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Abstract. A challenge for statistical learning is to deal with large data
sets, e.g. in data mining. Popular learning algorithms such as Support
Vector Machines have training time at least quadratic in the number of
examples: they are hopeless to solve problems with a million examples.
We propose a “hard parallelizable mixture” methodology which yields
significantly reduced training time through modularization and paral-
lelization: the training data is iteratively partitioned by a “gater” model
in such a way that it becomes easy to learn an “expert” model separately
in each region of the partition. A probabilistic extension and the use of
a set of generative models allows representing the gater so that all pieces
of the model are locally trained. For SVMs, time complexity appears
empirically to locally grow linearly with the number of examples, while
generalization performance can be enhanced. For the probabilistic ver-
sion of the algorithm, the iterative algorithm provably goes down in a
cost function that is an upper bound on the negative log-likelihood.

1 Introduction

As organizations collect more and more data, the interest in extracting use-
ful information from these data sets with data mining algorithms is pushing
much research effort toward the challenges that these data sets bring to sta-
tistical learning methods. One of these challenges is the sheer size of the data
sets: many learning algorithms require training time that grows too fast with
respect to the number of training examples. This is for example the case with
Support Vector Machines [11] (SVM) and Gaussian processes [12], both being
non-parametric learning methods that can be applied to classification, regres-
sion, and conditional probability estimation. Both require O(T?) training time
(for T examples) in the worst case or with a poor implementation. Empirical
computation time measurements on state-of-the-art SVM implementations show
that training time grows much closer to O(T'?) than O(T?) |2]. It has also been

* Part of this work has been done while Ronan Collobert was at IDIAP, CP 592, rue
du Simplon 4, 1920 Martigny, Switzerland.



conjectured [3] that training of Multi-Layer Perceptrons (MLP) might also scale
between quadratic and cubic with the number of examples®

It would therefore be extremely useful to have general-purpose algorithms
which allow to decompose the learning problem in such a way as to drastically
reduce the training time, so that it grows closer to O(T).

Another motivation for our work is the availability of cheap parallelism with
PC clusters (e.g. Linux clusters). If a decomposition algorithm could separate
the work in tasks involving little or rare communication between tasks, then
training time could be reduced by one or two orders of magnitude with such
loosely-coupled clusters.

The basic idea of this paper is to use an iterative divide-and-conquer strategy
to learn a partition of the data such that, ideally (1) the partition is “simple”, i.e.
it can be learned with good generalization by a classifier with a limited capacity,
which we will call the gater, and (2) the learning task in each region of the
partition is “simple”, i.e. it can be learned with good generalization by an expert
model trained only on the examples of that region. In the end, the prediction on
a test point can be obtained by mixing the predictions of the different experts,
weighting their predictions with the output of the gater. One therefore obtains
a mizture of experts [6], but it will not have been trained in the usual ways
(maximum likelihood, mean squared error, etc...).

The idea of an SVM mixture is not new, although previous attempts such as
Kwok’s paper on Support Vector Mixtures [7] trained each SVM on the whole
data set. We instead advocate SVM mixtures in which each SVM is trained only
on part of the data set, to overcome the time complexity problem for large data
sets. We propose here simple methods to train such mixtures, and we will show
that in practice these methods are much faster than training only one SVM,
and have experimentally lead to results that are at least as good as one SVM.
We conjecture that the training time complexity of the proposed approach with
respect to the number of examples is sub-quadratic for large data sets. Moreover
this mixture can be easily parallelized, which could improve again significantly
the training time.

The organization of the paper goes as follows: in the next section, we briefly
introduce the SVM model for classification. In section 4 we present two versions
of the hard mixture (a non-probabilistic and a probabilistic one), followed in
section 5 by some comparisons to related models. In section 6 we show experi-
mental results on two large real-life data sets. One of the drawbacks of the first
version of the algorithm is that it is tied to the mean squared error loss func-
tion. Another possible drawback is that the gater must be trained on the whole
data set, and this operation could be the bottleneck of the whole procedure. To
address these two issues, we present a probabilistic version of the hard mixture
model in section 4.2. One advantage of the probabilistic formulation is that it

3 This is more debatable and may strongly depend on the data distribution. Although
we did not formally test this hypothesis, we conjecture that on very large data sets,
with properly tuned stochastic gradient descent, training time of MLPs is much
closer to linear than to quadratic in the number of examples.



