, and
therefore of the optimal cost, are known to the literature for
p > 1 [8–10], being

∥m(x)∥ ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
N

for d = 1,
√

ln N
N

for d = 2,

1
d
√

N
for d ! 3.

(7)

In the present paper we are interested in the correlation
function of the optimal matching ray m in the large N limit;
we will assume periodic boundary conditions on the hypercube
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FIG. 1. (Color online) GP Euclidean bipartite matching with
N = 225 and p = 2 on the torus.

"d ; i.e., we will consider the problem on the flat hypertorus
Td in d dimensions. We will analyze both the case in which
two sets of random points are considered and the case in which
one set of points is supposedly fixed on a regular hypercubic
lattice, while the second set is obtained from a Poisson process
(see, e.g., Fig. 1 for a pictorial representation of a realization
of the two-dimensional problem). To introduce our results, in
Sec. II we will review the Monge-Kantorovič formulation of
the optimal transport problem, from which a suitable general
ansatz, already used by Caracciolo et al. [11], is derived for the
expression of the optimal matching ray in the continuum limit
for the p = 2 case. Using this working ansatz, in Sec. II B we
will consider the EBMP with quadratic cost on Td , and we
will give evidences that, in the large N limit, the correlation
function

Cd (x) = m(ri) · m(rj )|ri−rj =x (8)

is related to the Green’s function of the Laplacian operator
on Td . We will consider also the correlation function for the
normalized optimal matching ray

σ (ri) := m(ri)
∥m(ri)∥

. (9)

Finally, we will give numerical evidences that the functional
forms of the correlation functions obtained for p = 2 in
the two-dimensional case are in good agreement with the
numerical results for p = 1 and p = 3 in the same dimension.

To our knowledge, these results are new to the literature,
where only the d = 1 case is evaluated explicitly [7,8]. The
present work can be seen as a natural expansion and completion
of a previous work of Caracciolo et al. [11].

II. THE MONGE-KANTOROVIČ MASS TRANSFER
PROBLEM AND CORRELATION FUNCTIONS

A. The Monge-Kantorovič problem

The Monge-Kantorovič transfer problem is a well-studied
problem in measure theory [12], in the context of transportation
theory. Let us suppose that we are given two nonnegative
smooth density measures ρ1 and ρ2 on a compact subset " ⊂
Rd ,

∫
"

ρ1(x) dd x =
∫
"

ρ2(x) dd x. Suppose also that a work
function w : " × " → R+ is given. We want to find a one-to-
one mapping M : " → ", called optimal transport map, such

that the following conditions are satisfied:
(1) M ∈ T , T set of suitable transport maps, defined as

follows:

T :=
{
M : " → "

∣∣∣∣

∫

A

ρ1(x) dd x

=
∫

M−1(A)
ρ2(x) dd x ∀A ⊆ " measurable

}
. (10)

(2) M minimizes a certain cost functional,

E[M; w] :=
∫

"

w[x,M(x)]ρ1(x) dd x, (11)

where w : " × " → R+ is a transportation cost function, i.e.,
E[M; w] = minM∈T E[M; w].

Interestingly, it can be proven that, if w(x,y) = ∥x − y∥p

with p ∈ (1,+∞) the condition M ∈ T can be reexpressed
as a change-of-variable formula [13],

ρ1(x) = ρ2[M(x)] det JM(x), ∀x ∈ ", (12)

where JM(x) is the Jacobian matrix of M, [JM(x)]ij ≡
∂Mi

∂xj
(x). Moreover, if p = 2, it can be proved [13] that the

optimal transport map can be expressed as a gradient of a
scalar potential ϕ, i.e.,

M(x) = ∇ϕ(x). (13)

It follows that the solution M of the transport problem has to
be identified among the vector fields in the form of Eq. (13),
with ϕ satisfying the following relation:

ρ1(x) = ρ2[∇ϕ(x)] det Hess ϕ(x), ∀x ∈ ". (14)

In the previous expression Hess ϕ(x) is the Hessian matrix,
[Hess ϕ(x)]ij = ∂2ϕ

∂xi∂xj
(x). The nonlinear Eq. (14) is known to

the literature as Monge-Ampère equation.
Consider now the Monge-Kantorovič problem in "⊂Rd ,∫

