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Abstract

Experimental data on particle correlations and fluctuations in various high- energy multiparticle  collisions are 
presented, with special emphasis on evidence for scaling- law evolution in small phase- space domains, The notions  of 
intermittency and fractality as related to the above findings are described. Phenomenological and theoretical work on the 
subject is reviewed.
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Of the achieved triumph pangs and tricks 
Are jus t tightly stretched bow- strings,

B. Pasternak
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1. Introduction

Recent years have witnessed a remarkably intense experimental and theoretical activity in search 
of scale invariance  and fractality in multihadron production processes, for short also called 
“inte rmittency”. These investigations cover all types of reactions ranging from e +e~ annihila tion to 
nucleus- nucleus collis ions , up to the highest attainable  energies. The creation of soft hadrons  in 
these processes, a major  fraction of the total cross section, relates to the strong- coupling long 
dis tance regime of Quantum Chromodynamics  (QCD), at present one of the least explored sectors 
in the whole of high- energy particle  physics.

A primary motivation is the expectation that scale invariance  or self- similarity, analogous  to that 
often encountered in complex non- linear systems, might open new avenues ultimate ly leading 
towards deeper ins ight into long- distance properties of QCD and the unsolved problem of colour 
confinement.

His tory shows that studies of fluctuations  have often triggered s ignificant advances in physics. In  
the present context, it was the observation of “unusually large” particle density fluctuations , 
reminiscent of inte rmittency spikes in spatio- temporal turbulence, which prompted the  pioneering 
suggestion to investigate the pattern of multiplic ity fluctuations  in multihadron events for ever 
decreasing domains  of phase space. Scale- invariance or fractality would manifest itself in power-  
law behaviour for scaled factorial moments  of the multiplicity dis tribution in such domains . It  is 
important to stress here that, in practice, one deals with the problem of evolution of particle  
number dis tr ibutions  for ever smaller bins and intermittent behaviour implies that, for small 
phase- space bins , the dis tr ibutions  become wider in a specific way. The same problem can be stated 
as an increasing role of corre lations  within a small phase- space volume.

T hrough a multitude  of increasingly sophisticated experimental studies of factorial moments , 
much new information has been gathered in a surpris ingly short time. This work indeed confirms 
approximate  power behaviour down to the experimentally possible resolution, especially when 
carried out in two-  and three- dimensional phase space.

The proposal to look for inte rmittency also has triggered a thorough revival of interest in the old 
subject of particle  corre lations , by experimentalists and theorists alike. The need for greater 
sensitivity in measurements of corre lation functions  has directly inspired important work on 
refined analysis techniques. A promis ing and long overdue systematic approach to corre lation 
phenomena of various  sorts, including Bose- Einstein interferometry, is finally emerging.

The large body of experimental observations now available  is calling for satisfactory explanation 
and, indeed, theore tical ideas of all sorts abound.

The level of theoretical unders tanding is quite  different for the various types of collision processes. 
In  e +e~ annihila tion, par ton cascade models  based on leading- log QCD have met considerable  
success and good overall description of multiplicity fluctuations  is claimed. Closer inspection, 
nevertheless, reveals pote ntially serious deviations  from the data, thus requiring further s tudy.
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For  other processes, in particular  hadron initiated collisions, models are faced with large and 
partly unexpected obstacles. This may be a reflection of insufficient knowledge of the reaction 
dynamics , a lthough present evidence points  to hadronization as the main culprit.

Within the framework of perturbative  QCD, results of considerable interest on the emergence of 
power behaviour and multifractality have been obtained. However, these are asymptotic in nature  
and most like ly quite  unre lated to present- day experiment. Being related to the mechanism of 
confinement, not surpris ingly, the role of hadronization remains unclear.

Random self- similar multiplicative  branching models  have inspired much of the original work 
on intermittency. Among many scale- invariant physical systems, the cascade process is a par ti
cularly natural candidate  for the description of s trong fluctuations self- similar over a wide range of 
scales. It  finds  support in the  cascade nature , not only of perturbative QCD, but also of the 
subsequent hadronization. However, further work is needed to help understand the details  of the 
process.

Alternatively, “classic” and extensively s tudied possibilities are scale- invariant systems at the 
critical point of a high- order phase transition. This subject has attracted particular attention in 
view of potential application to quark- gluon plasma formation in heavy- ion collisions.

This paper contains  a review of the present status of work on intermittency and corre lations  as 
performed over the last years. In Section 2 we introduce the necessary formalism and collect useful 
results and re lations  widely scattered in the literature. Section 3 describes experimental data  on 
correlations in various  experiments and discusses predictions of popular models. Section 4 is 
devoted to data and models on the subject of particle  fluctuations  and the search for power laws. 
Section 5 gives an overview of the many theoretical ideas related to the problem of multiplic ity 
scaling and fractality. Conclus ions  are summarized in Section 6.

2. Formalism

2.1. Definitions and notation

In this section, we compile  and summarize  definitions and various relations among the physical 
quantities  used in the sequel. No originality is claimed in the presentation of this material. It  merely 
serves the purpose  o f fixing the notation and assembling a number of results scattered throughout 
the literature.

2.1.1. Exclusive and inclusive densities
We start by cons idering a collis ion between particles a and b yielding exactly n particles in 

a sub- volume Q of the total phase space i2,ot. Let the single symbol y represent the kinematical 
variables  needed to specify the pos ition of each particle  in this space (for example, y can be the c.m. 
rapidity1 variable  of each particle  and Q an inte rval of length 5y). The dis tribution of points  in

' The  rapidity y  is defined as y =  iln [ (E  +  Pl )/{E — pL)]. with £  the energy and pL the longitudinal component of 
momentum vector p  along a given direction (beam particles, jet axis, etc.); pseudo- rapidity is defined as
1 = iln [ (p  +  pi)/(p -  P l)] .



E . A . D e  W o l f  e t  a ! , / P h y s i c s  R e p o r t s  2 7 0  ( 1 9 9 6 )  1 - 1 4 1 5

Q can be characterized by continuous  probability densities Pn(yu • >y„)‘, n =  1,2......  For
s implicity, we assume all final- state particles to be of the same type. In  this case, the exclusive 
dis tr ibutions  .. .. .. .........ylt) can be taken fully symmetric in y u ... ,yn; they describe the dis tr ibu
tion in Q when the multiplicity is exactly n.

The corresponding inclusive dis tributions  are given for n =  1,2, ... by

OC- l

m = l "»I

I* »1
+ m ( y  1 > • * * > 3 1 s ■ ■ * ? Ĵ w ) ^ * 

Q ƒ=!
(2 .1)

The inverse formula is

oc

^n{ y  \ ? *• * »yn) p n iy i > * >j^() ^
m

tt1= 1

1 
m!

m

Q
At+ m(yiî • * • s .y«* .yi a • ■ • 3 ÿm) n  d t f  - ( 2 .2 )

;= 1

pn{yi> .y«) is the probability  density for n points  to be at . . . , yn, irrespective of the presence 
and location of any further points . The probability P0 of multiplicity zero is given by

P0 1
oc 1

E

-l

n = 1 n\» Q
pniyi> ••• >y«) FI ¿y;-

i«  1
(2.3)

This suggests to define pQ — 1 in (2.1). It  is often convenient to summarize the above results with the 
help of the generating functional2

S T «' [ 2 (y)]
«  1 

p 0 +  £
.-1 «!

P»(yl. » yn) z(yi ) ••• z(y„) n
a ¡=i

where z{y) is an arbitrary function of y in Q. The subs titution

z{y) =  1 +  u(j>)

gives through (2.1) the alternative  expansion

QC

S?incl [u(y)l = 1 + £  1
— T fl«

«
p»iyu ••• .y»)«(yi) ••• u(yn) [] ^

n i= l

and the re lation

0 incl lz (y ) l  = ^excl Cz(y) + 1] •

From (2,4) and (2.7) one recovers by functional differentiation:

P»{yi> .y«) =  t>(j>)] /9z0>i) 9 z (^ .)U o ,

(2.4)

(2.5)

(2 .6)

(2.7)

(2 .8 )

Pn(yu .>’») = 9B̂ ìnclCM(}’)]/3«(ji) ••• 0m(̂ )Ih-o • (2.9)

2 The technique of generating functions has been known since Euler’s time and was used for functionals by N.N 
Bogoliubov in statistical mechanics already in 1946 [1]; see also [2].
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To the  set of inclus ive  numbe r  densities p„ corresponds  a sequence of inclusive  differential cross
sections:

1

^¡nel
do = p 1(y )dy  ,

1

tfinel
d2o = p2{yu y 2)dy i dy2 .

Inte gration over an inte rval Q in y yields

(2 .10)

(2 . 11)

n
Pi(y )dy  = (n ),

P2(y i, y i)ày i ày 2 =  <n(n -  1)> ,
Q

dy ì • l i

ß Q
àyqpq(yi, , yq) = <«(« - 1) (» - q + i)>.

where the angular  brackets  imply the average over the event ensemble.

(2 . 12)

2.1.2. Cumulant correlation functions 
The inclus ive  q- particle densities  pq{y j ,  . . .  ,y q) in general contain “tr ivia l” contr ibutions  from 

lower- order densities. Unde r  certain conditions , it is, therefore, advantageous  to cons ide r a new 
sequence of functions  Cq(y i ,  . . .  ,y q) as those  s tatis tical quantitie s  which vanish whenever one o f 
the ir arguments  becomes s tatis tically inde pe nde nt of the others. It  is well- known that the  quantitie s  
with such properties  are the corre lation functions  -  also called (factorial) cumulant functions  -  or, 
in integrated form, T hie le ’s semi- invariants  [3] . A formal proof of this  property was given by Kubo  
[4]  (see also [5]). The cumulant corre lation functions  are defined as in the clus ter expans ion 
familiar  from s tatis tical mechanics  via the  sequence [6- 8]:

P i ( l )  =  C 1 ( l ) ,

p 2 ( l , 2 ) =  C 1 ( l ) C 1 ( 2 )  +  C 2 ( l , 2 ) ,

P a d , 2, 3) =  C 1(1 )C1(2 )C 1(3) +  C ^ ) C 2(2, 3) +  C ^ C ^ l ,  3) +  Cx(3)C2( 1,2)

(2.13)

(2.14)

+  C 3(l,2 ,3 ); (2 .15)

and, in general, by

pm( 1, ... ,m)
V  V IC d  ) - C 1( ) ] [ C 2( , ) - C 2( , ) ] • • •  
L  L  '- - - - - v- - - - - 1 '- - - - - - - y- - - - - - - '

{//}«* pe r it i. /j factors l 2 factors

••• [Cm(, ...,) -  c w(? » ♦ ♦ >
V

lm factors

(2.16)
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Here , lt is e ithe r ze ro or  a pos itive  integer and the sets of integers {/¡}m satisfy the condition

m

(2.17)

The arguments  in the  Ci functions  are to be filled by the m possible  mome nta in any order. The  s um 
over pe rmutations  is a sum over all dis tinct ways of filling these arguments . For  any given factor 
product there are precisely [7]

m!/[ (l!)'>(2!)'2 • - (m !),m] / J / 2! -  lm\

terms. The comple te  set of re lations  is containe d in the functional identity:

(2.18)

^ incl [ « (ƒ) ] =  exp {^[ «(y)] } , (2.19)

where

0 [ «(y )]

00 i m

p\ (y)u(y)dy +  E  3  .y «)w(y i) -  u(y«) n  «to* (2-2°)
q - 2  Q'  ,

It  follows that

Cq(yi ,  . . .  , yq) =  & glu{y]]f lutyt ) •••  3w(};n)|u=o .

The re lations  (2.16) may be inverted with the result: 

C 2(l, 2) =  p 2( l, 2) — p 1( l)p 1(2 ),

(2.21)

C 3( 1, 2, 3) =  p 3(l, 2, 3) -  2 > (1 )P 2 (2 , 3) +  2 p1( l)p 1(2)p1(3 ),
(3)

C4( 1,2, 3 ,4) =  p 4(l, 2, 3, 4) -  £ p i ( l ) p 3(l, 2, 3) -  2 )p2(3 ,4)
W  (3)

+  2 £ p 1(l)p 1(2)pa(3,4) -  6p1( l)p 1(2 )p,(3 )pi(4 ) . (2.22)
(6)

In  the above  re lations  we have  abbreviated Cq(y lt ... ,y q) to C„(l,2 , ... ,q); the s ummations  
indicate  that a ll poss ible  pe rmutations  have to be taken (the numbe r unde r the s ummation s ign 
indicate s  the numbe r  of terms). Expressions for highe r orders can be derived from the re lated 
formulae  given in [9] .

It  is often conve nient to divide  the functions  pq and Cq by the product of one- particle densities. 
T his  leads to the  de finition of the normalize d inclus ive  densities and corre lations :

r jj ' i, ... , yq) =  Pqiyt.....yq)/pi{yi ) ••• pi {yq) >

K q(yi> ••• , y9) -  c q{yi> ••• , yq) /pi (yi ) ••• pi ( y9) •

(2.23)

(2.24)

From expression (2.19) it can be deduced that, at finite  energy, an infinite  number of Cq will be 
non- vanishing: The  densities  pq vanish for q > N, where N  is the  maximal numbe r of particle s  
in Q allowed e.g. by e ne rgy- momentum conservation. As a consequence, the  functional ^  is a
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“polynomia l” in u{y). This  in turn requires the exponent in (2.19) to be an “infinite  series” in u(j>). In  
othe r words, the  higher- order corre lation functions  mus t cancel the lower- order ones that contr ib 
ute  to a  vanis hing dens ity function. Phe nome nologically, this  implies  that it is me aningful to use 
corre lation functions  Cq only if the numbe r of corre lated particles  in the  considered phase- space 
domain Q is cons ide rably smalle r than the average multiplic ity  in that region [2], These conditions  
are not always fulfille d in present- day experiments  for very small phase- space cells, with the 
exception of pe rhaps  AA collis ions .

2.1.3. Correlations for particles o f different species 
The generating functional technique  o f Section 2.1.1 can be extended to the general s itua tion 

where several different species of particles  are dis tinguished. This  will not be pursued here and 
we refer to the lite rature  for details  [ 2,10- 12] . Cons ide ring two particle  species a and b, the 
two- particle  rapidity  corre lation function is of the form:

c2b(yi,y2) = pŸ(yt,yi) -fp\{yi)pbi{y2), (2.25)

with

 ̂ 1 d£ra ,h , * 1 d <rab
p\(yi )  =  — 3—; p Ÿ i y u y i )

f f in e ld y i ’ ’ f f t n e l d ^ d j ^ '
(2.26)

Here, and y2 are the c.m. rapiditie s , crinei the  ine las tic cross section and a, b represent particle
Ok ct o  r^ n roproperties , e.g. charge.

The normaliza tion conditions  are

p “ ( y i ) d y i  =  <na} ;
•/

/»

PÎ{y i,y 2 )dy i dy2 =  <na(»b -  <5ab)> , (2.27)

c 2b(y i, y2)dyi dy2 =  <na(nb -  <5ab)> - / < n a> <nb) , (2.28)

where <5ab =  0 for the  case when a and b are particles  of different species and <5ah =  1 for ide ntical 
particles , and na and nb are the corre sponding particle  multiplicitie s .

Mos t experiments  use

ƒ  — 1 » (2.29)

so tha t the integral over the corre lation function (equal to the ratio n /k of the negative  b inom ia l 
parameters  [13] ) vanishes for the case of a Pois sonian multiplic ity  dis tr ibution. Othe r  experiments  
use

ƒ  =  < X ( r c b  “  ^ a b ) > / < » a >  < » b > (2.30)

to obta in a vanis hing integral also for a non- Poissonian multiplic ity  dis tr ibution.
T o be able  to compare  the various  experiments , we use both de finitions  and denote  the  

corre lation func tion C 2b(,y1, y2) when following de finition (2.29) and C2 b(_y(, y2) when following 
de finition (2.30). We , furthe rmore , use a  reduced form of de finition (2.30),

C 2b(y i, y2) =  C ?b();i, y2)/<na(nb -  <5ab)> . (2.31)
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(2.32)

The corre s ponding normalize d corre lation functions

K 2b{y i,y2) = Clb(yu y iV fpiiy i) p\ (y2)

follow the re lations

K' 2 = ( 1/ / ) ( K 2 +  1) -  1 , (2 .3 3 )

and K 2 is defined as R 2 = K'2 - These are more  appropriate  than C2 when comparisons  have to be 
performed at diffe rent average multiplic ity  and are less sensitive to acceptance problems.

The corre lation functions  defined by expressions (2.25)- (2.33), contain a pseudo- corre lation 
due  to the s ummation of events with different charge multiplic ity  n and different semi- inclusive 
single- particle  densities  p {”\

The re lation between inclus ive  and semi- inclusive corre lation functions  has been care fully 
analysed in [14] . Le t <x„ be the  topological cross section and

p» (2.34)

The semi- inclusive rapidity  single-  and two- particle  densities for particles  a and b are defined as

p iM)(y) =  — ^  a n d  p^n)(y  1^ 2) 1 d ° "a„ dy ’ <x„ dj>! dj>2 ‘

The inclus ive  corre lation function C2(y i, y2) can then be written as

(2.35)

C2(y t , j>2) — Cs( y i,y2) 4- C l(j> i,y 2) , (2.36)

where

c L(y i ,y 2 ) =  Y P , A p {n)( y i ) * p in)(y 2)

(2.37)

(2.38)

with C ^ (y x, ,y2) =  p f { y Y, y2) -  pV[y 1)p f  {y2) and ApCXy) =  p^(y ) -  p^y ). In  (2.37) Cs is the  
average of the semi- inclusive corre lation functions  (often mis leadingly denoted as “short- range”) 
and is more  sensitive to dynamical corre lations . The term CL (mis leadingly called “long- range”) 
arises from mix ing diffe rent topological single- particle densities.

A normalize d form of Cs can be defined as

s ( y i, y 2 } ~ l „ P np[n\ y M nH y 2 ) ~ l lA ^ )^ ) p <i,)iy 2) ' }

C's and Cs and the ir  normalize d forms K's and R s are defined accordingly, with the averages </i> 
and <na(nb — <5ab)> replaced by n and na(nb — <5*b), respectively.

Analogous  expressions may be derived for three- particle corre lations . They are discussed in 
Section 3.4.

2.1.4. Factorial and cumulant moments
Whe n the  parame tr ic  func tion z{y) is replaced by a cons tant z, the  generating functionals  reduce 

to the  gene rating func tion for the  multiplic ity  dis tr ibution. Indeed, the probability  P„ for  producing
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n particles  is given by

P «  =  0 *™ X/ 0  ¡ „e l

and we have

CO

G{z) =  £  P„( 1 +  z f  =  ^ excl[z +  1] =  ^ ,ncl[2]
n = 0

in c l

oo r q

a
p?(y i> ••• .y «)d y i d y

cc _q
JmA

P. .i * *
q“ i v

The F„ are the  unnorraalize d factorial (or binomia l) moments

P. < n Ci]> =  ( n ( n  — 1) ••• (n  — q +  1 ) )

d y t ...
a Q

(2 .40 )

(2.41)

(2.42)

(2.43)

£P „ n (n  -  1) ••• (n -  q + 1). (2.44)

T his  re lation can (formally) be inverted. If P„ =  0 for n > N  then an approx imation for  P„ is given 
by

P
rt

i N  — n f*

~ 7 1 ( - i y ^ r  ( » “ 0 . 1. . . . n ) ,
«! j=o Ji

(2.45)

and P„ is include d between any two successive values  obtaine d by te rminating the sum at j  = s a nd  
j  — s + 1, respectively.

In  (2.44) n denotes  the  multiplic ity  in S2 and the average is taken over the ensemble o f events. All 
the integrals  are take n over the same volume  Q such that y-te Q V ie { l, - Us ing the  
corre lation- function clus ter de compos ition, one  furthe r has

log G{z) -  (n )z  +  £
CO , q

2 <7
ƒ<•I Jq

(2.46)

The f ,  are the unnormalize d factorial cumulants , also known as Mue lle r  moments  [8]

ƒ. d y i  . . .

a
d y i/ Ci ( y i ,  . . .  , y ^ ) , (2.47)

the inte grations  be ing performed as in (2.44). The quantitie s  Pq and L are easily found if G(z) is
known:

P. d*G(z)/dz4U 0 ,

fq =  d ? l o g G ( z ) / d z

p (l/q\ )d'G(z)/dz'\ xm

(2.48)

(2.49)

(2.50)
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Us ing Cauchy’s theorem, this  can also be written as

1 G(z)

(1 +  z) (2.51)

where the  inte gral is on a circle enclos ing z =  — 1. Eq. (2.51) is sometimes useful in de r iving 
asymptotic  expressions for P„ in terms of factorial moments  or cumulants  [ 15,8] ,

As a s imple  example , we cons ider the  Pois son dis tr ibution

P„ =  e"<"> <n>"/n! ,

for which

ÛC

(2.52)G{z) =  £  P„( 1 +  z)n = exp {<n>z} ,
o

showing that f q =  0 for q > 1. In  that case one has

Pq =  <n(n -  1) • • • ( « -  q + 1)> =  <«>9. (2.53)

The expressions of density functions  in terms of cumulant corre lation functions , and the reverse 
re lations , are duplica te d for the ir  integrated counte rparts . They follow directly from the  equations :

»  ?q f  co 7q

1 +  Ê  - f i?9 =  e x p j< «> z +  £  -  f q
q=\  Cl ' i  q- 2 H'

(2.54)

or

00 Z q \  00

M  1 + E 7T F* = <M>2 + I  - \  f i
9 Ï 9 !  7  o~2 <}'■

(2.55)

by e xpanding e ither the e xpone ntial in (2.54) or the logar ithm in (2.55) and equating the  coefficients 
of the  same power o f z. One  finds  [9]:

Pi = A .

P2 =  S% +  f\  >

P3 — h  +  3 / 2/ i  + / i  >

P 4 = /4  +  4/ 3/1 +  3/2 +  6/ 2/1 +  ƒ  1 >

Ps = / s  +  5/ 4/1 +  10/ 3/2 +  10/ 3/1 +  15/ 2/1 +  10/2/ i  + / i ; (2.56)

and in general

/  j X JL I * | ƒ ƒ I *
{/,},j = 1 \ J•/  0 *

with the s ummation as in (2.16) and £f=1 //,• =  q 
The latte r formula  can also be written as

(2.57)
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(w ith F0 =  1, /o =  0) and is well- suited for compute r  ca lculation. An equivalent re lation was
a __r o i  t u ~ ~____ ___derived in [8] . The  (ordinary) moments

00

/*, =  <»«> =  Z n*Pn ,
(I =  o

may be derived from the mome nt generating function

M(z) =  £  nn*P„,
« = 0

since

Hq =  d?M( z) / dz' I | , =o .

We  note  the  useful re lations

M(z) =  G(e z -  1 ),

G(z) =  M (lo g (l +  z )).

(2.59)

(2 . 6 0 )

(2.61)

(2.62) 

(2.63)

Mome nts  and factor ial mome nts  are re lated to each other by series expansions. From the
identitie s  [16]:

n(n — 1) (n — q +  1) =  £  Si,"0 nm ,
m = 0

(2.64)

(2.65)

where and <Ŝ m) are Stir ling numbers  of the first and second kind, respectively, follows directly:

^  =  z  s ir V m ,
m -  0

M, =  i  S ft> ? . .
m = 0

(2 . 6 6 )

(2.67)

Cumulants  Kq can be defined in terms of the moments  nq in the s tandard way [ 17,9] . They obey 
re lations  ide ntical to (2.56). The cumulants  are integrals  of the type (2.47) of differential quantitie s  
known as density moments . These are discussed in [ 18,19] , Re lations  expressing central moments  
in terms of factorial mome nts  via non- central Stir ling numbers  are derived in [20].

2.1.5. Cell-averaged factorial moments and cumulants; generalized moments
In  practical work, with limite d statis tics , it is almos t always necessary to perform averages over 

more  than a s ingle  phase- space cell. Let Qm be such a cell (e.g. a single rapidity inte rval of size 5y) 
and divide  the  phase- space volume  into M  non- overlapping cells Qm of size 8Q, independent of m. 
Let nm be the numbe r  of particles  in cell Q,„. Diffe rent cell- averaged moments  may be considered, 
de pe nding on the type of averaging.
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Norma lize d factoria l moments  [ 21 ,22] , which have  become known as vertical moments, are  

defined as3

(2 .6 8 )

1 Y' i&y Pqiy i* *** > r i f s i  d ĵ 4*
L-t / f  »

i (k v P (y )d y )  

l  ç Pq[yis • ■ ■ » r i j— i dy{
Z-j (2.69)

T he  full r apidity  inte rval AY  is divide d into  M  equal bins: AY = MSy ; each yt is w ithin the 8y
range  and <wm> ==pm8y = f ty pi(q)dy.

One  may also define  normalize d horizontal moments by

cH/;; \ _ 1 V  1) fani i  "t" 1)^

f  ■{ h ) "  m  - - - - - - - - - - < r y - - - - - - - - - -
(2.70)

with nm = «m/M; <nrtl> =  <n>/M; n = nm.
Hor izonta l and ve rtical mome nts  are e qual if M = 1. Vertical moments  are normalize d locally 

and thus  sensitive only to fluctuations  w ithin each cell but not to the overall shape  o f the  
single- particle  density. Hor izonta l moments  are sensitive to the  shape of the single-  particle  dens ity 
in y and furthe r depend on the  corre lations  between cells. To e liminate  the effect o f a non- flat 
rapidity  dis tr ibution, it was suggested to e ither introduce  correction factors [23] or use “cum ula t 
ive” variables  which trans form an arbitrary dis tr ibution into a uniform one [ 24,25] .

Likewise, cell- averaged normalize d factorial cumulant moments  may be defined as

K (ôv) = __ -__  y  f n  dv-  -
Kq(ùy) M(Ôy)q ( (pm)q ‘

They are re lated [26]  to the  factorial mome nts  by

F2 =  1 +  K 2 ,

F$ = 1 ■+• 3 K2 ,

(2.71)

=  1 +  6K2 + IK\  + 4K2 +  X 4 , (2.72)

In  F4 and higher- order moments , “bar averages” appear. They are defined as AB s  £ mAmBm/M. 
Besides factorial and cumulant moments , other measures of multiplic ity  fluctuations  have been 

proposed. In  par ticular , G mome nts  [27]  -  known in statis tics as frequency moments  [9] -  were

3 Here and in the following we consider rapidity space for definiteness.

4 The higher- order re lations can be found in [26].
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extensive ly used to inves tigate  whether multipar tic le  processes possess (multi)fractal properties  
[ 28,29] . G mome nts  are defined as

M M

Gq =  Z '  Pm , Pm =  nm/n , n =  £  nm .
m = 1 m = 1

(2.73)

Also here, nm is the numbe r  of particles  in bin m, the absolute  frequency; n is the total multiplic ity  in 
an initia l inte rval and M  is the numbe r of bins  at “re solution” M. Bins  with zero content (“empty 
bins ”) are excluded in the  sum, so that q can cover the whole  spectrum of real numbers . For  
q negative , Gq is sensitive to “holes” in the rapidity dis tr ibution of a single event. Note  that pm in 
(2.73) is not a probability  but a relative frequency or “empirical measure” in modern te rminology. 
For  small n, G mome nts  are very sensitive to s tatis tical fluctuations  (“noise”), especially for large  M. 
This  seriously limits  the ir pote ntial. In  attempts  to reduce this  noise sensitivity, modifie d de finitions  
have been propose d in [30] .

2.1.6. Multivariate distributions
The univariate  factorial mome nts  Fq characterize  multiplic ity  fluctuations  in a s ingle  phase-  

space cell and thus  reflect only local properties . More  information is containe d in the corre lations  
between fluctuations  (within the same event) in two or  more  cells. This  has led to cons ider 
multivar iate  factorial moments . For  non- overlapping cells, the two- fold factorial moments , also 
called correlators, are  defined as:

F pq =  < n if] > , (2.74)

where nm («„,■) is the  numbe r  of particles  in cell m (cell m'). A normalize d version of the two- fold 
corre lator is discussed in [21]  and defined as:

F pq = ( n W n W y / F PF 9 - (2.75)

For  reasons of s tatis tics , these quantitie s  are usually averaged over many pairs  of cells, keeping the  
“dis tance” (D) between the  cells cons tant.5 This  averaging procedure  requires the same precautions  
regarding s ta tionar ity of s ingle  particle  densities as for the ir single- cell equivalents .

Multifo ld  factorial mome nts  are a familiar  tool in radiophys ics  and radar physics and in 
quantum  optics  [31] . There, they relate to s imultaneous  measurement of photo- electron counts  
detected in, say M, time- intervals , or in M  space points , le ading to a  jo in t  probability dis tr ibution 
PM{ni) «2. •••, nu)-  The importance  of multifold moments  derives from the fact tha t e.g. in the  
s imples t case of two cells, F n  — ( n mnm.)  is directly re lated to the auto- corre lation function of the  
radia tion fie ld and obeys, for small cells, the  Siegert re lation [31] , whatever the  s tatis tical 
properties  of the  fie ld. The  higher- order mome nts  are sensitive to higher- order corre lations  and to 
the phase of the  fie ld.

5 In one- dimensional rapidity space, D is defined as the distance between the centres of two rapidity intervals; in 
multidimens ional phase space a proper metric must first be defined.
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Factor ia l mome nts  and factorial corre lators  are intimate ly re lated quantities . In  terms o f 
inclus ive  densities  one  has

Fpq d y j . . .  d y
2

1 • •• dy p+ qpp+ q{y i> ••• >yp>yp+1? ♦ ** > ( 2 . 7 6 )

where pp+q is the inclus ive  density of order p +  q. The integrations  are performed over two 
arbitrary (poss ibly ove rlapping) phase- space cells and Q2, separated by a “dis tance” D.

It  should be note d tha t the  de finition (2.76) is more  general than (2.74). For  £2i = Q2 or  D =  0, 
(2.76) reduces to the  correct de finition of P2 whereas (2.74) is, in this  case, equal to <n2> and misses 
the  so- called “shot- noise” te rm — <«).

Factor ia l mome nts  and factorial corre lators  of the same order are thus  seen to differ only in the  
choice  of the inte gra tion domains . Note  that for p q, de finition (2,76) is not symmetric in p and 
q and a symmetrized vers ion is often used in experimental work:

P f l  =  (P M +  P qP)/2 ■ (2.77)

From (2.76) follows  tha t F11 is directly de rivable  from measured two- particle corre lation functions  
or from appropr ia te  analytical parame trizations . Higher- order corre lators  involve  higher- order 
density functions  which, in general, are unknown.

We  now turn to a discuss ion of multivar iate  factorial cumulants . For  M  non- overlapping cells, 
we introduce  the  M- variate  multiplic ity  dis tr ibution PM{ni,  •••>»m) and the corre sponding m o 
ment-  and factorial- moment generating functions :

co DO 00

M{zu  . . . , z M) =  £ Z Z e*'-  + - +'- "“ P M(nl l . . . , n w) ,
n\  = 0  =  0  nM =  0

(2.78)

CO 00 00

G(zt , . . .  ,z M) =  £  z ••• Z (! + z i)"‘ ••• (X + tuY " P u fa , ••• ,«m) .
Nl = 0 «2 = 0 Hjw = 0

from which the  M- variate  mome nts  are easily obtaine d by diffe rentiation:

(2.79)

¡J-q| ... <nV • t «Af>
0 0 «M

0 Zi
t i l

0 Z
M{zu  ... ,z M)

p
J.  q l . . .

/ m?1<s«i Km  /
a

M

3

21 = ... =Z" = 0

0 2 ! 0 Z
(j^Z  y J . . .  , Zfcf )

M z 1 • ■ r Z m  —  0

(2.80)

( 2 . 8 1 )

The multivar ia te  (ordinary) cumulants  k a nd multivariate  factorial cumulants  are
likewise obtaine d by re placing M(- ) and G(- ) in (2.80) and (2.81) by their respective na tura l 
logar ithms  [32] , The same expressions serve to extend the  re lations  between univariate  mome nts  
and cumulants  to the ir  multivar ia te  counte rparts .