generalizes the approach to other tasks (such as conditional probability estima-
tion). The other is that it can eliminate the bottleneck by splitting the task of
the gater into multiple local gaters, one per expert. Each of these local gaters is
actually a generative model that gives a high score to input vectors that belong
to the region of the associated expert model, and this local expert need only be
trained with the examples from that region. This probabilistic decomposition is
similar to the MOSAIC [4] model but it is used to form a hard partition and not
trained by maximum likelihood. We show that the iterative partitioning algo-
rithm actually minimizes an upper bound on the negative log-likelihood (which
corresponds to the loss occurring when having to pick a single expert to make
the prediction). Experimental results with the probabilistic version of the hard
mixture model are presented in section 7.

2 Introduction to Support Vector Machines

Support Vector Machines (SVMs) [11] have been applied to many classification
problems, generally yielding good performance compared to other algorithms.
For classification tasks, the decision function is of the form

T
y = sign (Z yioi K (z, ;) + b) (1)

i=1

where z € IR? is the d-dimensional input vector of a test example, y € {-1,1}is
a class label, z; is the input vector for the i*" training example, y; is its associated
class label, T' is the number of training examples, K (z,x;) is a positive definite
kernel function, and & = {ay,...,ar} and b are the parameters of the model.
Training an SVM consists in finding « that minimizes the objective function

T A
Qo) = — Zai +3 Z Zaiay’yiyﬂ((iﬂi,iﬂj) (2)
=1

i=1 j=1

subject to the constraints

T
D =0 (3)
i1

and

0<a;<C Vi. (4)
The kernel K (z,z;) can have different forms, such as the Radial Basis Function
(RBF):

K (xi,7,) = exp (M) (5)

ag

with parameter o.

Therefore, to train an SVM, one must solve a quadratic optimization problem,
where the number of parameters is 7. This makes the use of SVMs for large data
sets difficult: computing K (z;,z;) for every training pair would require O(T"?)
computation, and solving may take up to O(T?). Note however that current
state-of-the-art algorithms appear to have training time complexity scaling much
closer to O(T?) than O(T?) [2].



3 Standard Mixture of Experts

3.1 Probabilistic framework

The idea of Miztures of Experts [5] is simple to explain in a probabilistic frame-
work: given two randoms variables X € R™ and Y € IR? one would like to
represent a conditional distribution P(Y|X) as a decomposition of several sim-
pler conditional distributions called ezperts. For that, first consider a discrete
variable E, the identity of an expert to be most appropriate for (X,Y’). Thus
the conditional distribution is rewritten:

P(Y|X) = ZP =i|X)Py(Y|X)

where N is the number of experts and P;(Y|X) = P(Y|X, E = i) is the condi-
tional distribution for the expert i. The distribution P(E|X) is called the gater,
because it probabilistically assigns each example to an expert. Usually this kind
of mixture is trained using a log-likelihood mazimization technique, that is, by
minimizing — Ethl logP(yt|zt) over a training set D = {(x¢, yt)t=1..7}-

3.2 Non-Probabilistic Framework

Here, one would like to represent a function y = f(z) (instead of the conditional
distribution P(Y|X)) as a combination of simpler functions which are called
again “experts”. More formally, given a training example (z,y) € D, the following
decomposition is built:

N
= Z wi(x)si(x) (6)

where s;(.) is the output function for expert ¢, and w(.) is the gater, which gives
a weight for each expert, given an input x. In general one would like to find
the gater w(.) and the experts s;(.) that minimize the expected value of a loss
L(f, (z,y)).

The probabilistic and non-probabilistic versions are quite similar, and both
could be used in many applications.

4 A New Conditional Mixture

A standard mixture of experts represents a soft decomposition of the data into
subsets, thus both the gater and each expert must be trained on the whole data
set. Because we want to train complex models on large data sets, we would like
instead to take advantage of such a decomposition to split up the training task
into small pieces. That’s the key point of the new models.

The kind of mixture of experts that is presented here could be applied with
any kind of expert learner, but, as our first goal was to apply it with SVMs, let
us begin with a non-probabilistic framework, where SVMs fit more easily.



