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Abstract:
The concept of scale can be used to quantify characteristic lengths of (a) a natural process (such as the

correlation length of the spatial snow water equivalent (SWE) variability); (b) a measurement (such as the size
of a snow density sample or the footprint of a satellite sensor), and (c) a model (such as the grid size of a
distributed snow model). The di�erent types of scales are denoted as process scale, measurement scale and

model scale, respectively. Interpolations, extrapolations, aggregations, and disaggregations are viewed as a
change in model scale and/or measurement scale.
In a ®rst step we examine, in a linear stochastic analysis, the e�ect of measurement scale and model scale on

the data and the model predictions. It is shown that the ratio of the measurement scale and the process scale,
and the ratio of the model scale and the process scale are the driving parameters for the scale e�ects. These scale
e�ects generally cause biases in the variances and spatial correlation lengths of satellite images, ®eld
measurements, and simulation results of snow models. It is shown, by example, how these biases can be

identi®ed and corrected by regularization methods. At the core of these analyses is the variogram. For the case
of snow cover patterns, it is shown that it may be di�cult to infer the true snow cover variability from the
variograms, particularly when they span many orders of magnitude.

In a second step we examine distributed snow models which are a non-linear deterministic approach to
changing the scale. Unlike in the linear case, in these models a change of scale may also bias the mean over a
catchment of snow-related variables such as SWE. There are a number of fundamental scaling issues with

distributed models which include subgrid variability, the question of an optimum element size, and parameter
identi®ability. We give methods for estimating subgrid variability. We suggest that, in general, an optimum
element size may not exist and that the model element scale may in practice be dictated by data availability and

the required resolution of the predictions. The scale e�ects in distributed non-linear models can be related to the
linear stochastic case which allows us to generalize the applicability of regularization methods. While most of
the paper focuses on physical snow processes, similar conclusions apply and similar methods are applicable to
chemical and biological processes. Copyright # 1999 John Wiley & Sons, Ltd.
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INTRODUCTION

This paper addresses two questions: (1) How can we measure and represent snow processes at di�erent
scales? and (2) How can we aggregate and disaggregate spatial snow data?; These are very broad questions
indeed and have rami®cations in three main areas of snow hydrology: (i) In the quest for revealing the true
nature of snow processes, more speci®c questions include: What is the nature of spatial snow variability?
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and: How does it change with scale? (ii) In the context of measurements and data collection more speci®c
questions include: At which scale should we measure?; How can we interpret data measured at a given scale?;
and How can we best design a snow measurement network? (iii) In modelling, there are issues related to
spatial estimation in general. For example: How can we interpolate/extrapolate from measurements?; How
can we aggregate/disaggregate measurements?; or more generally, How can local observations be transferred
to larger scales? In modelling, there are also issues related to distributed physically based snow models, such
as How can we represent spatial processes in these models; How can we represent subgrid variability?; and
What is the optimum model resolution? Clearly, there are more questions here than are likely to be answered
in the near future. This paper attempts to contribute to a more coherent understanding of these issues by
proposing a framework within which we can deal with these issues.

On closer examination, and from a more general perspective, most of these issues arise because the scale at
which the data are collected is di�erent from the scale at which the predictions are needed. Figure 1 shows a
sketch of how natural snow variability, data and model predictions are related in general. At the top of
Figure 1 is the true spatial variability, i.e. the true snow hydrological processes which, however, will never be
known in full detail. These natural processes possess certain properties such as spatial patterns of a variable,
a true variance, a true correlation length, etc. To obtain information on these processes, measurements are
made, either by data collection of a standard hydrologic network, in research catchments, at study plots or
by remote sensing techniques. The measurements produce data. The important thing is that the data will not
accurately portray the natural variability because of a number of factors. Among these factors are instru-
ment error (which will not be dealt with in this paper) and the spatial dimensions of the instruments (which is
the focus of this paper). The patterns of the data will be di�erent from the true patterns and so will their
statistical moments. For example, the variance estimated from the data (i.e. the apparent variance) will, in
general, be di�erent from the true variance. In a second step, the data are combined by some sort of model to
produce predictions. Again, the predictions will in general be di�erent from the data due to a number of
factors related to the properties of the model, such as the spatial dimensions of the model or model elements.
The apparent variance of the predictions will, in general, be di�erent from the apparent variance of the data.
This situation is a very general framework which is probably applicable to any branch of scienti®c enquiry.
Here, we will use this framework to quantify the biases and e�ects of the various space scales involved in
snow hydrologic research.

It may be useful to start with a de®nition of scale and scaling. We will adopt the de®nitions proposed by
BloÈ schl and Sivapalan (1995) and BloÈ schl (1999). The term `scale' refers to a characteristic length or time.
Often, it is used in a qualitative way as in `a small scale phenomenon' but here we will use it quantitatively to
refer to a space dimension. We will propose a `process scale' that relates to a spatial dimension of natural
variability (such as the spatial variability of snow water equivalent); a `measurement scale' that relates to a

Figure 1. Scale e�ects in the measurements cause biases in the data; scale e�ects in the models cause biases in the model predictions.
Scaling or change of scale is depicted as double arrows
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spatial dimension of an instrument or a measurement structure (such as a snow lysimeter); and a `model
scale' that relates to a spatial dimension of a model in a general sense (such as a distributed snow model).
These de®nitions are consistent with the sketch in Figure 1.

We will use the term `scaling', to denote a `change in scale'. In Figure 1, there are two changes in scale,
from the true process to the data (i.e. scaling by the measurement); and from the data to the predictions
(i.e. scaling by the model). The purpose of this paper is to quantify the e�ects of scaling due to the
measurements and the e�ects of scaling due to the model. Aggregation, disaggregation, extrapolation and
interpolation always imply a change of scale and hence we will subsume these things under the term scaling.
It should also be noted that the usage of `scaling' adopted here is one of two usages that can be found in the
literature. The other usage of scaling relates to some sort of similarity or scale invariance such as in `scaling
snowdrift development rate' (Lever and Haehnel, 1995), `scaling Richards equation' (Kutilek et al., 1991) or
`scaling in river networks' (Foufoula-Georgiou and Sapozhnikov, 1998). Although we will also touch on the
issue of scale invariance in this paper, for clarity, we will strictly use scaling to denote a change of scale only.

There are a number of factors that complicate scaling in snow hydrology. First of all, the extreme spatial
variability of the hydrologic environment greatly complicates the spatial estimation problem (see e.g. Elder
et al., 1989). If a snow pack is examined in great detail, the number of possible ¯ow paths for melt water or
gas exchange becomes enormous. Along any path the shape, slope and boundary roughness may be chang-
ing continuously from place to place and these factors also vary in time as the snow becomes wet. Similar
complexity occurs at the catchment and the regional scales. Because of these complications, it is not possible
to describe some hydrologic processes with exact physical laws. The scale at which a conceptualization is
formulated then becomes critically important and the transfer of information across scales becomes very
di�cult. Second, when seeking a quantitative description of the natural system one must either adopt a
deterministic or a stochastic framework (or a combination thereof). If the spatial patterns of the hydrologic
process are `consistent' enough (i.e. exhibit `organization') a deterministic analysis is warranted while for a
large degree of disorder (i.e. `randomness') there is usually merit in probabilistic treatment. Unfortunately,
hydrologic processes show elements of both chance and structure which complicates both types of analyses
(BloÈ schl et al., 1993). Closely related to organization is the non-linear behaviour of snow processes that
complicates scale issues. Third, in many instances there is an enormous contrast in scale between the
available data and the prediction required, which may exceed several orders of magnitude. This large
contrast may imply that di�erent processes become operative at di�erent scales, and empirical expressions
derived for the smaller scale no longer hold true at the larger scale (see e.g. Seyfried and Wilcox, 1995).
Clearly, one would not expect processes that control crystal growth at the millimetre scale to be also
important at the regional scale where climatic e�ects are probably more relevant.

There have been a number of reviews of scale issues in hydrology in general (e.g. BloÈ schl and Sivapalan,
1995) and a number of collection of papers of conference proceedings on the same topic (e.g. RodrõÂ guez-
Iturbe and Gupta, 1983; Gupta et al., 1986; Kalma and Sivapalan, 1995; BloÈ schl et al., 1997). Here, we will
build on this work with a focus on snow hydrology.

THE CONCEPT OF SCALE

Process scale

As mentioned above the `process scale' relates to a spatial dimension of the natural variability of some
snow-related variable. While in principle, there are many possible ways of de®ning a process scale, it is most
frequently de®ned as the correlation length (or some related measure). The correlation length is based on the
variogram g, which is usually estimated from the experimental variogram

ĝ�h� � 1

2n

X
f�Z�x� ÿ Z�x � h��2g �1�
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where Z are the data (such as snow water equivalent (SWE) or snow depth data) at locations x and x � h,
and h is the distance or lag between two data points. In equation (1), the lag h is subdivided into classes, the
summation refers to an individual class and n is the number of data pairs for each class. The experimental
variogram is usually ®tted by some analytical function (in the processes of inferring the population statistics
from the sample statistics) such as an exponential function of the form

g�h� � s2�1 ÿ exp�ÿh=l�� �2�
where s2 is the (spatial) variance of Z and l is the correlation length (Figure 2a). In some instances, the
integral scale I is used instead of the correlation length, which is de®ned as

I �
Z 1
0

1 ÿ g�x�
s2

dx �3�

For an exponential variogram (equation (2)) the integral scale is equal to the correlation length. For di�erent
types of variograms, the integral scale may be a more objective measure of the process scale than the
correlation length.