For  M  =  2 and non- ove rlapping cells, one  has the  ide ntity [cf. (2.54)] :

oC oo

z  x  F‘- = « p (  t  i
\ l = 0 m = 0/ -  0 m = 0 /! ml

(2.82)



where Poo = 1 and / 00 is defined equal to zero. It  follows tha t6

• 1̂1 = / n  + / 01/10 > ( 2 .8 3 )

■̂12 —f i 2 +foifzo  +  2 / i o 7 i i  - f / o i / i o  > ( 2 .8 4 )

-^ 13 =  / l 3  + / o i / 3 0  +  3/ 11/20 +  3/ 01/ 10/20 +  3 / o / u  +  3 / i o / l l  + / o i / i o  > ( 2 .8 5 )

P 22 —$22 +  2/ 10/21 + / o 2/20 +  / o i / 2Q +  2fo\ f\ 2 +  2f\ \  + 4 /0i/ io / ll
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+ /02ƒ  10 +  f o if lo  •

Similar ly, e xpanding the  logar ithm in

»  ( - 2 1) ' ( - Z 2r ,  , / £ *  ( “ Zi ) ' ( - 22)W

(2.86)

I  E V rrb .= log E E V— ^  , (2.87)
i =  0 m =  0  \ ! =  0 m  =  0  ^

in powers of s and t and ide ntifying coefficients, the reverse re lations  follow:

h i  — Fu  — FoiFw  > (2.88)

(2.89)f l2  — P\ 2 — F0J 20 ~  2 F10 ^11 +  2i^oi Flo  >

/ i 3 =  ^13 -  F0]F3Q -  3 Fn F20 +  6FQ1F i0F20 -  3Pl0F i2 + 6 F210F U -  6F0 lP 3i0 , (2.90) 

f i i  =  p 22 -  2 F1QF21 -  P02 F2q + 2F201P20 - 2 F 01Fi2 -  2 Ph  + SFo lF toP n

+ 2F02F lo - 6 F ll F 2lo - (2- 91)

The quantitie s  P0t, Fto, and f 0i> f i0 are equal to the  single- cell factorial moments  and factorial 
cumulants , respectively. Expressions for Pj{ (/■,•) are obtaine d from the corresponding expression 
for FtJ {/¡j) by pe rmuta tion of the subscripts. By de finition,f 01 ~ F0i and f 0i is equal to the average 
multiplic ity  in cell 2.

It  may be noted tha t the  bivariate  re lations  reduce to the univariate  ones (2.56) by s imply 
amalgamating the indices . For  example, from

^12 ==/ l 2 + / 0l/20 +  2 / lo / ll +  / o i/ io  5

one recovers, by s umming the  indices

F3 —fz  +  3 / l/2  +  f i ■

(2.92)

(2.93)

It  is shown in [9]  (Section 13.12) that the above  re lations , while  seemingly complex, have in fact 
a surpris ingly e legant s tructure , rooted in s imple  algebraic properties o f comple te ly symmetric 
functions . Fur the r  discuss ion on this  point and other useful properties  may be found in [32] . 

Extens ions  to more  than two cells is s traightforward, in principle , but involves tedious  algebra.

2.2. Poisson- noise suppression

T o detect dynamical fluctuations  in the  density o f particles  produced in a high- energy collis ion, 
a way has to be devised to e liminate , or to reduce as much as possible , the s tatis tical fluctuations

6 See also [33].
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-  noise  -  due  to  the  finiteness  of the  numbe r  of particles  in  the counting cell(s). This  requirement can 
to a large  extent be satis fied by s tudying factorial mome nts  and the ir multivariate  counte rparts . It  
forms  the basis  of the  factorial mome nt technique , known in optics , but rediscovered in m ultihad 
ron physics in  [ 21,22] . The me thod rests on the conjecture  that the  multice ll multiplic ity  
dis tr ibution PM(ni, • • • ,»m) can be written as

M (p <5)"m
Pm ( ^ i> • ■ • > ) || dp\  ... dp\ { Ppipij • ■ • > Pm ) j exp ( pm5 ). (2.94)

m= 1

The Pois son factors  represent uncorre lated fluctuations  of n,„ a round the average pmS =  <nm> in 
mth interval; <5 is here the  size of the  inte rval. This can also be  written as

^  /  y\  \ n?n

PM(nt ... nM) =  ( [ ]  exP( -  < 0 )
m s  t • j  f>

(2.95)

where the  oute r brackets  mean that an average is taken over the probability  dis tr ibution of the  
densities  pm> which are subject only to dynamical fluctuations . If these are absent, Pp(p u ... ,p M) is 
s imply a product of 5 functions .

The formulae  (2.94) and (2.95) are formally identical to the expression for the multi- inte rval 
photo- e lectron counting probability  dis tr ibution in quantum optics  and based on the famous  
Mande l formula  [34, 35] . The  latte r relates the  probability  dis tr ibution of the number of detected 
photo- electrons to the  s tatis tical dis tr ibution of the e.m. field.

In  optics , pm has the  me aning of a space-  or time- integrated field intens ity. The ensemble average 
is calculated from the  fie ld density matr ix  which describes its s tatis tical properties.

Eqs. (2.94) and (2.95) express PM{ni ,  . . .  ,nM) as a linear trans formation of P,,{pu •• •  >Pm ) with 
a “Poisson kerne l”. T his  trans formation is known as the  “Poisson trans form” of Pp [36] ,

The Poisson trans form of a s ingle- variable func tion/ (x ) is the fu n c t io n / ^) (n integer) defined by 
the  linear trans formation

/ ( « )

*00 v n
dx ƒ  (x) — e

0 n !
(2.96)

A tr ivia l example  is the function 8(x — p.) whose trans form is the Poisson probability dis tr ibution. 
The Bose- Eins te in dis tr ibution

I i n) — ¿¿"/(I +  A)"+1 (« =  0 ,1 , . . . ) ,  (2.97)

is obtaine d as the Pois son trans form of the exponential function (l/p.) exp( — xj\ i).
For  suitably behaved functions , the inverse Pois son transform exists. It  is closely re lated to the  

Laplace - transform o f f(x ). Several practical me thods  have been developed to de te rmine  the  
func t io n / (x ) from its Poisson- transform. Besides me thods  based on series expansions, the inver 
s ion proble m may be reduced to an inverse mome nt proble m. This  follows from the  e quality 
between the factor ia l mome nts  o f J(n) and the  ordinary moments  of / (x ), as furthe r discussed 
be low.

A table  of useful trans forms  for  probability  dis tr ibutions  and furthe r mathe matical properties  
can be found in  [31] .
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From the bas ic Pois son transform e quation (2.95) it is easily seen that the multifold factorial
mome nt gene rating function has  the s imple  form

G(zlt  ... ,z M) =  (  f ]  e x p (z^<5 )) ,
J= i

(2.98)

where the s tatis tical average is again taken over the ensemble of densities p 1( ... ,p M, as indicate d 
by the  subscript.

On  the other hand, the  (ordinary) mome nt generating function of the densities is given by:

Q (z i j . . .  , ) PÀPx ....... pM)e plZ, + - + ^ Md p 1 -  dpM (2.99)

M

n
j=  i /  p

Compar ing (2.98) and (2.100), it follows that

G(zls ... ,z M) — Q{ôpiZi, ... ,PmZm $) •

(2 .10 0 )

(2 .101)

This  e quation implie s  tha t the  normalize d multivar ia te  factorial moments  of the multiplic ity  
dis tr ibution

(2. 102)

are equal to the normalize d multivar ia te  (ordinary) moments  of the relative density fluc tua tion 
PmKPm)• This  is the  “noise- suppression” theorem [ 21,22] . It  assumes that the noise is Pois s onian 
(cf. (2.94)) and that the  numbe r  of counts  in all inte rvals  (the total multiplicity) is unre s tricte d.7

The prope rty of Poisson- noise  suppress ion has made  measurement of factorial moments  a s tan
dard technique , e.g. in quantum  optics, to s tudy the s tatis tical properties  of arbitrary e lectromag
ne tic fields from photon- counting dis tr ibutions . Their utility  was first explicitly recognized, for the  
s ingle  time- interval case, in [ 37,5]  and later generalized to the multivariate  case in [32] . The  
authors  of [5] furthe r stress the advantages  of factorial cumulants  compared to factorial moments , 
since the former measure  genuine  corre lation patte rns , whereas the latte r contain additiona l large 
combina tor ia l te rms which may mask the  unde rlying dynamical corre lations  (however, see the  
discuss ion in Se ction 2.1.2).

Multiva r ia te  factorial cumulants  are derived from the (natural) logar ithm of the  factorial 
mome nt gene rating function. T aking logarithms  of both sides of (2.101), one  finds  that the  
multivar ia te  normalize d factorial cumulants  o f the  counting dis tr ibution are equal to the  multiva r i
ate normalize d ordinary cumulants  of the densities [ p5] . This  re lation, therefore, extends the  
noise- suppression the ore m to cumulants . This  prope rty is exploited in many fields from quantum 
optics  [32]  to radar- physics and astrophysics  (see e.g. [38]).

n If the sum over a ll intervals  of the number of counts  is fixed, a s lightly more complicated re lation can be obtained if the  
noise has a Bernoulli (multinomial) dis tr ibution [21].



E.Á. De Wolf eí al. /Physics Reports 270 (1996) 1- 141 19

2.3. Sum rules

(2,103)

In  an inte res ting a- model analys is  of factorial corre lators  [39] , scaling relations  are derived 
between s ingle- variate  and 2- variate factorial moments  which are independent of the dime ns ion of 
the  phase  space. The  result is s tated as follows: if a  corre lator F L1 (D, <5) is effectively inde pe nde nt o f 
<5 in a range  <5 <D  ^  <50, then

Fn{D) = 2F2(2D) — F2(D).

Here, S is the inte rval size and D the  dis tance  between the  intervals .
Similar  types of re lations  -  or sum rules -  are well- known in optics since the early 1970s. They 

are exploited in so- called Multi- Cathode  and Multiple - Aperture  Single- Cathode (MASC) pho to 
e lectron counting experiments  (see e.g. [ 40,41]  and references therein).

Cons ide r  again the  multivar ia te  multiplic ity  dis tr ibution P M(«i, ... ,nM) giving the jo in t  prob 
ability  for the  occurrence of particles  in  a cell £21} ... ,nM particles  in cell QM, with £2,n£2j =  0, 
V/ ,; and i #  j. Le t n be the  numbe r  of particles  counte d in the  union of the M  cells,

M
n =  £  nm .

m =l

The probability  dis tr ibution of n is given by

n n

P(ri) =  £  ¿ j > ^ m ) + « j *  •
«1=0 *M = 0

De fine  the single- variate  factorial mome nt gene rating function

g{z) = t  (1 +  z)n P (n ).
« = o

(2.104)

(2.105)

(2.106)

The function g(z) can be expressed in terms of the multivar ia te  generating function (2.79) as:

Q{z) G\ { ( Z j  , . . .  , Z a / ) | 2 , = Z2 = = z M =  z • (2.107)

Eq. (2.107) allows  to express factorial moments  of n in terms of the multivariate  factorial mome nts  
of {ni, ... ,n M}- Applica tion of the Le ibnitz rule

d \ ‘ ~  k \  i d  \ a ' . . i d
Ok

f ( z) =  L  h r  M 2) ( t : )  /*(*)d z j ,T) a1la2l ••• akl \ dzj \ dz

to the  function

f{z) - f i(z ) ■ ■ ■ f M(z) 

leads imme diate ly to the  re lation

p  _  y  m w  __
1  q ¿a 1  ai  i i

{flj} a l ! a M'
(2.108)
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The s ummation is over a ll sets {aj} of non- negative  integers such that

M

Formula  (2.108) may be looke d upon as a gene ralization of the usual multinomia l theorem for 
factorial mome nts .8

Likewise , taking  the  natura l logar ithm of both sides of (2.107), one obtains  a re lation identical to 
(2.108) among single- variate and multivar ia te  factorial cumulants .

As an example , for two rapidity  bins  (M — 2) of size <5 separated by a distance D, one finds

h  -  n ? + 2 f  ? ’ + *  g , 

h = P S  + 3( p?> + o + p & .

P* = f  S  + 4(P?> + P«>) + 6f?>  + P S  .

(2.109)

The factorial mome nts  F 0; are de termined from the single- cell (marginal) counting dis tr ibution, 
whereas the univar ia te  factorial moments  Fq are obtaine d from the sum of the counts  in the  two 
cells.

The re lations  derived in [39]  follow imme diate ly from (2.109) by cons idering two adjace nt cells 
and normalizing prope rly. Since  the de rivation of (2.108) is comple te ly general, it obvious ly holds  
irrespective of the  dime ns ion of phase space.

The re lations  (2.109) are tr ivially extended to more  than two cells. They allow to measure  
high- order corre lators  by varying the  dis tances between the  cells. In  optics  and radar physics , they 
are typically used in de te rmining spatial coherence properties  of arbitrary e.m. fields.

2.4. Scaling laws

A major  par t of this  pape r is devoted to recent experimental and theore tical research on poss ible  
manife s tations  of scale invariance  in high- energy multipar tic le  production processes. This  work 
centres a round two bas ic inter- related notions : inte rmittency and fractality. A review of the  
experimental data  accumulate d over the last years will be given in Section 4. Theore tical work is 
discussed in Se ction 5.

In  particle  physics , inte rmitte ncy is defined, in a s trict sense, as the scale invariance  of factorial 
mome nts  (2.68)- (2.70) with respect to changes in the size of phase- space cells (or bins) say dy, for 
small enough 8y:

Fq (¿y) oc (¿>y) ^  (<5jj ->• 0 ). (2 .110 )

The power 4>q > 0 is a cons tant at any given (pos itive  integer) q and called “inte rmittency index” or 
“inte rmitte ncy s lope”. The form of (2.110) s trictly implies  that the inclusive  densities pq and the  
connected corre la tion functions  Cq become s ingular in the  lim it of infinite s imal separation {Sy -* 0) 
in mome ntum space.

8 See also [12]
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Ins pire d by the  theory o f multifractals , scaling be haviour of the G moments  (2.73) has  also been 
looke d for  in the  form

G„(<5y) °c (<5y)r(i) {3y -+ 0 ). (2.111)

To describe the  inte r- re lation of the two proposals , we briefly discuss the  formalism of fractals.
Power- law dependence  is typical for fractals  [42] , i.e. for self- similar objects with a  non- integer 

dime ns ion. These range  from pure ly mathe matical ones (the Cantor  set, the Koch curve, the  
Serpinsky gasket, etc.) to real objects of nature  (coast- lines, clouds , lungs, polymers , etc). For  
reviews see [43- 45] .

The fractal dime ns ion DF is defined as the exponent which provides a finite  limit

0 <  lim  N(s)sDr < oo
E 0

(2 .1 12)

for  the  product of sDp and the minima l numbe r  of hypercubes N(e) o f linear size I =  s (Kolmogorov 
de finition) or I < s (Haus dorff de finition) covering the object when e - »0.

To a physicis t, the  de finition becomes more  transparent if one  considers the re lation between the  
size I of an object and its mass M  as a scaling law:

M  oc lD,:. (2.113)

For  usual objects  DF coincides  with the  topological dime ns ion (for a line  Dr — I, for  a square  
Df = 2 and so on). The  condition e -* 0 means in practice  that such a law should hold in some 
inte rval of “rathe r s mall” e- values.

The  probability  pt{l) to be in  a hypercube  Nt(l) is propor tional to lDf at small I. Therefore, for  
a fractal the mean value  o f the <?th order (ordinary) mome nt is given by

<p?(/)> oc /,X>F (DF =  cons t.).

Multifrac ta ls  generalize  the  notion of fractals , since for these the following holds:

(2.114)

Z ^ ( o  =  < p r 1( o > o c / ^ , (2 .1 15)
I

where

x{q) = (q ~ l)D q . (2.116)

The Dq are called the Re nyi dimens ions  [ 46,27]  and depend on q (generally, for multifractals  they 
are decreasing functions  o f q).

Sometimes  it  is more  conve nient to characterize  multifractals  by spectral properties, rather than 
by the ir  dimens ions .

Le t us group all the  boxes with a s ingularity a  (p,(0 ~  la, I -*■ 0) into a subset S(a), where a is called 
the local mass dime ns ion. The  numbe r o f boxes dJVa(/) needed to cover S(a) is

dN.(l) =  dp(a)/~ / (a ), (2 .117)
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(2 .118)

w he re /(a ) is the  fractal dime ns ion of the set S(a) re lated to the  Renyi dimens ion. For  the sum of 
mome nts  one obtains

n m  r
£  p?(0 oc dp(a)/a9- /(a).
I 55 1 J

From (2.118), one  gets by the  saddle- point me thod

Dq =  - ^ - r  m ina (aq - / (a ))  =  —~  (a<? - / (a )) 
q l  q i

with a defined as

d//da | (a = i, =  q(a).

(2.119)

( 2 . 1 2 0 )

The notion of Rényi dime ns ions  Dq generalizes the  notion of fractal dime ns ion D0 =  Z)F, informa 
tion dime ns ion Di and corre lation dime ns ion D2 =  v. A Rényi dimens ion, therefore, is often called 
a generalized dime ns ion.

The difference between the usual topological dime ns ion D (i.e. the support dimens ion) and the 
Rényi dime ns ion is called the anomalous  dime ns ion (or codimens ion)

dq = D ~  D „. (2.121)

The multifrac ta l me thod is a wide ly used tool in many branches of physics and science in general 
(cf. [ 43,44,47] ).

A direct re lation may be es tablished between the  exponents  of factorial and generalized mome nts  
at comparative ly low values  of q, much smalle r than effective multiplicitie s  contr ibuting to the  sum:

0 ? +  *0?) =  (? -  !) £ •

T hen the exponents  are re lated to Rényi dime ns ion and to codimens ion as

t fa ) =  (3 “  !)  D i

<!><, = (q ~  1M  ■

(2 .122 )

(2.123)

(2.124)

According to the general theory [ 48,49] , there exists “a class of multifractals  e xhibiting universal 
properties”. They are called universal multifractals  and are classified by a Levy index 0 <  n <, 2 
which allows the  codime ns ion to be expressed as

dq =  {CxUi -  1) (<?'*-  q/q-  1) (Cj =  cons t). (2.125)

The Levy index ¡i is also know n as the degree of multifracta lity (/i =  0 for monofractals ). Values  
H < 1 correspond to so- called “calm” s ingularities , values fi > 1 correspond to “wild” s ingularitie s .

One  can proceed furthe r and try to analyse  experimental data  at two different levels of bin 
s plitting. For  tha t purpose , it was recently suggested [ 50,51]  to s tudy Double  Trace Mome nts  
(DT M). The procedure  is, firs t, to  sum up vth- order moments  of multiplic ity  dis tr ibutions  a t some 
bin- splitting level 0  w ithin bins  be longing to a single bin of one of the  previous  steps (having bins  
of size A) and then to calculate  the ir <jth moments  at tha t level

(2 .126)
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It  is claimed [50]  tha t “the  DT M- te chnique  provides  a robus t estimate of ¡x and C'[ for universal 
multifractals . According to the  theory of unive rsal multifractals  [48, 50] , one s hould observe the  
following factorizable  be haviour  of “double ” exponents  K(q, v):

K(q,v) = v »K (q ,l) ,  (2.127)

where /t is the same Levy index as in (2.125).
Expe rime ntal results  on multifractals  and generalized multifractals , as well as some theore tical 

implica tions  are discussed in Sections 5 and 4.7.7.

2.5. Bunching- parameter approach

A s imple  mathe matica l tool alte rnative  to  the  normalize d factorial moments  (2.68)- (2.70) is the  
bunching- parame te r approach, suggested for high- energy applications  in [52] , In  orde r to reveal 
spiky s tructure  of the  events, it is only necessary to s tudy the behaviour of the probability  
dis tr ibution near the  multiplic ity  n = q by means of the  “bunching parameters”

riqi&y) = (<?/(<? - 1 )) [ P ,(<W<i- z(Sy)IPq- 1M , q > l • (2 i 28)

As is the case for the  normalize d factorial moments , the bunching parameters  tjq are inde pe nde nt o f 
by if there are no dynamical fluctuations . For  example, >iH =  1 for a ll q for the case of a  Pois s onian 
probability  dis tr ibution,

As the Fg(5y), the  Pq(8y) can be averaged over a  numbe r M  of bins. Assuming approx imate  
propor tiona lity  of nm and dj/ a t by -*■ 0 and P 0(<5y) - > 1 for  by -*■ 0, one  obtains

rj2(ôy) a  F2(3y)

n9(ôy) «  F9(8y) Fi ~2(fy)/[ Fq- 1(<Sy) ] 2 , q > 2 (2.129)

or

rj2(ôy)oz(ôy) 

tiq(ôy) oc (ôy)

- H

~P. (2.130)

with

02 — d ii

fia = dJq  — 1) -t- d„- 2(q — 3) — 2dq- i(q — 2) , q > 2 ,  (2.131)

Express ing dq in  terms of the  Lévy- law approx imation (2.125),

& = d2  iq>‘ +  { q -  2Y ~  2(q -  lH/(2" -  2) . (2.132)

In  case of monofrac ta l be haviour  {¡x — 0), 0q =  0 for q > 2. In  the limit of the log- normal 
approx imation (n =  2), on the other hand, — d2 and all bunching parameters  follow the same 
power law.

The  Lévy- law approx im a tion allows  a  s imple  de scription of multifractal properties  of r andom  
cascade mode ls  us ing only  one free paramete r ¿u. In  the bunching- paramete r approach, one can
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m ake an approxim ation o f the high-order bunching parameters to obtain a simple linear expres

sion for the anom alous fractal dim ensions dq, still m aintaining the number of free parameters at 

one.

Assum ing that high-order bunching parameters can be expressed in terms of the second-order

one as

*it (8y) = D/zOW. 4 > 2,

the linear expression becom es

dq =  d2( 1 -  r) +  d 2r q/2  .

(2,133)

(2.134)

The use of bunching parameters is interesting, because it gives a general answer to the problem of 

finding a m ultiplicity distribution leading to intermittency: according to (2.128), any m ultiplicity 

distribution can be expressed as

P ' i S y )  =  P o ( 6 y ) n  i ^ y ) T + l < ? > ! •  (2.135)
H- 1 = 2

The possible forms of m ultiplicity distributions with multifractal behaviour of dq (2.121) are 
discussed in [5 3 ,5 4 ],

2.6. The wavelet transform

An increase of factorial and cumulant m om ents with decreasing bin sizes reflects a w idening of 
a m ultiplicity distribution, i.e. an increase o f m ultiplicity fluctuations in individual events. This 
phenom enon can be studied by other m ethods, as well. In particular, the so-called wavelet 
transform seems to be suited for that purpose.

The wavelet transform is o f particular im portance in pattern recognition. This is a more general 
problem than the fluctuation study itself, since it involves the analysis of individual event shapes, 
not only the event ensem ble, and may becom e of interest in the analysis of very high multiplicity 
events,

It is show n [55] that, for pattern recognition, the wavelet transform is about tw o  orders o f  
m agnitude more efficient than ordinary Fourier analysis.

An application o f wavelets to multiparticle production processes has been proposed in [56], The 
main principle o f the wavelet transform is to study the dependence of fluctuations on  the 
phase-space bin size by the so-called difference method. One considers the difference between the 
histogram  of an individual event at a definite resolution to the corresponding histogram at a (e.g. 
twice) finer resolution, Proceeding step by step, one is able to restore the whole pattern of 
fluctuations,

Let us explain how  this procedure can be applied to  an individual event. We consider the 
one-dim ensional projection o f the event onto the rapidity interval A Y. Any «-particle event can be 
represented by the histogram s of particle densities p — dn/dy at various resolutions. T he simplest 
inform ation is obtained from the value of the average density <p> =  n/AY. To consider the 
forward-backward correlations, one splits the rapidity interval A Y into two equal parts and gets 
the forward and backward average densities <pfib)  =  2nfib/^ iy, where nf,b are the forward
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(backward) m ultiplicities with nf +  nb =  n. Proceeding further to the 7th step, we approximate the 
event in  terms o f the histogram  with 2J bins.

Let us construct now  the difference o f the tw o histograms described above. Nam ely, we subtract 
the average density from the forward-backward histogram and get another histogram with 
positive ordinate at one side and negative at the other, demonstrating the forward-backward  
fluctuations in the event.

Splitting the forward and backward regions further into equal halves, one gets the histogram  at

7  =  2. Its difference from the forward-backward histogram a t ./ =  1 reveals the fluctuations at finer 
resolution. Iterating to higher values o f J, one studies how fluctuations evolve at ever finer 
resolution. The set o f difference histograms is called the wavelet transform of the event. The above  
procedure corresponds to the so-called Haar-wavelet transform. Those interested in m athem atical 
details are referred to  [57].

The wavelet transform provides direct information on the evolution o f fluctuations at different 
scales, i.e. on the dynam ics o f individual high-m ultiplicity events revealing their clustering (and 
sub-clustering) structure. A generalization to factorial (and cumulant) wavelets is possible [56]. T he  
sim plest cascade m odels show  such remarkable properties of wavelet transforms [56] as (quasi)- 
diagonalization o f their correlation density matrices, scaling exponents, etc. It is interesting to note  
that the equations for the generating functions of wavelet transforms [56] look very similar to the 
“gain-1 oss” equations (in particular, to Q C D  equations) discussed at the end of Section 5. All those 
features are yet to be studied.

The very first application to experimental data is presented in [58], where wavelet spectra of 
JACEE events are studied.

3. Experimental survey on correlations

In this section, w e review experimental results on “classical” correlations, a subject with a long  
history in particle physics. It was instrumental in establishing fundamental concepts of hadro- 
dynam ics, such as short-range order, which are an essential ingredient of all popular M onte-C arlo  
m odels of hadronization. W ith the exception o f Bose-Einsteininterferom etry, the field lay dorm ant 
for several years, but was revived with the introduction of generalized concepts. The data cover 
a variety o f m ultiparticle-production processes ranging from e +e~ annihilation to nucleus- 
nucleus collisions.

In Section 4, we shall review material on factorial m om ents and related quantities, obtained since 
1986. At that time, a pioneering suggestion was made to  investigate the patterns o f particle density  
fluctuations in m ultihadronic events: the intermittency idea. M easurement of factorial m om ents 
opened a way to establish possible scale invariance and fractal behaviour in hadrodynamics.

Interest in correlation functions received a vigorous boost when their intimate connection with 
factorial m om ents was realized (see Section 2), Both are now  explored in parallel with novel 
techniques. These offer prom ising perspectives towards a long overdue unified approach to

correlation phenom ena, including B ose-E instein  interferometry.

Another obviously related subject, the phenom enology of multiplicity distributions [59], is not 
explicitly covered here. M ultiplicity distributions inspired many early ideas on scale-invariance and 
phase-transition analogies in m ultiparticle production, such as K oba-N ielsen-O lesen  scaling [60 ]
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and the F eynm an-W ilson  liquid picture [61], However, the major part o f the data relate either to  
full phase space or to sizable portions o f it. It remains an interesting task for the future to explain 
the “large-scale” properties o f m ultiplicity distributions in terms o f correlation function behaviour 
at “small distances”, the m ain subject o f this paper. O f course, the factorial moments discussed in 
Section 4 are just another representation of m ultiplicity distributions and their increase with 
decreasing bin size reveals the evolution o f the multiplicity distribution.

3.1. Rapidity correlations

The study o f  correlation effects in particle production processes provides information on  
hadronic production dynam ics beyond that obtained from single-particle inclusive spectra. Cor 

relations in rapidity y, as defined in Section 2.1, have been studied in various experiments on e +e “ , 
lepton-nucleon, hadron-hadron, hadron-nucleus and nucleus-nucleus collisions. Strong y  correla 

tions have been observed in all experiments in one form or another, depending on the specific form 
of the correlation function, type of interaction, kind o f particles, the kinematic region under 
consideration, etc. The m ain conclusions were (for early reviews see [62, 63]):

1. Two-particle correlations are strong at small interparticle rapidity-distances |j>! — y 2\ (see 
Fig. 3.1).

2. They strongly depend on the two-particle charge com bination.

Rapidity correlations are now  being studied with renewed attention. One reason is that their 
structure at very small rapidity distances is directly related to self-similar particle-density fluctu 

ations (intermittency), a top ic to be covered in Section 4.

yt
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Fig, 3.1. Contours of the two-particle correlation function, Rcc{yi>y2)> from 205 GeV/c pp interactions [64],
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3.1.1. Correlations in hadron-hadron collisions 

In Fig. 3.2 the pseudo-rapidity correlation function C2{t]i,r\2) as defined in (2.25) is given for 

r\x =  0, as a function o f rj2 =  rj, for the energy range between 63 and 900 GeV [65]. W hereas 

C 2(0, r\) depends on  energy, the short-range correlation Cs defined in (2.36) does not strongly  

depend on energy and has a full width o f about 2 units in pseudo-rapidity. The function CL is not 

a two-particle correlation, but derives from the difference in the single-particle distribution  

function for different m ultiplicities. As can be seen in Fig. 3.2(b), CL is considerably wider than  

Cs and increases with energy (the 63 G eV  data are from [66]).

In Fig. 3.3, the sem i-inclusive correlation C ^  (^: , r\2) for pp collisions at 900 G eV [67] is 

compared to the U A 5 Cluster M onte Carlo (MC) G E N C L  [68], as well as to the FR IT IO F 2 [69 ]  

and PY TH IA  [70] M onte Carlos, for charge multiplicity 34 ^  n <  38. The Cluster M C  is designed  

to fit just these short-range correlations, but also FR IT IO F 2 is doing surprisingly well (see 

however Subsection 4.4.4).

At lower energy, the NA23 Collaboration [71] has studied the short-range correlation of

charged particles in pp collisions o f y j s  =  26 G eV in terms o f K 2( y i , y 2) defined in (2.32). O nly  

events with charge m ultiplicity n >  6 are used. The positive short-range correlations are in

agreement with those found earlier at y / s  — 53 GeV [72].
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Fig. 3.2. (a) The charge correlation function C2(rçi,f/2) plotted for pp collisions at fixed = 0 versus f/2 at 63,200,546 
and 900 GeV, (b) the “long-range” contribution CL and (c) the short-range contribution Cs [65],
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Fig. 3,3. The semi-inclusive correlation function Ci?’ (r/i,ij2) for 34 <, n <■ 38 pp collisions at 900 GeV, compared to the 
UA5 Cluster MC, PYTHIA and FRITIOF 2.0 [67],

The N A 23 data are com pared to single-string L U N D  [73] and to a two-chain D ual-Parton  
M odel (D PM ) [74] in Fig, 3.4. The one-string model (without gluon radiation) does not at all 
describe the short-range rapidity correlation in the data. The two-chain model does better, but 
remains unsatisfactory. Som ew hat better but still insufficient agreement is obtained by renorm aliz 

ing the M C events to the experimental multiplicity distribution (not shown). The effect o f

B ose-E instein  correlations in the ( +  +  ) and ( ----- ) data is found to be insignificant, as m ay be

expected for data integrated over transverse m om entum  pT and azimuthal angle (p. O bviously, 
more chains, possibly with higher pT, are needed to explain short-range order with fragm entation

m odels, even below  ^fs  «  30 GeV.

N A 22 results for C2(0, y 2) and C2(0, y 2) (Eqs. (2.25) and (2.30)) for 7t+p and K +p collisions at

=  22 G eV [75] are com pared with FR ITIO F 2, a two-string D P M  and Q G SM  [76] predic 

tions in Fig. 3.5(a) and (b). FR IT IO F and two-string D P M  largely underestimate the correlation. 
Q G SM  reproduces C 2 ~ (0, y 2) very well and even overestimates C 2 + (0, y 2) and C 2 “ (0, y 2). It has 
been verified that the differences between Q G SM  and FR ITIO F or D P M  are not due to the 
different treatment o f tensor m esons (only included in the latter two).

In Fig. 3.5(c), F R IT IO F  and Q G SM  are com pared to the N A 22 data in terms of the short-range 
contribution Cs (0, y 2). The (-1— ) short-range correlation is reproduced reasonably well by these 
models. For equal charges, however, the strong anti-correlation predicted by FR ITIO F is not seen  
in the data. Q G SM  contains a small equal-charge correlation due to a cluster com ponent, but still 
underestim ates its size. Similar discrepancies are also observed in semi-inclusive (fixed multiplicity) 
data for each charge com bination (not shown here). They are even larger than in the inclusive data, 
also in the Q G SM  m odel.
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From  this brief survey, we conclude that in hadron-hadron collisions two-particle correlations 
are badly reproduced and generally underestimated in currently used models.

