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We develop a theory for scaling properties of quantum transport in nano-field effect transistors. Our 
starting point is a one-dimensional effective expression for the drain current in the Landauer-Büttiker 
formalism. Assuming a relatively simple total potential acting on the electrons the effective theory can 
be reduced to a scale-invariant form yielding a set of dimensionless control parameters. Among these 
control parameters are the characteristic length l and -width w of the electron channel which are its 
physical length and -width in units of the scaling length 2/1)*2( −= Fm ελ h . Here Fε  is the Fermi 
energy in the source contact and *m  is the effective mass in the electron channel. In the limit of wide 
transistors and low temperatures we evaluate the scale-invariant i-v characteristics as a function of the 
characteristic length. In the strong barrier regime, i. e. for 20≥l  long-channel behavior is found. At 
weaker barriers source-drain tunneling leads to increasingly significant deviations from the long-
channel behavior.  

Introduction 

The transistor density doubles every two years (Moore’s law). Increased mobility in the transistor 
channel leads to higher performance and less energy consumption. 
The size reduction in nano-FETs renders possible the application of new material systems in silicon 
based technology. Examples are the use of strained silicon with increased germanium fraction and Si-
Ge closer to  the channel. Beyond ~ 30 nm new options and challenges arise[1]: Substrat engineering 
(110) vs  (100) orientation plus increased p-channel mobility, multi-gate FET’s and high-µ material 
(Ge, compound materials). The shift from micrometer – to nanometer device dimensions is associated 
with a shift in the fundamental transport mechanisms.  At the envisaged channel lengths of less than 
thirty nanometers it is to be expected that quantum transport will play an increasingly important role. 
In view of this trend we develop a theory for the scaling properties of quantum transport in silicon 
nano-transistors. As well-known, with decreasing channel length the desired long-channel behavior of 
a transistor is degraded by short-channel effects [2, 3]. One major source of these short-channel effects 
is the multi-dimensional nature of the electrostatic field which causes a reduction of the gate voltage 
control over a short electron channel. A second source is the advent of quantum transport where, for 
example, source-drain tunneling prevents the transistor to assume a clear off-state. In early scaling 
concepts long-channel behavior could be assumed [4, 5]. With progressive miniaturization two-
dimensional effects in the electric field have been introduced in scaling [6, 7]. Here the electrostatic 
problem with two essential dimensions was approximated by a one-dimensional effective one in which 
the proper length scale λ results naturally. 
We start from a one-dimensional effective model assuming ballistic transport (for a review see Ref. [9] 
and more recently Ref. [10]). We demonstrate that in such a relatively simple ballistiic approach the i-
v characteristics can be cast in a scale-invariant form, in which, similar to the case of the electrostatic 
problem, a scaling length can be defined. In quantum transport one obtains Fm ελ *2/h= , where 

Fε  is the Fermi energy in the source contact and  is the effective mass of the carriers. In the limit of 
wide transistors and low temperatures we evaluate the scale-invariant i-v characteristics as a function 
of the characteristic length λ/Ll = where L ist the physical length of the transistor channel. In the 
strong barrier regime, i. e. for 20≥l   long-channel behavior is found. At weaker barriers source-drain 
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tunneling leads to increasingly significant deviations from the long-channel behavior. 

 

Theory 

We consider a generic field effect transistor as illustrated in Fig. 1 for which a one-dimensional 
effective model we write for the drain current 
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with DD eUV =  where DU  is the applied drain voltage. In a wide transistor the supply function S  
takes the form [10] 
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where 2/1−F  is the Fermi-Dirac integral of order -1/2, W is the width of thetransistor, and µ is the 
chemical potential in the source contact.  
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ktkT  is the one-dimensional effective current transmission. 

 
 
 
 

 
Figure 1: Schematic representation of the generic n-channel nano-field effect transistor and the 
effective one-dimensional potential effV  (see text). 