The correlation length (or integral scale) can, strictly speaking, only be derived for a stationary process.
For a stationary process, the variogram ¯attens out at large lags h (as shown in Figure 2a), which implies that
a variance exists. For a non-stationary process, the variogram keeps increasing with large scales. Hence, the
variance approaches in®nity and the correlation length (or integral scale) also approaches in®nity or does not
exist. However, it is sometimes possible to assume local stationarity (i.e. the variogram ¯attens out at some
lag after which it increases) as a working hypothesis, in which case a correlation length (or integral scale) can
be estimated.

The correlation length (or integral scale) is a measure of the average distance over which the variable is
correlated. Equation (2) suggests that for distances shorter than the correlation length the correlations are
better than r2 � 0.37 where r2 is the coe�cient of determination. Indeed, the process scale (correlation
length) captures the scale of the continuity of a natural variable such as SWE. If the variable is very
continuous, i.e. varies smoothly in space, the process scale is large. If the variable is discontinuous, i.e. with
rapid ¯uctuations over short distances, the process scale is small. A smoothly varying variable will exhibit

Figure 2. (a) De®nition of the process scale (correlation length, l, or integral scale, I). (b) De®nition of the measurement scale and the
model scale. The scale triplet (spacing, extent and support) can apply to measurements and to models. From BloÈ schl and Sivapalan

(1995)
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large uniform patches in space while a rapidly ¯uctuating variable will exhibit small uniform patches. For
example, the process scale of snow covered area (a binary variable snow covered/snow free) is directly
proportional to the average size of the snow free and snow covered patches. More details on the variogram
and on correlation scales can be found in the extensive literature on geostatistics (e.g. Journel and Huijbregts,
1978; Isaaks and Srivastava, 1989).

Measurement scale

Following BloÈ schl and Sivapalan (1995) we suggest that the measurement scale consists of a scale triplet:
spacing, extent, and support (Figure 2b). `Spacing' refers to the distance between samples; `extent' refers to
the overall coverage of the data; and `support' refers to the integration volume or area of the samples. All
three components of the scale triplet are needed to uniquely specify the space dimensions of a measurement
or instrumental setup. For example, for a snow course the scale triplet may have typical values of, say, 100 m
spacing (between the samples), 1 km extent (i.e. the length of the course), and 10 cm support (the diameter of
the snow density probe). Similarly, for a remotely sensed image, the scale triplet may have typical values of,
say, 30 m spacing (i.e. the pixel size), 10 km extent (i.e. the overall size of the image), and 20 m support
(i.e. the `footprint' of the sensor). The footprint of the sensor is the area over which it integrates the
information to record one pixel value. It is usually on the order of the pixel size but not necessarily identical
to it.

In the two-dimensional case it is sometimes useful to relate the spacing, the extent, and the support to
areas which is a logical extension from the one-dimensional case in Figure 2b:

aSpac �
������������������
Aregion=n

q
�4�

aExt �
�������������
Aregion

q
�5�

aSupp �
��������������
Aaggreg

q
�6�

where aSpac , aExt , and aSupp are the spacing, the extent, and the support respectively. Aregion is the overall size
of the region of interest, n is the number of samples in this region, and Aaggreg is the area over which a sample
aggregates (or integrates). This paper will focus on the two dimensional case.

Model scale

Again following BloÈ schl and Sivapalan (1995) we suggest that the model scale consists of a scale triplet
(spacing, extent, and support, Figure 2b) very similar to that of the measurement scale. The di�erence is that
the model scale is related to the spatial properties of the model (in a general sense) rather than those of the
measurements. For example, for a spatially distributed snow model the scale triplet may have typical values
of, say, 25 m spacing (i.e. the grid size), 1 km extent (i.e. the size of the catchment to be modelled), and 25 m
support (the grid size). The support is the spatial dimension over which the variables in each grid cell are
representative which is equal to the grid size in most distributed models. In regional mapping (which is a
model in a general sense) of snow depths the scale triplet may have typical values of, say, 10 m spacing
(i.e. the resolution to which the map is produced), 10 km extent (i.e. the overall size of the map), and 10 cm
support (which is the area which each point in the map is representative of). In this example, the map shows
point values of snow depths (rather than averaged values), hence the support is very small. The support in
maps is sometimes termed `grain'. Clearly, it is possible to draw two maps of, say, snow depth of the same
area, one map showing point values (very small support) and the other map showing values averaged over a
certain area (i.e. larger support). The latter map will be smoother than the former.
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Scaling

Here we are interested in the change of the scale, i.e. how will the measurement spacing, extent and support
change the true pattern to be re¯ected in the data; and how will the model spacing, extent and support
change the data to be re¯ected in the predictions (Figure 1). The basic idea of BloÈ schl and Sivapalan (1995)
and BloÈ schl (1999) is that there is some similarity between these two steps. Generally, if the spacing of the
data is too large, the small scale variability will not be captured. If the extent of the data is too small, the
large scale variability will not be captured and will translate into a trend in the data. If the support is too
large, most of the variability will be smoothed out and the data will appear very smooth. It is clear that some
sort of ®ltering is involved, i.e. the true patterns are ®ltered by the properties of the measurement which is
re¯ected in the data. It is also clear for dimensional reasons that the e�ect of the ®lter will be closely related
to the ratio of the measurement scale and the process scale. So, more strictly speaking, we should say that `If
the spacing of the data is too large as compared to the process scale, the small scale variability will not be
captured'. Analogous statements apply to the extent and the support. The model scale has similar e�ects. If
the spacing of the model elements is too large as compared to the process scale, most of the variability will
appear as noise in the predictions. Analogous results apply to the extent and the support of the model. This
change of scale, conceptualized as a ®lter, has been quantitatively discussed in Cushman (1984, 1987), Beckie
(1996), Federico and Neuman (1997) and BloÈ schl (1999), and a more general discussion is provided in
BloÈ schl and Sivapalan (1995).

There are a number of ways of conceptualizing the ®lters mentioned above. These can be linear ®lters or
non-linear ®lters; and the analysis can be moulded in a stochastic framework or in a deterministic frame-
work. In snow hydrology, out of the four possible combinations, the two most important ones are a linear
stochastic analysis (i.e. mainly geostatistics) and a non-linear deterministic analysis (i.e. mainly distributed
physically-based modelling). We will discuss these two most important cases in the following sections.

LINEAR STOCHASTIC ANALYSIS

Framework

There are two fundamental assumptions on which this type of analysis rests:
First, the process is linear, i.e. it aggregates linearly or, in other words, simple arithmetic averaging applies:

E�f�x�� � f�E�x�� �7�

where E is the mathematical expectation, x is location and f is a function or a variable. In snow hydrology
there are many processes that do average linearly and many other processes that do not. If f is a variable,
linear averaging is applicable if a conservation law (of mass or energy) holds. For example, if we measure
SWE at a 1 m grid in a catchment and calculate the total SWE volume in the catchment from this and, in a
second step, aggregate the measurements to a 10 m grid and, again calculate that total SWE in the
catchment, these two methods will give the same results due to conservation of mass. In this example, x in
equation (7) relates to the 1 m grid coordinates, E(x) to the 10 m grid coordinates, f(x) is SWE at the 1 m
grid, f(E(x)) is SWE at the 10 m grid, and E( f(x)) is SWE at the 1 m grid averaged over 10� 10 m. However,
if we aggregate snow albedo to di�erent grid sizes in a physically realistic manner, the average values over the
catchment of the two methods will not necessarily be the same. This is because snow albedo is not con-
servative. If f is a function representing a measurement set up, there are instruments that do average linearly
(such as a raingauge), there are instruments that average linearly in good approximation (such as TDR or
satellite sensors), and there are instruments that aggregate non-linearly. If f is a function in a model
representing a hydrologic process (such as Darcy's law), then unfortunately equation (7) often does not
apply as most hydrologic processes do not average linearly. In Darcy's law, for example, the average
hydraulic conductivity over an area does not give the average ¯ux over the same area, i.e. equation (7) does
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not hold. In such cases one may resort to non-linear stochastic analyses (e.g. Gelhar, 1993) or to non-linear
deterministic models (see later in this paper).

The second assumption is that the variable to be examined is a second order stationary random variable.
Random means that any sort of organization that may be present in the spatial patterns may be neglected. It
is clear that catchments are highly organized and, often, snow processes show (organized) linear features.
However, in a ®rst approximation it may be useful to assume that snow processes are random in space and to
neglect other controls. The assumption of second order stationarity essentially implies that the variogram
(equation (1)) does not change with location in the catchment or in the region. It does not necessarily imply
stationarity (in the mean), i.e. there is no need that the variogram ¯attens out at some lag. Second order
stationarity may be a reasonable assumption in many applications. However, in some applications, such as
network planning, the assumption of second order stationarity does not make sense. In a stochastic
approach to network planning the idea is usually that regions with small scale variability (small process
scale) are densely sampled (small spacing) while regions with large scale variability are less densely sampled.
Clearly, this is inconsistent with the assumption that the variogram (and hence the process scale) does not
change with location.

