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ABSTRACT
Modern supercomputers rely on accelerators to speed up
highly parallel workloads. Intricate programming models,
limited device memory sizes and overheads of data trans-
fers between CPU and accelerator memories are among the
open challenges that restrict the widespread use of accelera-
tors. First, this paper proposes a mechanism and an imple-
mentation to automatically pipeline the CPU-GPU mem-
ory channel so as to overlap the GPU computation with
the memory copies, alleviating the data transfer overhead.
Second, in doing so, the paper presents a technique called
Computation Splitting, COSP, that caters to arbitrary de-
vice memory sizes and automatically manages to run out-
of-card OpenMP-like applications on GPUs. Third, a novel
adaptive runtime tuning mechanism is proposed to automat-
ically select the pipeline stage size so as to gain the best pos-
sible performance. The mechanism adapts to the underlying
hardware in the starting phase of a program and chooses the
pipeline stage size. The techniques are implemented in a sys-
tem that is able to translate an input OpenMP program to
multiple GPUs attached to the same host CPU. Experimen-
tation on a set of nine benchmarks shows that, on average,
the pipelining scheme improves the performance by 1.49x,
while limiting the runtime tuning overhead to 3% of the ex-
ecution time.

Categories and Subject Descriptors: D.3.4 [Program-
ming Languages] : Processors – Compilers

Keywords: GPU, Large-Data, OpenMP, Tuning, Out-of-
card Computations, Pipelining

1. INTRODUCTION
Accelerators have become the forerunners of high-

performance computing. Many supercomputers now use
GPU devices as accelerators. Among many open issues are
those related to programming models and program opti-
mization. The present paper addresses these issues.

First, even though accelerators can be used as indepen-
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dent computational devices, they commonly serve as co-
processors. Eligible computation is offloaded from the CPU
- either explicitly by the programmer, or implicitly by the
system software/hardware. Offloading involves data trans-
fer from the CPU to the accelerator, which causes signifi-
cant overhead – up to 95% of the program execution time,
in our experiments. The primary contribution of this pa-
per is an automatic pipelining generation technique that
reduces this overhead. To do so, the pipelining technique
overlaps data transfer with computation. It creates oppor-
tunities for such overlap by transforming the computation
into multiple chunks and transferring the data for chunk
‘(i+1)’ while executing chunk ‘i ’. Our technique contrasts
with those that reduce data transfer overhead by eliminat-
ing redundant memory transfers [1, 2] and by advancing or
delaying the data copy operations [3].

Second, the pipelining technique builds on an enabling
technique that deals with another important issue in accel-
erators: The accelerator’s memory space is limited; compu-
tation that fits in the CPU’s memory may exceed the ac-
celerator’s capacity. The simple-most form of the technique
splits computation into blocks that fit in memory. The same
technique can be a key enabler for optimizations that tend
to increase memory demand. Examples of such optimiza-
tions are data privatization, prefetch, and our pipelining
technique. The difficulty in designing the technique is to
model the increase in memory demand and determine the
maximum chunk size that fits in the device memory. While
most common accelerator benchmarks use data sizes that
fit in memory, researchers have recognized the issue of lim-
ited memory sizes as well. For example, Liang [4] et al.
discuss an example of an out-of-card FFT computation; a
set of map-reduce based systems [5, 6] need to handle large
data sizes that can exceed the GPU memory size. With the
evolution of big-data systems, we expect the computing fo-
cus to move to large datasets. Our technique is the first to
automatically tailor computation to the available memory
space while considering optimizations that increase memory
demand. The ability of splitting the computation also pro-
vides an opportunity to perform multi-device mapping of
the program. Multiple GPUs attached to a single compu-
tation node are becoming an architectural reality. Several
techniques have been proposed [7, 8] to port custom ap-
plications to multi-GPUs. Our framework automates this
process.

The third issue addressed in this paper is the programma-
bility of accelerators. An important issue is the design of a
suitable high-level programming model, with one of the key



questions being what architectural details need to be ex-
posed to the programmer. Among many proposed models [9,
10, 2, 11, 12, 13], recently, the idea of using OpenMP ex-
tended with directives for accelerators, has gotten traction.
We will integrate and evaluate our techniques in one of the
most advanced compilers that has been pursuing this idea,
OpenMPC [2]. In doing so, we introduce a novel compo-
nent that addresses a fundamental problem in high-level pro-
gramming environments for accelerators: The architectural
complexity of the CPU-Accelerator systems exacerbates the
difficulty of advanced compilers in making optimization de-
cisions that need runtime information. These architectural
intricacies are detrimental to the portability of the code.
An optimally tuned program on one platform may perform
poorly on another. The most advanced compilers make use
of offline tuning techniques to obtain the optimal choices
of system-specific parameters. By contrast, we describe an
adaptive runtime tuning mechanism that learns about the
architectural details in the initial phase of the program in a
short time and determines the most suitable pipeline stage
size to attain best performance.

In this paper, we make the following specific contributions:

• We design and implement an automatic pipelining tech-
nique that reduces CPU-accelerator data transfer over-
head by overlapping the data transfers with computa-
tion. We will demonstrate the efficacy of this technique
by displaying the performance benefits achieved on a
set of benchmarks, including kernels and applications.
On average, pipelining achieves a speed-up of 1.49x
over the baseline OpenMPC codes.
• We design and implement an automatic computation

splitting technique, COSP, that fits large computa-
tions into the accelerator’s device memory. In doing
so, it considers program transformations that increase
memory demand, including our pipelining technique.
We will show that large, out-of-card data sizes that can
not be otherwise handled by OpenMPC/CUDA can be
successfully run.
• We describe a low-overhead (less than 3% execution

time) adaptive runtime tuning method that chooses
a good split size for a problem and the underlying
hardware so as to approach the best pipelining per-
formance.
• We describe a system containing our novel techniques

that automatically translates an input OpenMP code
into a multi-device CUDA code that can employ mul-
tiple GPUs attached to the same host node. We evalu-
ate the performance of benchmarks executed on multi-
GPU systems.

The remainder of the paper is organized as follows : Sec-
tion 2 provides background information about GPGPU pro-
gramming and OpenMPC. Section 3 analyzes the benefits
of COSP and describes implementation details. Section 4
explains how pipelining and multi-GPU code generation are
enabled by COSP and provides compiler design details for
both. Section 5 describes the proposed adaptive runtime
tuning system. Finally, Section 6 evaluates our system on
a set of benchmarks from the StreamIt benchmark suite,
CUDA SDK and Rodinia benchmarks.

