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ABSTRACT An elementary model of animal aggregation 
is presented. The group-size distributions resulting from this 
model are truncated power laws. The predictions of the model 
are found to be consistent with data that describe the group- 
size distributions of tuna fish, sardinellas, and African buf- 
faloes. 

Group formation is a widespread phenomenon throughout the 
animal kingdom (groups, herds, schools, flocks). Being in 
group may reduce the chances of being caught by a predator, 
increase foraging efficiency, reduce energy costs, enhance 
resistance to toxic environmental conditions, facilitate repro- 
duction, or set the stage for social life (1-4). Groups of animals 
in general, and fish schools in particular, have been studied 
from the viewpoint of the behavioral algorithms that govern 
their formation and dynamics at the individual level (6-9) ,  or 
from the viewpoint of more macroscopic properties such as 
group-size distributions (10-13). The probability distribution 
of group sizes in a given species is an important element for 
understanding the evolution of grouping in that species; in 
particular, the existence of a typical group size may suggest that 
such a size has been selected for because it provides an optimal 
balance between costs and benefits (14, 15). The notion of 
optimal group size, however, is problematic: the actual size of 
a group may be quite different from the size that would be 
optimal for the group, because it depends on how the group is 
formed and on what information and power are available to 
the parties (16, 17). This is especially true for large groups, 
where the decision for an individual to join a group is likely to 
rest with that individual, so that group size may eventually be 
limited only by a maximum group size (lo), beyond which an 
individual is better off alone than in the group. When the 
maximum size is large, the group-size distribution may exhibit 
a long tail, a possibility that has been overlooked in virtually 
all studies (12). Indeed, school size distribution in tropical tuna 
fish can be well fitted with a truncated power law over 1.5 
decades (18): the number N(s) of caught schools of size s 
follows N(s) sub, where b is a scaling exponent, up to a cutoff 
size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsc (Fig. 1). sc sets the scale for the maximum size. 

We suggest in this paper that long-tailed (or heavy-tailed) 
group-size distributions, including power law distributions, 
may be quite generic. In view of this suggestion, one may ask 
whether there exist generic proximate mechanisms that pro- 
duce such distributions. A possible answer to this question lies 
in a simple model of group formation, arguably the simplest 
possible model based on elementary cues, inspired by a 
physical model of particle aggregation (18-20); this model 
generates group-size distributions that exhibit scaling, that is, 
power law behavior and slow decay. The model suggests that: 

(i) Power law distributions of group sizes result from the 
basic dynamics of group formation. 

(ii) Mean size is not well defined. 
~~~ ~ 
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(iii) The cutoff size, which plays a role similar to that of a 
maximum size, depends on detailed characteristics of individ. 
ual behavior or ecological conditions (food availability, pre- 
dation, etc.) that do not modify the scale-invariant properties 
of the size distribution. Such factors influence only the distri- 
bution’s cutoff size, its cross’over from scale-invariant to rapidly 
decreasing at large sizes, and possibly its scaling exponent. 

(iv) Rapidly decreasing distributions are a limiting case of 
truncated power laws when the cutoff size becomes small. The 
continuous process of amalgamation and splitting of diffusing 
entities leads to a stationary group-size distribution under 
given ecological and behavioral constraints (10, 12). Previous 
models accounting for group-size statistics have examined by 
means of gain-loss equations how the balance between aggre- 
gation and splitting under various constraints influences sta- 
tionary size distributions (10-13). Stability, or instability, 
results from the competition between aggregation and splitting 
and their respective characteristic time scales: if splitting is 
more rapid than aggregation, large groups cannot form. The 
-stability or lack of stability of groups influences the properties 
of group-size distributions: species with unstable groups tend 
to be characterized by more rapidly decreasing distributions 
than species with stable groups. 

Why have slowly decaying group-size distributions, including 
scaling laws, been overlooked in the past, although they are 
present in many models of group-size statistics (11, 12, 21)? 
