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Abstract 

We study the scaling behavior in currency exchange rates. Our results suggest that they satisfy 
scaling with an exponent close to 0.5, but that it differs qualitatively from that of a simple 
random walk. Indeed price variations cannot be considered as independent variables and subtle 
correlations are present. Furthermore, we introduce a novel statistical analysis for economic data 
which makes the physical properties of a signal more evident and eliminates the systematic 
effects of time periodicity. 
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O. Introduction 

Economy can be regarded as a many-body, complex system. From this point of 

view, it has been recognized that systems like stock exchange markets display scaling 
properties similar to those of systems in statistical physics. After the early works of 

Mandelbrot [1], the Boston group has studied in detail the scaling behavior of  stock 
market indices, e.g. the Standard & Poors 500 [2] and the Italian M.I.B. [3], as well 
as of  indicators describing the growth of companies [4]. 

In the present paper we address the same problem with respect to the foreign ex- 
change market (FX). This system, as we shall see, differs qualitatively from the stock 
exchange (SE) market. The Olsen group has recently carried out a parallel statistical 
analysis and found new and interesting results [5]. The first studies of intra-daily data 
[ 6-8] ,  revealed a rich and complex behavior which cannot be fully understood in terms 
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of standard ARCH-GARCH stochastic models. Self-similarity and fractal structure of 
financial signals have been already discussed in some detail, as well [5]. 

Despite past extensive work [9-12],  it is still unclear how to fully characterize the 
mathematical structure of the distributions of index returns and/or foreign exchange 
variations in real situations. Recently, it has been proposed that the dynamics of a for- 
eign exchange market is characterized by a flow of statistical information from large 
scales to smaller ones [ 13]. The observations led to the conclusion that traders acting on 
the market at large time scales influence the traders acting more frequently on the mar- 
ket in a sort of "information cascade". Ghashghaie et al. [ 14] have further pushed this 
analogy by arguing that a financial market has some features in common with a turbu- 
lent hydrodynamic system in which the role of the statistical information is played by 
the energy released from large to small length scales in the well-known cascade process. 

These authors had access to the same financial data we have also studied (from 
Olsen & Associates Company) and they support their claim by comparing financial 

data with data obtained from a turbulent signal. In particular, they have found that the 
moments of the price deviations (IAPI") do deviate from the standard scaling (such 
as real turbulence deviates from Kolmogorov's law). 

However, Arneodo et al. [15] have pointed out that this analogy has only formal 
character, since the two situations substantially differ for the point of view of the 
correlations. While in hydrodynamic turbulence, the presence of long range velocity 
correlations leads to the usual power-law spectrum, financial data do not have significant 
correlations in time, and the disappearing of the distribution tails for large time scales 
is nothing but a consequence of the central limit theorem which still applies if the 
variables are weakly correlated in time. The same analogy between economics and 
turbulence, with similar conclusions, has been recently discussed by Mantegna and 
Stanley for the case of the Stock Exchange Index variations [16]. FX rates have also 
been analyzed in Ref. [17]. However, we shall deal with high-frequency data covering 
one year, which has been made available only recently [18], whereas in Ref. [17] data 

are analyzed over almost a century. 
In our work, we further analyze the dynamics of a FX market from the point of 

view of temporal correlations and we find that subtle correlations do exist in the signal, 

as the system has memory also on large time scales. 
In addition to this, we shall present a novel statistical analysis. This is motivated by 

the fact that the time series of FX rates cannot be considered as processes with station- 
ary increments. Indeed, they suffer from systematic effects mainly due to the periodicity 
of human activities. It seems not obvious to us that the usual scaling analysis is still 
appropriate in this case. We have therefore introduced a novel time transformation to 
eliminate these systematic effects. A similar analysis was independently carried out by 
the Olsen group to eliminate problems due to periodic "seasonality" in the time signal. 
As in our case, in Ref. [19] it is argued that in order to avoid problems caused by the 
geographical dispersion of market agents, the time signal must be first filtered once the 
characteristic opening and closing times of different markets are determined. The cen- 
tral idea is the use of the volatility as an indicator of the activity in the market. A high 



S. Galluccio et al./Physica A 245 (1997) 423-436 425 

mean volatility can be used to "expand" times when the activity on the market is large 

and "shrink" them in the opposite situation. In what follows we will use a similar anal- 
ysis on our data and we discuss differences and similarities with the previous approach. 