3.1.2. Correlations in e +e and p +p-collisions

Fig. 3.6 show s K.2 ~ { y i , y 2 ) and K-2 ~(y i ,  y 2) for m uon-nucleon interactions at 280 G eV /c [77 ],

A steep peak is seen at yj =  y 2 =  0 for K j  ~ , with tw o shoulders along the diagonal y { =  y 2. O n  
the other hand, K 2 ~ is below  0 for m ost o f the distribution, but we shall see that the m ost 
impressive correlation is in fact com ing from y, as y 2> just for this case. As in hadron-hadron  
collisions, correlations are strong and depend on the two-particle charge com bination.

Fig. 3.7 show s K 2{y\ ,  y 2) in n +p interactions at 280 G eV /c with y  ̂ 6 [  — 0 .5 ,0 .5], the hadronic

invariant mass W  in the interval 13 <  W  < 2 0  GeV and for n >  3 [78], together with the N A 22  
non-single-diffractive M +p sample, n ^ 2  [75]. Correlations in | i+p seem smaller than in N A 22, 
but one has to  consider a possible energy dependence. Indeed, extrapolating from the energy 
dependence o f K 2(0 ,0 ) published in [78], one finds quite similar values for n +p at 22 GeV and  
M + p in N A 22.

In Figs. 3.8(a) and (b) we com pare the function R 2(0, y)  for the N A 22 non-single-diffractive M +p 
sam ple (charge m ultiplicity n 2:2)  [75] with that for e +e" annihilation at the same energy

( y / s  =  22 GeV) [7 9 ]. T he values of £ 2(0,y)  are larger for ( +  + )  pairs than for ( ----- ) in

m eson -p roton  (M +p) reactions; for ( ----- ) and ( + ) pairs they agree with R 2 for e +e~

annihilation in the central region.
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A com parison o f the correlation functions for e +e~ annihilation and non-single-diffractive M +p 
collisions throughout the full kinem atic region with e  [  — 1 ,0 ] is shown in Fig. 3.8(c) for charged

pairs. The e +e~ data are given at - J s =  14 and 4 4 GeV [79]. At y 2 =  y i ,  the 2 2 GeV M + p 
correlation lies between the e +e" results. The shape is, surprisingly, more symmetric than in e +e~ .

For |j.+p [7 7 ,7 8 ]  and e +e~ collisions [7 9 -8 1 ], the L U N D -type M onte Carlo is reported to  
reproduce the m ajority of the experimental distributions. In [71] it is shown that this is m ainly due 
to the inclusion o f hard and soft gluon effects. However, important underestimates o f K 2( y t , y 2) 
are still observable, in particular in the central and current fragmentation regions. For e +e~ [80], 
this is shown in Fig. 3.9, where K 2(ylt y 2) is compared to the L U N D  m odel (JETSET 7.2 PS) as 
a function of y x — y 2 (dotted line), for the full sample (upper plots) and for a two-jet sample (lower 
plots). In all cases, the L U N D  m odel underestimates the correlation at y i  — y 2 =  0. In general, the 
disagreement becom es smaller when B ose-E instein  correlations are included (full lines). The main 
feature to note is that correlations are much weaker in the two-jet sample than in the full sample. 
Furthermore, correlations are larger for y  <  0 (left plot), i.e. in the hemisphere opposite the m ost 
energetic jet, than for y  >  0 (right plot). These two observations, again, point to hard gluon  
radiation as the m ain source o f two-particle correlation in e +e~ collisions.
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A system atic test o f analytic Q C D  calculations and of Q C D  M onte-Carlo m odels for tw o- 
particle correlations has been performed by O PA L  [81]. The authors study the function

R( ì; 1,Z2) =  K 2($u Z2) +  1 (3.1)

with £ — ln ( l /x F), x F =  2p /£ cm being the Feynm an variable, i.e. the particle m om entum  p in the 
cms normalized to half the cms energy £ cm. In Fig. 3.10, R  is plotted as a function of ( ^  — £2) for 
(£i +  C2 ) centred at the values 6, 7 and 8, respectively, Fig. 3.10(a) proves that a next-to-leading  
order calculation [8 2 ] (full lines) is better than leading order (dashed), but still overestimates the 
overall level o f  the correlation for any reasonable value o f A. Since the next-to-leading correction is 
large, still higher-order terms are needed. It is therefore likely that a satisfactory analytical 
treatment o f correlations, even at the parton level, will not be obtained in the very near future.

Higher-order effects are, in an average sense, included in the existing M onte-Carlo models. In 
Fig. 3.10(b), the sam e data are compared to the coherent parton shower models JETSET PS [73], 
H ER W IG  [83] and A R IA D N E  [84], The latter gives an excellent fit to the data, JETSET lies 
slightly below  (within uncertainty of parameters), but H ERW IG  considerably above. The
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agreement of JETSET could only slightly be im proved by including Bose-Einstein correlations. As 
far as incoherent parton shower m odels are concerned, none o f the various versions o f COJETS  
[85 ] gives a particularly good  representation o f the correlation data.

All the m odels were tuned on the O PA L data in terms of event shapes and generally describe 
single-particle distributions. It is clear that correlations allow better and more discriminative tests 
than more integrated quantities.

W e have m entioned the difficulties string-hadronization models experience in predicting like- 
sign correlations in hadron-hadron collisions. It is important to verify if the otherwise successful

e e m odels are also able to reproduce correlations between charge-separated systems such as 
( -I— ) and ( ±  ± ) particle pairs.

3.1.3. Charge dependence
H ow  Cs and Cs depend on the charge of the pairs is shown in Fig. 3.11 for the com binations

( ----- ), ( +  + )  and ( H— ) in N A 22 [75]. The short-range correlation is significantly larger for

( h— ) than for ( ----- ) and ( +  + )  com binations. This is also seen in the EM C data [77].

R esonance production is a likely explanation of this difference. For like charges, a small enhance 

m ent is seen near ss y 2 «  0 above a large negative background. This is possibly due to 
B ose-E instein  interference.
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■

3.1.4. Charge-multiplicity dependence
The multiplicity dependence o f C {2 (0, y)  for the ( H—  ) com bination is show n in Fig. 3.12 [75]. 

N ear the m axim um  at y  =  0  the correlation function is approximately Gaussian and narrows with 
increasing n. In Fig. 3.13(a) are presented the values of C ^ (0,0) as a function of n for three charge 
com binations. W ithin errors, ( t y  (0 ,0) is independent of n, but consistently higher for ( H— ) and

( ----- ) than for ( +  + ) .  The reason for the difference between ( ------ ) and ( +  + )  probably lies in

the positive charge o f both beam and target.

On the other hand, an increase o f — tj2 1) with l /(n — I) is found [8 6 ] when averaging over

a region \t]\ <  2 (Fig. 3.13(b)). Since becom es smaller when m oving away from the centre, and 
that m ay happen faster for higher than for lower n, this is not necessarily in contradiction with the 
data in Fig. 3.13(a).
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3.1.5. Transverse momentum dependence 

The search for density fluctuations, described in later sections, has revealed the im portance o f  
correlations in m ultidim ensional phase space. It is, therefore, of interest to gain insight into the 
transverse m om entum  (pT) dependence of rapidity correlations. Early results on this topic can be 
found in [87]. Recent data on K 2(0, y 2) [88] for all particles and for particles with pT smaller or 
larger than 0.3 G eV /c, plotted in Fig. 3.14, indeed reveal a strong sensitivity to transverse m o 

m entum . The correlation function is largest, and stronger peaked, near y 2 =  0 for pT <  0.3 G eV /c,

in particular for ( ----- )-pairs. A similar effect was noted already in [87]. The data of Fig. 3.14 were

fitted with the functions

f i  =  c ex p [ -  (y -  y 0)2/ 2 a 2l  (full l in e ) , (3.2)

f 2 =  a exp( -  &|j/|) (d ash ed ), (3.3)

with c, y 0, (T, a and b as free parameters. Even though for low  pT the data point at =  0 lies 
system atically above the curve, K 2(0, y 2) is well fitted by the G aussian /i but not by the exponential 

f 2, in this one-dim ensional projection on rapidity.
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Changing to  the variables x t =  (y2 +  y i ) /2  and x 2 =  (y2 — y i)/2 , a steepening is observed at 
small x 2 (not shown). For like-charge pairs, this becomes particularly sharp when the bin size is 
reduced to bx 2 =  0.1. For the latter, C 2( * i , x 2 =  0) increases and both a G aussian and an 
exponential can fit the correlation function,

3.1.6. Strange particles
In string-fragmentation m odels, first-rank hadrons are formed from neighbouring quark-anti- 

quark pairs tunnelling out of the vacuum. The hadronic final states, therefore, show short-range 
order due to local flavour conservation. U sing stable m esons only, this characteristic property is 
difficult to study experim entally because o f  the large qq com binatorial background. W hat is needed  
is a flag identifying the qq pairs created together. A suitable choice is strangeness since the number 
of ss pairs per event is small and the com binatorial background strongly reduced.

G ood  strangeness identification is available for e +e" annihilation in the TPC detector at

y / s  =  29 GeV [8 9 ]. This collaboration observes significant short-range K +K ~ correlations in y, 
well reproduced by the L U N D  m odel and by the W ebber Q C D  model.

In hadron-hadron collisions, strange particle pairs have been studied by the NA23 C ollabora 

tion [90]. The distribution in the rapidity difference Ay  for two K 0,s is given in Fig. 3.15(a), for a K°
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and a A 0 in Fig. 3.15(c). The results are com pared to the single-string L U N D  model. As is the case 
for non-strange particles, the m odel slightly underestimates the rapidity correlation.

3.2. Azimuthal correlations

In interactions o f unpolarized particles, no distinguished direction exists in the plane transverse 
to the beam and the distribution in the azimuthal angle <p is uniform. Still, a two-particle 
correlation exists also in q> and is visible in the distribution W{Aq>) o f Acp =  \(pl — <p21, the 
azim uthal angle between tw o particles, Acpe{0, it). The azimuthal correlation may depend on the 
charge o f the particles in the pair, on  the rapidity distance Ay  =  — y 21 between these particles 
and on their transverse m om entum .

The first experim ents to extensively study two-particle correlations as a function of both rapidity 
and azim uthal angular separation [86, 91] already showed that the correlation at small rapidity 
distance is strongest when the two particles are produced in the same or opposite directions in 
transverse m om entum  (see Fig. 3.16). The correlation-length in rapidity is larger towards Acp — n
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Fig. 3.16. The multiplicity-averaged angular correlation function <(n -  l jC Ï ’OhjViWijVi)) for CC combinations in 
units of 10” 3 [86].

Fig. 3.17. W(A<p, ¿¡y) for inclusive non-single-diliractive ;t+p interactions at 250GeV/c as compared to FRITIOF2.0 
(dot-dashed), DPM (full) and QGSM (dashed) [88],

than towards Acp =  0. Furthermore, significant differences in the shape o f the joint rapidity and  
azim uthal correlation functions have been observed for pairs of like and unlike pions [91].

In Fig, 3.17, the distribution W (A(p, Ay), norm alized to unity, is shown as a function o f  Acp, for all 
charge com binations, in the intervals Ay <  1,1 <  Ay <  2 and 2 <  Ay <  3 [88]. A horizontal line at 
the average value 1/n corresponds to a flat distribution in A/p. The distribution is influenced by 
conservation o f transverse m om entum , by the decay of resonances (mainly for unlike-sign particles) 
and by B ose-E instein  correlations (for like-sign particles). In all cases, W  is larger than 1/n for

A<f> >  n i l  and has a m axim um  at Acp =  n. Except for ( ) pairs at Ay <  1, the W  function is

smaller than 1 /n  for A<p <  n/2. Such a global anti-correlation follows from transverse m om entum

conservation.

M odel predictions are shown in Fig. 3.17 for FR IT IO F 2 (dot-dashed), two-string D P M  (full) 
and m ultistring Q G SM  (dashed). The com parison with the data shows that it is much easier to
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account for azim uthal correlations at large than at sm all Ay. At small Ay  the models differ from 
each other and from the experimental data. The Q G SM  shows som ewhat better agreement with 
experiment than the other models. This is a consequence o f the multistring structure of Q G SM , 
where strong azim uthal correlations in a single string are destroyed, with the result that the A(p 
dependence is weaker than in two-string models.

Differences between experiment and all m odels exist at small A<p and Ay  <  1, in particular for 
( ----- ) pairs. B ose-E instein  correlations, not included in the models, may explain this disagree

ment. The influence o f B ose-E instein  correlation can also be observed in the ( +  + )  com bination, 
but is smaller because o f the influence o f the (positive) beam  particle.

Azimuthal distributions are shown in Fig. 3.18 for particles with A y <  1, for pT <  0.30 G eV /c  
and for pT >  0.30 G eV /c, together with m odel calculations. A com parison o f these figures reveals 
that azimuthal correlations have a strong pT dependence. Large positive  azimuthal correlations 
exist at small A(p and Ay <  1 for like-sign particles with small pr . As the transverse m om entum  o f

p ,< 0.30Ge V/c pT> C U 0 G e V / e

A y<  1 A y <  1

QA

0 . 3 6  -

tn  _

0 . 2 5

0 . 4  -

0 , 3 6

0 . 3 2

0 . 2 8

0. tt

A <p

Fig. 3.18. W(d(pyAy,pT) as compared with calculations in FR1TIOF2.0 (dot-dashed), DPM (full) and QGSM (dashed) 
for Ay <  1 and pr  cuts as indicated [88].
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particles increases, the peak at Aq> =  n becom es more pronounced. This is reproduced by the 
m odels and reflects m om entum  conservation.

For AA pairs, an azim uthal correlation has been observed in M ARK II at 29 GeV [92], Similar 
K +K ~ correlations are seen in the exclusive hh final state K - p -> p K +K ~ K ~ 7r+7t _ at 32 G eV /c

[93].

Azimuthal correlations between ( H— ) and ( - ( - + , ----- ) charge com binations have been

studied in |ap collisions [77 ] for \Ay\ <  1 and \Ay\ >  1. The distribution W(A<p) is described fairly 
well by the L U N D  m odel including primordial kT and gluons, except that for \Ay\ <  1 it slightly

underestim ates the anti-correlation for ( H— ) and overestimates it for ( -I- +  , ----- ).

In the azim uthal correlation o f K ° pairs (Fig. 3.15(b)) and of K °A ° (Fig. 3.15(d)) studied by N A 23  
[90 ], the data tend to show  pairs of small A(p not present in low-pT L U N D  (solid line).

By the same collaboration, the azimuthal correlation is studied [71] in terms of the asymmetry 
parameter

B =  [N(A<p >  ti/2) -  N( A<p<  n/2)3/NM (3.4)

for hadron pairs with

(a) opposite charge (h +h _ ),

(b) equal charge (h +h + + h " h _ ),

(c) possibly opposite strangeness (A °h+, x A <  — 0.2),

(d) no opposite strangeness (A °h _ , x A <  — 0.2),

for A y  < 2  and for Ay  >  2. N o  azimuthal correlation is seen for Ay >  2 in all cases and for A y  < 2  

in case of no com m on qq pairs (h+h + +  h - h - , A°h"). For h +h _ and A °h +, the parameter B is 
com pared to low-pT L U N D  and D P M  predictions in Table 3.1.

The parameter B  is strongly overestimated in single-string low-pT L U N D  and still too large in 
the two-string D P M , Furthermore, B  increases with the sum of the transverse m om enta (Fig. 3.19) 
but less strongly than in the models.

The azimuthal correlation has also been studied for cc pairs in D D  production. An asymmetry is 
indeed observed in n "p  collisions at 360 G eV /c [94]. Also there, the L U N D  model overestim ates 
the effect.

As shown on 7c- N  interactions at y f s  =  26 GeV [95], also N L O  perturbative Q C D  calcu 

lations overestim ate the azim uthal asymmetry for D D  pairs (Fig. 3.20(a)). Agreement can be 
obtained with a m odel [9 6 ] where a (Gaussian shaped) transverse com ponent is added to the 
incom ing parton m om entum  before performing the N L O  perturbative Q CD calculation (Fig.

3.20(b)).

Table 3.1
Asymmetry parameter B

Experiment LUND DPM

A°h + (Ay < 2) 0.18 ±  0.03 0.30 ±  0.01 0.19 ± 0.01
h +h “ {Ay < 2) 0.066 ±  0.003 0.126 + 0.002 0.106 ± 0.002
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<|pT 1(>+ <|pT 2|>

Fig. 3.19. The pr dependence of the azimuthal correlation parameter B for h + h~ pairs in pp collisions at 360GeV/c' 
compared to LUND and DPM [71],
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QCD calculation and (b) a model where a parton transverse momentum, pT, is added to the NLO perturbative QCD 
predictions (dotted line; =  1-0 (GeV/c)2, solid line: <(pj )  =  0.3 (GeV/c)2) [95].

3.3. Correlations on the parton level

The O PA L collaboration [97] has compared hadronic azimuthal correlations to coherent and 
incoherent shower m odels (Fig. 3.21). The coherent models JETSET PS with angular ordering 
[73 ], H E R W IG  [83] and A R IA D N E  [84] describe the azimuthal correlations in hadronic Z°
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Fig. 3.21. Two-particle azimuthal correlations with respect to the sphericity axis in OPAL [97] compared to coherent 
and incoherent MC models.

decays, but the incoherent m odels JETSET PS without angular ordering [73] and COJETS [85]

fail for <p>it/2.
The hadronization o f a quark-antiquark pair at high virtuality is currently thought to proceed  

via parton showering [98 ]. Q C D  implies that this parton showering is coherent. The coherence can  
be incorporated into M onte-C arlo programs as angular ordering [99], whereby for each successive 
branching the gluon is em itted at a smaller angle.

Furthermore, the idea o f local parton-hadron duality (LPH D ) [100] suggests that features at the 
parton level survive the fragmentation process. W e can, therefore, expect that the coherence of the  
parton radiation will be reflected in angular ordering o f the observed particles.

As a m ethod particularly sensitive to angular ordering, particle-particle correlations (PPC) and  
their asym m etry (PPCA) [1 0 1 ,1 0 2 ] are examined in a way analogous to the study o f en ergy- 
energy correlations [103],

PPC(x) =  j ^ 2  |  ^  5bin(x -  X y)) , (3-5)

PPCA(x) =  PPC ( 180° -  x) -  P P C (z ) , (3.6)

where x¡j is the full spatial angle between tracks i and j ,  < )  is the average over all events in the 
sample, n is the number of charged tracks in an event, and Ax is the bin width. The function  
¿b¡n(z — Xtj) is 1 if Xij and x are in the same bin and 0 otherwise.

At y f s  =* M z , the fraction o f two-jet events is very high. For two-jet events, particles in different 
jets will in general be separated by an angle x greater than 90°. The PPC  for x >  90° can, therefore, 
serve as an indication o f what the PPC  within a jet (x <  90°) would be in the absence of angular

ordering. By form ing the asymmetry, these “uninteresting” correlations are effectively subtracted. 
The effects of angular ordering should, therefore, be m ore directly observable in the PPC A  than in 
the PPC . N ote , however, that the sign convention following [103] leads to a negative sign for 
a positive  correlation.
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Figs. 3.22(a) and (b) show  the PPC A  distribution of L3 data (corrected for detector effects [102]) 
compared to coherent and incoherent M onte-Carlo models, respectively.

In Fig. 3.22(b) we see that for x :$60o JETSET 7.3 PS without angular ordering (incoherent) 
disagrees strongly with the data, while being in fair agreement at larger values of x • COJETS is seen 
not to reproduce the data over the entire angular range. On the other hand, in Fig. 22(a), the 
coherent M onte-C arlo m odels, JETSET with angular ordering, HERW IG, and A R IA D N E  all 
reproduce the data reasonably well over the full angular range. N ote that the disagreement o f the 
incoherent m odels cannot be due to the B ose-E instein effect. Turning this effect off in the 
non-angular ordered JETSET m odel does not raise but lower its PPCA points. So, the data from 
the L3 experiment strongly disfavour the incoherent models.

3.4. Three-particle rapidity correlations

W hether dynam ical correlations exist beyond the two-particle correlations discussed so far is o f  
crucial im portance for m uch o f the present search for scaling phenomena in multiparticle processes, 
a subject treated in Section 4. W ith conventional techniques, this question is not easy to answer and 
beyond the sensitivity of m any experiments.

Nevertheless, three-particle correlations in rapidity have been looked for in a number 
of experiments [63, 75, 104-106]. The third-order normalized factorial cumulant is defined by 
[cf. (2.22)]

1 d 3 cr 1 d er  do da
C , O a .  y . )  -  +  2

(3.7)

1 d2cr da 1 d 2<r da 1 d2<r d a .
(3.Ö)

ofn e i  d ^ d y a  dy3 <rfnel dy2dy3 d>’i o f n . i  d y i dy3 d y2
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with

The C siy i) y z ,  ^3 ) correlation function is determined as a sum of topological correlation

functions:

Cs ( y i , y 2, y 3) =  X
n £ 8

(3-9)

C f f y x ,  y 2, y i )  =  p ^ ( y u y 2 , j^) -  ^ ( y i .  y 2 , y z ) , (3.10)

Z f { y u y 2 , y , )  =  p f ( y u y 2 ) p {? { y i )  +  p {z ) ( y 2 , y z ) p {?)( y i )  +  p f { y i , y i ) w ( y 2 )

p f { y i , y 2 , y s )

2p[n)( y i ) p {l'l ( y 2 ) p ({') ( y 2 ) ,

1 1 d 3a

n{1 ,2 ,3 )  <rn d y!d y2dy3 ’
(3.11)

where n (l, 2, 3) is the m ean number of three-particle com binations in events with charge multipli

city n.
The corresponding normalized function is defined as:

^ ( y i . y a , ^ )  =  C s i y i , y 2 > y i ) / Y JP * p ™ i y i ) p {i H y i ) p {”] i y i )  ■ (3.12)
n

Because o f sm all statistics, three-particle correlations were not observed in pp interactions at 
200 G eV /c at F N A L  [63]. In K - p interactions at 32 G eV /c [104], three-particle correlations were 
considered using C s(y i, y 2 < ^3 ) and R s i y i ,  J>2 , ^3 ). N o  positive short-range correlation effect was 
observed. Correlations in the form of K  have been observed in the central region by the ISR  
experiment for n >  8 [106],

Fig. 3.23 from N A 22 show s K 3(0, 0 ,y )  and J?s(0 ,0 ,y )  for the combined M +p sample at 
250 G eV /c [75]. Also shown are the values of K 3(0 ,0 , y )  obtained in pp-interactions at

=  31 -6 2  G eV  [106] (lines). Inclusive three-particle correlations K 3(0 ,0 , y) are indeed seen in 
the N A 22 data. They are strongest when a third particle partially com pensates the charge o f a pair 
of identical particles. There are, however, no correlation effects visible in the function £ s ( 0 ,0, y). In 
FR IT IO F and Q G SM , three-particle rapidity correlations are absent in both K 3 (0 ,0, v) and

K s (0 , 0 , .v).

Recently, a factorization of the normalized three-particle correlation function has been proposed  
[107 -109] under the form of a “linked-pair” structure:

^ 3 (^ 1) y i t  y$)  — K 2( y u  y 2) K 2(y2, ^3 ) +  ^ 3 )^a(J'a»^ 2 ) • (3.13)

The com parison of the prediction of (3.13) to the data is given in Table 3.2, for n ;> 2, at 
a resolution o f 0.5 rapidity units. At this resolution, the linked-pair ansatz is in agreement with the 
measured three-particle correlation within two standard deviations. N ote, that ^-correlations are 
m uch stronger for low -pT particles and that the linked-pair ansatz continues to hold.

W ith the accuracy presently attainable for three-particle correlations, it is obvious that studies of 
still higher-order correlation functions require better m ethods. The m ost successful ones will be 
discussed in Section 4.
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The three-particle correlation function compared to the prediction from the linked-pair ansalz, for non-single diffractive 
data (n > 2)

T a b le  3.2

All
Data LPA Data

pr < 0.15 GeV/c*
LPA

"  '  (0,0.0) 0.23 ±0.10 0.30 ±  0.03 2.3 i  1.7 2.0 ±  0.4
Kj + f (0,0,0) 0.14 i  0.06 0.21 ±  0.02 1,2 ±0.6 1.0 ± 0 .2
K f “ (0,0,0) 0.39 ±  0.04 0.53 ±  0,03 1.9 ±0.5 1.7 ±0 .2

3,5, Summary and conclusions

1. The main contributions to the correlation functions C2 and C3 come from the mixing of events 
with different m ultiplicity and different single-particle density, but som e effect remains in the 
so-called short-range correlation part.

2. C2(0, y 2) increases m uch faster with increasing energy than its short-range contribution.

3. The short-range correlation is significantly larger for ( -I— ) than for the equal-charge 
com binations, and is positive over a wider rapidity range in C2(yl t y 2 =  jM-

4. The correlation functions ¿<(2>(0, y 2), contrary to C$°(0, y 2), are similar for different m ultipli

city n, except that ¿S(2)+_ becom es narrower with increasing n.
5. In hadron-hadron collisions, the correlation functions depend strongly on transverse m o 

mentum and are largest for small-pT particles. Consequently, correlations are stronger in 
m ultidim ensional phase space than in a lower-dim ensional projection, such as rapidity space. 
Further im plications of this observation will be discussed in Section 4.3,

6. In the central c.m. region, and at comparable energy, the correlation strength observed in M + p

collisions at y f s  =  22 G eV  is o f similar m agnitude as in e +e -  collisions and as in (jp collisions, 
if the trend of the latter is extrapolated to W  — 22 GeV. M odel predictions for e +e" and jxp 
interactions slightly underestimate the correlation strength but give, nonetheless, clear evid 

ence that (hard) gluon effects are the main source o f correlations in rapidity space.

7. Com binatorial background can be suppressed by studying the correlation of strange particles. 
D ata are scarce, but support the conclusions drawn from data on non-strange particles.

8. The UA5 cluster M onte Carlo and FR IT IO F describe , rj2) at CERN-Collider energies,

at least in the charge multiplicity range 34 <  n <  38. At lower energies (20 < ^ < ¡ 3 0  GeV), the 
single-chain L U N D  m odel shows a strong anti-correlation among like-charge particles. The 
two-string FR IT IO F m odel and D P M  predict negative values for C2(yi, y 2) or K 2(yi,  y 2) in 
the central region for like charges. They are positive but far below the data for unlike-charge

-«----------------------------------------------------------------------------------------------------------------------------------------------

Fig. 3.23. Three-particle rapidity correlations (a) X 3 (0,0, >•) [the lines correspond to the ISR results at 31 GeV (full) and 
62 GeV (dashed) and (b) K3(0,0,y) for M +p interactions at 250GeV/i' [the FRITIOF (dot-dashed) prediction is 
indicated for the charge combination (-----), QGSM (dashed) for (----- ) and (------ 1-)] [75],
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pairs. Q G SM  reproduces C2( y i ,y 2) and C 2{ y \ , y i )  for all charge com binations, but cannot 
account for the short-range part £ s(yi> y i \

9. Positive correlations are observed at large values of the azimuthal angle A <p, as expected from 
transverse m om entum  conservation. The correlations am ong like-charge particle pairs at small 
values of Acp and Ay,  where B ose-E instein effects should contribute, are significantly larger 
than predicted by FR IT IO F 2, D P M  and Q G SM . The deviations are stronger for particles 
with small transverse m om entum .

10. In general, short-range correlations in e +e~ annihilation are reasonably well described by the 
L U N D - and W ebber-type models. To the contrary, in models for hh collisions which contain  
only one or tw o strings without additional pT effects or gluons, correlations in rapidity are 
underestimated, those in azimuthal angle overestimated.

M odels such as L U N D  and D P M  are known to underestimate the height of the “sea-gull” 
wings (the particle average transverse m om entum  as a function of Feynman-x) [110], a signal 
of semi-hard interactions. The models neglect such processes. This m ay partially explain why 
the m odels fail in both instances.

11. The distribution in the interparticle opening angle of e +e~ collisions at LEP favours m odels 
with coherent parton showering.

12. Three-particle correlations are now observed in all charge combinations. They are particularly 
large for low-pT particles. W ithin two standard deviations, they satisfy the linked-pair ansatz. 
N o  short-range contribution K s is observed in three-particle correlations. Other m ethods are 
needed to study higher-order correlations.

4. M ultiplicity fluctuations and intermittency

4.1. Prelude

The study o f fluctuations in particle physics already has a long history going back to early 
cosm ic-ray observations. T o our knowledge, Ludlam and Slansky [111] were the first to  advocate 
analysis of event-to-event fluctuations in hadron-hadron collisions. Comparing rapidity distribu

tions o f single events with the sample averaged distribution, they put in evidence strong clustering 
effects in longitudinal phase space, indicating “a remarkably structured phase-space density” [112]. 
Fluctuations in individual events were also considered in the context o f Reggeon theory in the 
im portant paper establishing the AG K -cutting rules [113].

Early evidence for large concentrations o f the particle number in small rapidity regions for single 
events were reported in cosm ic-ray experiments [1 1 4 -1 1 6 ] and in p N  collisions at 200 GeV beam  
m om entum  [117], A further number of high density “spikes” in rapidity space have been reported 
during the last decade. Fig. 4.1(a) shows the notorious JACEE event [118] at a pseudo-rapidity 
resolution (binning) of 5rj =  0.1. It has local fluctuations up to dn/Sri % 300 with a signal-to- 
background ratio about 1:1. The N A 22 event [119] o f Fig. 4.1(b) contains a “spike” at a rapidity 
resolution 5y =  0.1 o f dn/dy  =  100, corresponding to 60 times the average density in this experi

ment, U A 5 [120] has reported “spikes” in dn/drj up to 30 (10 times average) as early as JACEE, but 
found these to be in agreement with a short-range cluster M onte Carlo. Also EM U-01 [121] sees 
events with dn/drj =  140 satisfactorily explained by FRITIO F.
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a) JA C E E  even t b) N A 22 event

Pseudo-rapidity q V

Fig. 4.1. (a) The JACEE event [118]; (b) The NA22 event [119].

From  an experim ental point o f view, there is little doubt that events with large local density  
fluctuations exist. The real question is whether these are of dynamical or merely statistical origin, 
whether the underlying probability density is continuous or intermittent.

Early attem pts were m ade to answer the question of non-statistical fluctuations em ploying  
transform techniques [122], but these were not follow ed up. The problem resurfaced in the work o f  
Bialas and Peschanski [2 1 ,2 2 ], who suggested that spikes could be a manifestation in hadron  
physics o f “interm ittency”, a phenom enon well-known in fluid-dynamics. The authors argued that 
if intermittency occurs in particle production, large density fluctuations are not only expected, but 
should also exhibit self-similarity with respect to  the size o f the phase-space volume.

Ideas on self-similarity and fractals in jet physics had earlier been formulated in [123 ,124], 
rephrased in the language o f Q C D  branching processes in [125] and in a simplified form in [126]. 
For soft hadronic processes, fractals and self-similarity were first considered in [127] and their 
quantitative m easures in  [128 ,129].

In m ultiparticle experim ents, the number o f hadrons produced in a single collision is small and  
subject to considerable “noise”. To exploit the techniques em ployed in com plex system theory, 
a m ethod m ust be devised to separate fluctuations of purely statistical origin, due to finite particle 
numbers, from the possibly self-similar fluctuations o f the underlying particle densities. The latter 
are the quantities of physical interest. A solution, already used in optics and suggested for 
multiparticle production in [2 1 ,2 2 ], consists in measuring suitably normalized factorial m om ents 
of the m ultiplicity distribution in a given phase-space volume.

4.2. Normalized factoria l moments

4.2,1. The method
The m ethod proposed in [21 ,22 ] consists in measuring the dependence o f the normalized 

factorial m om ents F q(5y) defined in (2.68)-(2.70) as a function of the resolution 5y. For definiteness,
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ôy is supposed to be an interval in rapidity, but the m ethod generalizes to arbitrary phase-space 
dimensions.

In Section 2.2 we have pointed out that the scaled factorial moments enjoy the property o f  
“noise-suppression”. It is easily verified that this crucial property does not apply to ordinary 
m om ents (cf. Section 4,7 below). High-order moments further act as a filter and resolve

the large nm tail o f the m ultiplicity distribution. They are thus particularly sensitive to large density 
fluctuations at the various scales ôy used in the analysis.