 
 
 It is calculated from a one-dimensional scattering problem  
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where the DSDeff /;ψ  are the effective scattering functions emitted from source- and drain contact, 
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respectively. The former ones obey the asymptotic boundary conditions 
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derivaton of a scale –invariant expression for the drain current it is necessary that the effective 
potential depend only on a small number of essential properties of the transistor. In this spirit we 
assume 0)0( =≤yV eff , D

eff VLyV −=≥ )( , and outside the contacts a piecewise linear potential, 

LyVVLyV D
eff /)0( 0 −=≤≤ . As illustrated in Fig. 1 we peplace the unknown parameter 0V  by a 

parameter GV  representing the gate voltage which we define as the deviation of the chemical potential 

in the source-contact form the maximum of the source-drain barrier, i. e. GVV += 0µ .  
We now rewrite Eq. (1) in a scale –invariant form. To this end we first normalize in Eq. (3) lengths to 
L and energies to 0V defining Lyy /ˆ = and 0/ˆ Vεε = to obtain 
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the latter relation to the scattering states yields 
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Here ( )DvT ˆ,,ˆ

~ βε  is the current transmission in the scaled effective problem Eq. (4). It depends only on 

the parameters β  and 0/ˆ VVv DD = . Furthermore, one has ( ) εβε ˆˆˆ =eff
Sk , ( ) ( )Deff

D vk ˆˆˆˆ += εβε , and 

( ) ( )εε SS tt =ˆˆ . In the last step of Eq. (5) we introduce the gate voltage-independent parameters 

FDD Vv ε/= , FGG Vv ε/= , and Fm εµ /=  so that GF vmV −=ε/0  and ( )Gvml −= 2β  with the 

characteristic length of the electron channel h/2 2* Lml Fε= . 
For the scaling of the supply function in Eq. (2) we define  
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where h/2 2*
FWmw ε=  is the characteristic width of the electron channel, FBTku ε/=  is the 

normalized thermal energy, and 0/ˆ Vxx = . At a given thermal energy the chemical potential m is given 
by  
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Here we assume a wide enough transistor and a sufficient junction depth a (see Fig. 1) so that the 
electrons in the contacts can be treated as a three-dimensional non-interacting electron gas. We now 
recast Eq. (1) in a dimensionless form 
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where 0/ IIi =  with heI F /20 ε= . Writing for the characteristic length λ/Ll =  and the 

characteristic width λ/Ww =  we introduce a scaling length Fm ελ *2/h=  for quantum transport. 
 
 

 
 

Numerical results 
 
 
 

 

 
Figure 2: Calculated low-temperature drain characteristics (u=0.01) in the wide transistor limit,  
Gv starting from 0.5 with decrements of 0.1 (solid lines) a) ’ideal limit’ l=500, b) ’strong barrier’ l=40, 

c) ’transition regime’ l=10, and d) ’weak barrier’ l=5. In dashed lines for l=10 the best fit to a linear 
characteristic at .04.0=Gv  

 
We calculate the normalized drain current according to Eq. (8) in the limit of low temperatures, u∼0, 
and wide transistors. From Figs. 2 (a) it can be seen that Eq. (8) yields a typical long-channel behavior 
at very large l (l=500 in our numerical examples): The drain characteristics show for small drain 
voltages an approximately linear dependence of the drain current turning quite abruptly into a 
saturation regime for larger drain voltages. In the strong barrier regime, represented by the calculation 
for l=40 (Fig. 2(b)), the drain characteristics still look similar to the long-channel characteristics. 
However, the traces close to threshold gate voltage 0~gv   are not given by i∼0. Instead, they can be 

described by a linear regression which increases in slope with decreasing characteristic length. This 
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nearly linear regression has already been found in the three-dimensional transistor model in Ref. [11] 
where it was called close-to-linear threshold characteristic (TH). Above the TH, in the ON-state 
regime, the i-v traces are similar to the ones in the long-channel limit, however, instead of a current 
saturation only a quasi-saturation with a marked residual slope Ddvdi /  is found. At 0<Gv , the 
transistor works as a tunneling transistor. Here another type of characteristic arises showing a positive 
bending as opposed to the negative bending at 0>gv . In the transition regime to weak barriers 

( 10~l , see part (c) of Fig. 2) the traces for positive GV  in the drain characteristics become more and 
more rounded do that it becomes difficult to define a saturation regime. As shown in Fig. 2 (d) in the 
weak barrier limit, 5≤l , the i-v traces differ qualitatively from the long-channel characteristics 
because of very strong source-drain tunneling. In particular no TH can be defined.  
To conclude, we present a scaling-approach for quantum-transport in nano-transistor with an abitrary 
material. In a simple model we find a scaling length for quantum transport and an expression for the 
dimensionless drain current as a function of five dimensionless parameters. These parameters are the 
normalized drain voltage, -gate voltage and –temperature as well as the characteristic length and width 
of the electron channel. For a wide transistor and low temperature, we evaluate numerically the scale-
invariant drain characteristics. 
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