The data, obtained by the Olsen & Associates Research Institute, refer to FX 

rates between US Dollar (USD), German Mark (DM) and Japanese Yen (JPY) from 
1 October 1992 to 30 September 1993. Hereafter, the currency price will be generally 

denoted as P(t).  

The data come in files where GMT time, and FX rates are reported sequentially. 
The number of  data considered is 159 079 for JPY-DM; 570 814 for JPY-USD and 

1 472 241 for USD-DM. They correspond to an average time between two consecutive 

transactions of  198.2, 55.2 and 21.4 s, respectively, and for each currency we analyzed 

both bid and ask quotations recorded at consecutive times. These average values have 

been obtained considering the whole year with week ends and nights. We obtained the 

same results both considering the time series with the b/d or the ask quotations. As in 

Ref. [19], data are intemational quotations of  foreign currencies available from Reuters, 

Knight-Ridder and Telerate, and do not correspond to real prices in the global market. 
We shall first discuss the results obtained with the usual, real-time statistics, and 

then move to the novel-time analysis. In what follows, we will consider the statistics 

of  the currency exchange between DM and USD; numerical findings are qualitatively 
the same with other currency combinations. 

1. Real-time analysis 

In order to deal with a continuous signal we have shifted all the transaction times 

setting the time origin (t = 0) at the midnight of 1 October 1992. With linear interpo- 

lation, we assigned a value P(t )  for each time t = n fit where the time unit chosen was 

of fit = 30 s. In this way we defined the FX rates even in time periods, such as nights 
or week-ends, where no transaction was actually taking place. This choice differs from 

the one given in Refs. [2,3], where nights and week-ends were "cut" from the signal 

by assuming a time lag of a time step between the closure and the re-opening of the 
market. The reason of our choice is that the data were collected from several banks 
all around the world and therefore it was not possible to identify the closure and the 
re-opening of the FX market in an unique way. 

With the above definition of time, we clearly need to define an error for the data 

in order to assign a more significant weight to those data which correspond to periods 
with a high level of  activity. 

The natural choice for the error on P(t )  is 

a2(t) ( 1 1 ) - '  
---- - - + - -  (1) 

t to tl t 

Here to and tl are two consecutive transaction times such that to < t < tl. Eq. (1) 
implies that the variance of the data is inversely proportional to the density of  points 
at that time. Therefore, Eq. (1) assigns a very small weight to data in the weekends. 
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Fig. 1. (a) Correlation functions Cr(t) and At(t)  for v = 8 (DEM ~ USD). (b) Sign correlation function 
S8(t). The time unit is fixed at 30 s. 

Errors on more complex quantities are computed by elementary statistics from a2(t). 

For example, the error for the price difference 

A P J t )  = P(t  + T) - P ( t ) ,  

is a2[APj t ) ]  = a2(t q- T) + a2(t). The average (q(t)) of a quantity q(t) is computed 

using the weights 1/aZ[q(t)] in the time average. 

The correlation function 

CT(t) =-- (APz(t)AP¢(O)) - (APe(O)) 2 

(for r = 240 s) is plotted versus t, in Fig. la. There are clearly no signs of  correlation. 

The absence of correlations in the two point functions can be taken as evidence for 
the hypothesis of independent price variations [2,3]. This is, in a sense, a "strong" 
version of the no arbitrage hypothesis. The latter says that the time series P(t)  must 
be such that there cannot be any strategy, involving no risk, which allows to bargain 
from transactions. This clearly holds if P(t )  has independent increments, but it may 

hold under much more general conditions. 
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In our case, FX rates do not have independent increments. This can be seen from 
the correlation function of  the absolute value of  price variations 

A~(t)  =- (]AP~(t)I]AP~(O)[) - (IAP~(0)]) 2 , 

and from the sign correlation function 

S~(t) =_ (sign[AP~(t)]sign[AP~(O)]) - (sign[AP~(0)]) 2 , 

which are both shown in Fig. 1. 

The main result is that no correlation seems to exist between data except for the 
sign correlation function. It is worth pointing out that the signal is clearly periodic: 

the time period, of  about 2900 units in Fig. 1, roughly corresponds to one day; the 

time unit is indeed of  30 s. This effect is a consequence of  human activities around 
the world and is a systematic effect in the signal. 