Firstly, power law distributions, D(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs - ~ ,  where D(s) is the 
probability that a group be of size s [D(s) is a normalized 
version of N(s)], do not have a well-defined mean when b 5 2, 
a property that may appear nonbiological. Secondly, in his 
influential review, Okubo (12) determined that any group-size 
distribution should be exponentially decreasing by applying a 
maximum entropy principle to the distribution under the 
constraint of fixed average size, which implicitly includes the 
strong assumption that there exists a well-deked mean and 
therefore overlooks slowly decaying distributions such as 
power laws with b 5 2. It is well known to physicists that such 
a procedure leads to exponential (Gibbs-Boltzmann) distri- 
butions. The detailed balance assumptions, made by Okubo 
(U), also result in exponential distributions, but such assump- 
tions are not ethologically justified. Thirdly, long-tailed group- 
size distributions are necessarily truncated at a cutoff size 
because the population is finite, but truncated power laws must 
be distinguished from purely rapidly decreasing ones, as they 
exhibit specific properties (they “violate” the central-limit 
theorem in practice) (22-24). 

The rest of the paper is organized as follows: we first 
introduce the model and some of its variants, and then present 
group-size distribution data in fish and African buffaloes that 
allow the predictions of the model to be tested. The model’s 
notations are summarized in Table 1. 

MODEL 

General Formulation. The only assumption underlying the 
model is the tendency of groups of individuals to aggregate 
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FIG. 1.  Log-log plot of N(s) for free-swimming tuna fish schools in 
which three species, yellowfin tuna (T. albacares), skipjack tuna (K 
pelamis), and bigeye tuna zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T. obeszu) are mixed. Results are given for 
7 yr (1976-1982) and for the aggregate distribution of all years. Catch 
data from the Frenchpurse-seine fishery in the tropical Atlantic Ocean 
(18). s (in tons) is the weight of fish caught in a circular net whose 
perimeter is about 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm. 

when they meet, an extension of “biosocial attraction” (2-4, 
13). This assumption is clearly minimal for a model of group 
formation. We neglect a lot of parameters-streams, temper- 
ature, migratory trends, habitat structure, etc.-to keep the 
model generic. We assume for modeling purposes that there 
are N sites, coarse-grained zones of space, on which n indi- 
viduals move. A single individual is a 1-group; m individuals 
together form anm-group. One individual may not be the right 
atomic unit: some species spend most of their time in group, 
and isolated individuals are rarely observed. A 1-group should 
then be considered as an atomic object, which may contain a 
certain number of individuals. 

When an m-group and an h-group move to the same site, 
they aggregate to form an (m + h)-group. At each discrete time 
step, each group hops to a new site. Simulations show that 
having groups move asynchronously does not alter the results. 

Table 1. Summary of notations used in the paper 

Global notations 
N(s): number of caught schools of size s 
D(s): probability that a group will be of size s 
b: exponent of either N(s) or D(s) 
sc: cutoff size of either N(s) or D(s) 
d: spatial dimension 
a, c: fitting parameters for N(s) = a s-be-(S’+)’ 

N number of sites 
n: number of simulated individuals 
Sit: group size at site i at time t 
1:: size of group injected into site i at time t 
?4&: random hopping variable from site k to site i 
D(s, t): probability that a group at time t will be of size s 
&(p, t) :  characteristic function ofD(s, t )  
&(p): characteristic function ofD(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q(p) :  Characteristic function of If 
(Im): mth moment of I f  
f(x): crossover function of D(s) 

p :  fraction of each group spfitting at each time step 
N+: number of sites occupied by a group 
(s‘): mean group size over all sites 
e): mean group size over occupied sites 
PsPlit(s): probability of splitting for a group of size s 
o: maximum allowed group size 

9: strength of attraction of the attracting site 

General model 

splitting models 

Model with attracting site . 
- 
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We first consider a mean-field approach, where each group 
hops to a randomly selected site. The mean-field model can 
apply when there is a large variance in the distance that can be 
covered within a day. 

The equation that describes the dynamics of the group size 
sf at site i at time t is: 

c11 

where I; represents the injection of new individuals into site i, 
and Wk is a random variable representing the motion of a 
group located at site k at time t toward site i. Wii  can take 
two values, O or 1. We consider that Wii  does not depend on 
t: W k  = wk i .  Moreover, the wki are normalized: 

Dl  V k , x W k i =  1 

To analyze this model, we now assume that the injection terms 
If are independent equally distributed positive random vari- 
ables, the exact distribution of which is irrelevant provided it 
has a finite mean. 

