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Abstract. This paper concerns the elastic structures which exhibit non-zero strain at free equi-
libria. Many growing tissues (leaves, flowers or marine invertebrates) attain complicated config-
urations during their free growth. Our study departs from the 3d incompatible elasticity theory,
conjectured to explain the mechanism for the spontaneous formation of non-Euclidean metrics.

Recall that a smooth Riemannian metric on a simply connected domain can be realized as the
pull-back metric of an orientation preserving deformation if and only if the associated Riemann
curvature tensor vanishes identically. When this condition fails, one seeks a deformation yielding
the closest metric realization. We set up a variational formulation of this problem by introducing
the non-Euclidean version of the nonlinear elasticity functional, and establish its Γ-convergence
under the proper scaling. As a corollary, we obtain new necessary and sufficient conditions for
existence of a W

2,2 isometric immersion of a given 2d metric into R
3.
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1. Introduction

Recently, there has been a growing interest in the study of flat thin sheets which assume
non-trivial configuration in the absence of exterior forces or impose boundary conditions. This
phenomenon has been observed in different contexts: growing leaves, torn plastic sheets and
specifically engineered polymer gels [14]. The study of wavy patterns along the edges of a torn
plastic sheet or the ruffled edges of leaves suggest that the sheet endeavors to reach a non-attainable
equilibrium and hence necessarily assumes a non-zero stress rest configuration.

In this paper, we attempt to give a possible mathematical foundation of these phenomena,
in the context of the nonlinear theory of elasticity. The basic model, called “three dimensional
incompatible elasticity” [4], follows the findings of an experiment described in [14]. The experi-
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Figure 1.1. The experimental system and the obtained structures of sheets with
radially symmetric target metrics. Reprinted from [14] with permission from
AAAS.

ment (see Figure 1.1) consists in fabricating programmed flat disks of gels having a non-constant
monomer concentration which induces a “differential shrinking factor”. The disk is then activated
in a temperature raised above a critical threshold, whereas the gel shrinks with a factor propor-
tional to its concentration and the distances between the points on the surface are changed. This
defines a new target metric on the disk, inducing hence a 3d configuration in the initially planar
plate. One of the most remarkable features of this deformation is the onset of some “transversal”
oscillations (wavy patterns).

Trying to understand the above phenomena in the context of nonlinear elasticity theory, it has
been postulated [14, 4] that the 3d elastic body seeks to realize a configuration with a prescribed
pull-back metric g. In this line, a 3d energy functional was introduced in [4], measuring the L2

distance of the realized pull-back metric of the given deformation from g.
Unfortunately, this functional is not suitable from a variational point of view, due to the exis-

tence of Lipschitz deformations with zero energy level [7]. These deformations are however neither
orientation preserving nor reversing in any neighborhood of a point where the Riemann curvature
of the metric g does not vanish (i.e. when the metric is non-Euclidean). In order to overcome this
shortcoming, here we introduce a modified energy I(u) which measures, in an average pointwise
manner, how far a given deformation u is from being an orientation preserving realization of the
prescribed metric. An immediate consequence is that for non-Euclidean g, the infimum of I (in
absence of any forces or boundary conditions) is strictly positive, which points to the existence of
non-zero strain at free equilibria.

Several interesting questions arise in the study of the proposed energy functional. A first one
is to determine the scaling of the infimum energy in terms of the vanishing thickness of a sheet.
Another is to determine limiting zero-thickness theories under obtained scaling laws. The natural
analytical tool in this regard is that of Γ convergence, in the context of Calculus of Variations.