We have also considered the average price variation 

c~P(z) = ~ / ( [P( t  + ~) - P(t)]2},  (2) 

whose dependence on ~ is plotted in Fig. 2. The slope of  the function, in double 
logarithmic scale, suggests that 

6P( r )  ~ r ' q ,  

with a scaling exponent H ~ 0.45. 

Finally, we computed the histograms F(x ,  ~) of  price variations x = P( t  + z)  - P ( t )  
for all currencies for several values of  T. For D E M - U S D  exchange, these functions are 
shown in Fig. 3. We checked the scaling hypothesis 

F(x ,  ~) = zhF(ThX, 1) = rh g(~hx) 

by plotting F(x , ' c ) / z  h versus "chx and the best collapse was obtained for h = 0.5. 
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Fig. 3. (a) Histograms of price variations. (b) Collapsed distributions with H = 0.5 (DEM =:> USD). 

The best fit was given by a stretched exponential form F ( x )  ~ exp(- lxl /~) ,  with/~ -- 

1.10-4-0.02, for small x and algebraic tails F ( x )  ~ Ixl . . . .  with ~o = 5 .0±0 .5 ,  for large x. 
As in Ref. [14] we have found a slight change of  the distribution shapes in passing 

from low to high time scales. In particular, it seems that by increasing the time interval 
r the distribution densities tend to become gaussians. In Ref. [15], a similar study 
was performed in order to detect the presence o f  correlations and the structure o f  the 
distribution functions. The authors find that apart from the tails, the distributions seem 
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to follow a L6vy stable law, as for the stock markets index variations [2]. Due to 

the lack of a good statistics on the data, we believe, however, that the problem of 

establishing the mathematical origin of  these distributions is still far to be solved. Our 
numerical data did not allow to check whether scaling holds far in the tails of  the 

distribution. This would indicate whether the markets react the same way in presence 

of small or big price fluctuations. 
Moreover, we have found a scaling exponent H - 0.45 which is quite different from 

the one observed for the SE indicators (H _~ 0.65 [ 1-3]).  Generally speaking, H and 

h need not to be the same. Even though our results seem to suggest that they are 
close to each other, they are not conclusive, due to a lack of more significant data. 

In Ref. [20] a similar test was performed on price changes. Instead of considering the 
statistics of  the price difference P(t) ,  the authors considered the signal defined by the 

logarithmic price change Q(t)  = [log(pbid(t))+log(Pask(t))]/2. This is motivated by the 
fact that, in general, financial time series are supposed to be associated to multiplicative 

dynamical processes. For this class of systems, the statistics of the logarithm of the 
increments is surely the most appropriate quantity of investigation. For high-frequency 

data, the relative increments of the signal between consecutive times are small and no 

significative differences are supposed to exist if one performs the statistical analysis 
with linear increments. 

Moreover, in Ref. [20], the dependence of the average of IQ(t)l on time was studied 

and a power-law behavior with exponent D ,-~ 0.586 was found. This result was shown 
to be independent from the particular combination of currencies one takes into account. 

The apparent disagreement between our value of H and D, is due to the presence of 

multiscaling in the temporal signal. The first moment can indeed show a different scal- 
ing with time. In fact, if the time increments are distributed according to a multifractal 

density, or equivalently, if the distribution of price changes presents different scaling 
for different time intervals, the first moment (]P(t)[) is larger than ( ( P ( t ) - ( P ( t ) ) ) 2 )  1/2. 

This is due to the convex property of the m-order moments (m (see later) as functions 

of m [21]. Price changes are actually distributed according to a multifractal density, as 
we will show in the next section. 

2. Intrinsic time analysis 

The statistical analysis performed in the previous section is tailored for processes 

with stationary increments. The signal P(t )  is not at all of this kind. This is evident 
if one measures the standard deviation of P( t )  as a function of the real time in the 
interval corresponding to a week. More precisely let P( t )  be the average price over a 
short time interval fit (typically of the order of  half a hour) around t. Let us define 
the volatility 

v(t) = ( [ P ( t )  - P ( t ) ]  2) (3) 

as the variance of the price over the same time interval. 
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Fig. 4. Volatility of the DEM-USD exchange rate in one week, averaged over all the weeks in one year. 