2. PRELIMINARIES
This section describes the GPU system architecture and

the CUDA programming model. We also describe the Open-
MPC compiler system that translates an input OpenMP
program into CUDA code.

2.1 GPUs and CUDA
Typically, one or more GPUs are connected to a Host

CPU via a PCIe bus. The CPU can offload computation
kernels onto the GPU(s). Since the CPU and the GPU have
different memories, input data must be copied from the CPU
to the GPU before the start of a kernel. This operation is
called copy-in. Similarly, copying the outputs of a kernel
from the GPU to the CPU is termed copy-out. CPU-GPU
data transfers are initiated and governed by the CPU.

GPUs are SIMD units with a large number of proces-
sors. NVIDIA GPUs have termed these processors Stream-
ing Multiprocessors or SMs, each being an SIMD processor.
CUDA [9] is a multi-threaded, SIMD programming model.
The threads on the GPU device are divided into Thread-
Blocks. Each ThreadBlock consists of a set of threads, each
executing the same code. When the CPU launches a ker-
nel, it prescribes the number of threads in a ThreadBlock
along with the number of ThreadBlocks to launch. The set
of ThreadBlocks launched by a kernel is called a grid.

CUDA has a complicated memory hierarchy. Each thread
has its own local memory and a set of registers. Local mem-
ory contains a stack which is primarily used to spill the reg-
isters. A ThreadBlock has its on-chip local storage in the
form of shared memory. The off-chip global memory is ac-
cessible to all threads in the grid. Further, on-chip constant
and texture memories can act as read-only buffers.

Various factors impact the performance of a GPU kernel:
coalesced memory accesses, register and shared memory us-
age, number of threads in a ThreadBlock, shared memory
bank conflicts etc., making it difficult to predict the GPU
performance [14, 15, 16]. To obtain good performance re-
sults, tuning is essential for GPU programs.

2.2 OpenMPC
OpenMPC [2] is a programming framework that synthe-

sizes CUDA programs from OpenMP codes. The framework
includes an extended OpenMP programming interface, a
source-to-source translator [17], and an automatic compiler-
assisted tuning system. The programming interface extends
OpenMP with a new set of directives and environment vari-
ables for controlling CUDA specific parameters and opti-
mizations. OpenMPC applies various code transformations
and CUDA extensions to the input OpenMP code.

We chose OpenMPC as the underlying compiler for our
system implementation because of the following reasons :
(a) OpenMP-like programming models are becoming pop-
ular, especially with the advent of OpenACC [13]. The
OpenMP standard itself is in the process of being extended
to support accelerator devices [18]. OpenMPC is a research
framework pursuing the same idea. (b) OpenMPC auto-
matically performs many safe and beneficial code transfor-
mations so as to coalesce memory accesses and map data
to different kinds of memories available on the GPU. Open-
MPC also implements sophisticated CPU-GPU live variable
analysis to remove or hoist the redundant memory transfers.
(c) Considering the complexity of the CUDA programming
model, its not always possible for a compiler to find the
performance optimal CUDA parameters. OpenMPC pro-
vides OpenMP extensions for the programmer that can be



Figure 1: COSP - MemSplittable data can be split
since only a part of them is required per chunk of
computation, MemFused is the part of the data ac-
cessed by every chunk.

used to set the CUDA related parameters. (d) The Open-
MPC translator is realized on top of the Cetus [19] compiler,
which provides an efficient implementation infrastructure.

3. COSP - AN ENABLER TECHNIQUE
COSP, or Computation Splitting, divides a given prob-

lem into smaller, homogeneous subproblems. It acts as an
enabler technique to other optimizations. In this section,
we describe the nature of COSP and the optimizations it
enables. While doing so, we establish an analytical upper
bound on the size of a problem that can be run on an ac-
celerator with limited memory. We provide a lower bound
on the number of splits that the problem must undergo in
order to fit in the device memory. We also describe the
implementation of COSP.

3.1 Catering to Arbitrary Device Memory Sizes
COSP reduces the runtime device memory requirement

of a problem; every subproblem requires less memory than
the overall computation. We now analyze the factors that
impact the device memory requirement. The total device
memory requirement of a kernel depends upon the following:

• COSP converts a large problem into smaller subprob-
lems. An example of such operation is shown in Fig. 1.
In this example, data A, B, and C are a part of OpenMP
‘shared’ data objects i.e. all threads work on a single
copy of the data. In the original computation, data A
and B are copied-in. The kernel uses these elements
to generate data C, which is copied out of the device
memory. The kernel, even after splitting, requires all
data A for generating even a part of data C; we call
A MemFused type of data. On the other hand, data
B and C can be split, and each subproblem only re-
quires a part of these elements. We call B and C Mem-
Splittable data. If the splitting is perfect, amongst
numSplits subproblems, the original runtime device
memory space for the shared data goes down from
(MemSplittable + MemFused) to (MemSplittable/
numSplits + MemFused). However, a subproblem
may also use the data of another (mostly neighboring)
subproblem. We model this extra data requirement
overhead by SplitOverlap.
• Every OpenMP Private data element in the input

OpenMP program has to be allocated per thread in
the computation. If the size of the private element is

small (e.g. scalars), the element is generally stored in
the device register. However, if the size of the private
element is large (e.g. for arrays), the element needs to
be placed in the local memory of the thread. There-
fore, if P is the size of all such elements together and
NumThreads is the number of total threads, the de-
vice memory requirement is P × NumThreads. Fur-
ther, if the problem is split amongst numSplits sub-
problems, the device memory requirement for the pri-
vate data would be P ×NumThreads/numSplits.
• Memory prefetching is an important technique in ac-

celerator programming. Device memory prefetching
advances the copy-in operation for the ready data so
as to overlap the copying time with the CPU computa-
tion. Similarly, for the data that is not immediately re-
quired by the CPU, the copy-out can be delayed while
overlapping the copy-out time with the CPU compu-
tation. Both these optimizations require device mem-
ory to hold the buffered data. We denote this size as
PrefBuffer.

To ensure that the device memory, DevMem, can fit all
of the above components, the following constraint must be
met:

DevMem ≥
(
P ×

NumThreads

numSplits
+ PrefBuffer+

MemFused +
MemSplittable

numSplits
+ SplitOverlap

)

⇒ numSplits ≥

d
(MemSplittable + P ×NumThreads)

(DevMem− PrefBuffer −MemFused− SplitOverlap)
e

(1)

Equation 1 provides a lower bound on the number of splits
required on the input problem to make it fit in the de-
vice memory. Equation 1 also indicates that the benefits
of COSP are multi-faceted. COSP can enable an acceler-
ator program to run successfully even when the OpenMP
private elements push the device memory requirements be-
yond available. COSP can also partition the computation
into appropriate subproblems so as to enable prefetching in
the device memory.