Based on these two assumptions we can now apply standard geostatistics (e.g. Journel and Huijbregts,
1978) or, equivalently, linear ®ltering theory for random ®elds (Wiener, 1966) to obtain a ®ltered random
®eld, i.e. a random ®eld obtained from aggregating, disaggregating, extrapolating or interpolating data
points. As mentioned above, aggregation, disaggregation, extrapolation and interpolation (i.e. a change of
scale by the measurement or the model) can be viewed as ®ltering. We will not go into the details of this
theory here, which are contained in a rich literature on the subject (see e.g. Journel and Huijbregts, 1978;
Vanmarcke, 1983; Isaaks and Srivastava, 1989; Journel, 1993; Armstrong, 1998). We will only present some
of the results that are most relevant to snow hydrology in an intuitive way. There are three main results one
would be interested in and that can be obtained from geostatistics: (a) the most likely spatial pattern of the
variable of interest, (b) spatial patterns with the most realistic variability, and (c) the moments of the
patterns. For (a) there are a wide range of geostatistical interpolation methods (kriging and varieties thereof)
that are also able to handle the e�ect of support (e.g. block kriging). These are best linear unbiased
estimators that, however, have the disadvantage of tending to smooth out the patterns, i.e. the interpolated
patterns are smoother than the real ones. There is a class of interpolators that do not smooth the patterns
that are termed stochastic simulations (b). However, this is at the expense of not producing the best inter-
polations. Stochastic simulations (such as sequential indicator simulation and others) produce a number of
equally likely realizations of the patterns, each of them having the same spatial variability (i.e. variogram) as
the true pattern. There are software packages available for both classes of methods (e.g. GSLIB, Deutsch
and Journel, 1997; SURFER, Golden Software, 1998). In this paper, for clarity, we will focus on (c), i.e. the
statistical moments, and how they change with scale. The statistical moments we examine are the mean,
E( . ), the spatial variance, s2, and the correlation length, l. Speci®cally, we will examine which biases will be
introduced by a change of scale but we will not examine the random errors (estimation variance or reliability)
introduced by a change of scale.

Regularization

There are a range of methods for estimating the ®ltered moments. These include (a) the spectral method
(where the random function is multiplied with the ®lter function in the frequency domain); (b) ®ltering in the
space domain (simply by running a moving average ®lter over the data, and estimating the moments from the
®ltered data); and (c) ®ltering in the lag domain (i.e. by multiplying the variogram by some function) which is
usually termed regularization in geostatistics. All of these methods produce very similar results and their
di�erences are mainly of a methodological nature (Vanmarcke, 1983). Here we will adopt the lag domain
approach (i.e. regularization) which is the one most frequently used in geostatistics. We adopt this approach
because it is simple and intuitive and consistent with the variogram representation of variability used in the
remainder of this paper.
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The results presented here are based on standard regularization methods with a number of additional
simplifying assumptions. In the case of support the variogram of an averaged process is calculated using the
variogram of the point process and a ®lter function. The ®lter is represented by a square of side length aSupp ,
which is the support. The square is the area over which the aggregation takes place. Di�erent shapes of this
area do not signi®cantly a�ect the results of the regularization (RodrõÂ guez-Iturbe and MejõÂ a, 1974). In the
case of spacing, the apparent variogram is approximated by the true variogram for lags larger than the
spacing aSpac and by a linear increase from the origin for shorter lags. This assumption is made because when
estimating the empirical variogram there are only a small number of pairs of points for lags smaller than the
spacing (Russo and Jury, 1987) and a straight line is the simplest approximation. Discussions of work related
to this assumption are given in Russo and Jury (1987) and Gelhar (1993). In the case of extent, the apparent
variogram is based on the true variogram for small lags ( for g�h�4s2app�, and is constant and equal to s2app
for large lags. The apparent integral scale, Iapp , is then calculated from the apparent variogram by using
equation (3). Western and BloÈ schl (1999) showed that these assumptions are also reasonable for more
general cases. More details on the method are given in Appendix A of Western and BloÈ schl (1999), BloÈ schl
(1999), and in most geostatistical texts. Here we will show the results for two types of variograms: an
exponential variogram (equation (2)), and a double exponential nested variogram of the form

g �
XN
i�1

s2i �1 ÿ exp�ÿh=li�� �8�

with N � 2, s21 � 0�3, s22 � 0�7, l1 � 0.1, and l2 � 10. The variogram in equation (8) has two preferred
scales, at 0.1 and at 10. From equation (3) we ®nd that the integral scale of this variogram is Itrue � 7�03. This
type of variogram, with similar parameters, is sometimes used in hydrologic studies spanning a wide range of
scales (e.g. Gelhar, 1993). It is important to reiterate that the ®ltering represents the change of scale (or
scaling) and that the e�ect of this change of scale will be controlled by the ratio of the measurement scale
(spacing, extent, support) and the process scale, and the ratio of the model scale (spacing, extent, support)
and the process scale. It is therefore possible to use non-dimensional quantities such as aSpac=Itrue, i.e. the
spacing normalized by the (true) process scale. Similarly, because of linearity, it is possible to non-
dimensionalize the apparent variance, s2app (which is the variance of the ®ltered process) by dividing it by the
true variance, s2true, and to non-dimensionalize the apparent integral scale (or correlation length), Iapp (which
is the integral scale of the ®ltered process) by dividing it by the true integral scale, Itrue .

The results of the regularization analyses are shown in Figure 3. The top left panel of Figure 3 suggests
that changing the spacing does not change the variance. For example, the SWE estimated from 10 and
1000 samples in a catchment will give the same variance, on average. This means that there is no bias
introduced into the variance by a small number of samples but, of course, the estimate of the variance will be
less reliable (large random error). No bias implies that the apparent variance is equal to the true variance and
hence the ratio of the two quantities (plotted in the top left panel of Figure 3) is unity. Increasing the extent
(top centre panel of Figure 3) increases the variance, and increasing the support (top right panel of Figure 3)
decreases the variance. The e�ect of extent is consistent with the general observation that as we increase the
size of the domain of interest, additional variability comes in. For example, when we start from the plot scale
(say, 1 m2) the spatial variability of snow depth will be very small but as we increase the size of the domain
(i.e. the extent) to a mountain range, the variability will increase drastically. For su�ciently large extents the
apparent variance is equal to the true variance and hence their ratio approaches unity.

The e�ect of support (top right panel of Figure 3) is consistent with the general observation that
aggregation always reduces variance for a random variable. For example, if we compare the SWE at a large
number of plots in a region, the spatial variability will be quite large. However, if we aggregate the plot
values to average values in a small number of catchments in the same region, the variability between the
average catchment values will be much smaller. For su�ciently small supports the apparent variance is equal
to the true variance and hence their ratio approaches unity. The reduction of variance with increasing
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support has been recognized in many practical and more theoretical studies in various subdisciplines of
hydrology including rainfall analysis (e.g. areal reduction factors) and regional ¯ood frequency (see e.g.
BloÈ schl and Sivapalan, 1997; Sivapalan and BloÈ schl, 1998).

Figure 3 also suggests that increasing the spacing, the extent, and the support will in general increase the
apparent integral scale (lower panels). For example, a small number of samples of SWE in a large catchment
analysed by geostatistical methods (equation (1)) may yield deceptively large correlation lengths, much
larger than the correlation length of the underlying true snow patterns, because the spacing is large as
compared to the process scale (i.e. true correlation length). On the other hand, correlation lengths estimated
from snow lysimeter data at the plot scale are unlikely to capture the large scale variability of snow melt that
is due to large scale topography and climatic conditions and, hence, will underestimate the correlation
lengths of the underlying true pattern of snow melt in the region. This result is because the extent is small as
compared to the process scale. Similarly, if we estimate correlation lengths from satellite data at a coarse
resolution (i.e. large footprint or support), we will not be able to pick the small scale variability of snow cover
patterns and hence we will overestimate the true correlation lengths.

It should be noted that Figure 3 shows the scale e�ect when changing only one of the scales of the scale
triplet, assuming that the other two do not cause a bias (i.e. spacings are small, extents are large, and
supports are small). The combined scale e�ect of two of the three components of the scale triplet has been
examined in BloÈ schl (1999) and one example will be given later in this paper.

The e�ect of a change in scale on the mean, E( . ), is not shown in Figure 3. This is because, given the
assumption of a linearly aggregating process, a change of scale will not bias the mean. This result indicates
that irrespective of the spacing, extent, or support of the data (or the model) the mean will always be
unbiased, provided the process is linear. If the process model, or the measurement, does not aggregate
linearly then the mean will be biased and may change with the scale. This is examined later in this paper. It

Figure 3. E�ect of spacing, extent and support of a measurement or a model on biases in the variance and the correlation length. s2app is
the apparent variance; s2true is the true variance; Iapp is the apparent integral scale (or apparent correlation length); Itrue is the true
integral scale (or true correlation length). Based on geostatistical regularization methods (Western and BloÈ schl, 1999). Solid lines are for
an exponential variogram (equation (2)) and dashed lines are for a double exponential nested variogram (equation (8)) with the

parameters as in equation (8)
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should also be noted that although the mean will not be biased for the case of linear averaging, the reliability
(random error) of the mean will obviously change with the scale, but this is beyond the scope of this paper.