A plot of  V(t)  for t spanning one week (Fig. 4), averaged over all the weeks of  

the year displays variations which are clearly periodic with a period of  1 day. If  one 

imagines that the signal P( t )  is produced by a system of  N agents, it is most likely 

that the systematic periodicity of  P( t )  results from an analogous periodicity of  N ( t )  in 

real time. 
It is desirable to get rid o f  these systematic effects for various reasons. First, as 

mentioned above, it is not clear whether in their presence the scaling analysis is still 

meaningful. Indeed, it has been always applied in statistical physics to processes with 

stationary time increments. For these processes, the presence o f  scaling is equivalent 

to the statement that there is no characteristic scale in the system (a characteristic 

time, in our case). This statement strongly contrasts with the presence of  time-scales 

associated with days, weeks and months which are present in economic data. Once 

these systematic effects are washed out, one may hope that the statistical properties of  

the signal can emerge more clearly. 
Secondly, a process with stationary increments is surely more appealing from a 

theoretical point o f  view. In statistical physics the number of  degrees o f  freedom N 

is usually fixed as an external parameter. It is highly desirable, if one wants to model 

an economic system, to have a reference analysis where the systematic effects of  time 

periodicity have been filtered out. 
In order to eliminate the periodicity of  the signal P( t ) ,  we define an intrinsic, or 

"inner" time, as 

t 

s(t) = / V( t l )d t  I , (4) 
t J  

0 

where the volatility is taken on a short time interval of  30 s. The new series o f  data 

s(ti), P(t i )  is then interpolated to obtain B(s)  = P( t ( s ) )  for s = nrs.  6s was chosen in 
such a way as to have the same statistics as before. 
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Fig. 5. (a) Correlation functions C~(t) and A~(t) for z = 8 (DEM =~ USD) with intrinsic time analysis. (b) 

Sign correlation function Ss(t). 

It is worth to point out that the above time transformation would leave P(t) invariant 

if P(t) were a simple random walk. In a loose sense, V(t) = ds/dt is a measure of  

the activity of  the FX market at time t. In the new time the dynamics is "at constant 

activity". Our transformation is in the same spirit of  the observation [22] that economic 

data can be modeled as a process with increments given by a probability distribution 

p(x/7,)/T, where 7t is a time-dependent scale factor. 
Finally, note that with our redefinition o f  time we integrate the fluctuations only on 

a small time-scale. Therefore, if scaling holds on a range of  time-scales above this 

scale, we expect to see it even in the "inner" time statistics. 
In Figs. 5 and 6, we report C~(s), A~(s), St(s) and 6P(z) in the intrinsic time. A 

comparison with Figs. 1 and 2 shows that the statistical properties are much cleaner in 

the former ones. There is no more trace o f  periodicity in the absolute value correlation 

function A(t) and, as it is evident from Fig. 5, it shows a rather slow convergence to 
0, characterized by an exponential decaying A~(s) ,.~ exp(-s /S)  with S ~- 1.34 × 104, 

roughly corresponding to 3.74 h in real time. This suggests that price variations are 
indeed correlated up to a time interval o f  the order of  4 h in average. Clearly, in view 
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line corresponds to ~0.5 

of the definition of S(t), periods with high level of activity have a smaller characteristic 

"real" time. 
Moreover, from Fig. 6, we can establish that the scaling exponent in the new time is 

H~. = 0.50 4-0.01 with much more accuracy. Even though this exponent is the same of 
that of  a random walk, it is important to stress that this is not an artifact of the time 

transformation. Indeed, with Ref. [17], we believe that the scaling properties are related 

to the persistence properties of the signal P(t )  and not to the statistics of single time 
increments. The persistence is not affected by our transformation. In order to check 

this point, we generated random fractional walks [23,24] with a preassigned value of 
the Hurst exponent H. The scaling of these walks was then analyzed with respect to 

their "inner" time with the result that Hs = H. This suggests that the systematic effects 
of periodicity significantly affect the evaluation of the scaling exponents in real time. 