As proven in [21 ,2 2 ], a “sm ooth” (rapidity) distribution, which does not show any fluctuations 
except for the statistical ones, has the property that Fq(ôy) is independent o f the resolution ôy  in the 
limit ôy  -*■ 0. This follows directly from (2.100), if P p is a product of 5-functions in p,„{m =  1 , . . . ,  M ) 
centred around <pm>. O n the other hand, if dynamical fluctuations exist and P p is “intermittent 
(i.e. regions o f fluctuations exist at all scales o f y), the Fq obey the power law (2.110). Eq. (2.110) is 
a scaling law, since the ratio o f the factorial m om ents at resolutions L and (

R =  Fq(t) /Fq{L) =  ( U £ T  (4.1)

only depends on L jL
As m entioned in Sections 2.4 and 5.2.2, the “intermittency indices” <pq (slopes in a double-log  

plot) are related [1 3 0 ,1 3 1 ,2 8 ] to the anom alous dimensions dq =  </)q/(q  — 1), a measure for the 
deviation from an integer dimension.

W e noted in Section 3.4 that the experimental study o f correlations is difficult already for three 
particles. The close connection between correlations and factorial m om ents (Section 2.1.4) offers 
a possibility to measure higher-order correlations with the factorial mom ent method at smaller 
distances than previously feasible. The m ethod further relates possible scaling behaviour of such 
correlations to the physics o f fractal objects. D espite the advantages, it should be remembered that 
reliable data can only be extracted if factorial m om ents are averaged over a large dom ain o f phase 
space. This holds the danger of obscuring important dynamical effects.

The definition of “interm ittency” given in (2.110), has its origin in other disciplines.1 It rests on 
a loose parallel between the high non-uniformity o f the distribution o f energy dissipation, for 
example, in turbulent intermittency and the occurrence of large “spikes” in hadronic multiparticle 
final states (Section 4.1). In the following we use the term “intermittency” in a weaker sense, 
referring to the rise o f factorial m om ents with increasing resolution but not necessarily according to  
a strict power law.

The suggestion that norm alized factorial m om ents of particle distributions might show  power- 
law behaviour has spurred a vigorous experimental search for (more or less) linear dependence o f 
In Fq on -In ôy. W ithin a surprisingly short time (one-dimensional) analyses were performed for 
e +e~ [1 3 3 -1 3 9 ], up [140], vA [141], hh [1 4 2 -1 4 8 ], hA [149 -154] and AA [1 4 9 ,1 5 0 ,1 5 5 -1 6 1 ]  
collisions. W ith respect to the original objective, the early one-dim ensional work has remained 
inconclusive, but valuable information and experience was accumulated. Much more promising 
insight has com e from studies in two- and three-dimensional phase space. This is discussed in 
Section 4.3. Further extensions o f this approach, concentrating on improved integration m ethods

1 For a masterly exposé of this subject see [132].
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and differential studies in Lorentz-invariant variables have lead to further clarification o f the issues 
involved in intermittency. These very recent developm ents are presented in Sections 4.8-4.10.

4.2.2. Results on log-log  plots (in one dimension)

In this and the next few sections we review experimental results and model predictions obtained  
from one-dim ensional studies. D ue to the vast am ount o f data available, we limit ourselves to an 
illustration o f the major characteristics o f factorial m om ent behaviour in various processes and at 
various energies.

In Fig. 4.2(a), lo g i^  is plotted [21 ,22] as a function of —lo g Sri (rj is the pseudorapidity) for the 
JACEE event. It is com pared with an independent em ission M onte-Carlo m odel tuned to 
reproduce the average rj distribution of Fig. 4.1(a) and the global multiplicity distribution, but has 
no short-range correlations included. W hile the M onte-Carlo model indeed predicts constant F 5, 
the JACEE event show s a first indication for a linear increase, i.e. a possible sign of intermittency.

Further exam ples are given in Fig. 4.2(b) for K LM  [149], again showing a roughly linear 
increase for Sy <  1 ( — In 5rj >  0) instead o f the flat behaviour expected for independent em ission, 
and in Figs. 4.2(c) and (d) for UA1 [143] in terms of dq and 8cj), respectively.

A nom alous dim ensions dq fitted over the range 0.1 <  5y(6rj) <  1.0 are compiled in Fig. 4.3 [162]. 
They typically range from 0.01 to 0.1, which means that the fractal (Renyi) dimensions Dq — 1 — dq 

are close to one. The dq are larger and grow faster with increasing order q in up and e +e"  
(Fig. 4.3(a)) than in hh collisions (Fig. 4.3(b)) and are small and almost independent o f q in 
heavy-ion collisions (Fig. 4.3(c)). For hh collisions, the q-dependence is considerably stronger

for N A 22 (^ /s =  22 GeV) than for UA1 (^ /s =  630 GeV).

4.2.3. Model predictions
4.2.3.1. Hadron-hadron collisions. A com parison to N A 22 data on slopes <j)q (Fig. 4.4(a)) show s

[142] that interm ittency is absent at *Js =  22 GeV in a two-chain D P M  and underestimated by  
FR ITIO F. In Fig. 4.4(b), PY T H IA  is seen to stay below the UA1 data [143], even after inclusion o f  
B ose-E instein  interference for identical particles. The U A 5 cluster M onte Carlo G E N C L , able 
to reproduce conventional short-range correlations (at least in a certain range o f multiplicities cf. 
Fig. 3.3), follows the data down to a resolution of 5rj as 0.3, but completely fails for smaller Srj.

Also, a m ultichain version o f D P M  including mini-jet production has been compared to N A 22  
and UA1 data. The slopes are found to be too small by at least a factor o f 2 [163].

W ith respect to interm ittency analysis, the situation may improve with the introduction of 
EC C O  [164], an eikonal cascade model based on geometrical branching, which now can account 
for strong fluctuations, in particular in higher dim ensions (Section 4.3 below). However, the present 
version o f EC C O  is still less refined than the more conventional m odels with respect to other 
observables.

The above exam ples show  that present m odels for multiparticle production in hh collisions are

unable to reproduce the m agnitude and the growth of factorial m om ents with increasing resolu 

tion. From  the discussion in Section 3, it is evident that m odel predictions for correlations in 
general are quite unreliable. The two-particle correlation function, measured by F 2, also deter

mines to a large extent the higher-order factorial m om ents (cf. Eq. (2.72)) because of the weakness of
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genuine high-order correlations. It is, therefore, mandatory to improve the models before evidence 
for “new physics” at very sm all (rapidity) separation can be claimed. W e return to this important 
question in later sections.

4.2.3.2. hA and  AA collisions. The intermittency indices are much smaller in hA and AA collisions 
than in hh collisions, and the event samples are much smaller. M odel comparisons are, therefore,
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less conclusive than in hh collisions. FR IT IO F is found too low in N A 22 [151] for rc+/K + on Al 
and Au at 250 G eV /c, in E802 [160] for central 15OAl and 16OCu at 14.6 A  GeV/c, in W A80 [161] 
for SS and Au at 200 A  G eV /c, and in N A 35 [150] for pAu, OAu, SAu and SS at 200 A  GeV/c. In 
W A80 it is shown that rough agreement can be obtained by renormalization to the leftmost point 
of FR IT IO F on the lo g -lo g  plot (essentially the shape of the overall multiplicity distribution) to the 
data. N A 35 show s that agreement can be obtained by adding Bose-Einstein interference for 
like-charged particles (for a detailed analysis of the influence of BE correlations see further below).

4.2.3.3. Lepton-hadron collisions. In Fig. 4.5(a) EM C data [140] are compared to what is expected  
from an extrapolation o f conventional short- and long-range correlations [108]. At small Sy, the 
data are consistently above these expectations. As Fig. 4.5(b) shows, the slopes (f>q in the same data 
are considerably larger than predicted by the Webber and L U N D  models. Similarly, Fig. 4.5(c) 
shows too low  In F 3 from L U N D , not only for vNe but also for the “simpler” vD z interactions

[141].

We tentatively conclude that presently used lepton-hadron  models as such are unable to 
reproduce the interm ittency observed in this process.

4.2.3.4. e +e~ annihilation. The annihilation of e +e~ into hadrons is by far the best understood of 
all m ultihadron reactions. Creation of hadrons is traditionally pictured as a multistep process 
com prising a “hard” parton evolution phase, described by perturbative Q C D  -  the parton shower 
-  and a non-perturbative colour-confining soft hadronization phase (Fig. 4.6). The former is 
a cascade process o f nearly self-similar type, and is expected to show characteristics typical o f 
a fractal object [123 ,124 ,126], In fact, already in 1979, in a discussion of Q CD jets, it was stated  
[124] that “the resulting picture of a jet is formally similar to that of certain mathematical objects, 
known as fractals, which look more and more irregular and complex as we look at them with 
a better and better resolution”. The expectation is, therefore, that parton showers should exhibit 
intermittency at the parton level. However, this is not sufficient to guarantee “intermittency” at the 
hadron level. It is indeed difficult to im agine how  the “re-shuffling” of the parton m om enta during 
the hadronization phase with e.g. the formation of hadronic resonances and their subsequent decay 
w ould preserve the (supposedly singular) nature of the correlations. A local parton-hadron duality  
type o f explanation is not satisfactory either, since “it is merely a name for a mechanism that is not 
at all understood” [165].

T o describe the hadronization phase, all present M onte-Carlo codes rely in last instance on  
a large am ount o f e +e" data at different energies and are carefully tuned to these. It came, 
therefore, as a surprise that a first (indirect) analysis [133] of HRS results, shortly followed by 
TA SSO  data [134], revealed deviations from model predictions quite similar to those observed in 
lh and hh collisions (Figs. 4.7(a) and (b)). M ore recently, CELLO [135] and, in particular, the LEP  
experiments [1 3 6 -1 3 8 ], claim “reasonable” agreement with the parton shower version of the 
L U N D  M onte Carlo (Figs. 4.7(c) and (d)). Nevertheless, new D EL PH I data now show, with 
ten times larger statistics, significant deviations even with a “re-tuned” version of the M onte Carlo

(Fig. 4.7(d)).

The origin of interm ittency in the m odels is not quite as clear as is often stated. Indeed, 
com parison of the factorial m om ents on parton and hadron level in Figs. 4.8(a) and (b) [166],
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show s that in (standard) JETSET the increase o f In Fq at small by  is not due to the parton shower, 
but to hadronization! O nly if the parton shower is allowed to continue down to very low  Qo values 
(Fig. 4.8(c) and (d) for Qo =  0.4 G eV 2), implying local hadron-parton duality, is intermittency 
becom ing visible also at the parton level. It has been verified that the influence of QI is, of course, 
much less im portant at 1 TeV,

On the other hand, interm ittency seems to be fully developed on the parton level already at 
91 GeV in the W ebber m odel, and is in fact smeared out by hadronization [167].

The sensitivity to the cut-off in the perturbative Q C D  cascade and the role o f hard and  
soft phases has also been discussed in terms of the dipole radiation m odel [168]. Intermittency
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Fig. 4.6. Jet evolution: the self-similarity in the parton cascade derives from the similarity of each step in the evolution 
[124].

can be increased in the soft phase by an increase of the %/p ratio, also required from direct 
measurements by N A 22 [169], EM C [170] and in hA collisions [171]. The direct pions resolve the  
underlying parton structure better than the more massive resonances. From  a tunnelling pro 

duction m echanism , these pions are expected to have smaller pT than other particles, a 
property presently neglected in the M C programs. A G oldstone-likc mechanism causing addi

tional soft direct pion production at break-up points has recently been suggested by the L U N D  
group [172].

For further progress, additional studies are needed.

•  O ne should identify the true causes o f intermittency in present M onte-Carlo m odels, preferably 
on  m ore sensitive distributions, such as those to be discussed below. This should reveal the 
influence o f hard and soft gluon em ission at high energies where parton showering is fully 
developed and dom inates over the soft phase.

•  Intermittency is also particularly sensitive to the exact treatment of the soft phase. This phase 
can be studied with high statistics at lower energies where parton showering is less important.

4.2.4. A warning
Before going in to  the necessary further detail, we should mention the influence of possible 

experimental biases. O n purpose and by its very definition, the higher factorial m om ents are
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sensitive to a small number of events in the tail of the multiplicity distribution in small phase-space 
bins.

M om ents can be reduced by lim ited two-track resolution, by track losses from limited acceptance 
or bad reconstruction, or sim ply due to truncation of the multiplicity distribution in a  finite event 
sample.

M om ents can be increased due to  double counting of tracks (track match failures), D alitz decays 
and nearby y conversions or K °/A  decays. A dangerous increase comes from the com m only used  
“horizontal” averaging, where a  constant average (pseudo-) rapidity distribution is assumed over 
the range A Y. Contrary to  first belief, this problem  is not completely solved by the correction  
m ethod proposed in [23]!

Further influence is to  be expected from the choice o f the sample e.g. inelastic or non-diffractive, 
cuts on m ultiplicity, cuts on  pr , all events or only those with n £  n0 in A 7 , etc., the size and position  
of A Y , the t>y region chosen for the fit and the correlation of errors.
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M any of these effects have been studied in a number of experiments and we refer to these and to 
[173 ,174] for m ore details.

4.3. H igher dimensions

4.3.1. The projection effect
So far, we have discussed factorial m om ents derived from one-dimensional distributions in 

rapidity or pseudorapidity. The analysis can evidently be extended to other ID  variables, such as 
the azimuthal angle <p in the plane perpendicular to the beam or event axis, or the particle 
transverse m om entum  (pj). G iven sufficient statistics, distributions can be analysed in two- and 
three-dim ensional phase-space domains. Com m on choices are (Ay,A(p), [Ay, A ln p T), (A<p,A ln p T) 
and (Ay,A(p,A l n p T).

Fig. 4.9(a) gives an exam ple of ID  results from UA1 [143] showing that intermittency is also 
present in <p. The intermittency effect is larger when two-dim ensional cells (Ay,A<p) are studied than 
in ID  (Fig. 4.9(b) and (c)). This is particularly pronounced in e +e~ annihilations (Figs. 4.10(a) and

(b)), the measured slopes </>, being about six times larger in 2D  than in ID . These observations are 
now  understood to im ply that intermittency “lives in 3D ” [24,175]. Projection onto  lower 

dim ensional subspaces dilutes the effect and leads to flattening of the factorial moments. This is 
m ost pleasantly dem onstrated by the fact that one can enjoy a continuous (two-dimensional) 
shadow  of a tree, in spite of the self-similar branching of this tree in three dimensions.

The projection-effect is convincingly illustrated in Figs. 4.10(a) and (b). The lines in Fig. 4.10(a) 
are fits by a 2D  a model; the curves in Fig. 4.10(b) are the projections onto rapidity-space and show
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considerably less increase and even a flattening for 5y  -*■ 0 (note the difference in scale). Neverthe

less, Fig. 4.10(a) still show s saturation of F 2 at large M  even in 2D , an indication that an analysis in 
three dim ensions m ay be required.

4.3.2. Transformed momentum space

To study interm ittency in three-dimensional phase space, one faces the additional difficulty that 
the particle density is all but uniform in the usual single-particle variables y, (p and pT. The 
distribution in pT is in fact falling exponentially. Uniform ity of the density is, however, an explicit 
assum ption in the derivation of the power law (2.110). Violation of this condition renders an 
intermittency analysis useless.

T o circumvent this problem, the authors o f [24 ,25 ] have proposed to use dom ains in a trans

formed m om entum  space with (almost) constant density. This is accomplished by a transformation 
of the original variables y, (p and In pT to “cumulative” variables. Thus, for a single variable, say y, 
one defines the new variable Z(j;) as

x ( y )

p d y ' ) d y '
) m i n ___________________

^ y  max

P i ( / ) d /
m̂in

(4.2)

For higher dim ensions, it is assumed in [24] that the single particle density factorizes as

Pi(y,<P,PT) =  pa(y)pb(<p)pc(pr) • (4.3)

Under this rather strong hypothesis, one can transform each of the three variables independently. 
The method proposed in [25] does not assume factorization but is technically quite involved. In 
practice, the two techniques give satisfactorily similar results [176].

D ata on F 2 in various dim ensions are shown in Fig. 4.11 for e +e _ [136] and hh collisions 
[142 ,143]. In all cases, the data behave more power-like in 2D than in ID . From Fig. 4.11(a), it is 
also evident that JETSET PS remains in good agreement with e +e~ data in higher dim ensions.

At variance with power-like behaviour expected from intermittency, N A 22 finds that the 3D  
factorial m om ents show  an upward bending (Fig. 4.11(c)). This effect persists after exclusion of 
D alitz decays and y conversions. A rise faster than power law is also observed in 3D for collisions o f 
various projectiles with Au by NA35 (Fig. 4.12(a)) [150], Follow ing a suggestion in [177], N A 35  
finds that the norm alized factorial cumulant K 2 =  F 2 — 1 shows much better linearity in  a lo g -lo g  
plot than F 2 itself (Fig. 4.12(b)).

This observation, in fact, furthers considerably our understanding of the intermittency phenom 

enon. In [177 ,178] the author has compared 3D  data on F2 at y f s  ^  20 GeV for p.p [140], ic/Kp

[142], pAu, O A u and SAu [150] collisions using the parametrization

F2 =  1 +  c { M 3)*> +  d  ,

where M 3 is the number o f 3D  phase-space cells. The second term in (4.4) is equal to  K 2. The 
constant c' accounts for long-range correlations, known to exist in hh collisions.

The com parison of (4.4) to the data is shown in Fig. 4.13; the parameters are given in the figure 
caption. The parameter d  is negligible for |ip and heavy ion collisions, but non-zero for

(4.4)



E.A. De Wolf et al./Physics Reports 270 (1996) 1-141 61

F.

o 1 2 3 4 5 6 7

log*(M )/d

0.5

U.
O*
O
o

Cb
□
>>
D
b.

-O
I*
o

0.4

J3 0.3

0.2

0.1

b )

i
-2

,  * . —

i
0 2

3d

2 »og( 1 / l )

.  fl
u ,  OS

0 , 4 $

0 . 4

0 . 3$

0J

c )

A  N A J t t I D  

O  N A 3 2 2 0  

O  N A 2 2  3 0

<US

0.2

0.1«

0.1

&
♦

A
♦

0J 1 1J
i  L l h  t 1 . . I I \ .

2  2 4  3  1 4  4

(InMVd

Fig. 4.11. Factorial moment of order q =  2 for 1,2 and 3 dimensional analysis for (a) DELPHI [136], (b) UA1 [143] and
(c) NA22 [142] as a function of (log2M)/d and (In M)/dt respectively, where M  denotes the total number of boxes in 
a ¿¿-dimensional analysis.



62 E.A. De Wolf et al./Physics Reports 270 (1996) 1-141

uT
C 2J

I "T  * J 'T  T f ' T T " T “ T t r

a) NAM 300 Q«Vm 30

2.4
p* l 

0 Au 

9 Atf

1.8

1.2

OJ

0.4 A

8 8 $

i i * i  I i  j  ■

r t~7

A

(In M)/3

*  * * * * 1 * * i -  -1 - 1 - 1 i

£  2
b) NASS 200 OtVM 30

1

0

-1

-2

•3

•4

(lnMy3

1_ 1 i 1 i l l 1—i -l-Ll i. L
1

Fig. 4.12. (a) Factorial moment In F2 as a function of (in M)/d from a three-dimensional analysis of negative particles in 
pAu and central OAu and SAu collisions [150]; (b) Factorial cumulant K 2 from the same analysis in central OAu 
collisions [150].

m eson-proton  and pA collisions, in agreement with expectations. The m ost noteworthy result, 
however, concerns <f>2, which is seen to have a value in the range 0 .4-0 .5  for all processes. This is 
remarkable in various respects.

Firstly, if confirmed in further studies, and in particular for e +e" annihilation, it strongly 
suggests that the resolution dependence o f F2 exhibits a high degree of “universality”, is indepen 

dent of specific details o f the production process and thus reflects general features of hadronization  
dynamics.

Secondly, such universality is at variance with the hitherto accepted idea that the factorial 
m om ents and the anom alous dim ensions becom e smaller the more com plex the collision process, 
due to an increasing inter-m ixing of production sources [131].

Thirdly, if “universality” continues to hold in high energy e +e -  annihilation, one m ust revise the 
com m only expressed opinion that the perturbative parton evolution, and in particular hard-jet 
emission, is the primary cause o f the rise o f factorial m om ents at high resolution. N eedless to say, it 
w ould be m ost interesting to verify systematically the universality conjecture in other reactions and 
for three-particle correlations.

The experimental success of expression (4.4) becomes quite intriguing when one realizes that the 
volum e <5 ~  M -3  o f a phase-space cell (for sufficiently large M ) is in fact related to the invariant 
m ass M inv o f the two-particle system or to  Q2, the square of their four-momentum difference. The 
form (4.4) implies that the two-particle correlation function behaves as a power law in M inv or Q 2. 
The data, therefore, seem to tell that an intermittency analysis should be performed in
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(Lorentz-invariant) m ultiparticle variables, rather than single-particle variables. This will be further 
discussed in Sections 4 .8-4 .10.

As m entioned in Section 4.2.3 above, ECCO [164] has som e success in describing the N A 22 data 
on fluctuations in varying scales of resolution, in particular when the analysis is done in three 
dim ensions (Fig. 4.14). The basis of this m odel is geometrical branching for soft production at low  
pT . The geom etrical aspect of hadrons, i.e. the fact that they are extended objects, puts the im pact 
parameter R  in a pre-em inent role. The fluctuation in R  from event to event leads to fluctuations in 
pT and explains the non-vanishing intermittency in In pT reported by NA22. The (stronger) 
intermittency in rapidity can be generated only with a singular splitting function for branching in 
rapidity space. Since there is no branching in (p in the m odel, intermittency is nearly non-existent in 
this variable. Still, the long-range correlation due to pT conservation leads to a decrease o f Fq at 
large bin size, a feature also observed by NA22.

4.3.3. A generalized pow er law  
It has been pointed out [179] that the one-dim ensional m om ents follow the generalized power 

law

(4.5)

in m ultiplicative cascade m odels. In (4.5), g(by)  is a general function o f by. Expressing g  in terms o f  
F 2, one finds the linear relation

In Fq =  cq +  {<f)q/cf)2) l n F 2 , (4.6)

from which the ratio of anom alous dim ensions is directly obtained. This intriguing relation has 
successfully been confirmed by experiment, not only in one dimension, but up to 3D  [24]. 
M oreover, the ratios (j)q/(f> 2 are found to be largely independent of the dimension of phase space 
(Fig. 4.15(a)) and o f the type o f collision (Fig. 4.15(b)).

The ratio o f the anom alous dim ensions dq(=(j>q/(q — 1)) and d 2 are shown in Fig. 4.16(b) as 
a function of q. The q dependence is claimed to be indicative of the mechanism causing intermittent 
behaviour. For a (multiplicative) cascade mechanism, in the log-norm al approximation (long  
cascades), the m om ents satisfy the relation [21 ,22]

dq (¡>q 1 _ q

d2 (¡)2 q 1 2
(4.7)

However, the use o f the Central Limit Theorem for a multiplicative process, such as in the a-m odel, 
is a very crude approxim ation [180] particularly in the tails. As argued in [181], a better 
description m ight be obtained if the density probability distribution is assumed to be a log-Levy- 
stable distribution, characterized by a Levy index p.. In that case (4.7) generalizes to

dq 1 q ^ - q

d2 2» -  2 q -  1 '

For u =  2, the G aussian case, (4.8) reduces to  (4.7).

(4.8)
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The multifractal behaviour characterized by (4.7) and (4.8) reduces to a monofractal behaviour 
[182,183]

dq/d 2 =  1 (4.9)

for n =  0, im plying an order-independent anom alous dimension. This would happen if intermit- 
tency were be due to a second-order phase transition. Consequently, monofractal behaviour might 
be a signal for a quark-gluon-plasm a phase transition.

The data are best fitted with the Levy-law solution with ¡x =  1.6. This value is inconsistent with 
the Gaussian approxim ation, and also definitely higher than expected for a second-order phase 
transition.

The validity o f the dim ension-independent generalized power behaviour has been questioned in 
a recent N A 22 analysis [142] shown in Fig. 4.16(a), W hile a fit to the combined data on all 
variables and dim ensions (full circles), as well as a weighted average over all individual fits give 
H values in rough agreement with those o f [24], the 3D  data have n > 2 ,  not allowed in the sense o f 
Levy laws.

Even larger values of /1, ranging from 3.2 to 3.5, have been found for |a.p deep-inelastic scattering 
in [181], According to [5 0 ,5 1 ], this is evidence that the procedure to obtain the Levy index is used  
outside its dom ain o f validity. An allegedly more general method, based on D ouble Trace 
M om ents (to be discussed in Section 4.7.7) indeed yields n values within the m athem atically 
allowed boundaries. However, we shall see that the latter method may be criticized on other 
grounds. A possible way out is self-affinity to be discussed in Section 4.3.5.

The linear dq/d 2 behaviour in Figs 4.16(a) and (b) gives som e justification for (2.134). Figs. 4.16(c) 
and (d) show [52] the slope r of (2.134) for a number of experiments. All experiments, except 
perhaps SAg/Br, show  multifractal behaviour (r >  0).

D espite the confusion, it remains a noteworthy experimental fact that the factorial m om ents o f  
different orders obey simple hierarchical relations o f the type (4.6). This means that correlation  
functions of different orders are not com pletely independent but are som ehow  interconnected. Such 
situations are com m only encountered in various branches of m any-body physics (see e.g. 
[107 ,109 ,184]), but a satisfactory link with particle phenom enology, let alone QCD, remains to be 
established. Nevertheless, on a simple example it was recently shown [185] that a linear relation  
between In and In F2 can be obtained if the connected correlation functions are assumed to be o f  
a factorized M ueller-R egge power-law form in two-particle invariant-masses squared sy , i.e. 
C3(l, 2,3) oc (S12)1 ~a' (S2 3 )1 -aj +  cycl. perm. N ote that this Regge-form has the “linking” structure 
of (3.13).

4.3.4. Thermal versus non-thermal phase transition
4.3.4.1. Second order phase transition? A simple model that can provide som e hint on the nature o f 
a second-order phase transition is the Ising m odel in 2D  [186]. Its intermittency behaviour has 
been studied both analytically and numerically [182 ,187]. The anom alous dimension is found to  
be dq =  j ,  independent o f q. Based on that finding, it has been conjectured that intermittency may 
be m onofractal if due to a Q C D  second-order phase transition [183]. However, as m entioned in 
Section 4.3.3, all types o f interactions, including heavy-ion collisions, show multifractal behaviour.
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O f course, the Ising m odel is very simple and the above conjecture has little basis. In [188], 
intermittency is, therefore, studied in the framework o f the G inzburg-Landau theory also used to  
describe the confinem ent o f m agnetic fields into fluxoids in a type II superconductor. In the m odel, 
the anom alous dim ension is not constant, but follows

d j d 2 =  ( q -  l ) v_1, v =  1 .304, (4.10)

with v being a universal quantity valid for all systems describable by the G L theory, independent o f  
the underlying dim ension or the parameters of the model. This is of particular importance for 
a Q C D  phase transition, since neither the transition temperature nor the other important 
parameters are known there.

In quantum optics, y production at the threshold of lasing is describable as a second-order phase 
transition. Indeed, a photo-count experiment [189] has verified (4.10) to high precision. On the 
other hand, the current N A 22 data on particle production in hadronic collisions give 
v =  1.45 +  0.04 [190], heavy-ion experiments v =  1.55 ±  0.12 [188] and v =  1.459 ±  0.021 [156].

For a first-order phase transition, all dq are zero and no intermittency would be observed [183]. 
However, it has been show n in [191] that in a generalized G L model, a first-order phase transition  
com bined with the quantum optics analogy o f lasing at threshold can lead to intermittency 
behaviour in som e regions o f the parameters, with approximately the same intermittency indices as 
a second-order phase transition.

4.3.4.2. Non-thermalphase transition? O f course, the phase transition does not need to be thermal,

i.e. the new phase need not be characterized by a thermodynamical behaviour. Such a transition  
could, e.g. take place during a parton-shower cascade and has been formulated in [192] for 
a number of “ultra-soft” phenomena, including intermittency. It leads to the co-existence o f  
different phases, in analogy to different phases of the spin-glass systems. The examples of the 
JACEE event (Fig. 4.1(a)), which contains many “spikes” and “holes”, and that of the N A 22 event 
(Fig. 4.1(b)), which consists o f just one spike, indicate that such a possibility may be more than just 
a speculation.

The condition for the existence of such different phases o f a self-similar cascade is that the 
function

Xq =  {<j>q + \ ) l q  (4.11)

has a minimum at som e value q =  qc (not necessarily an integer) [45 ,193-195]. The regions q <  qc 
and q >  qc are dom inated by numerous small fluctuations and rare large fluctuations, respectively. 
In the term inology o f [195], the system resembles a mixture of a “liquid” of many small fluctuations 
and a “dust” o f high density. W e see either the liquid or the dust phase, depending on whether we 
probe the system by a m om ent of order q <  qc or q >  qc, respectively.

In Fig. 4.17(a), Xq is com piled [195] from K LM , EM C and N A 22 as a function of the order q. The 
low  pT N A 22 data [142] (pT <  0.15 GeV/c) indeed show a marked minimum with qc between 3 and

4, while the uncut data have not saturated at q <, 5. Follow ing [195], the Xq behaviour has been 
studied by a num ber of heavy-ion experiments [153 ,154 ,156 ,159], W hile a saturation, but no clear 
minimum is seen by experim ents stopping their analysis at q =  5 or 6, a minimum is now  observed  
for 4  <  qc <  5 in central C -C u  collisions at 4.5 A  G eV /c, where the analysis is carried to q =  8 
[159] (Fig. 4.17(b)).
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The observation o f a m inim um  in the /^-distribution suggests a phase transition [45 ,193 ,194], 
but according to the interpretation [195] it is merely the “apparatus” changing from a sensitivity 
for the dom inating small fluctuations at q <  qc to an insensitivity for those at q >  qc. The two 
phases could coexist w ithout a transition being necessary.
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So, phase transition or not, tw o phases seem to coexist and it will be a challenge to  find their 
physical interpretation in terms of the theory o f strong interactions.

4.3.5. Self-affinity

Com paring lo g -lo g  plots for one phase-space dimension, one notices that the In Fq saturate, but 
at different Fq values for different variables y, q> or In pT. The saturation in one dimension can be 
explained as projection effect of a three-dimensional phenomenon. However, also in three- 
dim ensional analysis the power law (2.110) is not exact. In Fig. 4 .11(c), the 3D  data are seen to bend 
upward.

It has been show n in [196] (see also [197]) that this can be understood by taking the anisotropy 
of occupied phase space (longitudinal phase space [198]) into account. In view o f this phase space 
anisotropy, also its partition should be anisotropic. In other words, the density fluctuation in phase 
space should be self-affine rather than self-similar [199].

If the phase-space structure is indeed self-affine, it can be characterized by a parameter called 
roughness or Hurst exponent [199], defined as

with A/ (/ =  1,2,3; Xi <  X2 <, a 3) being the shrinkage ratios in the self-affine transformations

o f the phase-space variables X;.

The Hurst exponents can be obtained from the experimentally observed saturation curves o f the 
one-dim ensional InF^dxi) distributions. U sing the N A 22 curves for y  and In pr  (Fig. 4.11(c)), 
a Hurst exponent o f H y<Pr =  0.516 ±  0.015 is obtained for these two variables, in agreement with 
self-affinity (H  <  1) rather than self-similarity (H  — 1).

The upward bending for Fq in the three-dimensional self-similar analysis is then easy to  
understand: performing a self-similar analysis, phase space is not shrunk according to the self-affine 
dynamical fluctuation. So, the real dynamic fluctuation cannot be fully observed and the corres

ponding Fq com es out smaller at intermediate scales. At very small bins, however, this difference 
between self-affine and self-similar space shrinkage disappears and the Fg values obtained ap 

proach each other. As a  consequence, the slope on the log -log  plot has to increase at small bin sizes 
and the self-similar analysis grants an upward bending if the underlying structure is self-affine (i.e. 
corresponds to a power law).

O n a self-affine M onte-C arlo branching model exactly reproducing the N A 22 dq/ d 2 values o f 
Fig. 4.16(a), this upward-bending effect is shown to cause the apparent violation o f  the Levy 
stability p. <, 2 described in Section 4.3.3 [200].

4.4. Dependences o f  the effect

4.4.1. Charge dependence
A m echanism  known to cause correlations at small distances in phase space is Bose-Einstein  

interference betw een identical particles [108 ,201 ,202]. For reviews o f the present status o f this field 
we refer to [203 ,204 ]. From  the outset it must be realized, however, that the conventional

H u =  In 2 f/ln  Aj (0 <  ^  1) (4.12)

Sx i —► dXi/ki y (4.13)
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Gaussian- or exponential-type parametrizations of the Bose-Einstein effect lead to a saturation at 
by -> 0 and not  to the power law (2.110)!