Let us consider two examples of how the e�ects depicted in Figure 3 can be used for practical applications.
Consider, in the ®rst example, a 10 km2 catchment in which 100 point samples of snow depth have been
taken. From these samples, a correlation length of about 200 m has been estimated by using equations (1)
and (2). Question: (a) Is this estimate biased? (b) If so, what is the unbiased correlation length? (c) How many
samples would be needed to obtain an unbiased estimate from the data? Solution: The solution is found by
trial and error. Equation (4) gives aSpac � 320 m. If we assume that the true correlation length is 155 m,
aSpac=Itrue � 2�06 for which Figure 3 (bottom left panel) gives Iapp=Itrue � 1�29. This is a solution to the above
problem as 1.29*155 m � 200 m which is equal to the apparent correlation length. This is a unique solution
as, assuming, say, Itrue � 180 m gives an estimate of Iapp � 220 m4 200 m while assuming Itrue � 130 m
gives an estimate of Iapp � 185 m5 200 m. The correlation length estimated from the samples is biased and
the unbiased correlation length is about 155 m. For an unbiased estimate directly from the data (e.g. error
smaller than 5%, i.e. Iapp=Itrue 5 1�05� Figure 3 (bottom left panel) indicates that aSpac=Itrue 5 1 which means
that aSpac5 155 m and at least 420 point samples in space would be needed (equation (4)). It is interesting to
examine the same example for the case of only 10 point samples for which aSpac � 1000 m and Figure 3 does
not give a solution to the problem. While it is clear that the estimate will be substantially biased it is not
possible to estimate the true correlation length. Clearly, there is not enough information in only ten samples.
Similarly, there is no unique solution for apparent correlation lengths much smaller than the spacing which,
again is due to the limited amount of information in the data.

Consider a second example of a remotely sensed image that gives some estimate of SWE. In a ®rst step we
are interested in the % snow covered area as estimated from this image. Assume that the mean SWE over the
image is 360 mm, the true standard deviation (in space) is 300 mm, and the SWE is distributed according to a
(truncated) normal distribution. Assume also that the true correlation length of SWE is Itrue � 100 m, and
the pixel size ( footprint) of the remotely sensed image is 250 m. Question: (a) What is the true snow covered
area? (b) What% snow covered area would one predict from the remotely sensed image? Solution: (a) For the
true SWE distribution, the mean is 360/300 � 1.2 times the standard deviation. For a standard normal
distribution, the non-exceedance probability of P�Z5 ÿ 1�2� � 0�12. This means that 12% of the land
surface is snow free and 88% is snow covered. (b) From the remotely sensed image one would predict a
variance that is smaller than the true variance. For aSupp=Itrue � 2�5, Figure 3 (top right panel) gives
s2app;Supp=s

2
true � 0�32 which gives an apparent standard deviation of 300*

���������
0�32p � 170 mm. With this the

mean is 2.1 times the standard deviation and for a standard normal distribution, the non-exceedance
probability of P�Z5 ÿ 2�1� � 0�02. This means that, from the remotely sensed image, one would predict
that only 2% of the land surface is snow free and 98% is snow covered. Clearly, this misrepresentation will
have a signi®cant e�ect on estimates of the surface energy balance and evapotranspiration. As a side issue it
is interesting to examine the apparent correlation length one would estimate from the images. For
aSupp=Itrue � 2�5 one gets Iapp=Itrue � 2�1 from the bottom right panel of Figure 3, hence the apparent
correlation length is 210 m rather than 100 m. It should also be noted that the numbers in this example
depend on the assumption of a normal distribution.

Snow cover variograms

So far we have implicitly assumed that (a) the true variograms of the snow cover variables are exponential
(equation (2)) and (b) that the true correlation lengths exist and are known a priori. What is the data evidence
on variograms of snow-related variables? Unfortunately, the variables of most interest (such as SWE and
snowmelt) are usually collected at a few points only (e.g. Sommerfeld and Bales, 1993), hence, it is not
possible to estimate variograms spanning many orders of magnitude in scale. Remotely sensed images are
useful but some of the variables derived from them (such as SWE) may not always be reliable. Because of
this, in this paper we examine snow covered area (SCA), i.e. a binary variable that is 1 for a snow covered
pixel and 0 for a snow free pixel. A large number of snow covered area images are readily available and are
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probably quite reliable. While we do not expect that the variograms of other snow-related variables will be
identical with that of SCA, we do believe that SCA provides very useful insight into the nature of spatial
variability (and variograms) of many snow-related variables, because the driving processes are closely
interrelated. Patterns of SCA can in fact be interpreted as indicator images of SWE, representing di�erent
`thresholds' of SWE at di�erent times of the year. Indicator variograms and indicator geostatistics are widely
used in other areas of hydrology and the geosciences in general where a continuous variable (such as SWE) is
transformed into a binary variable by thresholding it (see e.g. Anderson, 1997; Western et al., 1998). The
correlation lengths derived from indicator variograms are closely related to the correlation length of the
continuous variable and are of the same order of magnitude (Deutsch and Journel, 1997). However, of
course it is not possible to estimate the variance of the continuous variable from the variance of the indicator
variable. The variance of the indicator variable, s2

p , is always a function of the mean of the indicator variable.
If p is the mean of, say, snow covered area (e.g. p � 0.3, i.e. 30% of the area is snow covered)

s2
p � p � �1 ÿ p� �9�

so the variance of the example is 0.21.
Sample variograms, estimated by equation (1), from four very di�erent case studies are presented in

Figure 4 as double logarithmic plots. The ®rst set of variograms (Figure 4a) has been derived from a number

Figure 4. Variograms of snow covered area (SCA), i.e. a binary variable that is 1 for a snow covered pixel and 0 for a snow free pixel. (a)
Thin sections of snow (eight images for di�erent snow types, pixel size is 0.1 mm); (b) KuÈ htai aerial photographs (nine scenes in 1989,
pixel size is 5 m); (c) Sierra Nevada TM images (six scenes in 1997, pixel size is 30 m); (d) Sierra Nevada AVHRR images ( four scenes in

1998, pixel size is 1100 m)
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of thin sections obtained in the laboratory by scanning images of snow crystals (R. Davis, pers. comm.).
These are binary images where 1 is ice and 0 is void and the pixel size is 0.1 mm. Figure 4a shows that the
variograms are all stationary, i.e. a correlation length exists and is on the order of 0.2 to 0.5 mm. The
di�erences in the correlation lengths for the di�erent images are mainly due to di�erent types of snow. The
shape of all variograms is close to exponential (equation (2)).

The second set of variograms (Figure 4b) has been derived from aerial photographs in the KuÈ htai
catchment, Austria (BloÈ schl and Kirnbauer, 1992). The boundaries between snow covered and snow free
areas were ®rst digitized manually as vectors in the photographs and in a second step were gridded to a pixel
size of 5 m. The variograms (Figure 4b) are probably not stationary but if we assume local stationarity (by
neglecting the part of the variogram for lags larger than 500 m) we would get correlation lengths on the order
of 100 m. The variance, s2

p , is a multiplicative factor in variograms (Figure 2a) and hence translates into the
intercept in double logarithmic plots. The variograms in Figure 4b have similar slopes but di�erent intercepts
which means that the di�erences between the variograms are mainly due to di�erences in s2

p and hence due to
di�erences in the % snow covered area (equation (9)).

The third set of variograms (Figure 4c) has been derived from Landsat Thematic Mapper (TM) images in
the Sierra Nevada region (see Cline et al., 1998a; Rosenthal and Dozier, 1996) with a pixel size of 30 m. The
variograms are clearly not stationary as they do not ¯atten out at large lags over the range shown. Most of
them can be closely approximated by a straight line in the double logarithmic plots which implies that they
conform to a power law. The di�erences between the variograms are partly due to di�erences in the % snow
covered area (equation (9)) which cause the vertical shifts in Figure 4c. However there are also di�erences in
the slope which may be related to other factors such as changes in shading due to variable illumination angle
in rugged terrain.

The fourth set of variograms (Figure 4d) has been derived from AVHRR images in the Sierra Nevada
region (K. Elder, pers. comm.) with a pixel size of 1100 m. The variograms have a di�erent shape than those in
Figures 4a, 4b, and 4c. They are approximately stationary as they do not increase for lags larger than 100 km.
However, they are not exponential and can be approximated by a straight line between lags of 3 km and
100 km. If we were to estimate correlation lengths from Figure 4d, they would be on the order of 30 km. The
di�erences between the variograms in Figure 4d are mainly due to di�erences in the % snow covered area.

While the variograms in Figures 4a, 4b, 4c and 4d do not apply to the same date and the same location it is
reasonable to assume that their general shape will be similar for other dates and locations. Their main
di�erence then is the scale at which the snow cover data have been collected. Given the various biases
introduced by the sensors in terms of their spacing, extent and support one wonders what the true variogram
spanning more than nine orders of magnitude from the crystal to the regional scale would look like, i.e. the
variogram that arises from a combination of the variograms at the four scales. There is an apparent
inconsistency in the correlation lengths (Figure 4a: l � 0.0005 m; Figure 4b: l � 100 m; Figure 4d:
l � 30 000 m) and it would be interesting to ®nd out whether it is possible to reconcile the variograms shown
in Figure 4.