In Fig. 7, we show the histograms of the price differences in the "inner" time. These 
distributions seem to collapse quite well at hs = 0.5 for r E [2,512). The qualitative 

behavior of these distributions is very similar to that of the real-time analysis. 
Similar ideas were independently introduced to eliminate seasonality in financial time 

series by the Olsen group [16]. The only significant difference with our approach is the 
definition of the transformation to the "inner time". Instead of Eq. (3), the authors in 
Ref. [19] consider the absolute price change in a given interval t, V(t)  = I P ( ~ ) - P ( t  + 

z)[, as their definition of volatility. As a consequence, the time transformation Eq. (4) 
must be accordingly modified. The time transformation based on the second moment 
is statistically more meaningful and natural. Indeed our Eqs. (3) and (4), applied to 
the paradigm of a simple random walk, give exactly the "inner time" of the RW itself. 
This would not hold if V(t)  = I P ( z ) -  P( t  + z)[, since a linear dependence of V(t)  on 
t is necessary to do the job. 
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Fig. 7. (a) Histograms of  price variations with intrinsic time statistics. (b) Collapsed distributions with 
H = 0.5 (DEM ~¢, USD). 

In order to prove that the two approaches are not equivalent, we can compare the 
correlation function A(t) in Fig. 5, with the equivalent computation performed in Refs. 
[5,19] in the rescaled time. Instead of  the exponential decay we described previously, 
the authors claim that A(t) approaches 0 with power-law tails at large times. Therefore 
their results seem to indicate that the absolute value of  price changes is significantly 
correlated in time even for intervals of  many days apart. If this were true one could 
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easily take advantage of  this large correlation in order to formulate long-time forecasts 

in the currency quotations• 
Finally, we carried out analysis similar to the one presented in Ref. [14] to detect 

the presence of  multiscaling. For the real-time statistics we confirmed the results of  

Refi [14] whereas the results o f  our analysis with "inner" time are displayed in Fig. 8. 

As it can be clearly seen, the moments ~m = (lAPel m) have power-law behavior, 

~rn ~'~ "C~"', 102 < "C < 104. (5) 

The scaling exponents ~m do not display the typical behavior of  "gap scaling", 

for which ~m = a + bm. Instead, they seem to bend continuously approaching the 

line ~m --~ 1.1 + 0.22m as m ~ ~ .  Let us note that the value of  b = 0.22 roughly 

corresponds to the inverse o f  the exponent e J -  1 ~_ 4.0 i 0.5 which characterizes 

the power-law behavior of  the tail of  the distribution function. Remarkably,  this is 

the result one would obtain for the largest among z variables which are distributed 

according to F ( x )  ~- Ixl -°~ for Ixl >> 1. 
The implications of  multiscaling in FX rates have already been discussed in Ref. 

[14] and we will not address the same problem here. The point we wish to stress is 

that this feature emerges much more manifestly in the intrinsic time analysis than in 
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the real-time one. We can also identify an early regime (for z = As < 20) where 

the signal presents an even stronger multiscaling with the exponent ~m which quickly 
saturates to i n  "~ 1.8. Instead, for z > 104, which roughly corresponds to the time 
correlation time previously discussed, the multiscaling behavior seems to crossover to 
a standard random walk scaling. 

3. Conclusions 

The dynamics of large correlated systems in nature exhibits a high level of complex- 
ity. This is due to the effect of correlations between individuals (or particles) resulting 
in a collective behavior. Examples include self-organized criticality in physics and dy- 
namics of financial markets in economy. From both the theoretical and the practical 
points of view, in the study of FX markets, the understanding of the statistical nature 
of the variables which are involved is of big interest. 

We have carried out a statistical analysis on data concerning currency exchange 
among US Dollar, Japanese Yen and German Mark both in real time and using a 
novel transformation to avoid problems due to the non-stationarity of the temporal 
signal. 

Hidden correlations are present in the data and we have found that in the "inner" 
time statistics, in which the signal has stationary increments, the price variations scale 
in time with Hurst exponent 1. Even though this exponent coincides with that of a 
simple random walk, we found that FX rates have a far more complex nature. First 
we found that the sign correlation function and the absolute value correlation function 
show that correlations are present in the system. Secondly, as pointed out in Ref. [14], 
FX rates show multiscaling behavior. 

Both these features can be observed in the real-time statistics, but they emerge in 
a clearer way in the "intrinsic time" analysis. This suggest that the non-stationarity of 
the signal does affect the results of a statistical analysis and it might lead to unprecise 
or even wrong conclusions. 

The "inner" time transformation provides a simple tool by which a consistent statis- 
tical study can be carried out for these complex systems. 
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