In [202] it is argued that the slopes should be roughly a factor 2 larger for identical particles than 
for all charges com bined. The experimental situation is less than clear, in particular for ID  
analyses. Contrary to the prediction, TASSO and D E L PH I see less intermittency for identical 
particles. EM C  finds an enhanced effect for positive but not much for negative particles in 
a one-dim ensional analysis, and very similar slopes in a 3D  analysis. N A 22 observes an enhance

ment for negatives, but not for positives. UA1 sees no difference, whereas NA35 sees an increase.

CELLO finds B ose-E instein  interference necessary to explain the residual difference between 
data and JETSET 7.2, but needs an un-physically large strength-parameter X to obtain agreement. 
In the D E L P H I analysis, B ose-E instein interference is insufficient to explain the difference between  
data and m odels, even with an un-physically large value of the coherence parameter A, 

Follow ing a suggestion in [205], higher-order Bose-Einstein correlations have been studied by 
UA1 [206], N A 22 [207] and D E L PH I [208]. In this study, “correlation functions” o f  order q,

R M « )  =  Nq( Q l ) / N ° G(Q2q„), (4.14)

are defined as ratios of the distribution of like-charged g-tuplets (q =  2 ,3 ....... 5)Nq(Q%„) and

a distribution of reference (background) q-tuplets N qG(Qqn) obtained from random event mixing. 
The variable QL  is defined as a sum over all permutations

Qqn — Q 12 +  Ô l3  +  ••• +  Q(q- 1)9 (4.15)

of the squared four-m om entum  difference Qfj =  — (pi — py)2 o f particles i and j. N o te  that the 
functions (4.14) are norm alized inclusive densities and not correlation functions in the proper sense 
(cf. Section 4.8).

The UA1 data are show n in Fig. 4.18. A good fit is obtained if in the expansion of K9(Q ,J  
suggested in [205], G aussians (dashed curve) are replaced by exponentials in (L„ (solid curve).

Since low Qf, pairs are lost due to limited two-track resolution in the detector, the data at the

smallest Qfj have to be regarded as a lower limit. A power law as expected from intermittency 
cannot be excluded.

UA1 has further studied the distributions R 2 for all-charged-(cc), ( ±  +)- and (H— )-pairs as 
a function o f Q2( = Q 2*) (Fig. 4.19) [143]. These results have important implications. The charge 
dependence of “interm ittency”, controversial in single-particle variable analyses (see before), is now  
quite clear in invariant-m ass variables (Q2 =  Mfnv — 4ml). The data for jR** (dashed) has a much

stronger Q -d ep en d en ce than R 2 ~ and effectively determines the small-Q behaviour o f jR“  This is 
unam biguous evidence that intermittency at small Q2 is predominantly due to like-sign particle 
correlations. It does not necessarily imply, however, that Bose-Einstein interference is the sole 
cause.

In [77] it is show n on E M C  data that, especially in 3D, F2 ~ deviates much more from L U N D  
m odel predictions than F 2 ~. The L U N D  model version used does not include Bose-E instein  
correlations. The deviation from the data is indicative for the importance of this effect.

B ose-E instein  interference must thus play a significant role at least for small Q2. This seems in 
contradiction with claim ed successes in e +e _ annihilation of parton shower M onte Carlos which 
neglect B ose-E instein  interference.
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Fig. 4.18. B ose-E instein  correlation o f  order 2 to 5, as indicated. The dashed lines represent fits by G aussian terms, the 
full lines by exponential terms. All data are corrected for C oulom b interaction [206].

Finally, we reiterate our remark that a “conventional” Bose-Einstein effect with exponential or 
Gaussian Q dependence is incom patible with intermittent power-law behaviour. We return to  this 
point in Section 4.8.4,

4.4.2. Transverse-momentum dependence
A n interesting question is whether semi-hard effects [179], observed to play a role in the  

transverse-m om entum  behaviour even at N A 22 energies [110], or low-pT effects [192,209] are at 
the origin o f interm ittency. A first indication for the latter com es from the most prominent N A 22  
“spike” event [119 ], where 5 out o f 10 tracks in  the spike have pT <  0.15 GeV/c.

In Fig. 4.20(a), N A 22 data on In i7,  versus —In 5y  are given for particles with transverse 
m om entum  pT below  and above 0.15 G eV/c, and with pT below and above 0.3 GeV/c. For particles 
with pT below the cut (left), the Fq exhibit a stronger <5y  dependence than for particles with pr above 
the cut (right).

N A 22 does not claim straight lines in Fig. 4.20(a), but uses fits as an indicative measure o f the 
increase o f  In Fq over the region 1 >  5y  >  0.1. In the upper half of Fig. 4.20(b), the fitted anom alous 
dim ensions dq are com pared to those obtained in the full pr-range. The restriction to particles with 
pT <  0.15 or 0.30 G eV /c indeed leads to an increase o f dq\ a decrease is observed for p y  >  0.15 or 
0.30 G eV/c. This observation is confirmed by IH SC [145].
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FR ITIO F predictions are given in the lower part of Fig. 4.20(b), again for all tracks and for 
tracks with restricted pT. It is known [142] that FR ITIO F gives too small slopes for factorial 
m om ents integrated over pT. Here, one notices that it also fails to reproduce their pT dependence.

UA1 has a bias against tracks with pT <  0.15 G eV/c, but gives the dependence o f (j>2 on  the 
average transverse m om entum  p t o f the event (Fig. 4.20(c)) [210]. The data show a remarkable 
decrease of <j>2 with increasing pT and, after passing through a minimum at pT «  0.5 G eV/c, a  slight 
increase at higher pT values. Lower pr events correspond to soft processes, while higher pT ones 
correspond to events with hard jet sub-processes. Both types o f events have higher slopes (j>2 than 
their mixture at intermediate pT values. (See further [211] for a possible connection to the

*

multiplicity dependence to be described in Section 4,4.4)

Fig. 4.20(c) also contains the results obtained from M onte-Carlo events generated with PYTH IA  
5.6 [70], At low  pr values, the PYTHIA <j>2 values are strongly suppressed as compared to those o f  
the data.

W e conclude that the intermittency observed in N A 22 and UA1 data is enhanced at low  
transverse m om entum  and is not dom inated by semi-hard effects. Hard effects dom inate in high 
energy e +e~ and lh collisions. D ata on the pT dependence of factorial m om ents in these processes 
should help in clarifying the origin of intermittency. The effect of pT cuts on e +e~ data has been 
studied by D E L P H I [136]. One-dim ensional data are shown in Fig. 4.21 and provide several 
important pieces of information:

(i) The lo g -lo g  plot for low-pT particles shows less saturation (i.e. stronger intermittency) than 
for larger-pr particles. So, intermittency is strongest in the pT region where hard gluon effects are 
weakest!



E.A. De Wolf et aL ¡Physics Reports 270 (1996) 1-141 75

Sy

UL
e

„ 4. 1. 0.4
6  p 'T T 1— I-----

0.1 4, 1. 0.4 0.1
r r r r r T - i ------- j t t t t

Py < 0.15 GeV/c

D orcter q**2 
O order q-3 
A order q»4

1

1

0

u n

o o
■I....^-1

Pt < °*30 GeV/c

p o  □

«1 0 1
JL

M i i—t |ii • 11 i i i |i i* i
Pt > 0.15 QeV/c

a )

m

o 0 
o  a

J_____ L

py > 0,30 G$V/c

-1 1 2 3
'InSy

0.4

T  0,3

0.2

0.1

> 0.1

0.3

0 .2

0.1

0

- 0 , 1

NA22

O
D

all
pT < 0J5 GeV/c 
pT < 0.30 GeV/c

O
n

FRITIOF
all
pT< 0.15 GeV/c 
p; < 0.30 GeV/c

i t "

^ u  t  ™  4 t  i  r  f  i i f  h i f i  4  •  < J i a v

i p  i  < 1 1  h  * 4

O
□

all
pj- > 0.15 GftV/c 
pT>0.30 GeV/c

b)

W H * j .

8
O
□

all
pT>0.15 GeV/c 
Py > 0.30 GeV/c

A  I  I  < *  «  I  < '  4

1 2 3 4 5 2 3 4 5

orcter q of the moment

4>.

0.04

0.035

0.03

0.025

0.02

0 .0 1 5

0 .01

0.005

0

c )  0 .1 i5 i jS 1 .0  

fflUAI

O Pythia 5 .6

0.2 0.3 0.4 0.5 0.6

Pt

Fig. 4.20, (a) In Fq as a function of — In «5y for various pT cuts as indicated [142], (b) anomalous dimensions dq as
a function of the order for various pT cuts as indicated (lines are to guide the eye) [142], (c) slope cj}2 as a function of the 
average transverse momentum pr in an UA1 event compared to PYTHIA 5,6 [210],



76 E.A. De Wolf et at./Physics Reports 270 (1996) 1—141

i

Fig. 4.21. Factoria l  m o m e n t  F2 and  F 3 as a function of resolution for three e +e da ta  sets with pT cuts as indicated 

[136]. The lines co rresp o n d  to  the m odels  as indicated. C orrec tion  factors are given above the co rrespond ing  sub-figures.

(ii) A d iscrep a n cy  b etw een  d ata  and  m o d e ls  (on ly  in d ica tive  in F ig . 4.7(d)) is ob served  in the  
in terval 0 .255  <  p T <  0 .532  G e V /c .  T h is  lo o k s  surprising  at first, but w e shall sh o w  in S ec tio n  4 .4 .4  

that the in term itten cy  effect can  be stron ger  for in d iv id u a l m ech an ism s than for a m ixture .

(iii) T h e  factoria l m o m e n ts  are larger for pT >  0 .532  G e V /c  than for p T <  0 .255 G e V /c ,  o p p o s ite  

to  the trend o f  the N A 2 2  d a ta  (F ig . 4.20(a)). A lso  this seem s con trad ictory , but it sh o u ld  be realized  

that for N A 2 2  transverse  m o m e n tu m  refers to  the beam  axis, w h ich  is usually  c lo se  to  b eam  and  
target jet axes. In the e + e ~  an a lys is , pr  is ca lcu la ted  relative to the g lob a l event axis w h ich  differs 
from  the d irection  o f  in d iv id u a l jets.

4.4.3. Dependence on j e t  topology)

In their recent an a lys is , D E L P H I  [1 3 6 ]  se lects  2-jet and  3-jet even ts  using  th e  J A D E /E 0  

in v a r ia n t-m a ss  a lg o r ith m  [2 1 2 ] ,  w ith  reso lu tio n  p aram eter  va lues y cut =  0.04 and  0 .01 , and with  
a d d it io n a l cu ts  to  c lean  the 2-jet an d  3-jet sam ple. A t large bin sizes, factorial m o m e n ts  rise faster
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w ith  d ecreas in g  b in  s ize  (and are, therefore, larger) in 3-jet than in 2-jet events. T his is c o m p a t ib le  

w ith  the (large b in  size) b e h a v io u r  ex p ected  from  hard g lu on s. A t sm all bin sizes the increase is 

sim ilar  for 2-jet a n d  3-jet events.

In  3-jet even ts , factoria l m o m e n ts  were ca lcu la ted  for tracks b e lo n g in g  to jet 1, je t  2 and  jet 3 

ordered in energy. T h e  rapidity w as defined with respect to  the individual jet axis. As seen in Fig. 4.22, 

in term itten cy  is  w e a k e s t  in jet 3 and  stron gest  in jet 2. T h e  d ev ia tion  from  J E T S E T  is a lso  s tro n g est  

for jet 2.

4.4.4, Multiplicity (density) dependence
In general, a d ecrease  o f  the in term itten cy  ind ices 4>q is found w ith  increasing  energy, in  

particu lar for hh , h A  an d  A A  co llis ion s . A s seen  in F ig . 4.23(a), a s tron g  m ultip lic ity  d e p e n d e n c e  o f  

the in term itten cy  stren gth  is o b serv ed  for hh  c o ll is io n s  b y  U A 1  [1 4 3 ] ,  T h e  trend is o p p o s ite  to the  

p red ic t ion s  o f  th e  m o d e ls  u sed  by this co lla b o ra t io n . T h is  decrease o f  the in term itten cy  strength  

w ith  in creasin g  m u lt ip lic ity  is u su a lly  exp la in ed  as a co n seq u en ce  o f  m ix in g  o f  in d ep en d en t  so u rces  

o f  particles [ 1 3 1 ] .  T h e  cro ss -o v er  o f  data  an d  F R I T I O F  at in term ed iate  m u ltip lic ity  ex p la in s  the  

ap p aren t su ccess  o f  F R I T I O F  in Fig. 3.3, for m u ltip lic it ies  c lo se  to  30 as being  acc identa l.

M ix in g  o f  e m iss io n  so u rces  leads to  a rou gh ly  linear decrease o f  the s lop es  (j)q w ith increasing  

partic le  d en s ity  <p> in rap id ity  [1 0 8 ,2 1 3 ,  214]: cf)q oc *. T h is  is indeed  observed  by U A 1  [1 4 3 ] .  

M u lt ip le  e m is s io n  so u rces  are present in m u ltich a in  D u a l  P arton  m od els . T he ca lcu la ted  s lo p e s  

in d eed  d ep en d  linearly  o n  m u ltip lic ity  but are to o  sm all by a factor o f  tw o  [2 1 5 ] .  S im ilarly , th e  

m o d e l s tu d ied  in [2 1 6 ]  w ith  in d ep en d en t  em iss io n  at fixed im pact param eter  finds d ecreas in g  (f)‘i
in creasin g  m u

A lso  here, a s tu d y  o f  th e  m u ltip lic ity  d ep en d en ce  in e e~  data  an d  J E T S E T  a llow s in teresting  

c o m p a r iso n s .  In  fact, th e  L E P  results [1 3 6 ]  su g g est  little or n o  « -d ep en d en ce , except for the lo w e st  

m u ltip lic it ies , w h ere  the s lo p e  is largest an d  a lso  the difference w ith  J E T S E T  P S  is th e  largest.

F ig . 4 .23(a) h e lp s  in e x p la in in g  w h y  in term itten cy  is so  w eak  in h ea v y -io n  co llis ion s  (cf. F ig . 4.3): 

th e  d en s ity  (an d  m ix in g  o f  sou rces) is particu larly  high there. In Fig. 4.23(b) E M U 0 1  [1 5 5 ] ,  

therefore, c o m p a r e s  <p2 for N A 2 2  (hp at 250  G eV ) and  h eavy -ion  co llis ion s  at sim ilar beam  

m o m e n tu m  per n u c le o n , as a fu n ctio n  o f  the particle  density . W h ereas s lopes averaged  over
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multiplicity are smaller for AA collisions than for NA22 in Fig. 4.3, at fixed <p> they are actually 
higher than expected from an extrapolation of hh collisions to high density and even grow with 
increasing size of the nuclei. This may be evidence for re-scattering (see [141]) or another 
(collective) effect, but, as shown by HELIOS [157] and recently confirmed by EMU-01 [155], one 
has to be very sure about the exclusion of y conversions before drawing definite conclusions.

We conclude this section with an additional warning. In Section 4.3.2 we mentioned the 
Fialkowski “universality conjecture” and noted that it is incompatible with the “mixing” hypothe 
sis usually invoked to explain the multiplicity dependence of factorial moments and slopes. 
A different explanation of the multiplicity dependence may therefore be needed, especially since 
intermittency and Bose-Einstein effects are now known to be closely related.

4.5. Factorial cumulants

Normalized factorial cum ulant moments, first introduced in [8] and recently studied in [26], are 
defined in (2.71) as integrals over the background subtracted correlation functions. They share with 
factorial moments the property of “noise suppression”. The normalized factorial moments Fq can 
be expanded in terms of normalized cumulant moments K q as given in (2.72). This expansion has 
been found to converge rapidly [26]. The terms in the expansion correspond to contributions from 
genuine q,{q — 1) ...  , 2-particle correlations.

An analysis of factorial cum ulant moments is presented in [26]. Roughly, it is estimated tha t

K 2 ~  0.6, K 3 ~  0.7, K 4 <  1.0, K 5 <  1.5 for UA1 data at ^ f s  =  630 GeV. (The inequalities for K 4 and

K s are due to the approxim ation AB  by Â  B in (2.72) since no direct measurements of these 
averages exist.) Clearly, the two-particle contribution to factorial moments is large, but higher 
orders are not negligible. At the energy of the NA22 experiment K 2 is small (~0.2), but K 3 is 
significantly larger ( ~  0.45).

F rom  (2.72) it is seen that the contribution F ‘2) to Fq from two-particle correlations alone can be 
expressed as

F \ f  =  1 + 3  K 2> (4.16)

H 2) =  1 + 6 K 2 +  3K \  ; 

the contribution F  4 from two- and three-particle correlations to FA as

(4.17)

F f  =  1 + 6 K 2 +  3K \  +  4 K 3 . (4.18)

The difference Fq — Fj,p) is a measure for the importance of higher-order correlations.
Fig. 4.24(a) shows a cum ulant decomposition of F 3 and F4 in UA1 data [217]. The differences 

between the curves indeed indicate large contributions from genuine higher-order correlations. 
Similar results are observed for NA22 [142] in Fig. 4.24(b), for p =  2 and 3 and q =  3 and 4, in one-, 
two- and three-dimensional phase space (transformed y , y  — (p and y  — (p — In pT). In general, the 
difference increases with increasing In M  (decreasing bin size). This means that the contribution of 
higher-order correlations to the factorial moments increases at higher resolution. An exception is
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factorial m om ents in the variable cp, for which only two-particle correlations are found to be 
non-zero (not shown).2

The situation is completely different in heavy-ion collisions where, with present accuracy K q zz 0 
for q >  2 (Fig. 4.24(c)). The factorial moments are completely dominated by two-particle correla 
tions [217,219,220], implying that higher-order Fq contain little or no further dynamical informa
tion for this type of collisions (see Eq. (2.56)).

Using the linked-pair ansatz [26] (see also Section 5.1.1), higher-order cumulant functions can be 
expressed as products of K 2 (see also [221] for an interpretation in terms of independent 
superposition of sources)

K q =  A qK q2~ l , (4.19)

with free constants A q.
F or a negative-binomial (NB) multiplicity distribution, K 2 =  l /k  and the linking parameters are 

fixed numbers given by ~ ( q — 1)! [109]. A necessary condition is stationarity, i.e. constancy of 
l//c. This works well for UA1. For NA22 [142], A q is observed to increase with decreasing bin size. 
Approximately constant A q & (q — 1)! are found if the data are averaged only over a narrow  
rapidity region (— 0.75 <  y  <  0.75) and the most prominent spike event is excluded. The linked- 
pair ansatz may thus be a valid approximation for high-order correlations in small phase-space 
domains but not for the average over phase space. This would be consistent with the well- 
documented fact [13] tha t the negative binomial is often a good parametrization of multiplicity 
distributions in restricted 5y  intervals.

We shall come back to cumulants and genuine higher-order correlations in Section 4.10, where 
they are studied by means of a largely improved methodology.

4.6. Factorial correlators

4.6.1. The method
The moments defined in (2.68)-(2.70) measure local density fluctuations in phase space. Addi

tional information is contained in the correlation between these fluctuations within an  event. This 
correlation can be studied by means of the factorial correlators defined in (2,75). Correlators are 
typically calculated at a given by  for each combination mm' of bins with size by, and then averaged 
over all com binations separated by a given bin distance D. This is illustrated below.

D

K A Y *1

1 Absence o f genuine higher-order correlations has been reported in [218], but at far too  low  statistics
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In the simple intermittency model (a-model) described in [21,22], Fm depends on D but not on 
by and follows the power law

FPa oc (A Y/D)*" . (4.20)

The powers (slopes in a log-log plot) obey the relations [21,22]:

(4.21)

where the first equality sign is due to the a model proper, the second to the log-normal approxim a 
tion. According to (4.20) <bu  =  d>2, so that (4.21) can also be written in the form

4>Pt =  P # u (4.22)

4.6.2. Results
Preliminary results for pseudo-rapidity resolution 8rj >  0.2 have been reported by the HELIOS 

Collaboration [222]. There, however, multiplicities nm had to be estimated from the transverse 
energy Er ,m in bin m and the average transverse energy <£T> per particle: nm =  £ T>m/< £T)  rounded 
to the nearest integer. The first direct measurement is from NA22 [223]. The In Fpq are shown as 
a function of — In D  in Fig. 4.25(a)-(d), for four values of 8y  >  0.1 (corresponding to M  =  10,20,30 
and 40). Statistical errors (estimated from the dispersion of the Fpq distribution) are in general 
smaller than the size of the symbols. Fpq can be measured up to third order in p and q for by  =  0.4 
binning (Fig. 4.25(a)). F or by =  0.1, the analysis is possible to first and second order only 
(Fig. 4.25(d)). The smallest possible value for D being equal to the bin size 8y, Fig. 4.25(a) extends to 
D — 0.4 and Fig. 4.25(d) to D =  0.1. In all cases, an increase of InFp, is observed with increasing 
—ln£>. Very similar results have recently been reported by EM C [140], EMU-01 [155] and in 

[i52].
In Fig. 4.26(a), the In Fpq are compared at fixed D =  0.4 for four different values of by. The dashed 

lines correspond to a horizontal line fit through the data. In agreement with the a-model, the 
Fpq indeed do not depend on by. Also this result has been confirmed on EM C data [140] and in 
[152]. The ¿^-independence of correlators holds exactly in the a-model. Nevertheless, Fig. 4.26(b) 
shows that the Sy independence is also valid in FR ITIO F . For the particular value of D =  0.4, this 
even happens a t very similar values of In Fpq as in the data. In fact, this property is far from unique 
to the a model, bu t holds approximately in any model with short-range order [224].

F or Fi  t , the by  independence is easily derived from a parametrization of the two-particle density, 
integrated over two regions of size by  separated by D. Using exponential short-range order [109], 
this gives

F u  -  1 oc (1 / a 2)Q~DIL/{ea -  1)(1 -  e _fl) , (4.23)

where L is a correlation length and a — 8y/L.  According to (4.23), F n  becomes independent of by  
for a 1. Since e ~ D/L -+ 1 as D -> 0, this form also leads to the deviations from (4.20) observed as 
a  bending in Fig. 4.25.

Because of the bending, fitted slopes (¡>pq have no meaning, except as an indication for the 
increase of Fpq in a restricted range. The slopes for two values of by  are compared to FR ITIO F 
predictions in Fig. 4.27(a) and (b), respectively. As observed earlier for the case of univariate 
moments [142], the F R IT IO F  slopes are too small also for the correlators. This is not surprising
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since the model does not succeed in reproducing even the lowest-order (i.e. two-particle) rapidity 
correlation function (Section 3).

4.6.3. Interpretation
Factorial correlators have been analysed in [33] using a  suitable parametrization of K 2( y u y 2) 

and the linked-pair ansatz [107] for higher-order correlations. The relations (2.83)—(2.86) of 
Section 2.1.6 then allow to  express all correlators in terms of K 2 for arbitrary (p,q). N ote that the
expressions for Fpq contain many lower-order “combinatorial” terms which effectively dominate 
and mask the contribution from genuine (p +  q)-order correlations.

A basically similar analysis is presented in [224], inspired by techniques used in quantum  optics. 
The two analyses have no difficulty in describing basic features of the NA22 data, including the sum
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rules discussed in Section 2.3 which were claimed to  be a unique test of random cascade models, 
Fig. 4.28(a) compares N A 22 data on F2(Sy) and F i i(D) with the calculations from [224]. F2(8y) is 
used to fix the parameters of K 2(8y) (assuming stationarity); F n (D) follows after integration over 
the appropriate rapidity domains. W ith the linking ansatz of [109] all other correlators are 
calculated without further assumptions. An illustrative example is shown in Fig. 4.28(b) which 
compares F 12(D) from N A 22 to the prediction, The agreement is excellent in all cases. This 
observation is confirmed in [152],

According to  (4.21), the ratio <i>pJ4>2 is expected to grow with increasing orders p and q like their 
product pq. In Figs. 4.27(c) and (d) this is tested for by — 0.4 and by  =  0.2, respectively. In both 
cases, the experim ental results lie far above the dashed line corresponding to the expected 
(j)pJ(j)2 — pq. Since the dependence of In Fpq on —In D is not strictly linear, this com parison  
depends on the range o f by  and D used to determine (j)2 and (f)pr In Fig. 4.27(d) one, therefore, 
compares a number o f fits. Slopes are smaller when the upper limit in D is reduced, but d o  not reach 
the a-model prediction (dashed line).
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Fig. 4.28. (a) F it  versus D (<5,y = 0.2) and F2 versus dy for a Gaussian-shaped two-particle correlation function [224] 
compared to NA22 data [223]; (b) F 12 versus D(5y — 0.2) as in (a).

It can be verified that, at least for the higher orders, the discrepancy with (4.21) is mainly due to 
the second equal sign, derived from a log-normal approximation to the density distribution, In 
a recent paper [180], this approxim ation has been shown to be valid if the density fluctuations are 
weak or if the density probability distribution is log-normal. The NA22 data demonstrate tha t 
none of these conditions is fulfilled.

We conclude that the correlators Fpq increase with decreasing correlation length D, but do no t 
really follow a power law for D <  1. For fixed D , the values of Fpq do not depend on the resolution 
by , a feature expected from the a-model, but also reproduced by F R ITIO F  and approximately true 
in any model with short-range order. W hen the increase of the correlators is roughly approximated 
by a straight line in a restricted interval, the powers cj)pq increase linearly with the product pq of the 
orders, but are considerably larger than expected from FR ITIO F and from the simple a-model.

The extension of single-variate factorial moments to the multivariate case offers better insight 
into the complicated nature of the correlations. However, the original expectation that correlators 
would help in clarifying the issue of intermittency is not borne out by present data. Simple bu t 
reasonable models for higher-order correlation functions which use the experimental two-particle 
correlations as input, have no difficulty in reproducing the behaviour of factorial correlators 
measured e.g. by NA22.

4.7. Multifractal analysis

Power-law dependence of normalized factorial moments on the resolution 5 (bin size) is 
a signature of self-similarity in the fluctuation pattern of particle multiplicity. It suggests tha t 
the probability distribution P(p,S)  of the particle density p has fractal properties. For simple
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W idom -W ilson [225] type scaling, P(p ,8)  is of the form

P(p ,< 5)~ r^P*(p /< 5v) ,  (4.24)

where /? and v are critical exponents. All <jth order moments o fp (g  =  1 ,2 , . . . )  obey power laws in
8 with inter-related exponents depending on q and on (/?, v). This characterizes a  simple or m ono 
fractal. Another possibility is a multifractal behaviour, in which P(p, 5) obeys a relation of the type 
(cf. [226])

In P(p, 5)/ In <5 =  ƒ  ( a ) , a — In p / In 6 . (4.25)

Multifractals, first introduced in [227] represent infinite sets of exponents -  the multifractal 
spectrum -  which describe the power-law scaling of all moments of P (p , 5). In principle, knowledge 
of the multifractal spectrum is completely equivalent to knowledge of the probability distribution.

Unlike geometrical or statistical systems, multiparticle production processes pose special p rob 
lems if a multifractal analysis is to be considered. The most obvious one is the finiteness of particle 
multiplicity in an event a t finite energy. Self-similarity, if existent, therefore cannot persist indefi
nitely to finer and finer scales of resolution.

In multiparticle production P(p, 8) is not directly accessible. At best one can construct, for 
a single event of multiplicity n and for given 8, a frequency distribution which approaches P(p,  8) 
only for n co. F o r any finite (and usually small) n, the frequency distribution and its moments will 
be subject to statistical fluctuations.

Since the data  sample contains a large number of events, it is obviously recommended to  
consider the event average. This averaging, however, supposes ergodicity. The applicability of the 
multifractality concept can, therefore, only be justified a posteriori.

4.7J .  The method
A multifractal analysis is based on the properties of G-moments whose definition is given in

(2.73). The moments Gq (or more often In G4) are obtained for each individual event at a specified 
resolution 8y ~  1/M and then averaged over the event sample.3

In the theory of multifractals, the G-moments share with the scaled factorial moments the 
property that self-similar density fluctuations lead, in principle, to scaling behaviour

Gq oc (<5y)r« for 8y  -*• 0 .

In a fractal analysis (see also Section 2.4), one therefore determines the slope

i(q,  M) =  — S<ln G„(M ))/61nM

on a double-logarithmic plot, after averaging over all events in the sample.
A multifractal spectral function is introduced via a  Legendre transform defined as

(4.26)

(4.27)

f *(®o) t q s (4.28)

with

aq =  Qtg/Qq (4.29)

3 Note that analyses based on (.Gq)  or on (In Gq)  in general differ and probe different aspects of the system under study 
[228],
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being the Lipschitz-Hdlder exponents. The spectral function f ( a q) is a smooth function, concave 
downward, with its maximum at q =  0. It gives a quantitative description of the density fluctu 
ations in the dense and in the sparse regions, corresponding to its left and right wing, respectively. 
A wide spectrum reveals a non-smooth density distribution.

The generalized (Renyi)-dimensions are given by

=  [1/(9 -  1)] t ,  =  [1/(9 -  1)] [qaq - ƒ (« ,) ]  . (4.30)

4.7.2. Experimental results
G moments have been studied in a number of experiments [140,152-154,156,158,159,229,238]. 

A s an illustrative example, we show UA1 results [233] in Fig. 4.29(a), where the event average 
<ln Gqy is plotted as a function of the resolution (M =  2/i). Starting at a value of 0 for ¡t — 0 
according to definition (2.73), the moments grow for q <  1 and fall for q >  1 as fx increases. The 
slopes decrease and <ln Gq)  tends to saturate for large n . The saturation is due to an increasing 
num ber of bins with content nm — 0 or 1, as M  becomes large,

Gq{M) -* n{l /n)9 =  n 1 -1? fo rM -^ o o . (4.31)

Fig. 4.29(b) shows (xq)> and <a9> for ¡i =  1 and 2 (small M). The corresponding spectral function 
<ƒ(“«)> is given in Fig. 4.29(c) as a function of ( a ,) .  The fact that < ƒ  (a,)> does not degenerate into 
a single point implies multifractality in hadron production, at least for large bin size by =  A Y  j M  
(small n). However, for smaller bin sizes, the function turns over (i.e. bends upward) and falls into 
the non-physical region above the dashed line (not shown).

4.7.3. Universality

From  Fig. 4.29(c), it is clear that </ ( a ) )  depends on ¡i. It also depends on the cms energy y / s  (or 
the multiplicity n =  2V). In [30] it is conjectured that G moments (at fixed q) show universality in 
£ =  n — v, however. The latter quantity is directly related to the average particle multiplicity per 
bin, n/M  — 2V_" =  2 - i . Using a branching model, the authors of [30] derive the universality 
relation

-  In Gq(fx, v) -  In G„(v, v ) . (4.32)

It expresses the scaling behaviour of a function of two variables in terms of a function of one 
variable only. The function T?(0  determines the G moments as functions of fi for all values of v. The 
validity of (4.32) is claimed to be a strong evidence for self-similarity.

Fig. 4.30(a) shows Fq as a function of ^ for q =  ±  5. All data points are close to universal lines, 
thus indeed indicating universal behaviour.

A further prediction is that also < /(a 9)> is universal for fixed Fig. 4.30(b) demonstrates that 
this is not confirmed by the UA1 data [233]. In the EMC data [140] the left branch shows 
universality, but no t the right one. Besides being more sensitive to universality breaking than r q(£), 
the function <ƒ(a„)> also reveals more clearly shortcomings in the models. For PYTHIA and 
G EN C L this is illustrated by Fig. 4.30(b).

4.7.4. Modified G moments
As stated earlier, G moments have the advantage that not only spikes are included in the 

analysis, but also non-em pty valleys (for q <  0). Disadvantages are that the moments saturate at
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¿iy -► 0 when the content of non-empty bins approaches unity and that statistical fluctuations are 
not filtered out (see also [239,240]).

In [241] a modified definition of the G moments is proposed in an attem pt to circumvent the 
problem of statistical noise. “T runcated” G moments are defined as

M

Gq=  Y  pli 0 {nm -  q) , (4.33)
m= 1

where 0  is the usual step function equal to 1 for nm >  q and zero otherwise. For very large 
multiplicity n (as in a macroscopic statistical system), n/M q and (4.33) is in practice identical to
(2.73). In particle physics, n is a  relatively small num ber and the 0  function exerts a crucial 
influence on the G moments. I t imposes non-analytical cut-offs at positive integer values of q. With 
the help of a M onte Carlo (ECCO) based on the Geometrical Branching Model, the authors show 
that ln<G,> now exhibits a linear dependence on In Af for q >  1, without saturation.