There are two philosophies in the literature on this issue. The ®rst philosophy (e.g. Dagan, 1986; Neuman,
1990, 1993; Lovejoy and Schertzer, 1985) suggests that there is some universal continuous variogram that can
be represented by a power law of the form

g � a � hb �10�
which is termed a variogram of a fractal and represents scale invariant (or self similar) behaviour.
Equation (10) implies non-stationarity. This philosophy is consistent with data evidence when combining a
large number of situations and case studies in hydrology. However, it is hard to understand what would be the
actual processes giving rise to one continuous relationship. In other words, equation (10) relates the variability
at the crystal scale to the variability at the regional scale and from a physical perspective one would not expect
them to be related. The second philosophy (e.g. Gelhar, 1993, p. 295) suggests that there is a discontinuous
variogram exhibiting steps of the form of equation (8). This variogram exhibits a number of preferred scales
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(i.e. the li) each of which may represent one physical process. For example, the process scale of crystal growth
may be l1 � 1 mm, that of wind drift at hillslopes may be l2 � 1 m, that of solar radiation e�ects at hillslopes
of di�erent aspects may be l3 � 100 m, and that of di�erent climatic conditions may be l4 � 10 km. The
combined nested variogram (equation (8)) then is a combination of the e�ects of the individual processes. It is
locally stationary because it ¯attens out between the preferred scales. This interpretation is appealing because
it is consistent with physical reasoning. For example, the thin sections in Figure 4a are stationary and this may
be due to the presence of crystal growth processes only (such as equilibrium processes and kinetic processes)
but no other (larger scale) processes (such as the formation of preferential ¯ow ®ngers). On the other hand, as
we increase the scale, larger scale processes are re¯ected in the snow cover data.

Perhaps one possible way of reconciling these two philosophies is by noting that the ensemble mean of a
large number of nested variograms of the type of equation (8) with di�erent sets of li for di�erent case
studies may indeed combine to give an envelope that looks like the fractal in equation (10). For a particular
case study it may be preferable to assume local stationarity at each of the scales mentioned as a working
hypothesis. If the study does not span too many orders of magnitude, the assumption of a stationary
variogram of the exponential type (equation (2)) or a similar variogram may therefore be appropriate which
implies the existence of one correlation length. If the study spans more than, say, three orders of magnitude,
a nested variogram (equation (8)) may be preferable as it is likely that a number of processes are operative at
very di�erent scales. For both types of variograms the e�ects of scale have been shown in Figure 3 (solid lines
and dashed lines, respectively).

As a side issue it may be interesting to examine whether the slope of the variograms in the double
logarithmic plots (i.e. parameter b in equation (10)) may be a useful parameter for characterizing the spatial
snow cover variability. This is a potential alternative to the correlation length. It would also be interesting to
know whether any relationships to the metamorphic state of the snow cover or other physical controls (such
as the complexity of the terrain) can be detected. For the two dimensional case examined here, the parameter
b is related to the Hurst exponent,H, byH � b/2 and to the fractal dimension,D, byD � 3 ÿ b=2 which are
parameters that are often used in studies of fractal variability (KlemesÏ , 1974; Feder, 1988; Klinkenberg and
Goodchild, 1992). The exponent b is a measure of the ratio of large scale and small scale variability. If b is,
say, 1.2 most of the variability occurs at large scales, and if b is, say, 0.1 most of the variability occurs at small
scales. Straight lines have been ®tted to the double logarithmic plots of Figure 4b ( for lags larger than 50 m),
Figure 4c, and Figure 4d ( for lags between 3 and 100 km). The slopes of the ®tted lines (i.e. the fractal
exponents b, equation (10)) are shown in Figure 5 along with the proportion of snow covered area. The
images are sorted according to the date they have been collected, i.e. from winter to summer as can be seen
from the decreasing snow covered area which re¯ects the seasonal snow ablation. The exponent b does not
vary much during the year. However, there is a slight tendency towards lower exponents at the end of the
ablation period. This indicates a larger proportion of small scale variability as compared to large scale
variability which may be a consequence of rocks and small scale topographic features having a stronger
impact on the snow cover patterns towards the end of the ablation period. Similarly, image number 3 at
KuÈ htai and image number 11 at the Sierra Nevada show slightly lower exponents. These images were
collected shortly after snowfalls which again may cause more small scale features to be present in the patterns.

It is interesting that analyses of transects of snow depths reported in the literature tend to show piecewise
fractal behaviour of the variogram for lags shorter than about 5 to 50 m, depending on the climate and the
type of terrain (Shook and Gray, 1996; Sturm et al., 1998). The integral scales in these studies were on the
order of 2 to 20 m. Overall, the interpretation of the exponent b is not straightforward and it appears that
more work needs to be done before it can be used as a useful parameter for characterizing spatial snow cover
variability, particularly as far as its relation to the metamorphic state of the snow cover is concerned.

Artefact or reality?

As a ®nal remark on the linear stochastic analysis we will draw attention to the subtleties of interpreting
results of scale analyses. To illustrate the point we have resampled the KuÈ htai snow cover data used in
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Figure 4b (image number 8 in Figure 5). A square window of size aExtwas placed at random in the catchment.
From this window, 500 samples of snow cover were drawn randomly which were used to estimate the
variogram and to ®t an exponential variogram to it. The sizes of the windows were varied from 125 to 4000 m
for the same centre of the window. As a ®nal step, correlation lengths were plotted against window size. The
results are shown in Figure 6a for four random locations of the window centres. Estimated correlation lengths
tend to increase with window size. In other words, the apparent correlation scale increases with increasing
measurement scale (extent). Similar results of scale dependent behaviour of correlation scales were reported
by Gelhar (1993) for the case of hydraulic conductivities in aquifers. Speci®cally, the data of Figure 6.5 of
Gelhar (1993) suggest that the correlation scales of conductivity tend to be on the order of 10% of the extent
of the domain which is close to the results for the snow cover case shown here. Gelhar suggested that this
behaviour is an indication of the nested nature of the true variogram which has the form of equation (8).
However, this behaviour may also perfectly well be explained by the biases introduced by the sampling and
the subsequent geostatistical analysis. In the resampling analysis we left the number of samples constant
which implies a ®xed ratio of the spacing and the extent. In Figure 6b we have expanded the analysis of
Figure 3 by combining the cases of extent and spacing, i.e. we have calculated the apparent integral scale for
an exponential variogram with varying extent and with the spacing ®xed at a multiple of the extent. We used
aSpac � 0�1 � aExt which implies 100 data points. Each of the three lines shown in Figure 6b relates to vastly
di�erent true correlation lengths (i.e. process scales, Itrue � 0.01; 1.0; 100). While the three lines are slightly
di�erent where the extent is close to the true correlation length Itrue , from a global perspective all three lines
centre around the dashed line that represents 10% of the extent. This means that the ®nding of correlation
lengths to be 10% of the extent of the domain as suggested in Figure 6a and elsewhere in the literature may
also be interpreted as an artefact of the method which does not allow inference of the true underlying
hydrologic variability. In other words, if a wide range of scales is examined and only 100 data points or less
are available, the apparent correlation length will always be on the order of 10% of the extent of the domain,
irrespective of the shape and the correlation length of the true variogram. Obviously, there are serious
inference problems (also see Gelhar, 1993, p. 330; Gallant et al., 1994; and, for the temporal case, KlemesÏ ,
1974) and one should, therefore, be wary of interpreting variability in the data as the true variability.

Figure 5. Fractal exponents b obtained by ®tting a power law (equation (10)) to the variograms in Figure 4b (images 1±9), Figure 4c
(images 11±16), and Figure 4d (images 17±20), and snow covered area (SCA)
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NON-LINEAR DETERMINISTIC ANALYSIS

Framework

The non-linear analysis of spatial variability of snow processes clearly addresses a much wider class of
cases than the linear analysis. Many processes in snow hydrology do not aggregate linearly and the
associated variables are not conservative.

E�f�x�� 6� f�E�x�� �11�
where E is the mathematical expectation, x is location and f is a function or a variable. The most important
di�erence to the linear case is that a change in scale will have an e�ect on the mean, E( . ), and hence di�erent
measurement or model scales can cause a bias in the mean. Strictly speaking, probably all processes
associated with the formation, redistribution and depletion of the snow pack are non-linear as are the
processes of meltwater movement in the pack and through the catchment. In many practical applications it is
exactly the non-linearity that is of most interest. For example, if a number of snow courses are sampled with

Figure 6. (a) Apparent correlation lengths estimated by resampling the KuÈ htai snow cover data (Figure 4b and Figure 5, image number
8) plotted versus extent (i.e. size of a window). 500 data points in space have been used. The four lines correspond to four random
locations of the window centre. (b) Joint e�ect of spacing and extent of a measurement on biases in the correlation length based on
regularization methods using an exponential variogram (Western and BloÈ schl, 1999). Iapp is the apparent integral scale (or apparent
correlation length); Itrue is the true integral scale (or true correlation length). The spacing is 10% of the extent which is equivalent to 100

data points in space
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the aim of identifying those locations that are more representative of the average over a catchment than
others (e.g. Golding, 1974) it is clearly the non-linearity associated with the spatial organization of the snow
cover that is examined. This is because if the SWE varied linearly, all locations in a catchment would be
equally representative of the catchment mean. However, this is rarely the case (e.g. Yang and Woo, 1999).

A deterministic analysis of this non-linearity allows us to apply physical laws. Some of them (such as
Darcy's law and laws associated with solar radiation) are relatively well known (e.g. Dozier, 1980) while
others (such as laws associated with turbulent processes) are relatively poorly known or do not exist.