"
ρ1(x) dd x=

∫
"

ρ2(x) dd x=1, with work function w(x,y) =
∥x − y∥2; suppose moreover that

ρ1(x) = 1 + δρ1(x) and ρ2(x) = 1 + δρ2(x), (15)

where

|δρ1(x)| ≪ 1 and |δρ2(x)| ≪ 1 ∀x ∈ ". (16)

We expect that M(x) = x + m(x), ∥m(x)∥ ≪ 1 ∀x ∈ ": in
the first-order approximation, det JM(x) ≈ 1 + ∇ · m(x), so
we have that

∇ · m(x) ≈ ρ1(x) − ρ2(x) =: ρ(x); (17)

in particular, using the fact that m = ∇φ, we have that in the
limit of our approximation the Poisson equation holds:

(φ(x) = ρ(x). (18)

Note that in this case the total cost of the transport is given by

E[M,∥•∥2] =
∫

"

∥∇φ(x)∥2 dd x. (19)

In the following we will consider the unit hypercube,
" ≡ "d , with periodic boundary conditions, i.e., we will work
on the flat hypertorus Td := Rd/Zd . Being

∫
"d

ρ(x) dd x = 0,
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Eq. (18) has a unique solution on the compact manifold Td ,
given by

φ(x) =
∫

Td

ρ(y)Gd (y,x) dd y, (20)

where Gd is the Green’s function for the Laplace operator (
on Td defined by the relation

(yGd (x,y) = δ(d)(x − y) − 1, (21)

the solution of which can be written as

Gd (x,y) ≡ Gd (x − y) = −
∑

n∈Zd\{0}

e2π in·(x−y)

4π2∥n∥2 . (22)

In this linear approximation, the transport cost is given by

E[M,∥•∥2] = −
∫∫

Td

ρ(x)Gd (x,y)ρ(y) dd y dd x (23)

=
∑

n∈Zd\{0}

|ρ̂(n)|2

4π2∥n∥2 , (24)

where

ρ̂(n) :=
∫

Td

ρ(x) e−2π in·x dd x. (25)

B. Correlation functions for the EBMP on the hypertorus

In the previous section we introduced the Monge-
Kantorovič transport problem and we obtained also a set
of simple results for the transport problem with quadratic
cost between two almost uniform measures, through a proper
linearization. We want to extract useful information about the
discrete combinatorial problem from the continuum problem
using the fact that, in the large N limit, the EBMP between
two sets of points on the hypertorus Td appears as a transport
problem between two atomic measures that can be assumed
as almost uniform measures on the domain of interest. This
naı̈ve approach is justified a posteriori by the excellent
agreement between theoretical predictions and numerical
results. In particular, let us denote by B := {bi}i=1,...,N ⊂ "d

and R := {ri}i=1,...,N ⊂ "d two sets of points in "d , each set
of cardinality N . The optimal cost of the matching on the flat
hypertorus Td with quadratic cost is therefore given, in the
notation above, by

E
(2)
N [m; {R,B}] = 1

N

N∑

i=1

∥m(ri)∥2. (26)

In the previous formula, m is the (geodesic) optimal matching
ray on Td . Let us now introduce two atomic measure densities:

ρR(x) = 1
N

N∑

i=1

δ(d)(x − ri), (27a)

ρB(x) = 1
N

N∑

i=1

δ(d)(x − bi). (27b)

In the following, we will assume, as a working ansatz, that,
in the large N limit, m → m(x) ≡ ∇φ(x) in such a way that

M(x) = x + m(x) is an optimal transport map between the two
almost uniform measures above. Under the hypothesis that at
least one set of points is randomly generated, we introduce the
following correlation function:

Cd (x,y) := ∇φ(x) · ∇φ(y), (28)

and, by using Eq. (20), we obtain

Cd (x,y) ≡ Cd (x − y) =
∫∫

∇zGd (z − x)

·∇wGd (w − y)ρ(z)ρ(w) dd z dd w, (29)

where we denoted by

ρ(x) := ρR(x) − ρB(x)