4.1 Hard Non-Probabilistic Mixture

The output prediction associated with an input vector x for the hard non-
probabilistic mixture that we propose is similar to that in (6) and is computed

as follows: N
f@)=h (Z wi(m)sxx)) (7)

where one just added a transformation of the output with a transfer function h,
for example the hyperbolic tangent for classification tasks (which we have found
to improve results). In the proposed model, the mixture is trained to minimize
the cost function which is the sum of squared losses:

T

C=) [fle)—ul” . )

t=1

To train this model, we propose a very simple algorithm:

Algorithm 1 Hard non-probabilistic mixture

1. Divide the training set D into N random subsets D; of size near T'/N.
2. Train each expert s; separately over one of these subsets.
3. Keeping the experts fixed, train the gater w to minimize (8) on the whole training
set.
4. Reconstruct N subsets: for each example (z¢, y¢),
— sort the experts in descending order according to the values w;(x:),
— assign the example to the first expert in the list which has less than (T'/N +1)
examples in order to ensure a balance between the experts.
5. If a termination criterion is not fulfilled (such as a given number of iterations or a
validation error going up), go to step 2.

Note that step 2 of this algorithm can be easily implemented in parallel as
each expert can be trained separately on a different computer. Note also that step
3 can be an approximate minimization (as usually done when training MLPs),
that can continue from the solution (parameters) found at the end of the previous
outer loop iteration.

The idea of this mixture is intuitively obvious: one iterates to discover a good
partition of the training set, which ideally could represent in a better way the
structure of the training set. As this mixture is non-probabilistic, one can apply
it directly to SVMs for experts. In the experiments, we have chosen a MLP for
the gater, as for usual non-probabilistic mixture-of-experts.

4.2 Hard Probabilistic Mixture

One possible drawback of the previous model is that the gater must be trained
over the whole data set, and this could be the training time bottleneck of the
whole procedure. Thus, the second idea that we propose here, is that in a proba-
bilistic context, one can break up the gater itself into sub-models, one per expert,



that can be trained separately. The idea is similar to that exposed for example
in MOSAIC [4]: each expert is associated with a generative model P(X|E = i)
that can be trained solely on the subset D;. But unlike MOSAIC, the proposed
algorithm forms a hard partition of the data to train the experts. With this new
idea in mind, one can easily adapt the previous algorithm as follows:

Algorithm 2 Hard probabilistic mixture

Divide the training set into N random subsets D; of size near T/N.

Train each expert P;(Y|X) separately over D;.

Train each local gater P(X|E = i) separately over D;.

Estimate the priors P(E = i) by normalizing |D;|, and combine the generative

models to obtain the function P(E = i|X) = ENP()F("(i\zlé‘)fj()EPz(lii‘)fj)
j=1 = =

5. Reconstruct N subsets: for each example (z¢, yt),
— sort the experts in descending order according to the posterior

) _ Pi(ytlze) P(E=ilzt)
P(E = ilaw,ye) = SN, P (vilee)P(B=jlar)’

— assign the example to the first expert in the list which has less than (T'/N +1)
examples in order to ensure a balance between the experts.
6. If a termination criterion is not fulfilled, go to step 2.

- W e

This algorithm is very nice in the sense that it’s a hard version of the stan-
dard mixture of experts model. Unfortunately, standard SVMs don’t output
probabilities. In the case of a classification problem with several classes, we de-
cided to train one SVM per class (one class against the others) and then to
apply a logistic regression on the outputs of the SVMs to obtain probabilities,
following [8].

4.3 What Criterion is Minimized?

The above algorithm iteratively modifies parameters € to go down on a criterion
which is an upper bound on the negative joint log-likelihood:

J() = — max J(6,e) 9)

where

J(0,€) =3 erilog Py, o |E = i) Py(E = i) (10)

t i

where e;; € {0,1} is a binary variable that selects the i-th expert for exam-
ple t, with the selection constraints Vt,),e;; = 1 and balancing constraints
Vi,> ,exi ~ T/N. Note that the joint likelihood for expert i is
Py(ys,xt|E = i) = Pyp(yt|ze, E = i)Py(z¢|E = i) (i.e. the product of the expert
output probability and the local gater likelihood). To relate this to Algorithm 2,
note that we are trying to perform the double maximization

max max Xt: J(8,¢e)

The idea is to perform a “coordinate descent” on J(#,e), in which at the first
stage of each iteration e is fixed and 6 is modified to increase J(6,¢), and at the



second stage 6 is fixed and e (the assignment of examples to experts) is modified
to increase J(6,e). Note that when e is fixed, the above two probabilities (for
the expert and local gater) decouple, so they can be maximized separately, as in
steps 2 and 3 of the algorithm. In a second stage of each iteration, 4 is fixed, and
e is modified with step 5 in order to increase J(6,e) (here it is an approximate
heuristic optimization, to save computations).