This sort of analysis is usually framed as a distributed physically based snow model (DSM) which allows
incorporation of all the complexity of the physical processes that are deemed to be important and allows
estimation of a range of variables that are of interest in snow hydrology, including SWE and melt water
release from the snow pack (Leavesley, 1989; Kirnbauer et al., 1994). To this end, the catchment is usually
subdivided into numerical elements which are often square grid cells. The basic assumption in doing this is
that the total spatial variability is split up into a small-scale part of variability within elements and a large-
scale part of variability between elements (Smagorinsky, 1974; Kirnbauer et al., 1994). The small scale
variability within elements is also termed `subgrid variability'. The large scale variability between elements is
also termed `element-to-element' variability. In a linear approximation, the total variability is the sum of the
small scale variability within elements and the large scale variability between elements (see e.g. Isaaks and
Srivastava, 1989)

s2total � s2within � s2between �12�
In the framework adopted in the linear stochastic analysis of this paper (BloÈ schl, 1999), s2between is simply
s2app;Supp as shown in Figure 3 (top right panel). DSMs deal with these two components in very di�erent ways
(see Figure 7; Kirnbauer et al., 1994; and BloÈ schl and Sivapalan, 1995). The large scale processes (larger than
the element size) are explicitly represented in the model, i.e. the variability is resolved. For the case of
topography, explicit representation may be by di�erent values of topographic elevation in di�erent elements
or by the sizes, shapes and slopes of the individual elements. The small scale processes (smaller than the
element size) are parameterized, i.e. they are implicitly represented in the model by some lumped relationship.
There are a number of reasons for using this approach. One of them is that, in most cases, the detailed small
scale patterns of hydrologic processes within an element will not be known (or will even be unknowable;
Beven, 1989, 1995) and hence a lumped representation as subgrid variability is appropriate and necessary.
To assess the importance of subgrid variability vis aÁ vis total variability let us consider a DSM example and
assume, as an approximation, that we can average the parameters linearly. Assume that the size of the model
elements is 15 m and from detailed point samples the true correlation length of SWE is known to be 30 m.
Question: (a) What is the variability of the average element SWE (i.e. the variability between elements) as

Figure 7. Hypothetical variogram to indicate that, by subdividing a catchment into model elements, distributed snow models split the
total spatial variability into a small scale (subgrid) component which is parameterized and into a large scale component which is

resolved explicitly. Dx is the element size
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simulated by the model, assuming it is consistent with the true point scale variability? (b) What is the subgrid
variability of SWE? (c) What is the correlation length of the patterns as simulated by the model? Solution: (a)
For aSupp=Itrue � 0�5, Figure 3 (top right panel) gives s2app;Supp � 0�8*s2true. This means that the variability
between elements is 80% of the total variability. (b) From equation (12) the subgrid variability is found as
20 % of the total variability. (c) Figure 3 (bottom right panel) suggests that Iapp;Supp � 1�3*Itrue � 40 m. In
other words, the change of scale considered in this example is not very important in terms of the variance and
the correlation length. However, it should be noted that for many snow hydrologic processes non-linear
e�ects caused by these di�erences including feedback e�ects may be vastly more important.

The representation of the spatial variability of snow-related processes between elements (i.e. the element-
to-element variation) is usually done by some sort of spatial interpolation and there is a vast body of
literature on this (e.g. Obled andHarder, 1979; BloÈ schl et al., 1991; Elder, 1995; Davis et al., 1995; including a
number of papers in this journal issue). There is much less literature on subgrid variability and we will,
therefore, touch on some methods of how to represent subgrid variability in DSMs.

Subgrid variability

The main importance of representing subgrid variability accurately in DSMs probably stems from the
feedback e�ects introduced by the non-linearity of the system. There are a number of approaches to quant-
ifying the spatial variability of hydrologic processes within a grid cell (BloÈ schl and Sivapalan, 1995; BloÈ schl,
1996). These include:

(a) the point value approach which assumes that the point scale equations at some point in the element
su�ce for an adequate description of the processes within the element. It is clear that this approach in
essence neglects subgrid variability.

(b) A second approach uses distribution functions rather than single point values. One example is the
approach suggested by Luce et al. (1999) which extends a point mass and energy balance model by using
a relationship between the basin average snow water equivalent and snow covered area to parameterize
the subgrid variability. The relationship is similar to the `snow cover depletion curves' in currently used
empirical snowmelt models such as the National Weather Service River Forecasting System (Anderson,
1973).

(c) A third approach uses e�ective parameters and assumes that the parameters and processes are uniform
within each element and that the point equations apply to the whole element. This is a trivial problem for
linear processes but very di�cult for non-linear processes (e.g. Sivapalan and Wood, 1986; BloÈ schl and
Sivapalan, 1995; Wen and GoÂ mez-HernaÂ ndez, 1996). In the non-linear case, there are two main
questions; can the point scale equations be used to describe average element ¯uxes?, and if so, what is the
scaling rule to obtain the e�ective parameters that are valid at the element scale (rather than at the point
scale)? In principle, the e�ective parameters can be found by matching the ¯ux obtained by the e�ective
(average) parameter with the average ¯ux in the element obtained with point scale parameters (¯ux
matching). In practice, the e�ective parameters are often found by calibration.

(d) A fourth possibility is a parameterization without explicitly resorting to the point equations. While I am
not aware of any applications of this method in the context of spatial subgrid variability in DSMs, there is
an excellent example in the time domain. Some point models of snow cover energy exchange explicitly
simulate the snow surface temperature by modelling the vertical heat ¯uxes in the pack by a ®nite
di�erence scheme (e.g. BloÈ schl and Kirnbauer, 1991). This type of model allows one to calculate the
diurnal variations of the snow surface temperature that have important feedback e�ects on the surface
energy balance. These models are usually run at a time step (temporal support) of one hour or less. Other
models do not model the vertical heat ¯uxes in the pack and hence they are not able to calculate snow
surface temperature, so it is usually set to 0 8C (e.g. Braun, 1985). These models are usually run at a time
step (temporal support) of one day. For these models, the diurnal variations of the surface temperature
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are subgrid variability (in the time domain). One way to parameterize this subgrid variability is by
introducing a factor of refreezing. Energy losses from the snow pack are then multiplied by this factor. As
this factor is usually on the order of 0.5, it reduces the night time heat losses of the pack. This produces a
similar e�ect to the actual processes where the snow surface temperature drops during the night which
gives a lower energy loss than would occur for a 0 8C surface temperature. The important point here is
that there are no distribution functions and no e�ective parameters involved but an additional model
component is introduced, i.e. a parameterization. It should also be noted that numeric models of
atmospheric processes make wide use of parameterizations of subgrid variability (e.g. Houghton et al.,
1996).

Optimum modelling scale

There is a clear trade-o� when selecting the size of the model grid cells which can also be seen from Figure 7
and equation (12). If we select a small grid size, we need to explain a lot of the variability explicitly (as
element-to-element variability, s2between) which perhaps will be very di�cult but we need to give little thought
to subgrid variability. On the other hand, if we select a large grid size, representation of the element-to-
element variability will be easier but, perhaps, representation of the small scale (subgrid) variability, s2within,
will be very di�cult. It has been suggested that there may exist a grid size where this trade-o� is at an
optimum (Wood et al., 1988). While in practice the selection of the grid size is often determined by practical
considerations, such as data availability and the required resolution of the predictions, it is also interesting to
ask whether there exists a scale which generally tends to be more appropriate as an element size than others.

One of the important questions to be addressed here is whether there are large scale processes that are
clearly distinguishable from small scale processes. The desirable thing would then be to parameterize the
small scale processes as subgrid variability and to explicitly represent (i.e. resolve) the large scale processes.
There is no mix between the two processes which is a de®nite advantage for model building and calibration.
Let us, again, consider an example from the time domain. There are snow processes at a seasonal time scale
and these are clearly distinguishable from processes at the diurnal (within-day) time scale. It is wise to select
the time step so as not to mix these two classes of processes. It would not be a good idea to use a 20 hour time
scale. Clearly, the appropriate choice is either a time step small enough to resolve the diurnal variations
(e.g. one hour) or to completely lump the diurnal variations into subgrid variability (e.g. time step of one
day). Unfortunately, in the space domain, the choices are less obvious.

The body of literature (e.g. Wood et al., 1988; BloÈ schl, 1996) addressing the question of an optimummodel
element size (i.e. support) generally starts from an analysis of spatial variability and explores whether there
are clearly discernible scales of variability (i.e. small scale variability and variability at a much larger scale).
An example of variability that shows two clearly discernible scales is that represented by the nested vario-
gram in equation (8) which has preferred scales at l1 � 0.1 and l2 � 10 and little variability in between (i.e.
the variogram ¯attens out between these two scales). In a second step these analyses generally suggest that
the small scale variability may be attributable to one process, and the large scale variability may be
attributable to another process and hence it may be prudent to choose the model grid size somewhere in
between. In the example mentioned above it would be prudent to choose a model element size on the order
of 1.