= 1
N

N∑

i=1

[δ(d)(x − ri) − δ(d)(x − bi)], (30)

and the average • is intended over all possible instances.
Observe now that Cd (0) is, in the large N limit, the average
optimal cost for the Euclidean bipartite matching problem;
using this simple correspondence, Caracciolo et al. [11]
derived the correct scaling of the optimal cost and, through a
proper regularization procedure, the finite-size corrections to
the average optimal cost for any dimension. In the following
we will consider the complete correlation function Cd (x) in
any dimension and we will derive it using the same ansatz
successfully adopted by Caracciolo et al. [11] to obtain the
scaling of the average optimal cost.

We will distinguish two different cases.
Poisson-Poisson Euclidean matching problem. In the Poisson-
Poisson (PP) Euclidean matching problem both the points of
R and the points of B are random points uniformly distributed
within "d . In this case we obtain

ρ(x)ρ(y) = 2
N

[δ(d)(x − y) − 1], (31)

and therefore the correlation function is

Cd (x − y) = − 2
N

Gd (x − y). (32)

As anticipated, the average optimal cost is given by

E
(2)
N (d) := E

(2)
N [m; {R,B}] = Cd (0). (33)

Grid-Poisson Euclidean matching problem. In the grid-
Poisson (GP) Euclidean matching problem we suppose that
N = Ld for some natural number L ∈ N and that one set
of points, e.g., the set R = {ri}i=1,...,N , is fixed on the
vertices of an hypercubic lattice, in such a way that R =
{ k

L
|k ∈ (0,L]d ∩ Nd}, while the set B = {bi}i=1,...,N ⊂ "d is

obtained as before considering randomly generated points in
"d . We have

ρ(x)ρ(y) = 1
N

δ(d)(x − y) + N2 − N

N2

+ 1
N2

∑

ij

δ(d)(x − ri)δ(d)(y − rj )

− 1
N

∑

i

[δ(d)(x − ri) + δ(d)(y − ri)]. (34)
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In this case the correlation function is therefore

CGP
d (x − y) = − 1

N
Gd (x − y). (35)

Being the average optimal cost of the matching in the grid-
Poisson case,

E
(2;GP)
N (d) := E

(2)
N [m; {R fixed,B}] = CGP

d (0), (36)

we expect that in this case it will be asymptotically one half of
the PP case.

We will consider also the correlation function for the
normalized transport field, i.e., the following quantity:

cd (x − y) = σ (x) · σ (y), (37)

in which the correlation between the values normalized
transport field,

σ (x) := m(x)
∥m(x)∥

= ∇xφ(x)
∥∇xφ(x)∥

, (38)

in different positions is evaluated. Note that σ lives on the d-
dimensional unit sphere. To compute the correlation function
Eq. (37) for the normalized field in the PP case, we assume a
Gaussian behavior for the joint probability distribution of two
values of the optimal transport field, and therefore we have

cd (x − y) =
∫∫

dd m1 dd m2
m1 · m2

∥m1∥∥m2∥
e
− 1

2 (m1 m2)·"−1(x,y)·
(m1

m2

)

(2π
√

det ")d
, (39)

where "(x,y) is the covariance matrix,

"(x,y) :=
(

m(x) · m(x) m(x) · m(y)
m(y) · m(x) m(y) · m(y)

)
(40)

≡
(

Cd (0) Cd (x − y)
Cd (x − y) Cd (0)

)
. (41)

For d ! 2 (the case d = 1 was studied in Ref. [7]), introducing

A := Cd (0)
det "(x,y)

, (42a)

B := Cd (x − y)
det "(x,y)

, (42b)

observe that B
A

→ 0+ for N → ∞, being NCd (x) finite for x ̸= 0 and NCd (0) ∼ N1− 2
d for d > 2, NCd (0) ∼ ln N for d = 2.