3.2 COSP Through a Code Example
Section 3.1 provided a discussion on the lower bound of

the number of splits required by the computation so as to
make it fit in the device memory. We now describe a mech-
anism to achieve COSP through a compiler transformation.
If all the parameters in Eq.1 are known, the compiler can
choose the number of splits required to make the computa-
tion fit in the device memory. As we would show later in
Section 4, COSP creates an opportunity for pipelining the
subproblems. The number of subproblems required to ob-
tain efficient pipelining can be less than the upper bound
provided by Eq.1. Our compiler therefore abstracts out the
number of splits as a variable.

OpenMP programs usually encapsulate parallelism using
large for loops. We introduce the COSP mechanism through
an example of Scalar Product code, as shown in Listing 1.
This program generates scalar products for a set of vectors.
The split version of the code generated by our compiler is
shown in Listing 2. The input parallel for loop is split into
many small loops. The upper bound for the inner for loop



is set to be SplitSize. SplitSize is left as a parameter that
can be set by the user or the automated tuning system. The
inner loop body represents a subproblem of the initial large
problem. We hereafter refer to the inner loop as a Split and
the outer loop as Split Loop.

Listing 1: Input Scalar Product OpenMP Code
#pragma omp parallel for shared(D, E, F)
private(vec, pos, sum)
for(vec = 0; vec < NUM_VECTORS; vec++) {
sum = 0;
for(pos = 0; pos < NUM_ELEMENTS; pos++) {
sum += D[NUM_ELEMENTS * vec + pos ] *
E[NUM_ELEMENTS * vec + pos];

}
F[vec] = (float)sum;

}

Listing 2: Split Parallel Region for Scalar Product
for (split=0; split < NUM_VECTORS/SplitSize; split = split+1) {
#pragma omp parallel for shared(D, E, F)
private(vec, pos, sum) shared(split, SplitSize)
for (vec = 0; vec < SplitSize; vec++ ) {
sum=0;
for (pos = 0; pos < NUM_ELEMENTS; pos++ ) {

sum+=(D[(pos + (NUM_ELEMENTS *
(vec + split*SplitSize)))]*
E[(pos + (NUM_ELEMENTS * (vec + split*SplitSize))]);

}
F[(vec + split*SplitSize)] = (float)sum;

}
}

For the Scalar Product program, the total number of splits
created is equal to NUM VECTORS/SplitSize. This num-
ber needs to be larger than the numSplits calculated by
Eq. 1 in Section 3.1 so as to meet the device memory size
constraint. The number of splits in the problem is controlled
by the SplitSize. Further, SplitSize governs the data size re-
quired by the kernel as well as the number of GPU threads
synthesized by the OpenMPC system. Note that the COSP
version in Listing 2 does not explicitly formulate the data
partitions per Split. We defer the data partitioning analysis
till the next section.

COSP can lead to extra data copy overheads in cases
where the computation splitting is not perfect. As an exam-
ple, consider stencil programs where computing each output
requires an array element along with its neighbors. In such
cases, COSP would require to account for the storage of
boundary elements of each split, increasing the amount of
overall data copied from the CPU to the GPU.

Since the subproblems provided by COSP are devoid of
data dependences, they can be run in parallel. COSP can
therefore generate opportunities for pipelining the slow host-
device memory channel in an accelerator-based system. It
also offers an easy- to-distribute program structure to the
compiler system, which can then map subproblems to dif-
ferent devices.

4. PIPELINING
Pipelining, in general, is a throughput-enhancing tech-

nique that overlaps the execution phases of one computation
with another so as to make the best use of the available com-
putational resources. We introduce an example of pipelining
in Fig. 2. After performing COSP, one Split’s kernel execu-
tion is overlapped with the next Split’s memory copies; i.e.
while the first subproblem kernel is working on the already
copied-in data B, the copy-in for the next subproblem ker-

Figure 2: Pipelining Opportunity Generated by
COSP : Individual Splits are independent; they can
be pipelined

nel’s data B is taking place. It is important to note that
to achieve successful pipelining, there should be two buffers
present for each MemSplittable data so as to obtain the
necessary prefetching.

In the case at hand, the three resources that we propose
to pipeline include the CPU-GPU channel, GPU-CPU chan-
nel (if different than the first) and the GPU computational
units. This section focuses on the pipelining code genera-
tion of the compute-split code. It also explains the strategy
to perform multi-device code mapping and implementation
mechanisms adopted by our compiler.

4.1 Achievable Speedup from Pipelining
Maximum attainable speedup from pipelining is restricted

by the number of pipelining stages. In the proposed scheme,
there are three pipeline stages : (i) Memory channel between
the CPU and the GPU (ii) Memory channel between the
GPU and the CPU (iii) GPU Computation cores. Hence, the
pipelining speedup can be at most three. Most new GPUs
support overlaps between the computation and transfers.
Some advanced GPUs, such as Tesla M2090, also support
overlaps in the memory copy operations in different direc-
tions, since they have different channels for copying in each
direction. For GPUs without dedicated copy engines, the
speedup would be restricted by two.

Speedup =
tcompute + tMemFused + tco + tci

tMemFused + max(tcompute, tco, tci)
(2)

where
tcompute = Time spent in kernel computation
tMemFused = Time spent in transferring MemFused data
tci = Time spent for copy-in of MemSplittable data
tco = Time spent for copy-out of MemSplittable data

Equation 2 provides an upper bound on the pipelining
speedup, assuming the COSP overhead is zero. It also as-
sumes the presence of different memory copy channels for
copy-in and copy-out operations.

All outputs of a parallel program fall under the MemSplit-
table category unless they are reductions. Although COSP
can always ‘split’ the outputs of a program, it may not be
always able to do so for its inputs, if the inputs fall under
the MemFused category. The worst case scenario would be
a program wherein computation of a single output element
requires input data of type MemFused that has a size larger
than the device memory. In such a case, algorithmic change
in the program structure is the only alternative.



Figure 3: Overall System Flow : Darker boxes indicate the base OpenMPC passes.