Spatial variability may be analyzed in a number of ways, for example by (a) a spectral analysis; (b) a
variogram analysis, and (c) an examination of how the average values over an area change when increasing
the size of that area. For linear processes these methods give essentially the same results (Vanmarcke, 1983),
but for non-linear processes the ®rst two may not be feasible and hence the third is generally used. However,
as an approximation, the results of the latter can also be related to results of the ®rst two methods. The idea
of examining how the average values over an area change when increasing the size of that area was ®rst
conceived by Hubbert (1956) in the context of discussing the continuum assumption in groundwater ¯ow
theory, later used by Bear (1972) to de®ne the Representative Elementary Volume (REV) as the order of
magnitude where `f (porosity) approaches smoothly a limiting value' (i.e. varies only smoothly with
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changing volume) and still later used by Wood et al. (1988) to de®ne the Representative Elementary Area
(REA) in catchment hydrology. The assumptions and results of Wood et al. (1988) have been re-examined a
number of times (e.g. Famiglietti, 1992; BloÈ schl et al., 1995; Fan and Bras, 1995). One example is given in
Figure 8 where peak ¯ows, as simulated by a distributed process-based runo� model (Grayson et al., 1995),
have been plotted versus subcatchment size for one set of nested catchments. The variability stems from
assuming spatial random ®elds for the driving parameters (such as soil moisture and precipitation), from
topographic variability, as well as from the non-linear overland and channel ¯ow dynamics of the model.
The di�erent lines relate to di�erent realizations of rainfall random ®elds.

From plots of the type shown in Figure 8 one would generally deduce an optimum model element size
(i.e. REA) of about 1 km2 as this is the size where peak ¯ow smoothly approaches a limiting value. It is
important to notice that, as an approximation, the results in Figure 8 can be related to results of the variance
reduction in the linear case. Speci®cally, there is a close correspondence of the top right panel of Figure 3 (if
plotted on a linear±linear scale) with Figure 8 where the area in Figure 8 corresponds to the support in
Figure 3 and the variability between the realizations in Figure 8 corresponds to the apparent variance in
Figure 3. Indeed, the decrease in variability in Figure 8 is mainly a consequence of the variance reduction due
to increasing support which is controlled by the ratio of the support and the process scale. The most
important driving parameter in Figure 8 is precipitation for which a correlation length (processes scale) of
125 m has been assumed in the simulations. Figure 3 indicates that the apparent variance gets small (10% of
the true variance) at a support of about ten times the correlation length which closely resembles the results of
Figure 8 where the variability smoothes out at about 1250 m. It is therefore likely that the results of analyses
of the kind shown in Figure 8 are dominated by the assumptions made during the analysis and may,
therefore, not be very useful for inferring the true behaviour of natural hydrologic variability. It should also
be noted that the assumption of two clearly discernible scales (on which the concept of an optimum element
size is based) is not born out in Figure 8 as there is no increase in variability at large scales (e.g. scales larger
than 1000 m). This means that there is no large scale variability present in Figure 8. However, this large scale

Figure 8. Peak ¯ow simulated by a process-based rainfall-runo� model plotted versus subcatchment size for one set of nested
catchments and ten realizations of spatially variable precipitation of one hour duration with correlation lengths of 125 m. From BloÈ schl

et al. (1995). Compare Figure 3 top right panel
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variability is essential because it is exactly this large scale variability that is to be explicitly represented in
distributed snow models by di�erent values in di�erent model elements.

Because of the reasons discussed above there is no clear evidence of the existence of an optimum element
size in general. Indeed, BloÈ schl et al. (1995) have suggested that, an Arbitrary Elementary Area (AEA) of any
size can be used. Clearly, this is the concept that is used in a number of disciplines related to snow hydrology
such as hydrodynamic modelling and atmospheric modelling.

Identi®ability and index approach

There are additional scaling problems with DSMs that are related to the complexity of the model
(e.g. Obled, 1990; Grayson et al., 1992, 1993). DSMs generally use a large number of complex equations each
of which contains a number of parameters, and this complexity is multiplied by the large number of model
elements which produces an excessively large number of degrees of freedom of the model. Unfortunately, it
has been shown by various studies (e.g. Charbonneau et al., 1981; World Meteorological Organisation, 1986;
Loague, 1990) that predictions with uncalibrated catchment models tend not to be very accurate, no matter
how much `physics' these models contain. Because of this, there is always some element of calibration
necessary for obtaining reliable DSMs. In some cases, this calibration is based on stream¯ow hydrographs,
but alternative descriptions of the spatial snow cover processes of a catchment can give equally good ®ts of
lumped catchment runo� (BloÈ schl et al., 1994; Bathurst and Cooley, 1996). It may be very di�cult to identify
reliable model parameters of DSMs from runo� data alone.

Because of this, it has been suggested to use spatial snow cover data to calibrate and validate the models by
comparing them to internal state variables of the models. Not only does this allow one to test the snowmodel
directly but this also allows an assessment of its spatial predictive performance. Following the early
paradigm of BloÈ schl et al. (1991), a number of studies in the recent literature have used snow cover patterns
for evaluating DSMs (e.g. Davis et al., 1995; Tarboton and Luce, 1996; Cline et al., 1998a). While these
studies generally concluded that the snow cover patterns are vastly superior to runo� in terms of assessing
the DSMs, there is still a substantial degree of uncertainty associated with the predictions of DSMs which is
mainly due to scaling problems.

In some instances, more parsimonious models are used for estimating the spatial patterns of snow-related
variables in catchments to address the identi®ability problem. These are generally index-type approaches that
use the most important physical controls in a simple way (i.e. as indices), thereby maximizing the infor-
mation that can be used, and at the same time minimizing the model complexity and hence problems
associated with parameter identi®cation. It is important to note that the indices are not purely statistical
variables, rather they are derived from some (albeit simpli®ed) process based reasoning (Moore et al., 1991).
Because of this, index approaches can be expected to perform better than purely statistical (black box)
models, particularly in those situations that are di�erent from the calibration period. One example in snow
hydrology is the SWETREEmodel of Elder (1995). Figure 9 gives a sketch of the model structure in a typical
con®guration. The model is based on binary decision trees using regressions between SWE and indices for
radiation and other controls. A pixel class is subdivided in steps, starting from the most important controls
and proceeding to the less important controls. This approach was originally used for classifying remotely
sensed images (Rosenthal and Dozier, 1996) and was later extended to ground based SWE measurements.
However, as noted by Elder (1995), the advantage of a more parsimonious model structure comes at the cost
of requiring a substantial data base for calibrating the model.

Scale e�ects Ð comparison of non-linear and linear approaches

The main purpose of DSMs is to simulate spatial patterns of snow-related variables. While, often, the
spatial patterns are the main focus of interest, it is also interesting to see the scale e�ects on the spatial
statistical moments of predictions from these non-linear models and how they are di�erent from the scale
e�ects in a linear stochastic analysis.
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In a ®rst step (a) we therefore examine the e�ect of grid size (i.e. support of the model elements) on the
spatial variances of snow water equivalent (SWE) between model elements simulated by a DSM. In a second
step (b) we examine the e�ect of grid size on the mean SWE over a catchment.

(a) E�ect on the variance s2app;Supp: As an example we will present results from a sensitivity analysis of SWE
as simulated by the DSM of Cline et al. (1998b) in the Emerald Lake watershed, California. Their model is
based on energy balance calculations and remotely sensed data and simulates SWE on a regular grid. Cline
et al. (1998b) started with a grid size of 30 m and degraded the model resolution to 500 m in steps. Figure 10a
shows the (spatial) variance between model elements, s2app;Supp, of SWE as calculated by the model for
21 April, 1993 plotted versus model grid size (i.e. support). There is a trend of decreasing variances with
increasing grid size. It should be noted that for the largest grid size, only six pixels have been used to compute
the variance, so the value may not be very reliable. Indeed, the decrease in variance is also consistent with a
decrease in the range between the minimum and the maximum SWE in the catchment with increasing
support. Table I of Cline et al. (1998b) gives, for the same date, ranges between the minimum and the
maximum SWE in the catchment of 3.6, 2.27, 0.83, and 0.72 m for grid sizes of 30, 90, 250, and 500 m,
respectively. The model used to calculate SWE is a non-linear model but it may be useful to compare the
decrease in variance with the linear case. The corresponding linear case is shown in Figure 3 top right panel
and also shows decreasing variances with increasing support, but an accurate comparison is di�cult with the
limited data in Figure 10a. Let us assume that the correlation length of SWE is Itrue � 100 m and the
variance at the grid size of 30 m in Figure 10a is close to the true variance, so s2true � 0�292 m2. With these
assumptions, the largest grid size of 500 m gives aSupp=Itrue � 5 and Figure 3 (top right panel) gives
s2app;Supp=s

2
true � 0�15. The variance of the largest grid size then is 0.292*0.15 � 0.044 m2 which is roughly

what Figure 10a shows. However, the actual shape of the variance reduction is di�erent from the linear case.
This may be attributable to a number of reasons including the non-exponential shape of the variogram, the
e�ects of non-linearity and, most importantly, the limitations of the small number of data points used for
Figure 10a. However, it is clear that, overall, the scale e�ect of a reduction in variance when increasing the
element size (i.e. support) is similar to the linear case.