F or q >  1, the linearity of ln<G9> with InM  has been verified on up, pp and e +e “ data  
[230,233]. The slopes xq turn  out to be very similar in all three reactions and roughly equal to

=  -0 .9 (q  -  !)•

4.7.5. Bernoulli trials and G moments
Before we conclude the discussion of experimental characteristics of G moments, it is of interest 

to inquire in m ore detail about the dynamical content revealed in multifractal analyses. This is best 
done in a com parison to a model without dynamics.
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Let P(n) be the probability distribution for observing n particles in an initial wide interval A 7. 
Let this interval be subdivided into M  smaller intervals of size 5y =  A Y/M,  each of which contains 
nm particles (n„, — 0 ,1 , . . .  ,n; m =  1,2, . . .  ,M )  with =  n. Assume that for every subdivision of

n, the joint occupation probability in M  cells is given by (see also [239])

,« „ )  - Pin) (±jjs (y nt - ny

W ith (4.34) the G moments (2.73) at fixed n are given by

1 /M

(4.34)

n

Gq(n, M) =  M n ~ q £  iqB(n, 1/M; i ) ,
¡=1

where B(n, is the binomial distribution. For integer q >  1 one obtains

(4.35)

Gq{n,M)  — M n ~ q £  y</>nw .
j ' = i

(4.36)

Sc>[}) is a Stirling num ber of the second kind (cf. (2.67)) and n ^  =  n(n — 1) ••• (n — j  +  1). In the 
Poisson limit of the binomial (n large and 1/M small with n/M  fixed), (4.36) simplifies further to

Gq(n, M) =  M n ~ q £  ¡ f  f  (n /M )J .
I

(4.37)

In inclusive analyses the average over P(n) has to be taken in (4.36)-(4.37). This introduces the 
(inverse) moments <nj-9 > and <ntJ7wi > of the multiplicity distribution in AY.

Numerical studies indicate that (4.35)-(4.37) reproduce and explain many of the multifractal and 
universality properties seen in the data. Here we can only give a few examples.

With respect to the structure of (4.35) it should be noted that the binomial distribution is in fact 
a multifractal4 in the sense of (4.25) [242,226]. Consequently, “proper”, but quite trivial binomial 
multifractal behaviour will be seen if the data are noise dominated. This is the case in practically all 
analyses referred to before. This point was recognized in [239], but its full consequences were not 
further studied.

From  (4.37) follows immediately that the function r q{fi, v) defined in (4.32) depends only on the 
ratio n/M  =  2 - i . Thus, the parameter-free function r q{n, v) is indeed, but trivially, universal in the 
Poisson limit. I t describes accurately the data in Fig. 4.30(a). Being a purely mathematical property 
of noise, it is no t surprising that the usual M onte-Carlo models also show this type of universality. 
r q(fj.,v) ceases to be universal in the (more general) binomial case, although the deviations remain 
small in cases of practical interest. This probably explains the universality breaking observed in 
e +e" M onte-Carlo simulations at 1-10 TeV in [243].

The above considerations can be extended to the modified G moments defined in (4.33). In 
particular r q(n, v) remains universal in the Poisson limit. Further numerical properties of modified 
G moments are illustrated on Fig. 4.31(a)-(c). The results shown are based on (4.37) further

This is easily verified using Stirling’s approximation to n\ which is notoriously accurate even for quite small n.
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averaged over n with a negative binomial distribution truncated at 0. They depend only on <«) in 
A Y  and on the N B D  param eter k.

Fig. 4.31(a) dem onstrates tha t the modified G moments can be well approximated by power laws. 
The pseudo-linearity extends over a much larger interval in M  than for usual G moments obtained 
from (4.37). The improved linearity is due to negative terms in the expressions of truncated 
moments of the Poisson (or binomial) distribution. The calculations displayed in this figure 
coincide (up to  an overall normalization factor) nearly exactly with the EM C data for M  >  8 
shown in [230]. This proves that the “clear asymptotic power-law behaviour of ( G q)  characteristic 
for a self-similar system” [230] is in fact due to Bernoulli noise.

Fig. 4.31(b) shows the “Ochs-W osiek” plot for modified G moments. Here again, the quasi
perfect linear relation between In Gq and In G2 is seen to be a characteristic of Bernoulli trials. This 
linearity property holds in fact for any combination of In Gq and In Gq'. The exponents xq derived 
from power-law fits to the “data points” in Fig. 4.31(a) are shown in Fig. 4.31(c). The line is a fit with 
the form xq — —C{q — 1). The slope C is a slowly changing function of the NBD parameter k with 
a value around 0.9, as experimentally observed in Section 4,7.4 above!.

4.7.6. Evaluation o f  noise and connection between Fq and Gq
The self-similar property of multiparticle production at high energy can, in principle, be 

investigated by F  moments and by G moments. The power-law behaviour of the scaled F  moments 
provides evidence for a self-similar cascading process of dynamical origin. The G moments, as an 
ingredient of fractal theory, are designed to describe the multifractality aspect of high multiplicities. 
In the real environment of high energy collisions, however, the multiplicities are rather low and the 
G moments are dom inated by statistical fluctuations.
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The F moments are defined for integer powers q >  1, the G moments for all real powers q. In 
order to establish a connection to the F moments, the powers q are restricted to integer values of
q >  1 here also for the G moments.

The number nm of particles per subdivision <5y  =  A y /M  has to be equal to, or larger than
9 (n m =  q +  K k =  0,1, . . . )  for the F- and G-moments. Functions

(4.38)

are defined from the num ber of bins Q„m{M, n) containing n,„ =  q +  k particles in an event of 
multiplicity n in the total phase-space region Ay, normalized by t f  and averaged over all events. 
They express the basic fractal structure of the data, if they show a power-law behaviour of the form

(4.39)

In order to suppress statistical fluctuations, the G moments can be defined as the event average 
over (4.33), or, equivalently, as

oc

<G,(M)> =  X  Bq,k(M)(q +  k f  .
k~*0

They are proportional to M -1« for large M. The F  moments are defined as

(4.40)

M

<.Fq(M )> =  M ~ 1 £  <nm(nm -  1) ■■■(«„-? +  1 )/(n/M)9)  (4.41)
m= 1

or, equivalently, as

00

<F,(M)> =  M q~ l Y j Bq,k(M)(q +  k)\/k\ .
k =  0

(4.42)

They are proportional to M*» for large M  (note, however, that (4.41) is different from the form (2.68) 
of the F  moments generally used).

When (4.33) and (4.40)-(4.42) are applied to the data they should show a power-law behaviour 
for large M,  if there are fractal structures present in the data.

The dynamical contribution to the G moments can be expressed by

<G9>dyn =  [<Gi >/<G?>st] M (1 , (4.43)

where ( G 9) st can be determined by distributing the n particles of an event randomly in Ay. The 
randomization procedure destroys short-range particle correlations, but does not alter the 
Bernoulli nature of the particle repartition in smaller bins discussed in Section 4.7.5. As a  result, this 
method does not eliminate the binomial, noise-induced multifractal behaviour, but just gives its 
behaviour.

When <G ,)sl is equal to <G9>, a trivial “dynamical” effect remains: a flat dn/dy  leads to 
a probability 1/M for a particle to be in a given bin and <Ga)dyn =  M 1 ~q.

The dynamical contributions to the slope xq can be expressed by

+  q -  1 , (4.44)



E.A. De Wolf et a l /Physics Reports 270 (1996) 1-141 93

order q

Fig. 4.32. Comparison of the exponents (j>q of Fq and 1 -  q — xqyn (respectively 1 — q -  of Gq in (a) ECCO 
Monte-Carlo simulations [241] and (b) 7r~AgBr data at 350 GeV/c [152].

where r “ is the statistical part of the slope. Subtracting the statistical contribution from xq gives

St d y n
q 4- 1 (4.45)

which can be directly com pared to the slopes (f>q obtained from the F moments [241],
Fig. 4.32(a) gives a comparison [241] of <f>q (crosses) and (q — 1 — xqyn) (full circles) from ECCO 

simulation results and shows that the deviation of xqyn from q — 1 is indeed close to the deviation of 
<j)q from zero. This observation gains support from the UA1 [233], hA [152] (Fig. 4.32(b)) and AA 
[156] analysis. The remaining difference can be attributed to the difference in the definition of <F,> 
and <G9>.

Fig. 4.32(a), however, also shows that t , yn cannot be simply replaced by xq (open circles) in 
a quantitative analysis. This is in agreement with the observation of Section 4.7.5, but has not been 
taken into proper consideration in recent experimental application on lh [230], hA [153] and AA 
[236] collisions.

To summarize the present experimental findings, the data indicate that the multifractal spectral 
function ƒ  (a) has, at least for large bin sizes, the properties expected from the theory of multifrac 
tals. The function / ( a )  is very sensitive to violations of universality and to details of present 
M onte-Carlo models. However, with the methods used so far, the multifractality analysis breaks 
down at finer resolution. The finite multiplicity effect -  statistical noise -  overwhelms and it is 
difficult to disentangle it from dynamical features. An advantage is that the <G?> can probe holes in 
the distribution, not just spikes. A recent extension of the definition of the G moments filtering out 
high multiplicities can claim some success in extracting the dynamical component. The advantage 
is that <G ,)dyn lends itself more readily to (multi)fractal interpretation and direct extraction of the 
Renyi dimensions according to (2.114), while <F9> is more closely related to the correlation 
function. Fig. 4.32 can serve as a rough link between the two. Whereas a higher-dimensional
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analysis could be useful also here, the low average multiplicity even in the highest energy 
experiments presently precludes further progress in this direction.

4.7.7. Universal multifractals
At first sight interesting approaches, recently applied [51] to obtain the degree of multifractality 

(or Levy index) n in multiparticle production, are the methods of Probability Distribution Multiple 
Scaling (PDMS) and Double Trace M oments (DTM ) [50]. In the first method, the fundamental 
scaling law is written in terms of the probability for the number of particles nm in bin m at resolution 
M  to be larger than a certain threshold nth — M y,

P(nm{M) >  M y) oc M ~ cM . (4.46)

The statistical function c(y) is the codimension function describing the sparseness of large inten 
sities nm. Like the factorial moments (2.68)-(2.70) or the extended G-moments (4.33), the D PM S 
method is a straightforward filter for spikes of large nm.

The PDM S m ethod is closely related to Large Deviation Theory, a topic in probability theory 
and of much theoretical interest in statistical mechanics [244]. Eq. (4.46) expresses a Level-2 Large 
Deviation property, describing deviations of the “empirical measure” nm from the infinite sample 
probability density; c(y) is related to a generalized entropy.

Fig. 4.33(a) shows data  [51] at different charge multiplicity (« =  6 and 14 are given as examples) 
presented in a  double-logarithmic plot, for various threshold values nlh =  M y. In spite of lim ita 
tions on statistics and on multiplicity n,„, a region of linearity can be seen for all multiplicities and 
thresholds. This is claimed to  be evidence for PDMS .

W hen c(y) is smaller than  the topological dimension D of the embedding space, it is possible to 
define a function D(}>) — D — c(y) corresponding to the classical fractal dimension. If a  sample of 
N s events is used in the analysis (instead of one event), c(y) can become larger than the topological 
dimension since different events can contribute to the same bin m. In Fig. 4.33(b) the function c(y) is 
shown for the same multiplicities. The dotted line corresponds to c(ys) =  D +  Z)s, where Ds is the 
sample dimension defined as N s =  M D\  For n — 20 e.g. this limit is crossed for a threshold of 
Hth =  3 with N 3 =  15. Singularities of that type are called “wild” singularities (not arising from 
Poisson-like fluctuations).

A param etrization of c(y) in terms of two parameters is provided by the theory o f universal 
multifractals [50],

for u =  1 , (4.47)

with

— +  —7 = 1  and 0 <  fi <, 2;
H u

¡1 is the L6vy index giving the degree of multifractality and C x is the codimension of the average 
field. The two param eters can be obtained from fits to  the results given in Fig. 4.33(a), bu t turn out 
to be highly correlated.
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The Levy index fx can, however, be determined independent of C * with the help of the D ouble 
T race M om ents [50], a generalization of the G moments. They are defined in (2.126). A D TM

analysis o f -J s  =  16.7 GeV data [51] yields /.t values ranging from 0.4 to about 0.9, increasing with 
multiplicity n. Such values are far from monofractality {¡x =  0), but considerably below n  ~  1.6 
obtained in Section 4.3.3 from factorial moments.

F o r multifractal theory, it is im portant to know whether the limit ¡x =  1 is crossed (signalling 
“hard  unbounded” singularities) or asymptotically approached from below (indicating “soft 
bounded” singularities). This question cannot be answered at low energies and needs high-energy, 
high-multiplicity data.

Extension to higher-dimensional space, though difficult in practice, is necessary since singular
ities can easily be washed out if a particular variable is not sensitive to them.
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In spite of the interesting potential of the “Universal Multifractal” idea, one should keep in mind 
that the m ethod suffers from the same limitations as the multifractal method based on G-moments. 
This is easily illustrated by considering again the Bernoulli-trials model discussed in Section 4.7.5, 
above. For the pure binomial noise (4.34), one has

Pii(nm(M) >  nth) =  / j/w(wlh, n -  nlh 4- 1), (4.48)

where Ix{a,b) is the incomplete beta function [16].
The logarithm of (4.48) is approximately linear in In M  for reasonably large M. Eq. (4.48) not 

only has all the features of the data plotted in Fig. 4.33(a), but even agrees numerically quite well. 
The co-dimension function c(y) is, for this simple model, approximately equal to nth, implying 
constant differences between the slopes for successive values of nth. The data in Fig. 4.33(b) show 
exactly this property.

Double Trace M om ents are easily calculated in the Bernoulli model. We find that the “Levy 
index” p is a smoothly increasing function of the event multiplicity n crossing the “hard un 
bounded” value /i =  1 near n =  30. We conclude that the data in Fig. 4.33 are merely reflecting 
statistical noise.

Dynamically useful information could possibly be extracted if Double Trace factorial moments 
were used instead of the usual moments. This is easily verified on the simple Bernoulli model and, of 
course, applies to G-moments as well.

4.8. Density and correlation strip integrals

4.8.1. The method
A fruitful recent development in the study of density fluctuations is the density and correlation 

strip-integral m ethod [130,245,246]. By means of integrals of the inclusive density over a strip 
domain, rather than a sum of box domains, one not only avoids unwanted side-effects, such as 
splitting up of density spikes, but also drastically increases the integration volume (and therefore 
the accuracy) at a given resolution.

Consider first the (vertical) factorial moments Fq defined, for an analysis in one dimension, as

y) 1  y  <M” > Qm

M  ' ■
(4.49)

Q
U f r i P d y i b - P M

m

The integration dom ain i2B =  thus consists of M  ^-dimensional boxes Qm of edge length
<5v. For the case q — 2, £2B is the domain in Fig. 4.34(a). A point in the mth box corresponds to a pair

y 2 1 <  8y( y u y 2) of distance |y! — y 2\ <  <5y  and both particles in the same bin m. Points with |_yx -  
which happen not to lie in the same but in adjacent bins (e.g. the asterix in Fig. 4.34(a)) are left out. 
The statistics can be approximately doubled by a change of the integration volume Ob to the strip 
domain of Fig. 4.34(b). F or q >  2, the increase of integration volume (and reduction of squared
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Fig. 4.34. (a) The integration domain of Pi iyuy i )  for the bin-averaged factorial moments, (b) the
corresponding integration domain Üs for the density integral [246], (c) illustration of a g-tuple in snake topology, (d) 
G HP topology, (e) star topology.

statistical error) is in fact roughly proportional to the order of the correlation. The gain is even 
larger when working in two or three phase-space variables.

In terms of the strips (or hyper-tubes for q >  2), we define as (vertical) density integrals

F î m
a

* * *  * y9)

p m
a*

(4.50)

and, similarly, the correlation integrals Kq(<5}>) by replacing the density pq( y u . . .  , y q) by the 
correlation function C , ( y i , ... , y q). (Note that in the literature the term “correlation integral” is 
often also used for the _F®(<5y).)

These integrals can be evaluated directly from the data, after selection of a  proper distance

-  JO-)2 +  (<t>i -  <l>j)2l il2,measure
2 __

(|y< -  y j  I  l ( y t or better the four-momentum difference
Qtj =  ~ ( P i  ~  Pj) )  and after definition of a proper multiparticle topology, the snake integral [107], 
the G H P  integral [130], or the star integral [247] as shown in Figs. 4.34(c)-(e), respectively.
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As an example, F^Sy)  is compared to F^cty) (and F s2iFl)  for the NA22 spike event [119] in 
Fig. 4.35(a) (no error bars are shown, because it is one event). Depending on whether the prominent 
spike lies entirely in one bin or is split across two, F 4 shows large fluctuations. These are practically 
absent in F% (Fig. 4.35(b)). Large improvement in one-dimensional (rj) and two-dimensional [tj — <p) 
analysis is also observed in [248].

How much the statistical errors are reduced can be seen on Fig. 4.36(a) where the NA22 data 
[142] are plotted as a function of — In Q2, with all two-particle combinations in an «-tuple having 
Qu <  <22 [130]. The following observations can be made:

(i) the errors and fluctuations are indeed largely reduced, as compared e.g. to Fig. 4.20(a),
(ii) with the (one-dimensional) distance measure Q2, the moments show a similarly steep rise as 

in the three-dimensional analysis (e.g. Fig. 4.11(c)),
(iii) contrary to the results in rapidity, positives and negatives behave very similarly here (only 

negatives are shown in Fig. 4.36(a)), but are now much steeper than all-charged,
(iv) F 1 is flatter for (H— ) than for all-charged or like-charged combinations.
The first two observations demonstrate the strength of the new method and the advantage of 

using the proper variable. The second two observations directly demonstrate the large influence of 
identical particle correlations on the factorial moments. These results agree very well with results 
from the UA1 collaboration [143] shown in Fig. 4.36(b) and with lh results [77,249].

M onte-Carlo simulations with F R ITIO F  2 show the following (see Fig. 4.37 for the case of F 1). 
The default “plain” version is unable to describe the all-charged NA22 data, but a “biased” version 
(including misidentified Dalitz decay +  0.25% undetected y conversions) comes closer to the data. 
However, not unexpectedly, both versions fail completely in describing the like-sign data, where the

4 .8 .2 . R e su lts

Fig. 4.35. (a) The fourth factorial m om ent o f the N A 22 spike event [119 ], (b) the density strip integrals for q =  2 -4  [246].
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model stays way too low. On the other hand, F |  for the (H— ) combination is largely overes 
timated when y-conversions are included, bu t saturates without.

4.8.3. Transverse-momentum and multiplicity dependence
As in Section 4.4.2 (Fig. 4.20(c)), UA1 [210] has studied the (J>2 dependence on the average 

transverse m om entum  pT of the event, but now in terms of density integrals in Q2. In contrast to the 
strong decrease (and subsequent slight increase of (j>2) with increasing pT observed for the 
one-dimensional analysis in Fig. 4.20(c), a strikingly flat behaviour (and slight increase above
0.6 GeV/c) is observed for the data (full circles) in Fig. 4.38(a). The discrepancy of PYTHIA (open 
circles) is even stronger here than in Fig. 4.20(c). The slope cj)2 starts at even negative values for 
small px, but increases fast with increasing pr to reach values overestimating (f>2 at pr >  0.5 GeV/c.

A similar disagreement is observed for the multiplicity dependence in Fig. 4.38(b). While the UA1 
data (full circles) decrease with increasing n, PYTHIA predicts a strong increase. In Figs. 4.38(c) and 
(d), it is shown that this violent discrepancy between PYTHIA and data is mainly due to like-sign 
pairs, so to the way Bose-Einstein correlations are incorporated into the model.
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4.8.4. Bose-Einstein correlations versus QCD effects 
O f particular interest is a comparison of hadron-hadron  to e+e"  results in terms of same and 

opposite charges. This is shown in Fig. 4.40 for q =  2 UA1 and D ELPHI data in [250] (note that in 
this figure the derivative of (4.50) is presented in small Q2 bins). An im portant difference between 
UA1 and D E L PH I can be observed on both sub-figures: For “large” Q2( >0.03 GeV2), where 
Bose-Einstein effects do not play a role, the e +e"  data increase much faster with increasing 
2log(l/<22) than  the hadron-hadron  results. F o r e +e~, the increase in this Q2 region is very similar 
for same and for opposite sign charges. At small Q2, however, the e +e~ results approach the 
had ron -had ron  results. The authors conclude that for e +e" at least two processes are responsible 
for the power-law behaviour: Bose-Einstein correlations at small Q2 following the evolution of jets
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at large Q2. In had ron -had ron  collisions at present collider energies only Bose-Einstein effects 
seem relevant.

Since string fragmentation causes an anti-correlation between same-charged particles, it is of 
interest to compare e +e~ results to JETSET in terms of strip integrals for the different charge 
combinations, separately. This has been done in [250] and, indeed, the Monte-Carlo results level 
off a t small Q2 and  fall below the data  for the same-charge results, while they describe the 
opposite-charge da ta  perfectly well (not shown here).
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The exact functional form of F |  is derived from the data  of UA1 [143] and NA22 [142], again in 
its differential form,5 in Fig. 4.40. Clearly, the data  favour a power law in Q over an exponential, 
double-exponential or Gaussian law.

If the observed effect is real, it supports a view recently developed in [165], There, intermittency 
is explained from Bose-Einstein correlations between (like-sign) pions. As such, Bose-Einstcin 
correlations from a static source are not power behaved. A power law is obtained (i) if the size of the 
interaction region is allowed to fluctuate, and/or (ii) if the interaction region itself is assumed to be

5 in  fact in this differential form F j(Q 2) is identical to  R(Q2) usually used in B ose-E instein  analysis. The on ly  difference is 

that it is plotted on a double-logarithm ic plot, here.
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a self-similar object extending over a large volume. Condition (ii) would be realized if parton 
avalanches were to arrange themselves into self-organized critical states [251], Though quite 
speculative at this moment, it is an interesting new idea with possibly far-reaching implications. We 
should mention also tha t in such a scheme intermittency is viewed as a final-state interaction effect 
and is, therefore, no t troubled by hadronization effects.

The effect on the factorial moments of adding Bose-Einstein correlations in FR1TIOF is 
convincingly dem onstrated for heavy-ion collisions in [252], Because of the large number of 
collision processes, other correlation effects are expected to play a much reduced role for this type 
of interaction and Bose-Einstein correlations, as a collective effect, can become the dom inant 
source of non-statistical fluctuations. Also from these results it is clear that more than one fixed 
interaction-volume radius is needed to reproduce the experimental results.

In perturbative Q CD, on the other hand, the intermittency indices </>g, are directly related to  the 
anomalous multiplicity dimension y0 =  (6ocs/7t)1/2 [253-257] and, therefore, to the running coup 
ling constant as. In the same theoretical context, it has been argued [254-257] that the opening 
angle x between particles is a suitable and sensitive variable to analyse and well suited for these first 
analytical Q C D  calculations of higher-order correlations. It is, of course, closely related to Q2.

A first analytical Q CD  calculation [254,255] is based on the so-called double-log-approxima- 
tion with angular ordering [99] and on local parton-hadron  duality [100]. A preliminary 
comparison with D EL PH I data [258] gives encouraging results, even including an estimate for the 
running of the strong coupling constant as.

4.9. Correlations in invariant mass

The previous section has illustrated the advantages of the correlation integral m ethod with 
a “distance” measure directly related to the invariant mass of the particle system. The results give 
additional support to the Fialkowski conjecture, mentioned in Section 4.3.2, from which could be 
anticipated th a t dynamical effects are most clearly revealed if the correlation functions and 
factorial moments are directly analysed in terms of Lorentz-invariant variables.

Evidently, there are m any arguments in favour of invariant mass as a dynamical variable rather 
than  the single-particle variables often used in early intermittency studies. Resonances, the cause of 
m ost of the correlations am ong hadrons, and threshold effects appear at fixed values of mass; 
Bose-Einstein interference correlations depend on four-momentum differences; multiperipheral- 
type ladder diagrams are functions of two-particle invariant masses, and so on.

The idea to study correlations as a function of invariant mass was, to our knowledge, first 
proposed in [259,260], The authors introduce a m ethod which is technically a differential version 
of the correlation integral method. It focusses directly on the correlation functions (cumulants) 
rather than on the inclusive density as in (4.50). Starting from the definition (2.21), one defines the 
correlation function

C2(Minv) =  p 2(Minv) -  Pl 0  Pi(M inv) , (4.51)

obtained after integration (in a suitable region of phase space) of C2(Pu p2) over all variables except 
M inv. Here, p 2(M inv) is the familiar normalized 2-particle invariant-mass spectrum. The “back
ground term” P i  <8) P i ( M inv) is the integral of p i(p i)p i(p 2) with M ltn  fixed. F or the data shown 
below, it is obtained from “uncorrelated” (“mixed ) events, built by random selection from a track
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pool. The same m ethod is used in evaluating the denom inator in (4.50). Higher-order correlations 
are obtained in a  completely analogous manner. We further utilize the function K 2(M¡nv) =  
C 2(M inv)/Pl ®  p i ( M inv), the normalized factorial cumulant of order two.

The analysis in [259], based on low statistics pp data at 205 GeV/c, demonstrates that 
K  2 ” (Minv) and K 2 ± (M inv) follow an approximate power law, written by the authors as

K 2{ M inv) =  (M 2nv)flx(0)~ 1. (4.52)

The notation reminds of the interpretation of (4.52) in terms of the Mueller-Regge formalism (for 
details see [259]). The power ax (0) is the appropriate Regge-intercept, X =  R for non-exotic pairs 
and X =  E for exotic ones. The ratio K 2 ~ / K 2 ~ was further seen to fall as M¡ñv > consistent with 
otR(0) — aE(0) =  1. N ot relying on Mueller-Regge theory, the authors argued that most of the 
correlations at small M inv are due to resonance decays into three or more pions and to interference 
of amplitudes [260].

The results already obtained in [259] clarify several issues which have troubled the interpreta 
tion of intermittency data. Among others, they demonstrate that different charge states should be 
treated separately since the M inv dependence is very different. This fact, obvious in M inv but much 
less so in rapidity, was not fully appreciated in early intermittency analysis and the crucial 
im portance of like-sign particle correlations remained hidden in “all-charged” analyses.

The m ethod of [259] has now been applied by NA22 [261] and D ELPH I [262]. Fig. 4.41 shows 
data on K 2( M inv) for a combined sample of non-diffractive rc+/ K +p collisions at 250 GeV/c in the 
central c.m. rapidity region —2 < y < 2 . K 2 ~ (Minv) has a prominent p° peak, but is quite flat near 
threshold. The peak in the first bin of Fig. 4.41(a) is attributed to contamination from Dalitz decays 
and y conversions. K 2 falls much faster. A fit of K 2 ~  (M inv)~p yields =  1.29 ±  0.04,
(3++ =  1.46 +  0.03, /3+ ~ —0.17 ±  0.02, in agreement with [259] and consistent with the relation
aR(0) — ocE(0) — 1.

NA22 also finds that cuts on transverse momentum or relative azimuthal angle 5<p strongly affect 
the shape of K 2 ~ (M inv), but have little effect on K 2 ~ (Minv) for M inv <  0.5 GeV/c2. This means that 
K 2 ~ (M ¡„y) at small M inv is essentially a function of M inv (or Q2) only, illustrating once more the 
advantage of M inv compared to other variables.

The data in Fig. 4.41 confirm the conclusion of Section 4.8 that the correlations in like-charge 
systems are at the origin of the strong increase of factorial moments for small invariant masses. 
W hether Bose-Einstein effects are solely responsible for the differences between (j^ t h*) and (n+7t~) 
pairs is not so evident. It suffices to consider [260] the contributions from decays of various 
resonances to  realize tha t the M inv-dependence near threshold for “exotic” particle systems must be 
stronger than for “non-exotic” ones. In a dual Regge picture, such differences translate into very 
different values of the respective Regge intercepts as in (4.52). It remains, therefore, to be verified if 
the M inv-dependence of the data  can be explained as a superposition of a “standard” Regge-type 
power law and a conventional Bose-Einstein enhancement.

As pointed out in [263], there is a feasible way to test this and even to give access to the relative 
strength of BE interference and exotic like-charge nn interaction. The idea is that particle 
combinations exist which are either (a) exotic, but not identical (e.g. K + 7i+ or K - tt~ pairs) or (b) 
identical, but not exotic (7 =  0 n°n°  pairs). NA22 [264] and ALEPH [265] data indicate that very 
short range correlations are indeed absent in the exotic Kn channel. This supports Bose-Einstein 
correlations rather than exotic Regge behaviour, but the point deserves further investigation.
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Fig. 4.41. JC2(Minv) for cc, + —, -----,and +  + pairs of tracks with c.m. rapidity — 2 <  y  < 2, in K^ / n ^ p  collisions at
250 GeV/c [261]. The solid line is a power-law fit (see text).

The possibility that the correlation functions depend mainly on invariant mass has interesting 
further consequences. These were analysed in [185]. Taking in (4.51)

C 2 ( M Inv) o c ( M ? nvr l B E ( M , nv) , (4.53)

with BE a conventional Bose-Einstein factor, exponential in Q, good agreement is obtained with
the NA22 second-order correlation integral data of (----- )-pairs. Integrating the correlation
function over all variables except 8y  gives F2 ~ (<5y) which also fits the data. Although C 2 does not 
explicitly depend on the transverse momentum of the particles, it turns out that F1[8y,pyi , p r i ) is 
larger and m ore steeply increasing than F2{Sy) for small Sy and small pT’s. The opposite happens 
for large pT’s. This is the “low-pT intermittency effect” seen in the NA22 and UA1 data (cf. 
Fig. 4.20(a) and Section 4.4.2). The explanation is simple: under the stated hypothesis, small pT for 
the two particles in a pair means, on the average, smaller invariant mass than for unrestricted 
transverse m om entum  and, therefore, larger and shorter-ranged correlations in rapidity. Enhanced 
intermittency follows as a consequence of kinematical cuts! The influence of the Bose-Einstein 
factor is easily checked in this simple model. It is found to be necessary in order to reproduce the 
correlation integral data and F2 for restricted pT but has, as expected a priori, very little influence 
on the pT-integrated F 2(<5.y). This explains early controversy over the role of Bose-Einstein effects in 
one-dimensional factorial moment analyses (Section 4.4.1).
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Fig. 4.42. K 2(M |nv) for (a) +  —, ( b ) -----pairs of tracks with c.m. rapidity —2 < y < 2 ,  in K +/n*'p collisions at
250 GeV/c [261], compared to FRITIOF2.

A study of the invariant-mass dependence of the two-particle correlation function has for the first 
time given clear indications as to why the hadron-hadron Monte-Carlo models fare so badly when 
confronted with factorial moment data. For example, Fig. 4.42 shows NA22 data for K 2 ~ (M inv) 
and K 2 ~ {M inv) compared to FRITIOF . The predicted shape of K 2 ~(M lm) is very different from 
the data, especially in the p°  region. It shows an enhancement at low mass which causes the 
correlation function to drop much faster than seen in the experiment. In the model, this structure is 
traced back to reflections from jj, rj' and co resonances. The model also fails to describe K 2 ~ ( M inv) 
since correlations are very weak or even negative, except for a threshold enhancement due to /?' 
decays.

These examples suffice to demonstrate that FR ITIO F (or rather JETSET) has serious shortcom 
ings and is unable to reproduce two-particle correlations in invariant mass. For correlations in 
rapidity and azim uthal angle this was seen earlier (Section 3.1), but the reasons remained obscure, 
mainly because of the insensitivity of these variables to dynamical correlations at small mass.

A study of the correlation function in terms of invariant mass clarifies the situation considerably. 
F o r NA22, the model was known to overestimate significantly the production rates of p°  and 
q mesons [266] and presumably also those of r\’ and co for which no direct measurements exist (see 
also [171] for hA collisions). This is now seen to distort heavily the M inv dependence of K 2. Also 
Bose-Einstein low-mass enhancements, most likely responsible for the fast drop of K 2 ~ {M inv) in



108 E.A. De Wolf el al./Physics Reports 270 (1996) 1-141

Moss (G eV /c’) Moss (G eV /c’)

Fig. 4.43. R = K 2(Mi„r) +  1 for e +e~ annihilation compared to the JETSET7.3 prediction with parameters tuned to the 
DELPHI data for (a) unlike-sign and (b) like-sign combinations [262],

the threshold region, are not included in the FR ITIO F model commonly used. Finally, we note 
that the values of K 2 in the considered mass interval are much smaller than the data. This is related 
to the width of the charged particle multiplicity distribution which is known to be too small in 
FR ITIO F . It affects the global magnitude of factorial moments and cumulants.