s: + = 2 w;is: + I; 
k 

i 

RESULTS 

Mean-Field Model with No Splitting. In the simplest mean- 
field model W, can be O with probability 1 - (1/N) or 1 with 
probability l/N. We first assume that groups do not split at all. 
Let us introduce the characteristic function Zl(p,  t )  of the size 
distribution D(s, t )  at time t (25): 

m 

Zl(P, t )  =- (eXPriPs1) = c m s ,  t )  exprips1 
s=o 

where (. . .) denotes the average over all possible realizations 
of {WEI (19, 20). In the mean-field case, we have 

zl(p, t + 1) = @(p)eZ1(pJ)-l 

where @ ( p )  = (exp[ipI$ is the characteristic function of the 
injection random variable. To see this, let us write the distri- 
bution D(s, t + 1) of s-groups at time t + 1 as a function of 
D(s, t): 

c31 

N /  \ 

where Sinj is the size of a particular realization of the injection. 
Eq. 4 arises simply from randomly assembling groups at t + 1. 
This formula is equivalent to 

N 

Zl(p, t + 1) = ZG)(zi(p, t ) ~  
i=l 

[simply use the definition of Zl(p, t + 1) in terms of D(s, f + 
l)], hence the result. @( p)  can be expanded as @ ( p )  = 1 4- 
i ( I )p  - @?)p2/2 + . . . , where {Im) is the mth moment of the 
injection random variable. Taking the limit N + w, one obtains 
the steady-state characteristic function &(p) = 1 - ~ { I ) l l 2  

]p11/2i-112 f . . . , so that the sue distribution satisfies D(s) 
large enoughs (s >> (I)) (26). It can be shown that the 

steady-state characteristic function is also an attractor of the 
dynamical process described above, and that any perturbation 
is absorbed (27, 28). Simulations confirm that, starting from 
any initial condition, one converges to the predicted power-law 
distribution. Because of the constant injection. of new individ- 
uals, the process is nonstationary and the total number of 
individuals in the system increases, but this does not prevent a 
well-defined limit distribution, D(s), from existing. One should 
also remember that the average size computed with D(s) is 
infinite. Alternative but related models of coagulation frag- 
mentation, based on a Smoluchowski rate equation including 
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a breakup kernel, are also available with comparable results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Mean-Field Model with Splitting. Simple modifications of 

the model may affect the critical nature of the process, but the 
power law behavior is still observed over a finite range. For 
example, one may observe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACC s-3/2e-s/sc [consistent with 
numerical experiments (29-31)], or more generally 
D(s) = f(s/sc), wheref(x) is a rapidly decreasing crossover 
function, the particular form of which depends on the detail of 
the aggregation and breakup processes. 

Let us assume that the total number of individuals, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII, is 
constant over time, that a fractionp of each group is separated 
from the group at each time step, and that the corresponding 
prz individuals are reinjected into the N sites. The expectation 
of the injection is thenpn/N. D(s, t + 1) is now given by 

(21, 29-31). 

because it takes a total size s/(l - p)  hopping onto the same 
site to get a size s at that site after the removal of a fraction 
p (it has been assumed for simplicity that removal of particles 
occurs after injection). We then obtain 

161 

It follows from Eq. 6 that &(p) =1 - i(s’)p + . . . : the size 
distribution is short ranged with a finite mean (s’) = (1 - 
p)n/N. (s‘) is a mean taken over occupied aizd empty sites; that 
is, it includes the statistics of O-groups. The mean size of 
groups, (s), does not include empty sites and is related to {s’) 
through (s) = (s’)N/N+, where N+ is the number of occupied 
sites. To evaluate Nf in the stationary state, let us write the 
evolution equation of Nf, neglecting encounters of order 
higher than 2 

N+(t + 1) =N+(t) =pn - [(N+(t) +pn)(Nf(t) +pn - l)/2N2], 

i71 

provided N is large enough. Solving for N+, we find that 

zl(p, t + 1) = @((I -p)p)eZ1((l-p)pJ)-l 

181 

(s) increases whenp decreases. The same result can be obtained 
with another model based on a different formalism (21). In the 
present case, the total number of individuals being conserved, 
the mean is finite, but the size distribution D(s) retains some 
of its power-law characteristics: D(s) s- 3/ 2 f(s/sc), exhibiting 
a p.ower law behavior for intermediate sizes O << s << (s). 