4.2 Compiler Organization
Figure 3 shows the structure of our compiler. It builds on

OpenMPC, representing the program using Cetus IR [19].
After parsing the source code, OpenMPC system-internal
decision making is performed to identify the kernels to be
offloaded to the GPU. COSP is performed next on the ker-
nel regions recognized by the OpenMP analyzer. For each
eligible kernel region, tuning code is generated. The pipelin-
ing pass is applied next. Pipelining is optional in the sense
that a user could simply generate only the compute-split
code. Communication generation for each pipeline chunk
is handled by the advanced symbolic range analysis [20]
stage, which encodes its results as OpenMPC memory trans-
fer pragmas. Once the OpenMPC directive handler and
CUDA optimizer have finished their work on the IR, the
multi-device code generation pass maps the pipelines to their
respective devices. For the correct functioning of the multi-
device code generation pass, the pipelining pass is made
multi-device aware, in the sense that it keeps a map of the
pipelines to devices, which is utilized later on by the multi-
device code generation pass.

4.3 Generating Pipelined Code
At the heart of realizing the pipelining is the ability of

the CPU to execute memory copy and kernel operations on
the device asynchronously. The underlying CUDA model
provides a mechanism called ‘CUDA streams’ that realizes
this asynchronous operation. A ‘cudaStream’ [9] represents
an instruction stream of computation on the host CPU that
queues the launches of device commands i.e. kernel launches
and memory transfers. All operations on a given cudaS-
tream are launched sequentially, however, different cudaS-
treams can run independently of each other. Our pipelining
implementation describes the strategy using cudaStreams.

The pipelining stage unrolls the Split Loop in Listing 2
twice. Listing 3 displays the intermediate code generated
by our compiler. The unrolling factor of two corresponds to
the two data buffers required; one for the currently executing
Split and another for prefetching the inputs of the next Split.
Each unrolled Split is transformed into a separate kernel and
the required memory buffers are allocated for each kernel by
the base OpenMPC system. Unrolling the Split Loop eases
the software pipelining implementation.

Bounds for the data required by each Split need to be pre-
cisely calculated to avoid transferring more than necessary
data (lines 8-13 in Algo. 1). We develop an aggregate data
sections analysis using the advanced symbolic range analysis
techniques offered in Cetus. This algorithm determines the
starting locations and data lengths per Split required for all
aggregate data elements.

Listing 3: Intermediate Representation for
Pipelining the Compute Split Parallel Region

for (split=0; split<NUM_VECTORS/SplitSize; split=split+2) {
//Determine starting points and ranges required per Split

3 E_c2gstart_stream_0=((split*NUM_ELEMENTS)*SplitSize);
E_c2grange_stream_0=(NUM_ELEMENTS*SplitSize);
F_g2cstart_stream_0=(split*SplitSize);

6 F_g2crange_stream_0=SplitSize;
D_c2gstart_stream_0=((split*NUM_ELEMENTS)*SplitSize);
D_c2grange_stream_0=(NUM_ELEMENTS*SplitSize);

9 E_c2gstart_stream_1=((NUM_ELEMENTS*SplitSize)+
((split*NUM_ELEMENTS)*SplitSize));
E_c2grange_stream_1=(NUM_ELEMENTS*SplitSize);

12 F_g2cstart_stream_1=(SplitSize+
(split*SplitSize));
F_g2crange_stream_1=SplitSize;

15 D_c2gstart_stream_1=((NUM_ELEMENTS*SplitSize)+
((split*NUM_ELEMENTS)*SplitSize));
D_c2grange_stream_1=(NUM_ELEMENTS*SplitSize);

18

//Code to be launched by cudaStream 0
#pragma omp parallel for private(pos, sum, vec) shared \

21 (NUM_ELEMENTS, NUM_VECTORS, split, SplitSize, D, E, F)
#pragma cuda gpurun \
g2cmemtr(F[F_g2cstart_stream_0: F_g2crange_stream_0]) \

24 c2gmemtr(D[D_c2gstart_stream_0: D_c2grange_stream_0]) \
c2gmemtr(E[E_c2gstart_stream_0: E_c2grange_stream_0])
#pragma cuda gpurun noc2gmemtr(F) \

27 nog2cmemtr(NUM_ELEMENTS, NUM_VECTORS, D, E)
for (vec=0; vec<SplitSize; vec ++ ) {

sum=0;
30 for (pos=0; pos<NUM_ELEMENTS; pos ++ ) {

sum+=(D[(pos+(NUM_ELEMENTS*
(vec + split*SplitSize)))]*

33 E[(pos+(NUM_ELEMENTS*(vec + split*SplitSize)))]);
}
F[(vec + split*SplitSize)]=((float)sum);

36 }

//Code to be launched by cudaStream 1
39 #pragma omp parallel for private(pos, sum, vec) shared \

(NUM_ELEMENTS, NUM_VECTORS, split, SplitSize, D, E, F)
#pragma cuda gpurun \

42 g2cmemtr(F[F_g2cstart_stream_1: F_g2crange_stream_1]) \
c2gmemtr(D[D_c2gstart_stream_1: D_c2grange_stream_1]) \
c2gmemtr(E[E_c2gstart_stream_1: E_c2grange_stream_1])

45 #pragma cuda gpurun noc2gmemtr(F) \
nog2cmemtr(NUM_ELEMENTS, NUM_VECTORS, D, E)
for (vec=0; vec<SplitSize; vec ++ ) {

48 sum=0;
for (pos=0; pos<NUM_ELEMENTS; pos ++ ) {

sum+=(D[(pos+(NUM_ELEMENTS*
51 (vec + (split+1)*SplitSize)))]*

E[(pos+(NUM_ELEMENTS*(vec + (split+1)*SplitSize)))]);
}

54 F[(vec + (split+1)*SplitSize)]=((float)sum);
}

}

It also categorizes the data into MemSplittable and Mem-
Fused categories. The algorithm determines the range of
access for each usage of the given variable. It then per-
forms a union operation on the individual ranges to get the



comprehensive access range as well as the starting address
of the data. Both these expressions are symbolic in nature
and are parameterized by SplitSize and Split (Lines 3-17 in
Listing 3).

The starting address and length for data copy are speci-
fied to the OpenMPC system using c2gmemtr and g2cmemtr
pragmas that govern the generation of CPU-to-GPU and
GPU-to-CPU communication, respectively. (Lines 23-25 and
42-44 in Listing 3). For MemFused data elements, for every
Split, entire aggregate datatype transfer is required. In such
cases, transfers for these data elements are hoisted outside
the Split Loop.