In Fig, 4.43(a), the discrepancy is shown to be quite similar for (-)— ) correlations in e +e" 
collision [262] and JETSET . As in hh collisions, the correlation is underestimated in the mass 
region below the p°. This discrepancy can be cured by decreasing the rj' and p°  production and 
increasing a> production in JETSET .

Fig. 4.43(b) gives the like-sign correlation for the data and JETSET without BE correlation. F or 
M inv <  0.6 GeV/c2, the experimental data are considerably higher than JETSET. This can be 
attributed to Bose-Einstein interference. However, it is striking that JETSET also predicts a strong 
rise towards threshold even without Bose-Einstein correlations. This is the tail of the Q CD  effect 
also seen in Fig. 4.39 and mainly due to multijet events. The difference between JETSET and data 
can indeed be removed by including BE correlations in the model, but the Q2 cut used (Q2 >  0.042) 
is too  high to be able to distinguish a power law from an exponential or Gaussian, as is done in 
Fig. 4.40.

To summarize, the above proves that the failures of models such as FR ITIO F and JETSET 
with respect to factorial moment and correlator data (Sections 4.2.3 and 4.6.3), are not necessarily 
due to “novel” dynamics. They are in first instance a consequence of a variety of defects -  such as 
incorrect resonance production rates and absence of identical particle symmetrization -  which 
belong to “standard” hadronization phenomenology. These defects should be eliminated before 
“new physics” can be claimed.
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For e +e~ annihilation at LEP energies, we have found that models such as JETSET-PS are 
much more successful than for all other processes. Besides the evident fact that this process is much 
better understood theoretically, QCD effects dominate and the model parameters are much better 
tuned to the data. Still, serious, recently observed discrepancies of e.g. JETSET-PS with LEP 
measurements on particle and resonance production rates are a clear sign that hadronization in 
e +e _ is in fact less well understood than commonly stated and needs improvement. It could be 
rewarding to investigate carefully and differentially the invariant mass dependence of the correla 
tions using the sensitive methods now available.

Originating mainly from the low invariant mass region (typically <1.5 GeV/c2), it is no t 
impossible that the observed correlations are quite independent of the process initiating the 
primary colour separation in the collision, being dominated by strong final-state interactions. This 
would explain “universality” in the sense discussed earlier.

M any authors argue that “intermittency” is somehow connected to (nearly scale invariant) 
perturbative Q C D  cascading. Others strongly contest this view on the argument that Q CD  
cascades have a limited extent even at LEP energies and are dominated by a very small number of 
“hard” emissions. In the former case, one may expect significant differences in the correlation 
functions at low mass for e +e _, on the one hand, and for hh, hA and AA collisions, on  the other. 
Preliminary e +e _ data, mentioned in Section 4.8, seem to support the last opinion. W hatever the 
final outcome, if differences are found, they should be used to clarify the respective roles of 
perturbative and hadronization phases in the different types of collision processes.

4.10. Genuine higher-order correlations

M ultiparticle production in high-energy collisions is one of the rare fields of physics where 
higher-order correlations are directly accessible in their full multidimensional characteristics, under 
well-controlled experimental conditions.

Three-particle correlations have been observed in the form of short-range rapidity correlations 
and higher-order Bose-Einstein correlations, but evidence for genuine higher-order correlations 
(i.e. after subtraction of all lower-order contributions) is very limited. While it was found to be 
completely absent in heavy-ion collisions, first evidence was given in Section 4.5 for their existence 
in hh collisions.

The correlation integral method turns out particularly useful for the unambiguous establishment 
of genuine higher-order correlations in terms of the normalized cumulants K q(Q2), when using the 
star integration [247]

K Î ( Q 2)

Y l i d y t O i i  -- ® i qCq( y u ... ,}>9)

R d y . 0 1 2  ••• p d y q)

(4.54)

with & ij  =  0 ( Q 2 — Q2j) restricting all q — 1 distances Qfj  to lie within a distance Q2 of the 
position of particle 1. The star-integral m ethod combines the advantage of optimal use of available 
statistics and minimal use of computer time. Since higher accuracy is obtainable, dynamical 
structures in the correlations can be studied in greater detail than with conventional methods.
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Fig. 4.44. InK*(Q2) as a function of —InQ2 for all charged particles as well as for like-charged particles [267],

Non-zero values of K * ( Q 2) increasing according to a power law with decreasing Q2 are indeed 
observed for E665 for third order [249] and for NA22 up fifth order [267] (see Fig. 4.44 for the 
latter).

4.11. Summary and conclusions

1. Intermittency, defined as an increase of normalized factorial moments with increasing resolu 
tion in phase space, is seen in all types of collision. Intermittency is a 3D phenomenon. The 
anomalous dimensions are small (dq =  0.01-0.1) in a one-dimensional analysis, but the fac
torial moments are considerably larger, and their resolution-dependence more power-like, in 
two- or three-dimensional phase space. Self-similarity in the dynamics of multiparticle produc 
tion is an attractive but not fully proven explanation.

2. The factorial-moment method is very sensitive to biases in the data. These have to be studied in 
detail before final conclusions can be drawn. Because of its sensitivity, the method has in fact 
proven to  be very helpful in detecting and tracing such biases.
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3. The logarithms of factorial moments satisfy a possibly dimension-independent linear relation 
which allows to determine directly ratios of anomalous dimensions. The observed order 
dependence of anom alous dimensions excludes a second-order phase transition (as treated in 
[183]) as the origin of intermittency. Valid in random  cascade models, the Ochs-W osiek 
relation shows that correlation functions of different order are inter-related in a specific 
hierarchical structure. An explanation in terms of dynamics has not yet been found.

4. In hadron-hadron  collisions, factorial moments and intermittency indices depend strongly on 
transverse m om entum  and are largest for low transverse momentum hadrons. This effect, also 
seen in rapidity correlations and azimuthal correlations, needs further study in e+e "  collisions 
and in parton  shower M onte Carlo’s. There are serious indications that “low-pT intermittency” 
is a reflection of the very strong dependence of correlation functions for identical particles on 
invariant mass. This has to be examined in more detail.

5. The multiplicity dependence in hh collisions agrees with what is expected from mixing of 
independent sources. However, the Fialkowski observation on possible universality casts some 
doubt on this type of interpretation. For a given density, heavy-ion collisions show more 
intermittency than hadron-hadron  collisions, possibly as a result of Bose-Einstein interference 
or other collective effects.

6. Factorial cumulants are direct measures of genuine higher-order correlations. These are 
present in hadron-hadron  collisions, in particular for small phase-space domains, but seem to 
be absent in heavy-ion collisions.

7. Factorial correlators reveal bin-bin correlations. The correlators Fpq increase with decreasing 
correlation length D, but only approximately follow a power law for D <  1. For fixed D, the 
values of Fpq are independent of resolution <Sy, a property predicted in the a-model, but also 
shared by models with short-range order such as FRITIOF . The powers (ppq increase linearly 
with the product pq of the orders, but are considerably larger than expected from FR ITIO F  
and from the simple a-model.

8. A recent extension of the definition of G moments filtering out high multiplicities, claims 
success in extracting the dynamical component. However, under the conditions prevailing in 
present hadroproduction experiments, multifractal and generalized multifractal methods seem 
unable to overcome the overwhelming dominance of statistical fluctuations.

9. The correlation (or density) strip integral strongly reduces statistical errors, as well as fluctu 
ations due to splitting of spikes. Using the squared four-momentum difference Qfj as a distance 
measure, an increase similar to that found in three-dimensional analyses is observed. This 
increase is caused by correlations among like-charged particles. Bose-Einstein interference 
must contribute significantly to the intermittency effect but is not power behaved in the 
conventional approach. Power-law behaviour in Bose-Einstein interferometry would imply 
a random  superposition of “emission centres” with possibly fractal properties. Pa rton  ava 
lanches in a self-organized critical state are an intriguing possibility.

10. The analysis of cumulants in terms of invariant mass, or related variables, reintroduced 
recently after early work, has helped in clarifying several issues in intermittency. The reasons 
behind the dram atic failures of models for hadron-hadron collisions are clearly revealed. They 
are in first instance incorrectly predicted particle and resonance production rates and the near 
absence of correlations (or even presence of anti-correlations) in identical particle systems with 
small invariant masses. These defects are not easy to cure in a consistent manner by simple
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param eter tuning and “new” physics may be needed to restore internal consistency in e.g. 
string-fragmentation models.

11. The hadronization mechanism in hadron-hadron collisions is based on identical physical 
principles and M onte-Carlo algorithms as those applied with apparently great success to 
“hard” processes, in particular to e +e _ annihilation. There is now growing experimental 
evidence that the mentioned discrepancies, first seen in hadron collisions, are also present in 
such processes. These should first be removed before commonly expressed claims that “No new 
physics is involved in intermittency” can be accepted.

12, The The relative importance of perturbative and non-perturbative QCD contributions to 
hadron correlations in e +e" remains controversial, also theoretically. This can be studied 
further with the new techniques now available.

5. Theoretical description

In parallel to the extensive experimental effort in quest for power-law behaviour, intense activity 
has developed on the theoretical side, to find acceptable explanations of the rapidly accumulating 
collection of data  on factorial moments. The meaning of “intermittency” in multiparticle processes 
is still the subject of much debate and no definite consensus has as yet emerged. Let us remember 
once again that we are dealing here with the problem of evolution of particle number distributions 
(or multiparticle correlations) in ever smaller bins.

A priori, the most direct road of attack starts from quantum chromodynamics (QCD), now 
firmly established as the theory of strong interactions. Unfortunately, since the problem of 
confinement is unsolved, QCD can only be used as a guideline to build phenomenological models 
for soft hadronic phenomena. While successful for e +e~ annihilation, such models remain at 
present unsatisfactory for most other processes, and in particular for hh collisions. The model’s 
deficiencies are often invoked in support for claims of “new physics”, but also this m atter is far from 
being settled.

From  the outset it is clear that phenomena such as “intermittency” are manifestations of 
dynamics in a, most probably, strongly non-linear regime of QCD. It is, therefore, quite likely that 
the observed phenomena are not very sensitive to the precise form of the Lagrangian, even though 
the general properties of the interacting fields (e.g. the vector nature of gluons) surely play a crucial 
role. Hence, a satisfactory description might be possible on the basis of quite general properties of 
non-linear systems as revealed by complex systems in many other branches of physics. This idea lies 
at the origin of various attempts to establish connections with models for turbulence, multiplicative 
cascade processes, “effective” field theory, the statistical mechanics of disordered systems, fractals,
phase transitions of various kinds and others.

A perturbative Q CD  approach to intermittency would provide a viable explanation if the 
hadronization of quark and gluon systems possesses the property of “early confinement” such that 
local parton -hadron  duality would hold. Various efforts in this direction have indeed established 
that parton (quark-gluon) avalanches exhibit (multi)fractal properties. These follow from the 
(fortunate) fact that the process possesses M arkovian properties. Further developments along this 
line will evidently improve our understanding of perturbative cascades. A direct connection with 
experimental observations is, however, not yet established.
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Numerous other interpretations of “intermittency” have been advanced and will briefly be 
described further below.

5.1. Simplest approximations

5.1.1. The linked-pair approximation
If the rapidity distribution does not change appreciably within a bin interval (this is justified for 

small intervals, at least) one can rewrite (2.71), approximating it by

i M I*

K̂ y) T̂TTTTa I  -  ,y<) ■ (5.1)

Since there are no statistically independent contributions to the cumulant functions Cq and K q, 
their arguments should be somehow linked. Studying the correlation of galaxies [184], it was noted 
that K s can be decomposed into sums of products of two-particle correlation functions, K 2 with 
overlapping arguments, in such a way that all multiparticle correlations are expressible as 
successive two-particle ones, so that the whole chain of particles becomes correlated. The last 
condition is necessary since we have learned that ^-particle correlations (q > 2) are indeed present 
in the data.

In this scheme, higher-order scaled cumulants [107] are written as

■ ^ ( y i j j ^ y 3) =  “ ô" X  ^ d y u y 2)^ 2 { y 2^y 3) >
^  p e rm

a 4

(5.2)

K4.(y i>y2, y 3 , y 4 )  =  - r r  £  K 2( y u y 2) K 2( y 2, y 3) K 2( y 3,y4 )  t (5.3)
^  p e rm

etc. Here, all the perm utations of indices 1, . . .  ,q  are summed over; the number of terms is equal to 
the denom inator of the factor in front of the sum. The num erator is an a priori arbitrary param eter 
for each order of correlation.

Even now, the numerical integration in (5.1) is hard to perform. For that reason it was suggested 
[107] to assume translation invariance of the cumulants K q, and to use the strip approximation (i.e. 
instead of integrating over a set of hyper-cubes with linear size 5y, one integrates over a strip along 
the main axis Y  and over the differences (; =  (yi+ j — j>,)). In this way (5.1) reduces to a  simple bu t 
approxim ate formula [26]:

K q * A q( K 2r l . (5.4)

Substitution of K q in (2.72) allows any factorial moment to be expressed in terms of the second 
moment so that, for example,

F 3 =  1 +  3K , +  A i K \  . (5.5)

As mentioned in Section 4.5, one can describe [26] the UA1 and UA5 data on factorial moments

at energies from y f s  =  200 GeV to ^fs — 900 GeV with constant values of A q for all intervals 8y. 
Still, the intermittency indices derived from the linked-pair approximation remain somewhat below 
the experimental ones. At the lower energy of the NA22 experiment, one gets a much larger value of 
A 3 if the above estimate of F 3 is used boldly [142]. However, the assumption of translation
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invariance is not really justified there and one can hardly use (5.5) on data which are averaged over 
a large region of phase space.

Apart from this problem, there are also more basic questions which remain unanswered. F or 
instance, even within the framework of the linked-pair ansatz, one could add to (5.2) a term 
containing a product of three K 2's (loops or ring graphs), as well as further terms with multiple 
links am ong the pairs.

Although a dynamical justification for the linked-pair approximation is lacking a t present, it 
should be remembered th a t similar approximation methods have proven their utility, e.g. in the 
theory of liquids. W ithin the Born-Bogoliubov-G reen-K irkw ood-Yvon (BBGKY) hierarchy 
scheme, they allow to “close” the otherwise infinite sequence of equations relating correlation 
functions of all orders. That the linked-pair ansatz may have more than accidental relevance is 
further indicated by the non-trivial fact that (5.4) with Aq =  (q -  1)! corresponds to a multiplicity 
distribution in 5y which is of Negative Binomial type with ^-parameter k =  i / K 2(8y) [109]. This 
two-param eter distribution satisfactorily describes a large variety of (non-averaged) mutliplicity 
data and also occurs as an  approxim ation to  the soft parton multiplicity distribution in QCD-jets 
[268-270]. F urther extensions of the linked-pair approach beyond those of [107,109] are treated 
in [271,272].

The structure of many-particle correlations has also been analysed in partially coherent radiative 
systems [201]. This approach is closely related to the linked-pair ansatz [109].

Conformal theories, treated in connection with intermittency in [273], provide an alternative 
[274] to the linked-pair ansatz. In such theories the ijth order irreducible Green function is written 
as a product of two-particle ones to the power 1 ¡{q — 1). Taking into account the q(q — l)/2  
perm utations of all particle indices, one finds

K q »  Bq( K 2f 12 , (5.6)

instead of (5.4), which also fits the experimental data reasonably well [274].

5.1,2. The singularities o f  the correlation functions
According to  relations (2.68)-(2.72), the singular behaviour of the factorial moments at small 

rapidity binning implies tha t the correlation functions are singular for small separation of their 
arguments. In  particular, the leading singularities of the correlation functions p 2 and C2 should 
coincide with the singularity of the corresponding factorial moment F2, if the formal mathematical 
limit <5y -»-0 is considered. For

f a  ~  (¿O')“ *1 (<5y-»0) (5.7)

one should get

C 2{y\i y i )  ~  C(2L)(yi, y2) |y i — yi\ 9 +  C (2N)(y i,y 2) (5.8)

with ¡3 =  <¿>2, C (2L) is a  regular function of (yj — y2), while C 2N) can contain non-leading singularities 
(less singular than  the first term).

A two-component model of this kind has been used in [275], where C 2N) (and similarly for the 
higher-order correlations) is chosen to be a regular function which results in a constant additive 
term of F 2. The origin of the singular term has been ascribed in [275] to a phase transition. For
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a singular term  to be dom inant, it must overwhelm F2 even numerically. However, the experi
mental data discussed above indicate that this is not the case. Linear dependence in a  double-log 
plot is observed over quite a large background in the available region of Sy. This implies that in this 
region the integral contribution F 2L) of the singular terms in (5.8) to F2 is rather small so that

(5.9)

Such a situation provides [275,178] new possibilities with /? different from <t>2, since in that case
one gets

ln F 2 «  ln (l +  F f )  +  j ?(2L)/(1 +  F\'?) . (5.10)

It could even suggest a logarithmic dependence of F (2L) on S y . F ^  ~  log(5y, i.e. a logarithmic 
singularity of the correlation function for coinciding rapidities. However, such a behaviour is 
indistinguishable from a power-like one for small exponents /? and the rather restricted range of 
rapidity intervals (e.g. 0.1 <  5y  <  1) in which one usually looks for this dependence. Actually, if 
p l o g S y  <| 1 one gets [178]

l n F2 «  In (1 4- F 2N)) — %- (<5y)_ i  «  a2 — <£2ln<5y
Pi

(5.11)

where

a 2 =  ln (l +  F (2n>) +  C ^ / p l  and <£2 =  ¡3 C ^ / p l (5.12)

Herefrom, one would expect the intermittency exponent to be much smaller than the correspond 
ing strength of the singularity of the correlation function, i.e. 4>z <  /?.

The difference between logarithmic and power-like singularities may become observable for 
higher moments at small 5y as an upward curvature appearing on log-log plots for power-law 
dependence. This would be more noticeable for smaller Sy, for higher q and for larger values of /J. 
Still, one should not enter into the region of extremely small Sy, where the empty-bin effect may 
dom inate and tu rn  down all the curves.

The existing experimental data on factorial moments are not in contradiction with the above, 
although no clear signal of an upward curvature of higher moments is seen because of large 
irregularities appearing at small 5y and large q. These irregularities are suppressed if the method of 
correlation integrals [130,245,107,143] is used, where the binning procedure is no t fixed but 
naturally follows the event structure. This has been discussed in Section 3.8. In fact, the singularities 
are still better exposed if factorial cumulants (2.71) are used instead of factorial moments [177].

5.J.3. Intermittency and Bose-Einstein correlations
One of the possible sources of increase of factorial moments at small bin sizes is the well-known 

attraction of identical Bose-particles (pions) when their momenta are very close. Therefore, one is 
tempted [202] to the extreme supposition that “intermittency” is governed by Bose-Einstein 
correlations, i.e. by symmetry properties of fields but not by their dynamics. As was shown in 
Section 4, the experimental data  do indeed give some indications on the relevant contribution of 
such an effect. In general, the introduction of BE correlations tends to reduce the disagreement 
between experimental data and M onte-Carlo models. However, it was also shown there that the 
dynamical part is non-negligible and, consequently, is of main concern to us.
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Referring the reader to the more specialized review of the subject in [276], we would like just to 
point out that the same physics effects can become more (or less) pronounced depending on the 
corresponding choice of the variable in which it is displayed. In particular, it is shown in [276] that 
the rapidity variable is suitable to reveal the dynamical intermittency and to suppress the 
Bose-Einstein contribution to factorial moments. At the same time, when analysed as functions of 
squared 4-momentum transferred between pions, the factorial moments get the power-like increas
ing share of BE correlations which shadows the true (dynamical) intermittency. Therefore, the 
power-like behaviour in that variable neither proves nor disproves dynamical intermittency. One 
should keep this in mind when looking at the corresponding experimental data. Surely, for 
quantitative estimates M onte-Carlo calculations are necessary with full account of the indefinite
ness in the description of the BE effect itself.

5.2. Dynamical approaches

5.2.1. Various theoretical models
From  a theoretical point of view, experimental results are best approached via quantum  

chromodynamics (QCD). Attempts in that direction are further described in Section 5.2.6. U nfortu 
nately, the application of Q CD  to soft processes involving small momentum transfers is quite 
limited since strong non-perturbative effects are involved (unless we use additional assumptions, as 
the local parton-hadron  duality hypothesis generalized to correlations of any order). Hence, we are 
compelled either to construct general relations like those of Section 2 and the previous section, o r 
to develop phenomenological models that fit experimental distributions by adjusting a number of 
free parameters.

By now, many phenomenological models have been proposed. Ideas inspired by Q CD  have been 
used in parton  shower models and in their phenomenological counterparts: the dual topological 
model and quark-gluon string models [73,74,76,277-279]; in coherent gluon je t emission 
(Cherenkov gluons, in particular) [280]; in the cold quark-gluon plasma model [192]. Models of 
a still more phenomenological nature have been tried, such as cluster models [67,281-283], clan 
models [284] and narrow hadron jet emission [179]. Whereas in all these models definite 
dynamical mechanisms are proposed for the origin of the fluctuations in multiparticle production, 
they still suffer from one im portant deficiency: they do not reveal the nature of the scaling laws 
observed for factorial moments at small bin sizes.

From  that point of view, one would prefer the random  cascade models [21,22,285] and/or the 
general approach of phase transitions [275,193,286,287]. While the cascade models rely on 
analogies with turbulence theories and lead to phase transitions, general considerations of the 
transition from parton  to hadron phases of the process are based on im portant properties of strong 
coupling field theories reminding of QCD lattice computations and the conformal group sym 
metry. Both approaches lead in quite a natural way to scaling behaviour of factorial moments and 
are preferred as heuristic tools. However, to date they cannot compete with phenomenological 
M onte-Carlo models in providing computational results comparable with experimental data at the 
same level of precision. We shall discuss them separately at some length later, together with 
im portant ideas of intermittency and fractality, but first we shall describe a variety of phenom 
enological models applied to the fluctuation problem.
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First of all, we should mention the furthest developed Monte-Carlo versions of Q CD  inspired 
models [73,74,76,83,85,277-279] of parton showers or quark-gluon strings. Qualitatively, these 
models describe the behaviour of the two-particle correlation function C2(y i,y 2) observed experi
mentally, showing the signature of short-range correlations. However, they cannot pretend to fit 
them quantitatively in hh collisions for all topologies and cut-offs. All the models predict noticeably 
smaller values of intermittency indices than the experimental data. Such models also fail to describe 
the probability distribution of maximum particle number per event at a given resolution 5y  
[288,289],

As discussed in Section 4.2.3, for e+e~-annihilation the situation is still controversial. Initially, 
the D ELPH I collaboration, working at the Z° peak, claimed agreement with the LU N D  parton 
shower model. Later, increasing statistics tenfold, it finds that the agreement only holds at the level 
of 10-20% (see Fig. 4.7(d)) [136]. However, in general the situation is better here than in hadronic 
reactions. In nucleus-nucleus reactions, these models fail to describe the damping of spectator 
particles observed in experiment [290]. Further, more detailed studies are needed.

Thus, we see that fluctuations appear to be a stumbling block for phenomenological models. They 
meet with difficulties when confronted with measured factorial moments, in particular in h ad ro n - 
hadron collisions.

In earlier days, no data existed on factorial moments for small bins and information on strong 
fluctuations in the num ber of particles inside such bins existed only for individual events. 
A distinctive feature of the fluctuations was the azimuthal symmetry of particles belonging to the 
spike. The whole event showed a noticeable ring of particles in the plane perpendicular to the 
collision axis. Precisely for this reason, the very first attempt to explain such fluctuations was based 

on an analogy with Cherenkov photon radiation.

The hypothesis of coherent emission of gluon jets [280] (involving, in particular, the 

Vavilov-Cherenkov mechanism) predicted that these jets should be emitted in a narrow pseudo 

rapidity bin at rather large angles in the center-of-mass system of the colliding hadrons. All 

subsequent models did not predict any particular polar angle dependence for the dense groups of 

produced particles. This specific feature was experimentally verified in pp-interactions at 205 and 

360 GeV energies [291]. It turned out that the distribution of centres of dense particle groups on 

the pseudo-rapidity axis contained several peaks superimposed on a fairly strong background. 

Consequently, the proposed mechanism of coherent jet emission in hadron interactions probably 

does exist but is not dominant. It could provide the only distinction [291] between pp and pp data 

available from ISR, but no analysis of that kind has yet been performed. The ring-like events were 

observed in earlier cosmic-ray experiments [114-117] and in recent studies of nucleus-nucleus 

collisions [292]. Nevertheless, other mechanisms must be involved since intermittency is also 

observed in e +e~-annihilation, where the conditions for coherence seem unlikely to be satisfied.

Large fluctuations may arise in an extended blob of a cold quark-gluon plasma [192]. The 

appealing feature of such a model is the relationship between this phenomenon and the production 

of soft and low-pT hadrons, lepton pairs and photons. However, this model faces problems in 

explaining the large values of intermittency indices in electron-positron annihilation compared to 

hadronic and nuclear processes, since, contrary to present experimental results, it leads one to 

expect that the effect is largest in nucleus-nucleus collisions.

Models based on clusters [282,283] or clans [284] are more flexible in fitting factorial moments, 

since they involve several free parameters. It has been demonstrated [192,293] that the existence of
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clans leads to a power-law increase of factorial moments for smaller bin sizes. No quantitative 
comparison with experiment has been attempted, however. As to cluster models, in some cases they 
succeeded in describing the multiplicity distribution in symmetric rapidity bins of various sizes 
[67,281] and of the two-particle correlation function. The data available at that time were limited 
to rather large rapidity interval sizes (<5y >  0.5). In smaller regions, however, simple cluster model 
fail completely (see Figs. 4.4(b), 4.20(c) and 4.23(a)).

M ultiparticle production is described somewhat differently in [294,201], where particle emission 
is explained by two types of sources -  chaotic and coherent.

Some of the above approaches attempt to describe multiplicity distributions in varying rapidity 
bins in terms of the negative binomial distribution (or modifications thereof). In the cluster model, 
this is accomplished by varying the cluster parameters. In the clan model, the negative binomial 
distribution is obtained by compounding a Poisson distribution for the number of clans with 
a logarithmic distribution for their decay. In the statistical model with two types of sources, the 
negative binomial distribution naturally describes the chaotic sources, while the coherent sources 
contribute a Poisson component.

Even though the negative binomial distribution can be phenomenologically used to  fit experi
mental data in the very first approximation, there are definite distinctions from it in experiment. 
Besides, the asymptotic Q CD  predictions disfavour it revealing new features [295] of multiplicity 
distributions. In particular, the NBD cumulants are always positive, while perturbative Q CD  
predicts negative values (and oscillations) of the higher-order cumulants. The pQCD prediction is 
supported by experiment for the case of the total rapidity range.

5.2.2. Intermittency and fractality
In most cases, the models considered above need to have their parameters adjusted to be able to 

fit (if at all) the da ta  on factorial moments. Power-law behaviour of factorial moments is m ost 
naturally obtained for cascading mechanisms and in phase transitions, as we shall see later.

The concept of intermittency has been borrowed from the theory of turbulence. There, it 
represents the following property of a turbulent fluid: vortices of different size alternate in such 
a m anner as to form a self-similar structure. They do not fill in the whole volume, but form an 
intermittent pattern  alternating with regions of laminar flow. Mathematically, this property is 
described by a power-law dependence of the vortex distribution moments on the vortex size. This 
is the reason why the exponents <f>q in the power-law dependence of factorial moments 
Fq(5y) oc (^y)~,|,‘, in (2.110) are called “intermittency indices”.

As mentioned in Section 2.4, the self-similar nature of vortices directly implies a connection 
between intermittency and fractality. Fractals are self-similar objects of a  non-integral dimension. 
The fractal dimension is a  generalization of ordinary topological dimensionality to non-integers.

M ore complicated self-similar objects exist, consisting of differently weighted fractals with 
different non-integer dimensions. They are called multifractals and are characterized by generalized 
(or Renyi) dimensions Dq which depend on the rank q of the moment of the probability distribution 
over such objects. The analysis of multifractals according to the Levy indices goes beyond the 
simple definition of intermittency.

The formal definitions are given in Section 2.4. For more details, we refer to the review papers
[44,45,47] and references therein. In connection with multiparticle production, fractals were first 
mentioned in [124,126-128].
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Somehow, the concept of fractality goes beyond a purely formal definition of intermittency, by 
connecting the observed dimensionality with the geometrical and thermodynamical properties of 
an object, as well as with the properties of the distributions over this object [44,130]. The 
power-law behaviour of factorial moments reveals the fractal structure of rapidity distributions as 
decomposed in individual events. Its relation to geometrical and thermodynamical properties is 
discussed below. In string models [270], the self-similar behaviour of fluctuations is ascribed to the 
fractal nature of the phase space available for subsequent branchings that is formulated in [296] as 
a “plumber view” of multiparticle processes.

Sometimes, intermittency is ascribed [297] to the fluctuations of the geometrical sizes of emitting
sources.

Some caution is necessary when applying these concepts to multiparticle production. As 
discussed in Section 4, finite statistics, the rather small number of particles produced in an event 
and, especially, in a given cell, the m ethod of bin splitting, the rather restricted range o f bin widths 
over which the power-law behaviour is observed, all influence the final conclusion. This is described 
in more detail in [45,298].

5.2.3. Random cascade models 
In turbulence, intermittency was first demonstrated in cascade models [299], Modifications of 

these, as applied to multiparticle processes, are rather popular nowadays [21,22].
In such models, one considers a series of self-similar steps in partitioning phase space. Let us 

denote by M  the num ber of bins obtained by breaking up the total phase space into X parts at each 
of the v iterations of the self-similar cascade. Thus M  =  Av (=  A V(by  for a  total rapidity range A Y  

divided into bins of width <5y). Random cascade models involve a probability distribution r ( W )  
with corresponding moments

( W q) =  d W r { W ) W q , ( W )  =  1 (5,13)

The function r ( W )  induces density fluctuations as the rapidity window is broken up  into ever 
smaller bins. The density P m in the ?nth bin is given by the product

P = i n w  = 1 __
m M „ U  " ~~ M  <p(m)> ’

(5.14)

where the sequence of indices n defines a path  leading to a given bin m with density p(w). O ne 
assumes that there exists a range of scales inside of which the weights W  are constant, i.e. they do 
not depend on the scale at which they operate.

Herefrom, the interm ittent character of the models follows as:

Fq =  <(M PJ*> =  ( n  W i ) =  (AY/8y?*<w '>l]n x
n= 1

The intermittency indices are equal to

0„  =  l n < i y « > / l n A ,

(5.15)

(5.16)

i.e. random  cascade models possess a multifractal spectrum [44].
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The simplest type of distribution r (W )  is the subclass of so-called a-models [300] given by the 
two-level probability distribution:

r (W )  =  pS (W  -  W -)  +  (1 -  p)S(W -  W +) , (5.17)

where 0 <  W -  <  1 <  W+ and p W -  +(1 — p)W+  =  1 because of the normalization condition
(5.13). The density enhancement W+ >  1 occurs with probability (1 — p) at each step of the cascade, 
while a depletion W - <  1 is present with a probability p. Combined, they create “spikes” and 
“holes” in the rapidity distribution. The intermittency indices are given by

4>q ^ \ n [ p W i  + ( 1  - p ) W l 2 / \ n X  . ( 5 . 1 8 )

The study of moments and multifractal analysis reveal new interesting features. (Let us mention 
that the a. model is reduced to the /? model for W -  =  0 and describes a monofractal in that case). As 
the parameters p and a  are changed, the model predicts various phase transitions [45,301,194]. 
The moments of factorial moments are useful to reveal these transitions due to the fact that the 
distributions of factorial moments are extremely irregular by themselves [302], Introducing the 
normalized moments of moments and ascribing to these a power-law behaviour at small bins of 
the form

<Z?> =  x  (¿y)P*'<FWy)>  *  W ' "  > (5.19)

one can analyse, in the framework of a-models, the dependence of the indices ePiq on the parameters 
of the model. As discovered in [301], this dependence defines four regions in the parameter space, 
which are reminiscent of four different phases. The indices ePi9 act as order parameters.