When (s) is small, the power law is not observed, but only an 
exponential decay. Simulations have been performed with 
different values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp .  For small values of p, a power law is 
observed up to a large cutoff size, whereas the distribution is 
more rapidly decreasing for largerp (Fig. 2 the number N(s) 
of observed groups of sue s is used instead of the normalized 
value D(s). Here, it appears that f(s/sc) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-s/sc. 

The model explains deviations from power-law behavior 
through several possible modifications that tend to decrease sc. 
The cutoff size may result from such factors as some hetero- 
geneity in the speed capacities of the individuals in a group, or, 
more generally, the ability of a group to maintain its integrity 
over only a certain amount of time, which itself may depend on 
ecological conditions and individual behavior. The observed 
cutoff size in the distribution results from the competition 
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FIG. 3. Same as Fig. 2 withP = 0.01,  n = 50,000, n = 80, 000 and 
u = 20,  50, 80,  100.  

between aggregation and breakup and depends crucially on the 
time scales associated with aggregation and splitting. For 
example, the half-life of skipjack tuna schools is likely to be of 
the order of weeks (32,33), whereas other fish (12,34,35) are 
occasional schoolers, whose schools are not maintained be- 
yond a minute. In the first case, a power law distribution is 
observed up to a cutoff size, whereas in the second case the 
distribution is clearly exponential. Some species exhibit an 
intermediate strategy between school integrity over long time 
scales and rapid splitting “pulsating” schools (7) exhibit good 
cohesion within the day to enhance protection against pred- 
ators and split in all directions at night (36). 

In a similar vein, Gérard and Loisel (37) have shown that the 
increase of group size with habitat openness in large mam- 
malian herbivores may result simply from the increased op- 
portunity to perceive congeners as habitat openness increases; 
this increased opportunity in turn increases the probability of 
group formation, whereas more closed habitats tend to lead to 
the formation of unstable groups, because individuals may lose 
their groups more easily. The interplay between the aggrega- 
tion and splitting time scales leads to a shift toward smaller or 
larger group sizes: habitat openness plays the role of an 
ecological parameter constraining the dynamics of aggrega- 
tion. 

The model also makes a prediction that may be important 
for our understanding of animal groups. Depending on envi- 
ronmental conditions, the stability of groups of a given species 
may vary; for instance, the lack of food (38), the presence of 
predators, or bad sea conditions may reduce group stability. If 
the group-size distribution is a truncated power law, and if the 
model is relevant to explain the origin of the power law, we 
expect that such factors affect the cutoff size and not neces- 
sarily the power index b. 

In the previous calculations, it was assumed that all “split- 
ting” individuals were equally redistributed among all sites, but 
this may not be the case. A group of  individuals separating 
from their group can very well stay together and be reinjected 
into the system as a whole. The size distribution of splitting 
groups may also be a parameter on its own, and the probability 
for a group to split may be related to its size and/or to 
environmental parameters. But such modifications of the 
model do not destroy scaling properties. Fig. 3 represents the 
size distribution obtained from simulations of the mean-field 
model with P = 0.01 and a splitting probability equal to 1 for 
any group with a size greater than a maximum allowed size cr 
(= 20, 50, 80, 100): Psp&) = O if s o and P,,&) = 1 i fs  > 
o. Although the crossover function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is more complicated than 
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FIG. 2. Log-log plot ofN(s). Simulationwithn = 100,000 sites, IZ = 
80,000 individuals, P = 0.01,0.3,0.5. Simulation run = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl o6 time steps. 

previously, the size distribution exhibits scaling over a certain 
range that depends on u, with b = 1.5. 