Algorithm 1 Pipelined Code Generation from Compute
Split Program

Input: Compute Split Loop ‘Region’
Output: Pipelined CUDA code

1: Unroll Region by a factor of 2;
2: Create cudaStreams stream0, stream1;
3: StreamMap = new Map(cudaStream, Split);
4: StreamMap.insert(stream0, first Split in Region);
5: StreamMap.insert(stream1, second Split in Region);
6: For each split ∈ Region do

//Static code contains only two Splits

7: For each sharedV ar ∈ split do
//sharedVar is OpenMP shared type

8: range = rangeAnalysis(sharedV ar , split);
9: if (range contains SplitSize) then

10: start = getStartingPoint(range);
11: insertCopyPragmas(sharedV ar, start,

range);
12: else

//this is a MemFused Variable, hoist memory

//transfers out of the Split Loop

13: insertCopyPragmas(sharedV ar, Region);
14: end if
15: end for
16: end for
17: cudaCode = translate(Region, StreamMap);

//Format CUDA code to achieve desired

//queueing using streams

18: reOrganize(cudaCode, stream0, stream1);

Since GPUs have at most one data copy engine in the
CPU-to-GPU or GPU-to-CPU direction, it is necessary to
schedule the operations on this channel wisely in order to
avoid bottlenecks on the data copy engines. Correct schedul-
ing is necessary to assure maximum overlapping benefits as
well. The first Split in the unrolled Split Loop is assigned
to cudaStream 0. That is, the kernel launches and memory
transfers for this Split are handled by cudaStream 0. Simi-
larly, the second Split is attached to cudaStream 1. In this
manner, unrolling of the Split loop helps in (a) Creating
private buffers on the device per cudaStream and (b) Pro-
viding an easy kernel- cudaStream mapping. Memory copy
requests in a given direction from both cudaStreams get se-
rialized. Hence, the corresponding queueing strategy per-
forms copy-in from cudaStream 0 for Split 1, then issues the
kernel from cudaStream 0 for Split 1 and simultaneously
performs copy-in via cudaStream 1 for Split 2. Next, the
system launches the kernel from cudaStream 1 and subse-
quently issues copy-out from cudaStream 0 and cudaStream
1 respectively. Listing 3 shows that alternate Splits go on
different cudaStreams.

Our system maintains a mapping between a Split and its
corresponding cudaStream. After the CUDA code is gen-
erated by OpenMPC, the compiler reorganizes the memory
transfer and kernel launches so as to realize the queuing
strategy. We portray the complete pipelining code genera-
tion algorithm in Algorithm 1.

4.4 Multi-GPU Code Generation
As seen in the previous section, to implement pipelining,

two cudaStreams are required for a single GPU. For multi-
device code generation, our system extends this strategy and
assigns two cudaStreams per device, the overall number of
cudaStreams used being twice the number of devices. In
other words, the Split Loop is unrolled twice per device.

The next important stage in multi-device code genera-
tion is to perform work partitioning amongst devices. We
use block-cyclic partitioning wherein two contiguous Splits
are attached to the same device, since these Splits are more
likely to access data elements in the vicinity of each other;
this method improves spatial locality while performing CPU-
GPU transfers.

Further, data elements that need to be present completely
inside the device memory even for a single Split computation
(MemFused elements) need to be made ‘private’ per device,
and the memory copies for such elements need to be hoisted
out of the Split Loop. An example with the overall multi-
device code generation strategy for two devices is shown in
Fig. 4. Note that the dependences are caused due to the
queueing on the memory copy channels.

5. ADAPTIVE RUNTIME TUNING SYSTEM
SplitSize is the number of iterations of the parallel loop

in a given Split. SplitSize can therefore be thought of as
the size of the pipeline stage. Each iteration of the Split is
mapped to a GPU thread by OpenMPC. Hence, the choice of
SplitSize determines the number of ThreadBlocks issued per
Split, governing both the time required for computation and
CPU-GPU communication. In this section, we describe how
the choice of SplitSize impacts the pipelining performance.
We then propose a heuristic tuning algorithm that selects
the most suitable SplitSize.

5.1 Performance Variation with SplitSize
Equation 1 gave the maximum SplitSize that fits in the

device memory. The SplitSize that yields the best perfor-
mance results is usually less than this upper bound. Fig. 5
shows such execution time variation with different Split-
Sizes for two benchmarks. Experiments were run on Tesla
M2090, which has separate memory copy engines in CPU-to-
GPU and GPU-to-CPU directions. Vector Add is a memory
copy-intensive application, whereas Filterbank is a compute-
intensive one. Vector Add results were generated for prob-
lem size (iteration space) of 227; for Filterbank, the problem
size was 224. Fig. 5 shows that the performance becomes
better with increasing SplitSize for Vector Add, while bet-
ter results can be achieved at lower SplitSize values for Fil-
terbank. The choice of SplitSize is therefore important to
achieve good performance, but selecting the correct Split-
Size is not straightforward for the programmer. To build
an intuition for choosing the SplitSize, we begin by analyz-
ing the performance results on both memory copy-intensive
and compute-intensive programs. The former spend most



Figure 4: System Strategy to generate and run programs on Multiple Devices - In this case, the number is
2. Straight arrows depict dependences, the curved arrow represents Split loop

of their execution time on CPU-GPU transfers. The latter
spend most of their execution time running the GPU kernels.

Fig 6 shows examples of the different behaviors of compute-
intensive and memory copy-intensive programs. Monte Carlo
is compute-intensive, while Black Scholes is memory copy-
intensive. SplitSizes are chosen such that the number of
ThreadBlocks launched by each SplitSize is a multiple of
the number of SMs, SMCount, of the GPU. Note that the
memory copy times show linear increase at smaller Split-
Sizes as compared to the kernel execution times. Since the
pipelining benefits are higher when the pipelining stages are
of equal size, relative increase in kernel execution time as
compared to the memory copy time leads to better perfor-
mance. Once the kernel execution starts to grow linearly
with SplitSize, there is no more opportunity for higher bene-
fits. This explains the performance variation with SplitSizes
for Vector Add and Black Scholes benchmarks. Both these
benchmarks have the highly memory copy-intensive Type 1
overlapping pattern as shown in Fig. 7.

Figure 5: Performance Variation with SplitSize :
Performance is higher for smaller SplitSizes for
compute-intensive benchmarks, while for memory
copy-intensive ones, performance is higher for larger
SplitSizes. MaxThreads is the maximum number of
threads that can co-exist on the GPU.