Furthermore, the criterion J(6) is an upper bound on the joint negative log-
likelihood:

C0) ==Y log Py(ys,we) = Y _10g(D>_ Polys, =:|E = i)Py(E = 1)) (11)
t t i
since, with the constraints on e

log(z Py(ys, zt|E = i) Pp(E = 1)) > log(z etiPo(yi, vi|E = i) Py(E = 1))
= Zeti log(Py(ys, x| E = i) Pp(E = 1)) .

The idea of minimizing an upper bound on a more desirable cost function is
already found in variational learning methods. Note that both cost functions (the
negative log-likelihood and J(6)) will take close values when the gater manages
to compute a harder partition.

5 Other Mixtures of SVMs

The idea of mixture models is quite old and has given rise to very popular al-
gorithms, such as the well-known Mizture of Experts [6] where the cost function
is similar to equation (8) but where the gater and the experts are trained, using
gradient descent or EM, on the whole data set (and not subsets) and their param-
eters are trained simultaneously. Hence such an algorithm is quite demanding in
terms of resources when the data set is large, if training time scales like O(TP)
with p > 1.

In the more recent Support Vector Mizture model [7], the author shows how
to replace the experts (typically MLPs) by SVMs and gives a learning algorithm
for this model. Once again the resulting mixture is trained jointly on the whole
data set, and hence does not solve the quadratic barrier when the data set is
large.

In another divide-and-conguer approach [9], the authors propose to first di-
vide the training set using an unsupervised algorithm to cluster the data (typ-
ically a mixture of Gaussians), then train an expert (such as an SVM) on each
subset of the data corresponding to a cluster, and finally recombine the outputs
of the experts. Here, the algorithm does indeed train separately the experts on
small data sets, like the present algorithm, but there is no notion of an iterative
re-assignment of the examples to experts according to the prediction made by
the gater of how well each expert performs on each example. Our experiments
suggest that this element is essential to the success of the algorithm.

Finally, the Bayesian Committee Machine [10] is a technique to partition the
data into several subsets, train SVMs or Gaussian Processes on the individual



subsets and then use a specific combination scheme based on the covariance
of the test data to combine the predictions. This method scales linearly in the
number of training data, but is in fact a transductive method as it cannot operate
on a single test example. Again, this algorithm assigns the examples randomly to
the experts (but the Bayesian framework would in principle allow to find better
assignments).

6 Experiments: Hard Non-Probabilistic Mixture

In this section are presented two sets of experiments comparing the new non-
probabilistic mixtures of SVMs to other machine learning algorithms. Note that
all these experiments have been with the Torch library.* The computers that
were used had Athlon 1.2Ghz CPUs.

6.1 A Large-Scale Realistic Problem: Forest

We did a series of experiments on part of the UCI Forest data set®. We modified
the 7-class classification problem into a binary classification problem where the
goal was to separate class 2 (the most numerous) from the other 6 classes. Each
example was described by 54 input features, each normalized by dividing by
the maximum found on the training set. The data set had more than 500,000
examples and this allowed us to prepare a series of experiments as follows:

— A separate test set of 50,000 examples was used compare algorithms.

A validation set of 10,000 examples was used to select among SVM hyper-
parameters, number of experts, of gater hidden units, and gater training
epochs.

Training set size varied from 100,000 to 400,000.

The hard non-probabilistic mixtures had from 10 to 50 expert SVMs with
Gaussian kernel; the MLP gater had between 25 and 500 hidden units.

Since the number of examples was quite large, the same hyper-parameters were
selected for all iterations of the algorithm and for all the SVM experts.
We compared our models to

— a single MLP trained with a mean-squared error criterion, and where the
number of hidden units was selected on the validation set (from 25 to 250
units),

— a single SVM, where the parameter of the kernel was also selected on the
validation set,

— a mixture of SVMs where the gater was replaced by a constant vector, as-
signing the same weight value to every expert.

* available at http://www.torch. ch.
® The Forest data set is available on the UCI website at the following address:
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype/covtype.info.



Table 1 gives the results of a first series of experiments with a fixed training
set of 100,000 examples. To select among the variants of the hard SVM mixture
we considered performance over the validation set as well as training time. All
the SVMs used o = 1.7. The selected model had 50 experts and a gater with 150
hidden units. A model with 500 hidden units would have given a performance of
8.1% over the test set but would have taken 310 minutes on one machine (and
194 minutes on 50 machines).