Mean-Field Model with Splitting and an Attracting Site. 
Introducing a special attracting site, such as a drifting log or an 
anchored artificial fish-aggregating device (FAD) for fish, or 
a water hole for mammals, is ethologically relevant and does 
modify the group-size distribution. A special attraction to site 
1 can be included into the model by modifying the probabilities 
of the transition random variables: 

1+11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p w , ,  = 1) = 1 -p(W,, = O) = - N 

1 
N N ( N - 1 )  

V i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ l,p(Wki = 1) = 1 -p(wki = o) = - - 
Q ..( 
q is aparameter that quantifies the strength of attractioqto site 
1. Fig. 4 shows how the introduction of this attracting site alters 
the group-size distribution (at the attracting site). Increasing 
the attractivity of the site, that is, increasing q, affects the 
exponent of the distribution and its global shape. Simulations 
were performed with splitting characterized by P = 0.01. One 
might argue that introducing a globally attracting site not only 
introduces an implicit spatial scale, but may also not be 
realistic. Although this is true, introducing an explicit spatial 

. .  . 

- q= O.OOl 
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FIG. 4. Same as Fig. 2 W i t h  p = 0.91 and 9 = o, 0.001,  0.01,  0.05, 
and 0.1.  
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scale by assuming that only schools within a certain distance of 
the attracting site are attracted leads to similar results. 

Spatial Model. Other exponents can be obtained with more 
complicated combinations of aggregation and breakup ker- 
nels, even in the mean-field case (29-31). But some of the most 
interesting predictions of the model are related to the effective 
dimension d of the space in which animals move. Although the 
ocean is three-dimensional, fish may not use the whole ocean. 
They may be constrained to swim along the coasts, over the 
continental shelf, or be limited in depth by physiological 
constraints, or, alternatively, may move so randomly from any 
location to any other location that space is irrelevant (mean- 
field). The same observation is true for many animal species, 
that, for many reasons, may not fully use their spatial envi- 
ronment. 

The exact value of the exponent, in a version of the model 
on a d-dimensional lattice (groups hop to neighboring sites 
only) has been obtained by Takayasu et al. (19) for d = 1: b = 
4/3. For other dimensions, simulations performed by the same 
authors indicate that b = 1.465 -t. 0.003 ford = 2, b = 1.491 t- 
0.007 for d = 3 (19): b increases when d increases. There is a 
simple explanation for this trend: a small value of b indicates 
that there are many large groups, which is more likely to 
happen in low dimension, where groups have a higher prob- 
ability of meeting and coalescing. Therefore, we expect the 
exponent b to increase with effective dimension, with a 
maximum value of b = 3/2, obtained when there is no spatial 
constraint on movement. The model on a lattice can be 
generalized to more complicated and realistic models with, for 
example, tunable fractal dimension: the space in which animals 
actually move may not have an integer dimension, so that a 
whole range of exponents may be expected depending on 
effective space dimension. 

Data. The data presented in this section are catch-per-set 
data for tuna fish and sardinellas and are direct-count data for 
African buffaloes. Biases are discussed in the last section of the 
paper. We are looking for fits of the type N(s) a rb f(s/sc), 
with f(x) = e-?, where a, b, c and sc are four fitting parameters 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is a crossover function from power law to exponential 
decay. For simplicity, we restrict our attention to c = 1,2.  We 
focus here on two points: (i) whether the observed data are 
consistent with power law distributions, and (ii) whether space 
dimension influences the size distribution in a way predicted 
by the model. 

We have identified t wo cases in which the effective dimen- 
sion may be less than three for fish schools (although the extent 
of the dimensional reduction that occurs is difficult to quantify 
accurately): (i) tuna fish in the presence of a drifting log or a 
FAD, and (ii) some species of sardinellas [clupeid fish 
(Sardinella maderensis and S. aurita)], which do not make use 
of the full three-dimensional oceanic space. By contrast, the 
swimming volume of tuna fish is larger because it is con- 
strained only by large transoceanic ecological boundaries. 