Compute-intensive programs like Filterbank, Monte Carlo,
show the second type of overlap displayed in Fig. 7. In both
these codes, the kernel execution time is larger than the sum
of copy-in and copy-out times. A quick look at Fig. 7 shows
that when the kernels are executing, the memory channel(s)
are unused. One way to increase the kernel and memory
copy overlap would be to run more cudaStreams so that the
kernel time between the overlap of t1K and t2K (Fig. 7) can
be further overlapped by memory transfers. Another alter-
native is to reduce the SplitSize and allow concurrent ker-
nel execution, supported by the newer GPUs. Kernel-kernel

Figure 6: Kernel execution and Memory copy times
per Split for different SplitSizes. Monte Carlo is
compute-intensive; Black Scholes is memory copy-
intensive. Experiments were run on Tesla M2090.

overlaps can easily occur in compute-intensive benchmarks.
Due to the limited knowledge in GPU ThreadBlock schedul-
ing mechanisms in the presence of multiple kernels, kernel-
kernel overlap performance is difficult to predict or model
and the performance tuning would need explicit runs with
different SplitSizes. However, increasing the SplitSize to be
larger than the maximum number of threads that can coex-
ist on a GPU (MaxThreads) would only lead to queueing
up of ThreadBlocks in the launching process. Hence, the
SplitSize search space of interest in case of compute-intensive
benchmarks is fairly small i.e. SplitSize ≤MaxThreads.

5.2 Adaptive Runtime Tuning Algorithm
With the aforementioned observations, we have developed

a heuristic adaptive runtime tuning algorithm (Algorithm 2)
for finding the SplitSize that would yield the best perfor-
mance. First, the algorithm determines if the kernel is highly
memory copy-intensive (Type 1) or highly compute-intensive
(Type 2) or neither (Type 3) by running a pilot run with
SplitSize equal to the MaxThreads.

Note that running just one Split (RUN ONE SPLIT, line
20 of Algo. 2) of the Split Loop is sufficient for the algorithm
to determine the type of the kernel. The algorithm then
generates a unique set of SplitSizes, named CSet or config-
uration set, depending upon the type of the program. Each
SplitSize is chosen such that the number of ThreadBlocks
contained in it is a multiple of SMCount, so as to evenly
distribute the ThreadBlocks on SMs. The CSet generation
is handled by the GENERATE CONFIGS function (line 17
of Algo. 2). The largest SplitSize generated by the GENER-
ATE CONFIGS function is bounded by the device memory



Figure 7: Possible Overlap Types for GPUs with Distinct Copy-in and Copy-out Engines : tci is the copy-in
time, tco is the copy-out time and tk is the kernel execution time. Number in the superscript represents the
cudaStream. Type 1 is the highly memory copy-intensive type with tci > tco + tk. Note that tci and tco are
interchangeable. Type 2 is highly compute-intensive, with tk > tci + tco . Type 3 is neither (tci > tk > tco & tk
+ tco > tci ). Note that shown is one of the many cases of different program patterns that can fit in Type 3.

capacity. It is worthwhile to note that the algorithm is ag-
nostic of the number of threads per ThreadBlock.

Algorithm 2 Heuristic SplitSize Tuning Algorithm

Input: T is the Number of Threads per ThreadBlock
Input: SMCount is the Number of SMs
Input: B is the maximum ThreadBlocks per SM
Output: Best SplitSize configuration
1:
2: //tci is copy-in time, tk is kernel execution

//time, tco is copy-out time
//to is the overlapped time : to =
//min[max((tci + tk), tco),max((tco + tk), tci)]

//timer is an array of structures storing
//quadruplet tci, tco, tk, to
//Normalizer(i) = MaxThreads/CSet(i)

3:
4: function tuner
5: MaxThreads← T × SMCount×B
6: Type← Nil
7: (tci, tk, tco, to)← RUN ONE SPLIT (MaxThreads);
8: if (tci + tco ≤ tk) then
9: Type← 2;

10: else if (tci + tk ≤ tco ∨ tco + tk ≤ tci) then
11: Type← 1;
12: else
13: Type← 3;
14: end if
15: //GENERATE_CONFIGS creates a sorted set of

//SplitSize configurations
16: CSet← GENERATE CONFIGS(Type);
17: min← 1;
18: for i = 1→ length(CSet) do
19: timer[i] = RUN ONE SPLIT (CSet[i]);
20: if (Type = 1) then
21: if (i > 1) then
22: diff ← ((timer[i].tk × Normalizer(i)) −

(timer[i− 1].tk ×Normalizer(i− 1));
23: if (|diff | ≈ 0) then return CSet[i− 1];
24: end if
25: end if
26: else if (timer[min].to × Normalizer(min) <

timer[i].to ×Normalizer(i)) then
27: min = i;
28: end if
29: end for
30: if (Type = 1) then return CSet[i− 1];
31: else return CSet[min];
32: end if
33: end function
34:
35: function RUN ONE SPLIT(SplitSize)
36: Run one Split from the Split loop
37: Return corresponding tco, tci, tk, to
38: end function
39:

*This algorithm assumes bidirectional copy channels.

For Type 1 programs, generated CSet contains SplitSizes
≥MaxThreads in an increasing order. As explained earlier,
a linear increase in the kernel execution time indicates the
highest performance for memory copy-intensive programs.
The algorithm therefore runs one Split per SplitSize in the
CSet until the kernel time starts to grow linearly. Lin-
ear growth is established by comparing the kernel execu-
tion time of the previous SplitSize in the CSet (Line 23, in
Algo. 2). This results in the selection of smallest SplitSize
that would generate high performance while maintaining low
device memory requirements.

For Type 2 programs, algorithm generates the CSet with
SplitSizes that are ≤ MaxThreads. For each SplitSize, the
runtimes for a single Split are noted, and the SplitSize with
the best normalized overlapped time (Line 2, Algo. 2), to, is
selected as the candidate.

Type 3 programs are neither highly compute-intensive nor
memory copy-intensive. In such cases, the algorithm gener-
ates all possible SplitSizes (bounded by the device memory
size) and runs one Split for each of them. The SplitSize with
the best normalized overlapped time, to, is selected. Type 3
denotes the worst case for the algorithm, since it requires a
traversal in a larger space. However, most of the programs
that we tried fell into either Type 1 or Type 2.

Since the algorithm needs to run only a single Split to
learn about the characteristics of a given SplitSize, the run-
time overhead incurred is low.

5.3 Compiler Support for Tuning
The adaptive runtime tuning algorithm is automated in

the compiler. The compiler automatically generates a tun-
ing function for each kernel region. The tuning function
contains an outlined copy of the parallel region, which is
used to realize RUN ONE SPLIT function. This outlining
is performed at the OpenMP level. Since the tuning func-
tion involves execution of some extra Splits, the original data
may get modified. Outlining prevents this potentially harm-
ful behavior to the kernel data during the tuning execution,
as it forces the data elements in the tuning function to be
allocated separately. Timer calls are inserted in this out-
lined copy to gather tk, tci and tco. Certain parts of the
algorithm are inserted in this function, while others, such
as GENERATE CONFIGS, are implemented in a run-time
library. The compiler automatically inserts the necessary
calls to the runtime library functions. The tuning function
is invoked only during the first call to the kernel; subsequent
kernel calls use the SplitSize value that was generated during
the first run.