The same conclusions have been obtained when studying [194] the normalized factorial 
correlators Fpq/F pFq. Another im portant property of these correlators is their independence of the 
bin width [21,22]. This property has been confirmed by experiments (see Section 4,6). However, the 
a model does not predict the correct dependence on the distance between bins. It predicts 
power-law behaviour with an exponent

4>pq =  $p + q $p &q (5.20)

related to the usual intermittency indices. The experimental values do not follow a straight line on 
a double-log plot. Moreover, there are no finite intervals where they satisfy the above relation. 
When roughly approximated by a straight-line fit, the experimental values of (j)pq are larger than 
those of the a-model.

However, one should keep in mind that this is a toy-model, which could pretend to be valid for 
asymptotically long cascades, i.e. for extremely high energies and multiplicities. Otherwise, one 
should develop M onte-Carlo programs [298] losing the beauty of analytical formulae. In fact, it 
has been clearly shown for such a well-known mathematical model as the Cantor set [303], that it 
is not an easy task to reveal its fractal dimension (known a priori) using factorial moments, if the 
num ber of iterations is finite.

Nevertheless, the heuristic value of a models in describing qualitative features of the process is 
rather high since, in particular, they suggest the possibility of phase transitions. The nature of the 
transitions and their relation to the quark-hadron  transformation are not clear yet. An interesting
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observation is the existence of “non-therm al” transitions similar to those in spin-glass systems. 
They differ from the usual “order-disorder” transitions by producing “different order” in different
regions of phase space, so that one may call them “clustered order-disorder” transitions. In that 
case, the intermittency indices increase with increasing rank faster than linear. Analogies to 
statistical-mechanics systems [193,194] provide further insight into the nature of the transitions.

5.2,4. Field-theoretical approach and phase transitions 
Besides the scenario of a self-similar cascade, as another extreme, a higher-order quark-hadron  

phase transition has been proposed to explain strong fluctuations leading to intermittency patterns 
[275,287]. Evidently, the statistical mechanics description is most useful here. Hadronization of 
a quark-gluon plasma becomes the origin of exceptional events with large fluctuations observed 
above a strong background of conventional events. Such a point of view is supported by studies of 
a two-dimensional lattice of Ising spins [304,182], which shows that intermittency appears at the 
critical temperature. The intermittency indices are directly related to critical exponents of the 
system. Similar features have been found for the 5-state Po tts model on the Bethe lattice [305] at 
the phase transition but without long-distance correlation. Clear fractal structure is also observed 
for S U {2) gluodynamics near the phase-transition point in lattice calculations [306],

The scenarios of cascading and of phase transitions need not contradict each other, if one accepts 
the point of view that the role of a quark-hadron transition is to fix the fractal pattern formed by 
cascading. The fluctuations are “frozen” at the transition point and can be computed by just 
considering this point.

A well-defined field-theoretical procedure exists to treat fluctuations and phase transitions in 
common media [307], It requires, first of all, the definition of an order parameter and its treatment 
as an effective fluctuation field. In case of multiparticle production, one could choose the rapidity 
density distribution of particles in individual events p^)(y) (or a function of it) as an order 
param eter which fluctuates about its inclusive average p(y)  at each rapidity value y. Its function as 
an order param eter is clarified by the local parton-hadron  duality hypothesis, which has been 
successful in describing the experimental data for electron-positron annihilation processes. This 
hypothesis states that the average values of p (e)(y) at partonic p(p) and hadronic p(h) levels differ by 
a (for all rapidities) common numerical factor. In particular, if one defines [287] the fluctuation 
field as

8(y) =  Lp M / p M  -  1 , (5.21)

then its average in the hadronic phase is equal to zero, while it differs from zero at the partonic 
level: (e(y))(p> =  P w i y ) / P w i y )  — 1 =  const. Other possible choices for the fluctuation field exist 
(for example, p U2(y) [275,286,308] or p  — p (h) [273]). They have advantages and disadvantages 
which we shall not discuss here.

The probability of a fluctuation is given by

W(s)  =  Z -1 exp[ — J7^)] , (5.22)

Z  — De exp [ — F(e)] (5.23)
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where De refers to the functional differential, F ( e )  is the free energy and 2  is the partition function. 
Adding to F{s) a term J(y)e(y)  with an external current J(y), one obtains the irreducible Green 
functions:

< « !...s,> =  d‘‘ l t i Z / 5 J { y 1) . . . 8 J { y q) \J=0 , 

which are related to correlation functions, so that, for example (we omit the index h),

/„  _ v P i i y u y z )  , _  r, , ^
< ^ 2 / =  "n t , \ 'xm(„ \ ~ 1 =  K * ( y i > y v  ■p{y\)pKyi)

The factorial moments are easily obtained as

(5.24)

(5.25)

Fq{ h )  =  (Sy)1
r&y

d C i ...
o

dy

0
¿Cq- i r q(C ..........C , - i ) (5.26)

where

C i=  y i+1 — yi and rq =  p { y u ... , y q) / p { y i ) ... p ( y q) . (5.27)

At first sight, the fluctuation field theory is not directly related to the underlying QCD. Yet, these 
theories are connected through the fluctuation pattern of individual events p(e)(y), which should be 
described by both of them if they pretend to be valid. Thus, our guesses on the fluctuation field e(_y) 
reflect special features of cascading and confinement in QCD.

For small fluctuations, one can represent F(s) by a Taylor series

F(e) =  F 0 +
~b de

dy
J 2 U y J

a
+  - £  +  cs +  ds* -1- • * *

3 (5.28)

which corresponds to the G inzburg-Landau Hamiltonian when c =  0, d ^  0 and all higher terms 
are equal to zero. It has been found [188] that some scaling indices (but not the critical exponents) 
have universality properties in this approach.

For free fields, i.e. c =  d 0, one gets

<£i£2>/ =  y e x p [ - |y v -  y 2\ / { ]  ,

y =  n^/b- £ =  (b/a) 1/2

(5.29)

(5.30)

This exponential form fits the two-particle correlation function qualitatively (and is often used, in 
particular, for nucleus-nucleus collisions [217]), but it does not provide intermittency a t small Sy. 
One should remember that it is related to the free-field Lagrangian but not to the Ginzburg- 
Landau potential and, therefore, describes usual short-range correlations without any phase 
transitions. One should also note that the approach is formulated in momentum space and not in 
configuration space.

One is tempted to conclude that fluctuations are strong at small rapidity intervals and that the 
perturbative approach fails. The phenomenon of intermittency should be described by a strong 
coupling field theory, where perturbative methods do not work. In particular, the renormalization 
group approach and conformal theories have been tried [287,273] and have provided power-law 
behaviour of Green functions and factorial moments at small bin widths. So, it seems rather
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reasonable to fit the correlation function by an expression

C z iyu yz )^ : - ,— —T^exP [ —I j ' i - y i M Q  ( * < i )  (5.31)lyi — y 21

for all rapidity separations. F or rapidity separations smaller than the correlation length £ one gets 
pure power-law dependence of the correlation function due to a phase transition phenomenon. The 
associated singularity should soften energy and transverse momentum spectra. In the simplest 
approximation, intermittency indices increase linearly with their rank.

Let us stress an im portant difference of the above consideration with the previous treatm ent of 
phase transitions. The correlation length £ does not tend to infinity and the exponential law is no t 
replaced by a power law at large 6y, as one is accustomed to. Instead, the power law appears at 
small <5y(<5y -4^), and does not influence the dependence at large rapidity. This happens, because 
rapidities play now the role of coordinates in the usual treatment, so that one has to deal with the 
ultraviolet (not infrared) stable point of the G ell-M ann-Low  function. One can speculate that 
particles lying far apart on the rapidity scale reveal the dynamics of the process with a  finite 
correlation length related to a particular form of the Lagrangian, while those at nearer points 
remind of the self-organizing critical processes with a scaling law not tightly connected to 
a particular form of the Lagrangian (sandpile phenomenon). Thus, correlations appear as “frozen  
(due to hadronization) sounds” of cascading.

Similar problems have been discussed in the framework of Feynman-W ilson fluid models 
[275,286]. One should introduce the notion of temperature, additional assumptions on thermal 
equilibrium, on K adanoff scaling at the critical temperature, on the relative role of conventional 
and stochastic (or quark-gluon plasma) components, and so on. Imposing special boundary 
conditions [309] on the grand canonical partition function, one can relate Kadanoff scaling in the 
fluid to K N O  scaling in multiparticle processes and describe the fractal properties of the fluid in 
a wide range of scales. Form ula (5.31) appears to be valid for correlation functions of the 
conventional hadronic system, but for a system at the critical point, pure power-like behaviour 
with a different exponent is restored. One is therefore lead to consider the whole process in the 
framework of a two-component (conventional 4- critical) model.

The same approach has been extended [310] to a multidimensional analysis of intermittency 
using, however, the assumption that the correlation functions factorize in rapidity and transverse 
momentum. The predictions for factorial moments differ from QCD predictions. The factorization 
hypothesis allows to proceed analytically and to relate intermittency to fractal properties of the 
system in original space-tim e (this problem has been addressed also in [128,311,165]) but looks 
rather artificial for any field theory (QCD included). For instance, if one assumes that conformal 
symmetry is responsible for intermittency [287,273], one obtains non-factorizable Green functions 
and the predictions differ from the above-mentioned ones due to the mixing of longitudinal and 
transverse m om entum  components, inherent in field theories. We shall see, however, th a t conform 
al theory and Q CD  also differ.

Numerical values of intermittency indices can be calculated in the conformal scheme and agree 
qualitatively with experimental findings. Again, the phase transition plays a crucial role.

Studies of the role of phase transitions in multiparticle production are still in their infancy 
and have, until now, provided qualitative results only. Also the relation between hadronization
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and phase transitions in the simple cascade models treated in the previous sub-section is not 
yet clear.

The relative role of parton cascading and hadronization is another matter of debate. The 
problem would be solved if extreme proposals were valid. Indeed, parton cascading with an 
“infinite” num ber of steps would provide intermittency indices quadratically increasing with their 
rank (this corresponds to “wild” or “hard” singularities). Phase transitions, on the other hand, yield 
monofractal behaviour with a linear increase of the indices. In reality, the two extremes must be 
modified so that finite cascading would lead to a slower increase, while the next operator-product 
expansion terms for a phase transition would induce a faster than linear rise of the intermittency 
exponent. Such problems have as yet not been treated.

5.2.5, The statistical mechanics formalism 
Statistical analogy is a powerful way to analyse properties of chaotic dynamical systems [312], in 

general, and of multifractals and cascade models, in particular [313,193,45]. It rests on the 
possibility to define a partition function Z(q) of the system in the following way:

M

Z(q) =  £  p i ,
m= 1

(5.32)

where

Pm P(m) IM(p{m) ) (5.33)

is a normalized probability weight on the ensemble of bins (m) and p(m) is a random  (rapidity) 
density registered in each bin m.

The relation to multifractal (or intermittent) properties of a system is established if one considers 
systems for which the probability inside a box m is proportional to a power am of the box size and 
the number of degenerate boxes (with the same value of am) follows a power law as well. Then, 
assuming a continuous limit, one finds as in (2.118)

Z(q)
*a+

da , (5.34)
a

(integration running between maximum and minimum zeros of ƒ  (a)), wherefrom one easily obtains 
the multifractal spectrum of the system /(a )  (see, for example, [44,47,129]).

ƒ  (a) via the relation

/  (« ) =  - « ! £

where a is defined as

intermittency

<j>a +  1 (5.35)

a (q) =  1 -  dcfrjdq  . (5.36)

The interpretation of ƒ  (a) is transparent since it weights the number of degenerate boxes. It, 
therefore, corresponds to the entropy in statistical mechanics. In a similar way, the rank q may be 
interpreted as an inverse “temperature” ƒ? =  1/T and the relation (5.35) corresponds to  the usual
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S =  — dF / d T  , (5.37)

where S is the entropy and F is the free energy, whose “temperature” dependence is provided now 
by

m  =  (0 , +  1 ) /q  =  1 - F  . (5.38)

Two features of this analogy are particularly useful. On the one hand, application of the 
thermodynamical formalism allows for coverage of multifractals by boxes of different sizes, i.e. for 
a more precise description of individual events. This has been used in proposals of correlation 
measures with non-uniform coverage [130,245,143]. O n the other hand, the multifractal treatm ent 
admits an extension of the thermodynamical formalism to non-equilibrium systems. It has been 
used to classify the phase transitions in a models and to demonstrate that, in multiparticle 
processes, phases could exist similar to spin-glass states [193,45].

It is im portant to note that the minimum of the X(q) (5.38) corresponds, according to (5.35), to 
zeros of the fractal spectrum. This is a signal for a phase transition in thermodynamical systems. 
One should stress, however, that the similarity of the distributions is in itself not sufficient to justify 
use of statistical physics terminology in its original meaning for the quantum field systems we are 
interested in here. Besides, the analogy breaks down completely for values of q exceeding the 
multiplicities effectively contributing to the moments. Nevertheless, this analogy is used in 
[314,315] to derive the dependence of the pressure in a Feynman-W ilson liquid on its chemical 
potential and some peculiar features are found in hadron-hadron reactions (see also the review 
paper [316]).

It is evident that further explorations of statistical mechanics approaches to multiparticle 
production are needed. In particular, analytical properties of a partition function, often useful in 
connection with phase transitions, have not been much analysed.

The location of the (complex) roots (zeros) Z v of the multiplicity generating function (2.43) has 
recently been studied in [317,318] after earlier suggestions by Biebl and Wolf [2]. This work is 
based on the analogy with the famous Lee-Yang zeros [319], whose location fully characterizes the 
thermodynamic properties of the physical system.

For multiplicity distributions, the strength of the fluctuations of the multiplicity in an event is 
directly related to the location of the zeros in the complex z plane: the magnitude of the factorial 
cumulants, and thus the strength of the correlations, is determined by the roots closest to  the origin.

In the discrete version of QCD, developed in LUND, it was demonstrated that the zeros of (2.43) 
belong to a fractal Julia set [320] with intruiging properties. Detailed studies of this set, and various 
connections with standard phenomenology, such as K N O  scaling, remain to be worked out.

5.2.6. Intermittency, evolution equations and QCD
In the previous section we considered two rather extreme possibilities, simple cascade models 

and phase transitions, as possible mechanisms leading to scale invariance in particle production 
processes.

Further interesting results have been derived from studies of simplified kinetic branching 
evolution equations for “b irth-death” (or “gain-loss”) processes. Many of these are treated in 
textbooks [322,323] and were applied to multiparticle production [324-328]. In general, the

th erm od yn am ica l form ula
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time-evolution of the num ber of “clusters” (partons, resonances, etc.) is described by forward or 
backward (retrospective) Kolmogorov equations, which relate the time derivative of the generating 
function to some combinations of that function. A particular example is the Smoluchowski 
equation treated in [329]. The terms “forward” and “backward” imply, that each tree graph may 
be viewed either as a  splitting to ever “thinner” branches, or as a convolution to ever “thicker” 
branches.

F or linear evolution equations, the solutions depend directly on the initial conditions [205], 
Non-linear equations often have solutions asymptotically independent of pre-history [327,329]. 
Stationary regimes may appear if the annihilation of clusters is stronger than the “birth rate”. In 
that case, the dispersion is proportional to the average multiplicity and intermittent behaviour can 
be obtained, if the proportionality factor is larger than one and the mean multiplicity decreases 
correspondingly for smaller bins. This can easily be proven by means of the definition of the 
second-order factorial moment. Let us note that systems obeying non-linear evolution could 
exhibit quite general properties, independent of the detailed form of the equations, such as period 
doubling. Some ideas along this line of thought, using properties of stochastic systems and 
Feigenbaum attractors, have been formulated in [330,331].

M ore detailed analysis of intermittency in the framework of the Smoluchowski equation [329] 
reveals various regimes of time-evolution and cascading, depending on the parameters of the 
model. The Smoluchowski equation is of the backward type. It contains terms linear and quadratic 
in the generating function G with opposite signs. Formally it looks like

dG/dt =  G * G - G * G j  , (5.39)

where G(u, t) =  £ , lS, 1N (n , t )un> GL =  G(l,f) with N{n, t) representing the number of clusters of 
(integer) mass n at time t and the convolution * is defined through the aggregation coefficients of 
clusters. The fractal properties of aggregates and the occurrence of phase transitions have been 
analysed in [329].

Obviously, it would be desirable if an explanation of scaling phenomena in multiparticle 
production could be derived from, so to say, first principles, i.e. in the framework of QCD. 
M ultiparticle production in Q CD  is the result of quark-gluon branching and the subsequent 
transition to hadrons. As such, the self-similar multiplicative branching (or cascade) process could 
give rise to a scaling regime. The perturbative Q CD  parton shower picture is justified for 
interactions with large transferred momenta (or virtualities), but in hadronic reactions one mostly 
has to deal with soft processes. Perturbative QCD is valid in the initial stages of high-energy 
cascades in electron-positron annihilation and could, therefore, be used as an explanation for 
intermittency.

It is well known that the perturbative QCD cascade gives rise [332] to a mean multiplicity of 
partons increasing rapidly with energy. Equations for higher moments of parton multiplicity 
distributions are rather complicated [333,98], but reveal in any case that the parton num ber 
distributions are much wider than a Poissonian. The infrared limit becomes very im portant and 
one should consider infrared-safe properties. Assuming that the singularity is avoided in a way 
similar as in an electromagnetic cascade in a medium, one can estimate the fractal dimension of 
internal m otion of partons in a jet and it turns out to be quite low for a single je t in e +e “ - 
annihilation [128],
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The simplest theoretical models, such as the tree diagrams of the cf>3 model, simplified QCD 
[334,335,29] also based on tree diagrams, the Schwinger tunnelling transition [336] or the 
effective Lagrangian approach [308], indicate that the totality of all produced partons exhibits
intermittency.

It is not yet clear what modifications of QCD equations going beyond the tree graphs (so-called 
Double Logarithmic Approximation -  DLA) would fit this region best. An approach to  that 
problem has been proposed [337] in deep inelastic processes where the transition from the Bjorken 
limit to the Regge dom ain proceeds through some intermediate region in which quadratic terms (in 
the fields) appear and cause some recombination of partons at high densities. Here, the evolution 
equation for the num ber of gluons xG (x ,q 2) in a hadron with a transverse size q ~ l and for small 
values of the Bjorken x-variable is taken to be

d2x G (x ,q 2) _  _ 2 Ccc2

01n(l/x)01 n q 2 ~  as>cG{x^  ) q* [ x G (x ' q
2\ r „ n t ___ 2 n 2 (5.40)

where as is the Q C D  coupling strength and C is a constant. It is inspired by QCD ideas and Regge 
phenomenology, but has not been derived rigorously. No analysis of the intermittency property has 
been attem pted so far. One should note, however, that the general effect of such a quadratic 
damping is to narrow  the multiplicity distribution (see, for example [338]), which leads to 
decreasing factorial moments.

One should, however, not rely on the similarity of Eqs. (5.39) and (5.40), since this could be 
misleading. As is well known [333,339,98], the equations for the generating functionals for gluon 
and quark jets in Q C D  are non-linear, while the corresponding equations for the structure 
functions in DLA are just linear GLAP equations. The generating functional for a parton p is given 
by

1 f
Gp( ll,V, X) Y )  =  £  j i l l  i j  ^  ( 5 - 4 1 )

nq, n, n<\ • ng • J

where PF is a differential probability to create nq quarks and ng gluons with an evolution param eter 
Y ~  In In Q2 in a p jet. The equations for the generating functionals are

aGq(x, Y)  

0 Y

0Gg(x, Y)

a y

dx' P qq(x ',x)[G q(x', Y)Gg(l -  x', Y) -  Gq(x, Y ) 1 , (5.42)
o

0
dx' [P gg(x',x)Gg(x\ Y)Gg(l — x', Y) — Gg(x, Y))

+  «fPqi(x',x)(Gq(x', Y)Gq(l -  x', Y) -  Gg(x, Y))] , (5.43)

where the P ’s are the corresponding GLAP kernels, n is the number of flavours and the initial 
conditions are such tha t at Y =  0, Gq =  u and Gg =  v for a single jet.

The status of the equations for generating functionals is not completely clear up to now. They are 
able to reproduce the higher-order graphs of the perturbation theory far beyond the tree level [98]. 
Their success in predicting the tiny features of multiplicity distributions in total phase space (for 
a review see [295]) encourages speculations about their quite general status, with some confine
ment properties taken into account already at that stage.
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A simplified version of (5.43) with the quark term omitted (gluodynamics) has been studied in 
[339], Intermittency for the factorial moments of the gluon cascade is claimed to be in qualitative 
agreement with experimental data, as well as evidence for a structural phase transition. However, 
the formula for the intermittency indices contradicts other QCD results. This is not surprising, 
since the generating function technique should here be applied to the subjet hitting the bin under 
investigation, not to the whole jet as done in [339].

The treatm ent of Q CD  cascades has been taken further in [253] within the framework of the 
dipole formalism including coherence effects. The multifractal dimension of the parton cascade for 
high order q is found to be equal to the Q C D  anomalous dimension y0 =  (6ajn)112 and a first 
pre-asymptotic correction has been calculated. Moreover, a geometrical interpretation of the 
anomalous dimension of Q C D  is proposed.

A direct solution of Q C D  evolution equations has been attempted for the second correlator in 
[254]. The behaviour of factorial moments of any rank (as well as of double trace moments -  see 
below) in small phase-space windows for e +e" collisions is treated both in DLA and in the next 
Modified Leading Logarithmic Approximation (MLLA) of QCD in [256]. Similar results for 
factorial moments in DLA are obtained in [255,257]. They are closely related to the previously 
derived formulae of [340].

In the approach described above, one considers three stages of the process:
1. the initial quark emits a hard gluon,
2. the gluon evolves into a jet consisting of several subjets,
3. one of the subjets hits the phase-space window chosen.

Integrating over all the stages one gets the final multiplicity distribution (for details see [256]). For 
comparatively large windows one can use the fixed coupling constant, while for smaller bins its 
running should be taken into account.

Fixed coupling Q CD  factorial moments reveal [254,256] the intermittency phenomenon with 
intermittency indices equal to

^qcdO?) =  ~  1) ~  ~~~ ? (5.44)

in DLA. This formula is valid if, for the D-dimensional analysis with M  bins along each axis, one 
defines Fq oc Af*(,). F or large q the indices increase linearly. The term with negative sign in the 
second bracket is proportional to the Q C D  multiplicity anomalous dimension >’o. From (5.44), one 
would conclude that Q C D  prescribes fractal behaviour with codimension

^ Iq cd  =  D — [(? +  1)/?] Vo • (5-45)

The phase space term  D  is obviously non-fractal. The y0 term in (5.45) is due to the energy 
dependence of multiplicity and gives monofractal behaviour. The gluon energy spectrum contribu 
tion, represented by yojq, gives multifractal behaviour. The next-to-leading corrections to y0 also 
provide q-dependent terms.

The calculated values should be compared to the slopes in the region 5y >  1 (which are rather 
large) since (5.45) is derived in fixed-coupling QCD (the intermittent behaviour in that region was 
discussed first in [341]). In smaller bins, the QCD running coupling becomes im portant and 
modifies the above relations [256]. The factorial moments now behave in a semi-power-like 
m anner so that there is no strict intermittency even though an approximate one can still be claimed.
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The second term becomes very close to 1 for the low-rank moments and the low-rank intermittency 
indices turn  out to be very small for one-dimensional analyses, in accordance with experiment. 
Corrections to y0 of the order of y l  can be taken into account [256]. The influence of confinement 
seems negligible. Thus small as well as large 5y  intervals may be described in a unified treatment, at 
least at a qualitative level. The transition point from “large” to “small” bins depends on the rank of 
the moment in QCD, in full accordance with experimental findings.

We should further mention that the ratio dq/d 2 depends explicitly on D, contrary to experimental 
claims (see Section 4.3.3).

The “free energy” F(q) is related to A(q) given by (5.38) as

F(q) =  1 -  X{q) «  y0 -  yo /q2 • (5.46)

In DLA, it is a steadily increasing function of q. However, with corrections to y0 taken into account 
[256] F(q) becomes non-monotonic. This happens for rather large values of q, with the result, that 
the distinction between factorial and usual moments becomes crucial and statistical analogies 
inapplicable. These findings show the limitations of perturbative QCD and provide further insight 
into the properties of multiplicity distributions, such as KNO scaling, in full phase space [342,343],

In particular, Q CD  gives rise to the prediction [343,295] of a negative value of the cumulant of 
rank 5 confirmed by experiment and to the general conclusion of a non-infinitely-divisible nature of 
total multiplicity distributions in QCD (that prohibits e.g. the one-ladder multiperipheral cluster 
models).

The increasing branch of the multifractal spectrum ƒ  (a) may be easily calculated using (5.35) and 
(5.36) giving

/(a )  =  2y£/2(oc -  y0) 1/z . (5.47)

The double trace moments (DTM), redefined in analogy with factorial moments as

r* _ 1 f  V"1
q ' v  =  ~A \ ^  a \

behave [256] in QCD as

Fv-q{A) cc ¿p0(‘7i ~ 1)/«v oc ¿j9 0 » -+  ®- 1 *¿-*(«.*>+«-1 9 (5.49)

wherefrom one finds

4>{q, v) =  cf>{qv) -  # ( v )  =  (g -  1) ( l  -  . (5.50)

The second factor in (5.50) may be called “double codimension”. It is not symmetric in q and v and 
shows that increasing v one decreases effectively the anomalous dimension. For v =  1, as required, 
the double codimension becomes equal to the usual codimension. The scaling exponent (5.50) is not 
factorizable in v and q. The above redefinition of DTM  is aimed at reducing the Poissonian noise 
and the role of phase-space factors, otherwise very important.

In fact, it is surprising that the above expression describes qualitatively the general trends and 
even the absolute normalization of the functions K (q t v) shown in [50,51]. For large v, the ratio 
K(q,v)/(q  — 1) is completely determined by the phase-space factor and should tend to  1. This is 
seen in the experimental data. In the region of small q ~  1 and v ~  1 the strong compensation in 
(5.50) prevents its use, but even there it gives quite reasonable values of K(q,v). This probably

(nm
n

(5.48)
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indicates that D TM  defined as powers of multiplicities are not sensitive enough to dynamics, 
a suspicion raised earlier (Section 4.7).

On the other hand, the parton cascading picture employed in [256] may be applied, strictly 
speaking, only to hard processes at extremely high energies and one should not rely much on the 
asymptotic estimates of Q C D  when considering experimental data. Also, the difference between 
usual and factorial moments becomes extremely im portant at large values of q or at sufficiently 
small bins with low multiplicities. One may suspect that relation (5.50) and, especially its first part, 
has a much wider range of applicability than just for e +e _ collisions and some universal relation 
could be valid for other reactions. If so, it will be im portant to understand whether these common 
features are due to common dynamics or to insufficient sensitivity of the proposed measures.

The large fluctuations, e.g. those observed by the NA22 collaboration, have raised the suspicion 
that at small bins one is dealing with unusually wide distributions, which could have infinite 
moments. This has led one to consider Lévy-stable probability distributions. The Lévy indices 
derived from Q CD  factorial moment indices or DTM exponents show [256] no sign of “wild” 
singularities.

The DTM  technique has been first applied to experimental data from hadron-hadron reactions 
(described in Section 4.7.7) where direct Q CD  arguments are invalid. For e +e~ collisions, however, 
it may be worthwhile to analyse the data with this method.

Let us further note that there is a difference between predictions of QCD and those of variants of 
conformal theories considered in [273], or of multiplicative models [310], For example, the 
intermittency indices derived in a rapidity or azimuthal angle analysis should be equal in QCD. 
This is a consequence of the symmetrical form (in pseudorapidity t] and azimuthal angle (p) of the 
gluon propagator, which can be written as

k 2 «= ( P t a  +  P t . i ) 2 =  4pT.iPT,2(sinh2>h2/2  +  sin2cpi2/ 2 ) , (5.51)

where pTti is the transverse momentum of ith parton. In a conformal theory, the intermittency 
indices for the second factorial moment are given by

4>2(5y) =  2jj , <j)2{5(p) =  0 > (5.52)

respectively. Here, rj is the conformal anomalous dimension estimated to be ij «0 .07-0 .1 . F or 
multiplicative models, one finds

(¡>2{by) =  1 -  D, , (¡)2(5(p) =  Dv -  1 (5.53)

with 0 <  Dy <  1,1 <  <  2.
The emergence of interm ittent behaviour in solutions of non-linear equations and in pertur- 

bative QCD encourages further studies along these directions. At the least, they hold a  promise of 
further theoretical insight. One should keep in mind, however, that a direct comparison of 
QCD-based asymptotic results with present-day experiments is not justified. Some effects revealed 
by the data seem to be of a different, as yet unsatisfactorily explained, origin.

6. Conclusions

Developments in physics -  and in science in general -  over the last decade, have brought exciting 
new discoveries and deeper insight into the dynamics of complex systems. Studies of classical and
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quantum  chaos, non-equilibrium dissipative processes, random media, growth phenomena and 
many more have all contributed to reveal the pervasive importance of self-similarity, of power laws 
and of fractals in nature. Research in these fields is still in full evolution and continues to uncover 
intriguingly simple and often surprisingly universal behaviour in complex, non-linear systems.

The suggestion of Bialas and Peschanski to look for scaling in particle fluctuations was one of 
the first attem pts to apply modern ideas and techniques from complex-system research to 
m ultihadron-production processes. In preceding pages, we have presented a critical overview of the 
impressive am ount of experimental and theoretical work this proposal has generated since its 
formulation in 1986. The continuing interest in the field testifies of the growing conviction that new 
avenues need to be explored for progress in strong-interaction physics.

Impressive as it may be, this work has not yet led to final answers concerning the fundamental 
issues. Approximate power-law scaling of particle density and correlation functions is now indeed 
observed, especially in two- or three-dimensional phase space. However, so far it can be explained 
from an interplay between je t formation and more or less “conventional” correlations am ong 
identical particles due to quantum  interference.

Nevertheless, as often happens, the detailed scrutiny of data (and detectors) on the full variety of 
collision processes in the search for power behaviour has led to many new observations of interest 
in their own right. It has helped to recognize the importance of detailed studies of correlation 
phenomena at large and small distances in momentum space and new sensitive and general 
techniques have been developed for their analysis.

Standard hadronization models, all too often accepted as satisfactory, have been exposed to 
severe and sometimes even painful tests. Intermittency analysis has revealed deficiencies in our 
understanding of the hadronization process. These defects are not easy to cure in a consistent 
manner by simple param eter-tuning and “new” physics may well be needed to restore internal 
consistency in e.g. fragmentation models of the LUND type. Present work on this subject starts to 
provide hints that purely probabilistic treatment of the break-up of colour fields has to be 
supplemented with effects deeply connected with the structure of the non-perturbative Q C D  
vacuum. Progress in this direction would in itself be ample compensation for the efforts spent on 
attempting to establish fractality in multihadron production.

D ata obtained in the last years have shown the overwhelming importance of correlations am ong 
identical particles in the “intermittent” regions of phase space. This quantum  mechanical phenom 
enon, discovered in particle physics in 1959, still awaits satisfactory incorporation into present 
hadronization phenomenology, if it is to be used as a reliable interferometric tool e.g. in studies of 
quark-gluon plasm a formation.

Theoretical work has developed along a large variety of directions. Fractal properties have been 
discovered in string-fragmentation models. Within the realm of perturbative QCD, parton correla 
tions and emergence of power behaviour are now studied with increasing sophistication, The 
relevance for present-day phenomenology remains doubtful, however.

The powerful methods of statistical mechanics have been intensively exploited in studies of 
random  cascades as well as in equilibrium and non-equilibrium critical phenomena. Results of real 
intrinsic value have been obtained, with potentially interesting applications in other fields.

In search for an  explanation of “unusually large” density fluctuations, “intermittency”, in 
analogy with fluid turbulence, has progressively led to appreciate the importance and often 
spectacular manifestation of non-linear strong-coupling dynamics.
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Experiments in deep-inelastic scattering are now starting to probe hadron structure in a regime 
where the perturbative parton-cascade picture becomes blurred. Non-linear perturbative evolution 
and confinement play an increasingly im portant role in the very low Bjorken-x region now 
accessible in HERA . Present attempts to understand this region invoke QCD Reggeon theory.

It is intriguing to speculate that a power-law dependence of the low-x parton correlation 
functions could manifest itself as “gluonic” intermittency in virtual parton cascades, with the 
occasional creation of regions with very large, or very small gluon density.
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