According to acoustic telemetry experiments (39-41), the 
common swimming speed for tuna fish is between 0.5 and 2 
ms-l, which may correspond to daily covered distances up to 
70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm and lead to quite a variance in the locations they can 
reach, suggesting that the mean-field model may apply. But it 
is unclear whether free-swimming tuna fish can be adequately 
described by the mean-field model or by the three-dimensional 
model. The model predicts that as the effective dimension 
decreases, one should still observe a power law distribution, 
with an exponent smaller than the mean-field exponent b = 
1.5. 

Free-swimming Tuna. Fig. 5 shows the school size distri- 
bution of free-swimming tuna fish (18), aggregated over 7 yr 
(1976-1982), in which three species, yellowfin tuna (Tlzunnus 
albacares), skipjack tuna (Katsuwonus pelanzis), and bigeye 
tuna (T. obesus) are mixed. The dotted line corresponds to a 
fit of the type s-be-(sW, with a = 3,497, b = 1.49, c = 2, s, = 
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FIG. 5. School size distribution of free-swimming tuna fish aggre- 

of the type a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs-be-(sisdc, with a = 3,497, b = 1.49, c = 2, sc = 29.7. The 
solid line has been obtained with the mean-field model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P = 0.1). 

29.7 (r > 0.999). The power law is relevant over 1.5 decades. 
The solid line shows the distribution obtained with the mean- 
field model withp = 0.1 (r > 0.99). This school size distribution 
is consistent with both the mean-field model of aggregation 
(b = 1.5) and the spatial model in three dimensions (b = 
1.491). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Tuna Fish Schools Caught in the Vicinity of a Fish- 
Aggregating Device. Data originating from fishing performed 
in the vicinity of a FAD, aggregated over 7yr (1976-1982) (18) 
are well fitted by a rapidly decreasing distribution, such as an 
exponential distribution (Fig. 6). Attraction to the FAD may 
introduce one or several scales: the probability of a school to 
be attracted toward the site per unit time introduces a temporal 
scale, and the distance of attraction of the site, in a spatially 
explicit model, introduces a spatial scale. However, a power 
lawwith a small cutoff size (u s-be-(slsc)c) is still consistent with 
the data (dotted line, Fig. 6): a = 1,113.3, b = 0.698, c = 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, 
= 3.72 (r > 0.999) (power law over 0.5 decade). Moreover, 
such a power law is also consistent with the dimensional 

I gated over 7 yr (same as Fig. 1). The dotted line corresponds to a fit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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FIG. 6. School size distribution of tuna fish caught in the vicinity 
of a FAD aggregated over 7 yr (1976-1982). The dotted line corre- 
sponds to a fit of the type a s-be-(slsc)c, with a = llJ3.3, b = 0.698, 
c = 1, sc = 3.72. The solid line has been obtained with the mean-field 
model supplemented with an attracting site (P = 0.1, n = 80,000, n = 
100,000, q = 0.05). 
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reduction that results from the presence of the FAD; it can be 
argued that the effective dimension is less than 1 because the 
FAD is a point, so that b should be smaller than 1.3. The solid 
line in Fig. 6 corresponds to distribution obtained with the 
mean-field model supplemented with an attracting site, with 
P = 0.1, ri = 80,000, f z  = 100,000, and 11 = 0.05. 

Sardmellas. Fig. 7 shows the size distribution of schools of 
sardinellas (S.  maderensis and S. aurifa) caught in the upwelling 
areas of the West African coasts, aggregated over 18 yr 
(1970-1987) (42). The dotted line represents a fit of the type 
a s-be-(slsc) with a = 503, b = 0.95, c = 2, s, = 59.8 (r > 0.999) 
(power law over 1.6 decades). This fit is consistent with the 
dimensional reduction hypothesis. The effective dimension lies 
between 1 and 2, because sardinellas tend to swim along the 
coasts above the continental shelf, which reduces the effective 
dimension by 1. Moreover, the vertical range of this species is 
also constrained by the depth of the continental shelf, that is, 
between 1 and 200 m, which further reduces the effective 
dimension by an unknown factor. 