Notice that the tuning system may not represent the best
SplitSize if the control flow of the parallel region is diver-
gent. However, if the parallel region is invoked only once,



the first invoke runs the tuner which indeed finds the correct
SplitSize.

6. EVALUATION
This section evaluates the performance of the presented

computation splitting, pipelining and multi-device code gen-
eration regimes. We study seven kernels and two applica-
tions. DCT, FFT and Filterbank are traditional stream-
ing benchmarks from the StreamIt benchmark suite [21].
These are compute-intensive applications. Other kernels,
such as Scalar Product, Black Scholes and Vector Add, are
from the CUDA SDK [22] and are mostly memory copy-
intensive. Monte Carlo, also from CUDA SDK, is compute-
intensive. SRAD and CFD are two applications from the
Rodinia benchmark suite [23] and both are memory copy-
intensive. To explore out-of-card situations, the benchmarks
were run with larger datasets than provided in the bench-
mark suites. The baseline, non-pipelined translation from
OpenMPC is used as the comparison point.

We used an NVIDIA Tesla M2090 GPU for our experi-
ments. The device has 16 Streaming Multiprocessors (SMs)
and remarkably large 6GB of DRAM. The GPU is connected
via an x16 PCIe link to a host system consisting of an AMD
Opteron Processor 6282 with 16 cores, running at 2.6 GHz.
The host system has 64GB RAM. Up to 4 GPUs were con-
nected to the host using the same PCIe bus.

We evaluate the contributions of our system in the follow-
ing manner : (a) We demonstrate the ability of our system
to handle large out-of-card data sizes by performing COSP.
We compare the scalability of our approach against hand-
written CUDA and baseline OpenMPC programs. (b) We
evaluate the efficacy of our tuning method by comparing its
performance to a naive compiler-only strategy. We also mea-
sure the overheads incurred by the tuning system. (c) To
evaluate the benefits of pipelining and multi-GPU code gen-
eration, we compare the results obtained by these techniques
over baseline OpenMPC.

6.1 System Scalability
COSP allows large, out-of-card data sizes to run on GPUs

with limited device memories. Table 1 shows the system
scalability of the COSP approach for three different repre-
sentative benchmarks and also compares the results with
hand-written CUDA and baseline OpenMPC codes. We
calculate the maximum achieveable speedup from pipelin-
ing and compare it with the achieved speedup. To generate
these results, we used hand-written CUDA codes from the
CUDA SDK. Asynchronous transfers between the CPU and
GPU require the corresponding memory to be allocated in
‘pinned’ pages i.e. the OS pages that can not be swapped
out of the host memory. This can be achieved using the
CUDA cudaHostAlloc API call. Since OS pages allocated in
this fashion improve the overall application performance, the
hand-written and base OpenMPC-generated CUDA codes
were modified, allocating the host memories using cuda-
HostAlloc, to produce consistent comparison results with the
CUDA versions generated by our system.

The scalability problems faced by the hand-written CUDA
programs and the base OpenMPC-produced programs can
be clearly seen from Table 1, since whenever the data size
goes out-of-card, both these codes fail. For hand-written
CUDA programs, as seen for the Monte Carlo benchmark,
the number of ThreadBlocks, or the grid size, launched

by the code crosses the CUDA-imposed limit of 65536 in
a single dimension and the code starts failing even when the
memory space requirement is sufficiently small to fit in the
device. This is a severe programmability issue, as the pro-
grammer must consider all possible input sizes and manage
the grid formation accordingly. A high-level programming
model, such as OpenMPC, can easily tackle this issue by
launching two dimensional grids if one dimension exceeds the
limit. Hand-written CUDA codes underperform the baseline
OpenMPC-generated codes as the input sizes grow large for
the Black Scholes and Monte Carlo benchmarks. In the
Black Scholes hand-written CUDA code, the launched grid
size is constant and is better suited for small data sizes. In
the Monte Carlo hand-written CUDA code, a part of the
parallel loop is left out from the kernel and is instead run
on the CPU. Our system translates this entire loop for GPU
execution. Further, the constant memory allocation in the
hand-written Monte Carlo CUDA code is proportional to
the data size, and constant memory can run out of space if
the problem size increases. High-level programming mod-
els can alleviate these programmability issues, ensuring the
scalability of programs for arbitrary data sizes.

Performance benefits of our pipelining scheme can be seen
in Table 1. This table also dispays the effectiveness of our
implementation by comparing the ideal speedup that can
be achieved from pipelining against the one obtained by
our system. Except for the smallest data sizes, pipelining
speedup numbers closely follow the ideal speedups for the
Monte Carlo and Scalar Product programs. The differences
between the ideal and achieved speedups are mainly due to
the underperformance of the bidirectional transfer overlaps
on the PCI Express (PCIe). This effect becomes a perfor-
mance limiter for programs like Black Scholes, which have
large bidirectional data transfers. For the small dataset of
Monte Carlo, the optimal SplitSize suggested by our tuning
system was 8192, being just one fourth of the input itera-
tion space, thereby lowering the obtained pipelining benefits.
Similar is the case for Black Scholes. Constant speedups for
any large data size demonstrate the scalability of our ap-
proach.

Figure 8: Performance of Adaptive Runtime Tuning
System : Speedups are with respect to the Open-
MPC non-pipelined baseline. Higher performance
of the tuned program versions over a naive pipelin-
ing approach emphasize the necessity of tuning.

6.2 Tuning System Performance
To measure the performance benefits gained from tuning

the pipelined system, we compare the speedups achieved
by our adaptive tuning method over the baseline Open-
MPC codes against a naive compiler-driven splitting strat-



Table 1: Scalability of the COSP and Pipelining Mechanism : We compare the execution times of hand-
written CUDA, baseline OpenMPC and compute split, pipelined OpenMPC programs. The ideal speedup is
calculated using Eq. 2. In the table, ‘***’ represent failure of the code due to larger-than-allowed grid sizes
used. ‘—’ represent code failure due to out-of-memory data size errors. Scalability of our approach can be
gauged as arbitrarily large problems with out-of-card data sizes can be run and the speedup achieved for any
large data size remains almost constant.

egy. We found 1024 splits to be a good number that gener-
ated performance improvements and chose it as the “naive”
reference point.