We have therefore that, in the notation above,

det " = 1
A2 − B2

(43)

and

cd (x,y) =
(√

A2 − B2

2π

)d 2π
d
2

)
(

d
2

)
2π

d−1
2

)
(

d−1
2

)
∫ π

0
d θ sind−2 θ cos θ

∫ ∞

0
d m1

∫ ∞

0
d m2 md−1

1 md−1
2 e− A

2 (m2
1+m2

2)+Bm1m2 cos θ

= B

A

2)2
(

d+1
2

)

d)2
(

d
2

)
(

1 − B2

A2

) d
2

2F1

[ d+1
2

d+1
2

d
2 + 1

;
B2

A2

]
N→∞−−−→
B
A

→0

2
d

(
)

(
d+1

2

)

)
(

d
2

)
)2

Cd (x − y)

E
(2)
N (d)

. (44)

In the previous expression, we have introduced the hypergeometric function

2F1

[
a b

c
; z

]
:=

∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, (a)n := )(a + 1)

)(a − n + 1)
. (45)

Observe that we can reproduce exactly the same calculation for the normalized field in the GP, obtaining

cGP
d (x − y) = 2

d

(
)

(
d+1

2

)

)
(

d
2

)
)2 CGP

d (x − y)

E
(2;GP)
N (d)

. (46)

Finally, for d ! 2 we can compute also the so called wall-to-wall correlation function for the PP case:

Wd (r) :=
d∏

i=2

(∫ 1

0
d xi

)
cd (r,x2, . . . ,xd ) = − 4

dN

(
)

(
d+1

2

)

)
(

d
2

)
)2

G1(r)

E
(2)
N (d)

. (47)
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Similarly, the computation for the GP case gives

W GP
d (r) :=

d∏

i=2

(∫ 1

0
d xi

)
cGP
d (r,x2, . . . ,xd )

= − 2
dN

(
)

(
d+1

2

)

)
(

d
2

)
)2

G1(r)

E
(2;GP)
N (d)

. (48)

III. NUMERICAL RESULTS

In the following we consider explicitly the cases d = 1,
d = 2, and d = 3 and we numerically verify the results
presented above.

A. Case d = 1

For d = 1 we have that

G1(r) = −
∑

n̸=0

1
4π2n2

e2π inr = − 1
12

+ |r|
2

(1 − |r|). (49)

It follows from Eq. (32) that

C1(x − y) = 1
N

[
1
6

− |x − y|(1 − |x − y|)
]

; (50)

moreover, note that the average optimal cost is given by

E
(2)
N (1) = C1(0) = 1

6N
. (51)

In the GP case we obtain from Eq. (35)

CGP
1 (x − y) = 1

N

[
1

12
− |x − y|1 − |x − y|

2

]
. (52)

The average total cost of the optimal matching is given by

E
(2;GP)
N (1) = CGP

1 (0) = 1
12N

. (53)

The previous results for the d = 1 case are known to the
literature [7,8,11], although the correlation function was
derived using a different probabilistic approach. In Ref. [7]
the correlation function for the normalized transport field is
evaluated as

c1(x) = cGP
1 (x) = 2

π
arctan

{
1 − 6x(1 − x)√

12x(1 − x)[1 − 3x(1 − x)]

}
.

(54)

B. Case d = 2

For d = 2, denoting by x = (x1,x2) and by y = (y1,y2) two
points on the unit flat torus T2, the Laplacian Green’s function
can be written in terms of special functions as [14]

G2(x − y) = −
∑

n ̸=0

1

4π2∥n∥2 e2π in·(x−y)

= 1
2π

ln
∣∣∣∣2π3/4 ϑ1(πz|i)

)
( 1

4

)
∣∣∣∣

∣∣∣∣
z=(x1−y1)+i(x2−y2)

− (x2 − y2)2

2
, (55)

where we introduced the first Jacobi ϑ function:

ϑ1(z|τ ) := 2 e
iπτ

4

∞∑

n=0

(−1)n eiπτn(n+1) sin[(2n + 1)z]. (56)

From Eq. (32) we have simply

C2(x) = − 1
N

[
1

2π
ln

∣∣∣∣2π3/4 ϑ1(πz|i)
)

( 1
4

)
∣∣∣∣

∣∣∣∣
z=x1+ix2

− x2
2

2

]
. (57)