African Buffaloes. Fig. 8 shows the herd size distribution for 
the African buffalo (Syncem caffer) (43). Two fits are repre- 
sented: one of the form a s - ~  with a = 9,998 and b = 1.15, and 
one of the form a e-s/sc, with a = 59 and s, = 297. One unit 
of s in Fig. 8 corresponds to 10 individuals. The power law 
seems to match the data in the large size region, whereas the 
exponential fit is better for small sizes; this result is consistent 
with the obseryation that small groups are unstable (disinte- 
gration occurs on a faster time scale than aggregation) and 
large groups are stable (43). Moreover, the b = 1.15 exponent 
obtained for animals whose movements take place in a t wo-  
dimensional space is consistent with the dimensional reduction 
hypothesis and suggests that the model can apply to terrestrial 
animals as well. In large vertebrates, such as ungulates, habitat 
openness, which can be characterized by the fractal dimensi03 
of the spatial distribution of open patches, may further reduce 
the effective dimension because patches of closed habitat (for 
example, forest patches) prevent individuals from seeing each 
other and groups from forming (37). 

DISCUSSION 

The scaling exponent b clearly decreases when the effective 
space dimension decreases, which is consistent with the mod- 
el's prediction. That the exact values of some of the exponents 
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FIG. 7. School sue distribution of sardinellas (S. maderensis and S. 
aurifa) caught in the upwelling areas of the West African coasts, 
aggregated over 18 yr (1970-1987) (42). The dotted line corresponds 
to a fit of the type a s - ~  e-(s/sc), with a = 503, b = 0.95, c = 2, 
SC = 59.8. 



60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

113 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ecology, Physics: Bonabeau et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

500 1000 
O 

O 
S 

FIG. 8. Herd size distribution of African buffaloes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(S. cafler) (43). 
One unit of s corresponds to 10 individuals). Two fits are represented 
one of the form a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAseb witha = 9,998 and b ='1.15, and one of the form 
ae-slsc with a = 59 and sc = 297. 

measured on the empirical data are not in perfect agreement 
with the values predicted by the model is certainly an issue. It 
may be explained partly by biases in the data and partly by the 
fact that small cutoff sizes tend to artificially reduce the 
estimated value of b. 

Let us discuss the biases that exist in the fish data sets. Such 
biases have never been systematically measured; we assumed 
that they were consistent across all data sets and did not 
qualitatively alter the results. There are several ways of esti- 
mating school size (acoustic surveys, aerial surveys, light 
detecting and ranging, catch per set). We use catch per set data 
because they are easily accessible, relatively inexpensive, and 
large numbers of observations are available. But a catch made 
by a purse seiner does not always correspond to an entire 
school: net saturation leads to an underestimation of school 
size. Nevertheless, a study based on 18 acoustic surveys of 
pelagic fish in different tropical areas also indicates that the 
distribution of school biomass per 1.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm daytime distance is 
long tailed and close to a negative exponential function (44). 
On the other hand, fishermen may not always be interested in 
small schools, which leads to an underestimation of the number 
of small schools. Another minor problem is the presence of 
individuals from different species in a catch, but counting them 
together, as we have done, may be ethologically relevant 
because they do school together. Finally, catch-per-set data is 
expressed in school weight, which is different from the number 
of individuals. In certain species of fish, such as tuna, there can 
be large differences between the weights of individuals, and 
larger fish form heavier schools with fewer individuals, in 
contrast with small fish, which form large but less heavy 
schools. The model, however, is rather insensitive to this issue: 
the mass distribution of the atomic elements is included into 
the injection term, and the detail of this distribution is 
irrelevant to the scaling properties, provided the distribution 
has a well-defined first moment. 

The consistency between the ordering of exponents in the 
empirical data and the ordering predicted by the model is 
remarkable enough that, despite the factors that bias size 
estimates, it is a strong evidence that the elementary model of 
aggregation contains the essential ingredients of animal group- 
ing behavior that influence grouP-sUe distribution. The model 
suggests that long-tailed group-size distributions result from 
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the basic mechanisms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof aggregation; there is no need to 
invoke other mechanisms. Although more data on other 
animal species are needed, we believe that this model applies 
to a wide spectrum of cases where group size can be large and 
aggregation is based on simple cues. 
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