Fig. 8 displays the effectiveness of the adaptive runtime
tuning system over this naive strategy. The superior perfor-
mance of the tuned codes over the naive strategy indicates
the importance of tuning; a static estimate of the number of
splits can not provide the best performance. Further, a num-
ber of splits that yields good results for a given program may
be suboptimal for another program. We also measure the
overheads incurred by the adaptive runtime tuning system
in terms of the percentage runtime spent in tuning. Because
the tuning system runs only a single Split of the Split Loop
per tuning configuration, the runtime overhead is low. The
maximum overhead, measured as the percentage runtime of
the total execution time, is less than 3%. Note that the
tuning overhead decreases as the computation size grows.

6.3 Overall Performance Comparison
We now present comprehensive results over all bench-

marks showing the effects of pipelining on 1, 2 and 4 GPUs
in Fig. 9. Since the maximum speedup over the baseline sys-
tem that can be achieved with pipelining is limited by three
in our setup, the theoritical maximum speedup that can be
achieved by pipelining, implemented on four GPUs, can be
at most twelve.

Benchmarks like DCT, FFT, Scalar Product, Monte Carlo,
Filterbank show large performance benefits since they have
balanced computation and memory transfer contents, trans-
lating into equally sized pipeline stages. SRAD, CFD and
Vector Add have a low computation-to-communication ratio
and therefore show lesser overall speedups. Highly compute-
intensive benchmarks like Filterbank, Monte Carlo show ex-
cellent scalability when multiple devices are used.

Secondly, not all benchmarks show large performance ben-
efits when run with multiple GPUs; the reason being the
bottleneck formed on the PCIe bus while transferring the
data.

Figure 9: Speedup over the Baseline OpenMPC
Generated Codes (without pipelining) : Compute-
intensive applications show good scalability with
multiple GPUs. Memory copy-intensive programs
scale poorly with multiple GPUs since PCIe bus
forms a bottleneck.

7. RELATED WORK
An alternative to deal with problems of arbitrarily large

data sizes can be to write the basic program flow in terms
of a stream graph. Each kernel can then be made to have a
granularity of a single iteration of the stream graph. Two re-
cent systems propose mechanisms to convert streaming pro-
grams written in StreamIt [24] language into GPU codes.
The first system, Sponge [25], suggests mechanisms to opti-
mize the stream graph. It then splits the graph into multi-
ple kernels. Huynh et al. propose another system [26] that
takes a different approach and places an entire iteration of
a stream graph on a single Streaming Multiprocessor (SM).
This mechanism can face scalability issues due to the restric-



tion of running just one iteration on an SM. Since each filter
in a StreamIt graph consists of its own inputs and outputs,
global memory accesses can be overwhelming. Both these
systems therefore propose mechanisms to prefetch data into
the GPU shared memory and optimize the shared memory
usage. However, the behavior of these systems is undefined if
the data size required is larger than the GPU memory. Sec-
ondly, the applicability of the stream programming model
to large applications is still an open challenge. Further
work by Huynh et al. [27] performs multi-level partition-
ing of the stream graph to overcome the scalability chal-
lenges in [26]. In this work, a mechanism to port StreamIt
programs to multi-GPUs on the same system has also been
proposed. This system heterogeneously executes kernels on
several GPUs, owing to the outcome of the multi-level parti-
tioning performed on the StreamIt graph. By contrast, our
system partitions the work homogeneously amongst GPUs
and yields the best possible pipelining code with the help of
a fast tuning system.

A naive CUDA-provided solution to deal with out-of-card
data sizes is to make use of Zero Copy memory. The Zero
Copy memory mechanism allocates the corresponding buffers
in the host memory instead of the device memory. The
pointers to the buffers on the CPU and the GPU are mapped
to each other. GPU reads the memory objects directly from
the host during the kernel execution. Therefore, if the ker-
nel has significant amount of reuse, the overheads of copying
from the CPU memory would degrade the performance.

Pipelining benefits have been previously explored for GPUs
to hide the global memory access latencies by generating a
software pipeline that copies data into shared memory [28,
29, 26, 25]. Aji et al. propose an approach [30] that deals
with a network of nodes containing GPUs, aiming to over-
lap the communication between nodes with computations.
Our work complements these techniques since our goal is to
efficiently pipeline the CPU-GPU bus.

GPU performance tuning has been a research challenge;
many approaches try to model and tune the GPU perfor-
mance. While many proposed tuning systems are specific
to the problem domains (3D Stencil [31], N-body simula-
tions [32], 3-D FFT [33], SpMV [34]) , Ryoo et al. [15] pro-
pose generic performance metrics that help pre-select some
potential parameter configurations to choose from. A dis-
tinguishing factor of our work is the tuning objective: In
contrast to approaches that try to optimize the size of the
ThreadBlock, our work attempts to optimize the grid size
i.e. the number of ThreadBlocks. OpenMPC’s inherent
tuning system performs compiler-driven optimization op-
tion pruning to generate a set of parameter configurations.
However, both the OpenMPC tuning system and the space
pruning proposed by Ryoo et al. are run offline and require
multiple complete runs of the entire programs to choose the
best configuration.

Partitioning the application so as to make use of multi-
ple GPUs attached to the same host CPU is an emerging
research challenge. While some approaches target specific
applications, e.g. Matrix multiply [7], fluid simulations [8],
Kim et al. [35] provide an OpenCL based approach that
provides a single device image of a multi-GPU system to
the application developer. However, the scalability of this
approach is bound by the total GPU memory sizes.

By contrast, ours is the first work that automatically deals
with out-of-card data sizes and generates pipelined, multi-

GPU code for generic applications, starting with a high-level
program representation.

8. CONCLUSION
We have described a novel pipelining optimization that

is able to scale large-data computations on multi-GPU ac-
celerators. To this end, the technique splits a computa-
tion so it fits in the available memory resources and over-
laps data transfer with computation. The execution can
take advantage of multiple GPU devices. We have demon-
strated that the technique can successfully execute out-of-
card datasets that would fail without our optimization. For
programs and datasets whose baseline versions succeed, our
technique improves performance by 1.49x, on average, owing
to the computation-communication overlap. We have imple-
mented our optimization in one of the most advanced com-
pilation platforms for GPGPUs: OpenMPC. This system
converts OpenMP programs to CUDA, performing several
advanced transformations. OpenMPC provided a state-of-
the-art baseline for our measurements; it also allowed us to
demonstrate our technique in the context of an important
current language trend, which is the extension of OpenMP
with accelerator directives.
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