Table 1. Comparison of performance between an MLP (100 hidden units), a single
SVM, a uniform SVM mixture where the gater always output the same value 1/N for
each expert, and finally the hard non-probabilistic mixture of SVMs (Algorithm 1).

Model used Train Test| Time (minutes) |Iteration
Error (%) (1 CPU) (50 CPUs)

single MLP 17.56 18.15 6 25

single SVM 16.03 16.76 1616 -

uniform SVM mixture|[19.69 20.31 43 1 1

hard mixture of SVMs|| 5.91 9.28 119 37 5

The hard SVM mixture outperformed all models in terms of training and test
error. Note that the training error of the single SVM is high because its hyper-
parameters were selected to minimize error on the validation set (other values
could yield to much lower training error but larger test error). It was also much
faster, even on one machine, than the single SVM and since the mixture could
easily be parallelized (each expert can be trained separately), we also reported
the time it took to train on 50 machines. In a first attempt to understand these
results, one can at least say that the power of the model does not lie only in
the MLP gater, since a single MLP was pretty bad, it is neither only because
we used SVMs, since a single SVM was not as good as the hard mixture, and it
was not only because we divided the problem into many sub-problems since the
uniform mixture also performed badly. It seems to be a combination of all these
elements.

In order to find how the algorithm scaled with respect to the number of ex-
amples, we then compared the same mixture of experts (50 experts, 150 hidden
units in the gater) on different training set sizes. Figure 1 shows the validation
error of the mixture of SVMs with training set sizes from 100,000 to 400,000. It
seems that, at least in this range and for this particular data set, the mixture of
SVMs scales linearly with respect to the number of examples, and not quadrat-
ically as a classical SVM. It is interesting to see for instance that the mixture
of SVMs was able to solve a problem of 400,000 examples in less than 4 hours
(on 50 computers) while it would have taken more than one month to solve the
same problem with a single SVM.

Finally, figure 2 shows the evolution of the training and validation errors of
a hard mixture of 50 SVMs gated by an MLP with 150 hidden units, during 5
iterations of the algorithm. This should convince that the iterative partitionning
is essential in order to obtain good performance. It is also clear that the empirical
convergence of the outer loop is extremely rapid.



Training time as a function of the number of train examples
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6.2 Verification on Another Large-Scale Problem

To verify that the results obtained on Forest were replicable on other large-scale
problems, we tested the SVM mixture on a speech task, the Numbers95 data
set [1], turned it into a binary classification problem (separate silence frames from
non-silence frames, from a total of 540,000 frames). The training set contains
100,000 randomly chosen frames out of the first 400,000 frames. The disjoint
validation set contains 10,000 randomly chosen frames out of the first 400,000.
The test set contains 50,000 randomly chosen frames out of the last 140,000.
The validation set was used to select the number of experts, the number of
hidden units in the gater, and o. Each frame was parameterized using standard
methods (j-rasta coefficients, with first and second temporal derivatives) yielding
45 coefficients times 3 frames (= 135 inputs).

Table 2 shows a comparison between a single SVM and a non-probabilistic
hard mixture of SVMs, with 50 experts, 50 hidden units in the gater, and o = 3.
The mixture of SVMs was again many times faster than the single SVM (even
on a single CPU) but yielded similar generalization performance.

Table 2. Comparison of performance between a single SVM and a mixture of SVMs
on the speech data set

Model used Train Test| Time (minutes)
Error (%) |(1 CPU) (50 CPUs)
one SVM 0.98 7.57 3395
hard non-prob. mixture of SVMs|| 4.41 7.32 426 33




7 Experiments: Hard Probabilistic Mixture

The second set of experiments concerns the probabilistic version of the algorithm.
As standard SVMs don’t output probabilities, we first present in the first sub-
section results with Multi-Layered-Perceptrons (MLP) as experts, to confirm
that the approach works well with gradient-based learning algorithms. Then we
present some results with SVMs as experts, with the SVM outputs being fed to
a logistic regressor in order to obtain conditional probabilities, as in [8].