In the GP case, we have as usual

CGP
2 (x − y) = 1

2C2(x − y). (58)

Observe that the previous expressions contains no free param-
eters and therefore a direct comparison with numerical data
is possible. We present our numerical results both for the GP
case and the PP case in Fig. 2(a). The average optimal cost for
the PP EBMP is given by E

(2)
N (2) = C2(0); however, G2(x) is

divergent for x = 0. Analyzing the scaling of the total cost and
performing a proper regularization of the previous quantity,
Caracciolo et al. [11] obtained

C2(0) = 1
N

(
ln N

2π
+ βPP

)
+ o

(
1
N

)
, βPP = 0.1332(5).

(59)

A numerical fit of the optimal costs for d = 2 for the GP EBMP
gives

CGP
2 (0) = 1

2N

(
ln N

2π
+ βGP

)
+ o

(
1
N

)
, βGP = 0.3758(5).

(60)

The correlation function, Eq. (37), for the normalized
matching field in the PP case has the expression, Eq. (44),

c2(x − y) = π

4
C2(x − y)

C2(0)
. (61)

Observe that the only free parameter in this quantity is C2(0):
inserting the value obtained by Caracciolo et al. [11], Eq. (59),
we obtain the theoretical prediction in Fig. 2(b), where we
also present some numerical results for c2(x,y) that show the
agreement with the theoretical curve.

Using the value Eq. (60) in Eq. (46) for d = 2 we also
obtained the theoretical curve for the grid-Poisson problem
depicted in Fig. 2(b), where, once again, an excellent agree-
ment is found with numerical data.

Finally, let us compute the wall-to-wall correlation function
for the PP Euclidean matching problem on the flat torus. The
theoretical prediction is given by Eq. (47),

W2(r) = − π

2NC2(0)
G1(r). (62)

In the GP case, instead, we have

W GP
2 (r) = − π

4NCGP
2 (0)

G1(r). (63)

Numerical results both for the PP case and for the GP case
are presented in Figs. 2(c) and 2(d). Once again observe that
the values of the average optimal cost in the corresponding
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FIG. 2. Theoretical predictions for the correlation functions C2(x) and c2(x) for the Euclidean bipartite matching problem in two dimensions
and numerical results. Numerical results for the wall-to-wall correlation functions and corresponding theoretical predictions are also presented.
(a) Section C2(r1,0) and CGP

2 (r1,0) of the correlation function both in the PP case for N = 104 and in the GP case for N = 3600 and corresponding
theoretical predictions. (b) Section c2(r1,0) for N = 104 and cGP

2 (r1,0) for N = 3600 of the correlation function and theoretical predictions,
Eqs. (44) and (46): Note that the theoretical curves overlap. (c) Rescaled wall-to-wall correlation function in two dimensions for the PP
matching problem with N = 3600 on the unit flat torus. The continuous line corresponds to the analytical prediction. (d) Rescaled wall-to-wall
correlation function in two dimensions for the GP matching problem with N = 3600 on the unit flat torus. The continuous line corresponds to
the analytical prediction.

cases, Eqs. (59) and (60), fix completely the expression of the
wall-to-wall correlation function.

C. The case p ̸= 2

Up to now, we analyzed the correlation functions for p = 2
and d = 2 obtained from the linearized Eq. (18). We present
some numerical results for p = 1 and p = 3 and N = 3600
both in the GP case and in the PP in the two-dimensional case.
In particular, we analyzed the wall-to-wall correlation function
for different values of p and we obtained numerical evidences
of a functional form for it of the type

W2(r; p,N) = w(p,N)
[ 1

6 − r(1 − r)
]
, (64)

both in the PP and in the GP case. Inspired by the obtained
expression for the p = 2 case, Eq. (62), we assumed for the
global factor w(p) the following dependence on the size N of
the considered system,

w(p,N) = α(p)π2

2 ln N + 4πβ
. (65)

where α(p) depends only on the weight exponent p and
β ≡ βGP if we are considering a GP matching and β ≡ βPP if we
are dealing with a PP matching. We expected that α(2) = 1. We
performed a numerical fit using the previous expression also
for p = 2, obtaining the results presented in Table I. Numerical
data are in excellent agreement with Eq. (64), suggesting
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TABLE I. Fit results for the wall-to-wall correlation function
of the Euclidean matching problem for d = 2 and p = 1, 2, 3 with
reference to the notation of the fitting curve, Eq. (64). Observe that
we expected α(2) = 1.