(b) E�ect on the mean Eapp;Supp: As mentioned earlier in this paper, for linearly aggregating processes the
statistical expectation, Eapp;Supp, (or mean) will not change with the scale. However, for non-linearly
aggregating processes there will be scale e�ects on the mean in the general case. This question is closely
related to the question of e�ective parameters (see earlier in this paper) where the focus is on the bias in the
mean when aggregating over one model element while now we examine the bias in the mean when
aggregating over the entire catchment. There is a substantial body of literature in various subdisciplines of

Figure 9. SWETREE regression tree for three snow water equivalent (SWE) classes for the 17±19 April, 1987 survey in the Emerald
Lake watershed, California. Values in the ellipses represent the mean SWE value for all members of the subtree growing from that node.
Values in the rectangular boxes represent the modelled SWE values from the ®eld data satisfying the partition rules leading to that

particular terminal node. Values are in centimetres of SWE. From Elder (1995)
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hydrology on the e�ect of non-linearity on the aggregation of processes such as land surface-atmosphere
interactions (e.g. Michaud and Shuttleworth, 1997; Becker et al., 1999) and rainfall-runo� response
(e.g. Goodrich et al., 1997). Another important application with relevance to snow hydrology is the
aggregation of digital elevation models (DEMs). For example, Band and Moore (1995) examined DEMs
with di�erent resolutions and found that the mean of the wetness index (where the wetness index is the
logarithm of the ratio of speci®c contributing area and slope) increases with pixel size (i.e. support). Clearly,
this is a consequence of the non-linearity present in the system. Slopes tend to decrease and speci®c

Figure 10. (a) Variance between model elements, s2app;Supp, of snow water equivalent (SWE) as calculated by a distributed snow model
for 21 April, 1993 in the Emerald Lake watershed, California, plotted versus model grid size (i.e. support). Compare with Figure 3 top
right panel and Figure 8. The catchment area of the watershed is 120 ha. Plotted from information contained in Table I of Cline et al.
(1998b). (b) Snow water equivalent (SWE), Eapp,Supp , averaged over the Emerald Lake watershed calculated for various grid sizes (i.e.
supports) by the SWETREE regression tree model. The average SWE, Eapp,Supp , has been normalized by the average value for the 5 m
grid resolution assuming this is close to the true value, Etrue . E stands for the mathematical expectation. Plotted from information

contained in Tables 23, 24, and 25 of Elder (1995)
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contributing areas tend to increase with pixel size. The net e�ect on the wetness index is a general increase in
the mean with grid size.

For the snow cover case, results from the SWETREE regression tree model (Elder, 1995) are given here as
an example. The SWETREE model is a non-linear model, hence one would not expect it to aggregate
linearly and hence one would expect the mean SWE over a catchment to change with grid size (i.e. support).
Figure 10b shows SWE averaged over the Emerald Lake watershed calculated for various grid sizes
(i.e. supports) by the SWETREE model. In Figure 10b the average SWE, Eapp;Supp, has been normalized by
the average value for the 5 m grid resolution assuming this is close to the true value Etrue . E stands for the
mathematical expectation (equation (11)), i.e. the mean. Figure 10b indicates that at high snow accumulation
levels (17 April, 1987) an increase in grid size (support) results in a minor increase in predicted SWE volume.
Elder (1995) suggested that this minor e�ect is a consequence of linear snow free features being averaged into
larger snow covered cells. This result implies that at peak accumulation the model averages close to linearly.
Late in the melt season (21 May, 1987; 5 June, 1987), however, the grid size (support) becomes critical. Small
snow patches are lost to averaging into large snow free cells and signi®cant underestimation of the mean
SWE results for large grid sizes. Elder (1995) suggested that the e�ect of scale is related to the size
distribution of snow covered and snow free patches, as well as the geometry of the contiguous cells repre-
senting the snow covered area. This means that the main sources of non-linearity are related to the snow
boundaries and the processes associated with the snow free/snow covered interface. This is consistent with
the important role of snow covered area (SCA) in the representation of subgrid variability (Luce et al., 1999).
It is also important to note that SWE is a conservative quantity so, on physical grounds, it should average
linearly. The scale e�ects seen in Figure 10b are a consequence of the non-linear averaging of the controls on
SWE, such as terrain parameters and SCA, and how they are related to SWE in the SWETREE model.

Figure 10b indicates that the decrease of mean SWE with increasing support becomes more important
towards the end of the season which implies that the non-linearity becomes more important when SWE is
low. More generally speaking, this suggests that a high degree of non-linearity is associated with small values
of the variable of interest. This ®nding is consistent with analyses of non-linearity in other subdisciplines of
hydrology. For example, Merz and Plate (1997) found that the rainfall runo� processes in a small German
catchment were close to linear for large events but were highly non-linear for small to medium sized events.
Clearly, for large events rainfall exceeds the in®ltration capacity signi®cantly and hence the response is
almost linear while for smaller events the rainfall is close to in®ltration capacity and hence very non-linear. It
is when rainfall intensity and in®ltration capacity are similar that the non-linearity is at a maximum
(Sivapalan and Wood, 1986). In snow hydrology, however, the spatial non-linearity is not very well under-
stood and more work needs to be done to clearly identify the sources and the e�ects of non-linearity in
spatial snow hydrologic modelling.

CONCLUSIONS AND SOME FUTURE DIRECTIONS

The concept of scale can be used to quantify characteristic lengths of (a) a natural process (such as the
correlation length of the spatial snow water equivalent (SWE) variability); (b) a measurement (such as the
size of a snow density sample or the footprint of the satellite sensor), and (c) a model (such as the grid size of
a distributed snow model). The di�erent types of scales are denoted as process scale, measurement scale and
model scale, respectively. Interpolations, extrapolations, aggregations, and disaggregations are viewed as a
change in model scale and/or measurement scale.

In a ®rst step we have examined, in a linear stochastic analysis, the e�ect of measurement scale and model
scale on the data and the model predictions. It is shown that the ratio of the measurement scale and the
process scale, and the ratio of the model scale and the process scale are the driving parameters for the scale
e�ects. These scale e�ects generally cause biases in the variances and spatial correlation lengths of satellite
images, ®eld measurements, and simulation results of snowmodels. It is shown, by example, how these biases
can be identi®ed and corrected by regularization methods. At the core of these analyses is the variogram. For
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the case of snow cover patterns, it is shown that it may be di�cult to infer the true snow cover variability
from the variograms, particularly when they span many orders of magnitude. Speci®cally, it may be di�cult
to infer preferred scales and stationarity but for practical applications, local stationarity may be a perfectly
adequate assumption.

In a second step we have examined distributed snow models which are a non-linear deterministic approach
to changing the scale. Unlike in the linear case, in these models a change of scale may also bias the mean over
a catchment of snow-related variables such as SWE. There are a number of fundamental scaling issues with
distributed models which include subgrid variability, the question of an optimum element size, and
parameter identi®ability. We give methods for estimating subgrid variability and point to potential avenues
for parameterizing subgrid variability. We suggest that, in general, an optimum element size may not exist
and that the model element scale may in practice be dictated by practical considerations such as data
availability and the required resolution of the predictions. Model parameters may be more easily identi®ed in
spatial index approaches than in distributed physically based snow models but this is at the cost of requiring
an extensive data set for proper calibration. The scale e�ects in distributed non-linear models can be related
to the linear stochastic case. The biases in the mean caused by scale e�ects only occur in the non-linear case
as they are a consequence of the non-linearity present in the natural system and/or the models. However, the
reduction in variance with increasing element size (i.e. support) is similar to the linear case which gives some
credence to generalizing the applicability of regularization methods, as an approximation, to non-linear
cases.

It is likely that a number of areas of scale related research in snow hydrology will receive particular
attention in the near future. The capabilities of obtaining spatial data sets of snow hydrologic quantities have
been increased manifold in the past years through both satellite imagery and ground based networks (such as
the US SNOTEL network; NRCS, 1998). There exist a number of outstanding data sets such as the snow
depth transect data obtained by a sled mounted X-band FW-CW radar in the Kuparuk Basin in Alaska
(Holmgren et al., 1998) and in Antarctica (Sturm et al., 1998). However, it is clear that this trend needs to
continue. It is the patterns of variables related to snow processes that are likely to best advance the
understanding of scaling e�ects in snow hydrology. Along with better information on the spatial patterns,
there is a need for improved formal methods for assessing spatially distributed snow models based on spatial
data. Work is progressing in this direction in various areas of hydrology (e.g. Western et al., 1996). Such
formal methods may be based on a range of statistical approaches including pattern recognition methods.

If we assume that random behaviour and linear aggregation of snow hydrologic variables apply, there are
a range of methods available to assess scale e�ects and to perform interpolations, extrapolations, aggrega-
tions, and disaggregations in a consistent way. For the non-linear case this is vastly more di�cult and hence
most of the methods addressing the non-linear case are more ad hoc. It would be useful to extend the
framework presented here to non-linear cases in the context of snow hydrology. Little is known about the
feedback e�ects of subgrid variability introduced by the non-linearity of the system and yet they are probably
extremely important in distributed snow models. Other subdisciplines of hydrology, such as subsurface
hydrology, have an excellent track record in quantifying non-linear scale e�ects by stochastic methods in a
consistent way (e.g. Dagan, 1986; Gelhar, 1993). Clearly, in the case of snow hydrology the emphasis of these
methods needs to be on the spatial organization that is present in the natural snow cover environment.

In this paper we have examined the biases caused by the scale e�ects but of similar importance is the
reliability of spatial estimates and how it is a�ected by a change of scale. With geographic information
systems (GIS) and other spatial estimation methods readily available today, it is easy to interpolate between
data points but it is much more di�cult to assess how accurate these estimates are. It is, therefore, of great
importance to assess the uncertainty of spatial estimates and to be explicit about uncertainty when
presenting results of spatial interpolations, extrapolations, aggregations, and disaggregations. The assess-
ment of spatial uncertainty is likely to be an area of increasing interest in snow hydrology in the near future.

While most of this paper has focused on physical snow processes, similar conclusions apply and similar
methods are applicable to chemical and biological processes. Scaling problems may even be more acute for
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chemical and biological processes, as in most applications chemical and biological data tend to be more
limited than data about physical processes.
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