7.1 MLP Experts

The experiments described here are again with the Forest data set described
earlier. The setup is the same as previously for the non-probabilistic mixture.
Thus, we just have to specify the probabilistic model architecture: we used Gaus-
sians miztures for the generative models and one-hidden-layer MLP trained
with a log-likelihood maximization criterion for the experts (i.e. maximizing
> :1og Py(ys|z¢, E = i) where the output of the MLP has softmax units which
sum to 1 to represent these probabilities). We compared the hard probabilistic
mixture with a standard (not hard) probabilistic mixture (with MLPs as experts
and an MLP as gater), trained by stochastic gradient ascent on the log-likelihood
>+ 1og Py(ys|z:). We also compared with a single MLP (also trained to maximize
the log-likelihood). Note that with this training criterion, the single MLP gives
better results than those obtained with a mean-squared error criterion (which
was used in the experiments previously reported in section 6.1).

The results are summarized in Table 3. For MLPs and standard mixtures,
the iteration column indicates the number of training epochs, whereas for hard
mixtures it is the number of outer loop iterations. Note that for hard mixtures,
the number of inner loop epochs to train MLP experts was fixed to a maximum of
100 (This number was chosen according to the validation set. Moreover, training
was stopped earlier if training error did not decrease significantly.)

The hard probabilistic mixture appears to work very well. On this data set,
we can obtain better generalization than an MLP, in a reasonable time if we use
sequential training (on only one computer), and impressively short time if we use
parallelization. If we take the time to do more iterations, the generalization can
be impressive too, as shown on a training set size of 400,000 examples. Figure
3 shows the importance of the iterative process of our model for the training as
well as generalization error, as previously shown for the non-probabilistic model.

We did one more experiment to compare the hard non-probabilistic and
probabilistic mixtures, in terms of training time. The experiment is performed
with 100,000 training examples (obtaining similar generalization results in both
cases). The hard probabilistic mixture has 20 experts, 25 hidden units per expert
and 20 Gaussians. The hard non-probabilistic mixture has 20 experts, and an
MLP gater with 150 hidden units. The hard non-probabilistic mixture took more
than 30 minutes to train, whereas the hard probabilistic mixture took only 1.3
minutes! It seems that the training time bottleneck due to the gater has been
broken with the hard probabilistic mizture.



Table 3. Comparison of performance on the Forest data set between one MLP, a
standard mixture, and the hard probabilistic mixture proposed in this paper

Model used Error (%) Time (minutes) |Iteration
Train Valid Test|one CPU parallel

100,000 training examples
single MLP (500 hidden units) 9.50 11.09 10.96 121 - 150
standard mixture (10 experts, 50{/10.57 11.05 11.56 124 - 65
hidden units per expert and 150
units for the gater)

7.01 9.30 9.10 290 - 150
hard prob. mixture (20 experts, 25| 7.89 10.76 10.90 21 1.3 15
hidden wunits per expert and 20
Gaussians per P(X|E = i))

400,000 training examples
single MLP (500 hidden units) 8.39 8.38 8.69 461 - 150
hard prob. mixture (40 experts, 25| 6.90 7.74 8.09 126 3.6 7
units per expert and 10 Gaussians
per P(X|E =1))

4.63 5.64 6.24 344 10 20
hard prob. mixture (40 experts, 50| 6.68 7.54 8.05 195 5.3 6
units per expert and 10 Gaussians
per P(X|E =1))
3.37 5.60 5.61 624 17 20
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Fig. 3. Evolution of the log-likelihood with the number of iteration for the hard proba-
bilistic mixture, on 100,000 training examples. The mixture had 20 experts (25 hidden
units, 20 Gaussians)

7.2 Dimensionality Reduction for the Gaussian Mixture Models

We used Gaussians Mixture Models (GMM) to estimate P(X|E = i) in the hard
probabilistic mixture, and one might think that GMM don’t work well with high



dimensional data. Thus, we compare results obtained with and without reducing
the dimensionality of the GMM observations, as a preprocessing before applying
the mixture.

To reduce the dimensionality, we trained as a classifier (with conditional
maximum likelihood) an MLP with a small tanh hidden layer and softmax
outputs. The hidden layer learns a transformation that has low dimension and is
useful to predict the output classes. A single training epoch is performed, on only
a part of the training set if this one is very large (100,000 examples was sufficient
on Forest in any case). This is quick, and surprisingly, sufficient to obtain good
results. Finally, the hidden layer outputs of the MLP (for each input vector x;)
are given as observations for the GMM.