α(p) β fixed

p = 1 0.860(5)
PP p = 2 0.996(5) β ≡ βPP = 0.1332(5)

p = 3 0.96(1)

p = 1 0.88(1)
GP p = 2 1.02(3) β ≡ βGP = 0.3758(5)

p = 3 0.98(2)

therefore that the wall-to-wall correlation function in d = 2
has the same expression for all values of p up to a nonuniversal
multiplicative constant depending on the exponent that appears
in the weight function. However, further investigations in this
direction are needed to confirm this result in a wider range of
values of p.

D. Case d = 3

The general expressions, Eqs. (32) and (35), for the
correlation functions presented above can be applied in any
dimensionality in the N → ∞ limit. We show here some
numerical results for d = 3 for the grid-Poisson case, taking
into account, however, that the precision of the data is
lower, since the computation has complexity O(N3) (i.e., the
computational complexity of the Hungarian algorithm in the
Edmonds and Karp [3] version), where the number of points
N has to scale exponentially with the system dimensionality
in order to maintain the same accuracy.

For d = 3, Eqs. (22) and (32) give

C3(x − y) = 1
2π2N

∑

n∈Z3\{0}

1

∥n∥2 e2π in·(x−y) . (66)

Clearly the previous function cannot be represented in a
plot. From the correlation function C3(x), the wall-to-wall
correlation function can be obtained as before in the form

W3(r) = − 16
3πNC3(0)

G1(r). (67)

As in the previous cases, C3(0) can be evaluated from the cost
fit [11] and it is equal to C3(0) = 0.66251(2)N− 2

3 − 0.45157...
N

(note that an exact formula for the coefficient of the 1
N

correction to C3(0) is provided in Ref. [11] in terms of an
Epstein function).

Following the same procedure of the PP case, we can
compute the wall-to-wall correlation function on the unit
hypercube in d = 3 for the GP matching problem. Reproducing
the computations of the d = 2 case we have

W GP
3 (r) = − 8

3πNCGP
3 (0)

G1(r). (68)

We evaluated CGP
3 (0) from the cost scaling, obtaining

CGP
3 (0) = 0.4893(4)N− 2

3 − 0.23(5)
N

. (69)

0 0.1 0.2 0.3 0.4 0.5

0

0.005

r

W
3

N = 9261
Theoretical prediction

FIG. 3. Wall-to-wall correlation function in three dimensions for
the GP matching problem with d = 3 and N = 9261 on the unit flat
hypertorus.

The prediction obtained and the numerical data are presented
in Fig. 3.

IV. CONCLUSIONS

In the present work we adopted the scaling ansatz proposed
by Caracciolo et al. [11] to compute the correlation function
for the optimal matching ray and for the normalized optimal
matching ray in the Euclidean bipartite matching problem
on the d-dimensional flat hypertorus with quadratic cost. We
showed also that the correlation function is strictly related
to the Green’s function of the Laplacian operator on the flat
hypertorus itself in the large N limit. Given the value the
average optimal cost at fixed size N , the obtained expressions
have no free parameters and were directly compared with
the results of numerical simulations, showing an excellent
agreement. For d = 2 and d = 3 we computed also the
wall-to-wall correlation function: for d = 2 in particular we
give numerical evidences that, for p ̸= 2, the wall-to-wall
correlation function has the same form obtained for p = 2
up to a global multiplicative constant.

All previous results suggest that the EBMP with quadratic
cost, in the large N limit, appears as a Gaussian free theory
on the d-dimensional flat hypertorus, in such a way that the
correlation function of the matching ray is related directly
to the free propagator of the theory itself. In subsequent
publications we will investigate this crucial aspect of the
problem and its implications on the universal behavior for
different values of the exponent p in the cost functional.
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