As shown in Table 4, it appears that the dimensionality reduction improves
the generalization error, as well as the training error. The dimensionality re-
duction reduces capacity, but we suspect that the GMMSs are so poor in high
dimensional spaces that the dimensionality reduction improves results even on
the training set, by making it easier to carve the input space in ways that lead
to easy training of the experts.

Table 4. The effect of dimensionality reduction for GMMs in the hard probabilistic
mixture, on 400,000 examples with 40 experts, 50 hidden units for experts and 10
Gaussians for each P(X|E = 1)

Model used Error (%)
Train Valid Test

Without Dim. Reduction|| 4.45 5.95 6.25
With Dim. Reduction 3.37 5.60 5.61

7.3 SVM Experts

Similar experiments were performed on the Forest database with the hard prob-
abilistic mixture, but using SVMs plus logistic as probabilistic experts, rather
than MLPs.

Table 5 shows the results obtained on the 100,000 examples training set,
with different numbers of experts and different choices of gaters. The first ex-
periment uses the methodology already introduced and used with MLP experts,
but with 20 SVM experts. Note that training time is much larger than with
MLP experts (Table 3, 1.3 min. in parallel), and much larger than with the hard
non-probabilistic mixture (Table 1, 37 min. in parallel). One explanation is that
convergence is much slower, but we do not understand why.

One clue is that when replacing the GMMs by a single MLP gater,® (with the
two other experiments in Table 5), much faster convergence is obtained (down
to 21 min. in parallel, i.e. faster than the hard non-probabilistic mixture), but
still slower than with MLP experts.

6 Here, the number of inner loop epochs for training the gater was chosen using the
validation set, and fixed to 3.



Table 5. Comparison of performance of the hard probabilistic mixture, for several
setups, on the Forest data set with 100,000 training examples

Model used Error (%) Time (minutes) |Iteration
Train Valid Test|one CPU parallel

20 SVM experts and 10 Gaussians|| 5.39 10.93 10.70 2240 157 16
per P(X|E =)
20 SVM experts and a MLP gater|| 2.63 8.86 8.93 291 30 9
with 150 hidden units
50 SVM experts and a MLP gater| 3.22 8.92 9.15 118 21 9
with 150 hidden units

8 A Note on Training Complexity

For both the probabilistic and non-probabilistic mixtures, suppose that we choose
the number of experts N such that the number of examples per expert M = T'/N
is a fized fraction of the total number of examples. Then if we suppose that the
training time for one expert is polynomial of order p with the number of exam-
ples T', then the training time for training the experts in one outer-loop iteration
of the hard mixtures is:

NMP =TMP ' =0O(T) .

If the gater is not localized (e.g. as in the hard non-probabilistic mixture when
using a single model as gater, and in the hard probabilistic mixture), then it may
be a bottleneck of the algorithm. In the case of the non-probabilistic mixture, we
don’t know exactly the cost of training the gater. As it’s a MLP, it’s probably
more than O(T'). But for the probabilistic mizture, it appears empirically that
O(T) training time is sufficient for the gater, at each iteration of Algorithm 2!

9 Conclusion

In this paper we have presented a new divide-and-conquer parallelizable hard
mixture algorithms to reduce the training time of algorithms such as SVMs. Very
good results were obtained compared to classical SVMs either in terms of train-
ing time or generalization performance on two large scale difficult databases.
Moreover, the algorithms appears to scale linearly with the number of exam-
ples, at least between 100,000 and 400,000 examples. Both a probabilistic and a
non-probabilistic version of the algorithm were presented, with a demonstration
that the probabilistic version actually minimizes a well-defined criterion (that
corresponds to the error made by a single chosen expert of the mixture).

These results are extremely encouraging and suggest that the proposed method
could allow training SVM-like models for very large multi-million data sets in
a reasonable time. Two types of “gater” models were proposed, one based on a
single MLP, and one based on local Gaussian Mixture Models. The latter have
the advantage of being trained very quickly and locally to each expert, thereby
guaranteeing linear training time for the whole system (per iteration). However,
the best results (even in training time) are often obtained with the MLP gater



(which needs few epochs and yields in less iterations to a good partition). Sur-
prisingly, even faster results (with as good generalization) are obtained if the
SVM experts are altogether replaced by MLP experts. If training of the MLP
gater with stochastic gradient takes time that grows much less than quadrati-
cally, as we conjecture it to be the case for very large data sets (to reach a “good
enough” solution), then the whole method is clearly sub-quadratic in training
time with respect to the number of training examples.
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