In this paper, we consider a first case where the prescribed metric is given by a tangential
Riemannian metric [gαβ ] on the 2d mid-plate, and is independent of the thickness variable. The
3d metric g is set-up such that no stretching may happen in the direction normal to the sheet in
order to realize the metric. Consequently, if [gαβ ] has non-zero Gaussian curvature, then such g
is non-Euclidean. We further observe a correspondence between the scaling law for the infimum



NON-EUCLIDEAN PLATES 3

energy of the thin sheet in terms of the thickness, and the immersability of [gαβ ] into R
3 (Theorem

2.6). This result relates to a longstanding problem in differential geometry, depending heavily on
the regularity of the immersion [15, 9]. In our context, we deal with W 2,2 immersions not studied
previously. We also derive the Γ-limit of the rescaled energies, expressed by a curvature functional
on the space of all W 2,2 realizations of [gαβ ] in R

3 (Theorems 2.4 and 2.5).
To put our results in another context, recall the seminal work of Friesecke, James and Müller

[5], where the nonlinear bending theory of plates (due to Kirchhoff) was derived as the Γ-limit
of the classic theory of nonlinear elasticity, under the assumption that the later energy per unit
thickness h scales like h2. From a mathematical point of view, the present paper provides the
non-Euclidean version of the same results under the same scaling law, and the 2d limit theory we
obtain is the natural non-Euclidean generalization of the Kirchhoff model. Contrary to the classic
case, in our context the scaling law is the unique natural scaling of the energy for the free thin
sheet with the associated prescribed metric.

As a major ingredient of proofs, we also give a generalization of the geometric rigidity estimate
[5] to the non-Euclidean setting (Theorem 2.3). We estimate the average L2 oscillations of the
deformation gradient from a fixed matrix in terms of the 3d non-Euclidean energy I and certain
geometric parameters of the 3d domain. The main difference is an extra term of the bound,
depending on the derivatives of the prescribed metric g and hence vanishing when g is Euclidean
as in [5].

Acknowledgments. We are grateful to Stefan Müller for a significant shortening of the original
proof of Theorem 2.3. The subject of non-Euclidean plates has been brought to our attention by
Raz Kupferman. M.L. was partially supported by the NSF grant DMS-0707275 and by the Center
for Nonlinear Analysis (CNA) under the NSF grants 0405343 and 0635983. R.P. was partially
supported by the University of Pittsburgh grant CRDF-9003034.

2. Overview of the main results

Consider an open, bounded, Lipschitz domain U ⊂ R
n, with a given smooth Riemannian metric

g = [gij ]. The matrix field g : Ū −→ R
n×n is therefore symmetric and strictly positive definite up

to the boundary ∂U . Let A =
√

g be the unique symmetric positive definite square root of g and
define, for all x ∈ Ū :

(2.1) F(x) =
{

RA(x); R ∈ SO(n)
}

,

where SO(n) stands for the special orthogonal group of rotations in R
n. By polar decomposition

theorem, it easily follows that u is an orientation preserving realization of g:

(∇u)T∇u = g and det∇u > 0 a.e. in U

if and only if:

∇u(x) ∈ F(x) a.e. in U .

Motivated by this observation, we define:

(2.2) I(u) =

✂
U

dist2(∇u(x),F(x)) dx ∀u ∈ W 1,2(U , Rn).

Notice that when g = Id then the above functional becomes I(u) =
✁

dist2(∇u, SO(n)) which is
a standard quadratic nonlinear elasticity energy, obeying the frame invariance.
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Remark 2.1. For a deformation u : U −→ R
n one could define the energy as the difference

between its pull-back metric on U and g:

Istr(u) =

✂
U
|(∇u)T∇u − g|2 dx.

However, such “stretching” functional is not appropriate from the variational point of view, for the
following reason. It is known that there always exists u ∈ W 1,∞(U , Rn) such that Istr(u) = 0. On
the other hand [7], if the Riemann curvature tensor R associated to g does not vanish identically,
say Rijkl(x) 6= 0 for some x ∈ U , then u must have a ’folding structure’ around x; the realization
u cannot be orientation preserving (or reversing) in any open neighborhood of x.

In view of the above remark, our first observation concerns the energy (2.2) in case of R 6≡ 0.

Theorem 2.2. If the Riemann curvature tensor Rijkl 6≡ 0, then inf
{

I(u); u ∈ W 1,2(U , Rn)
}

> 0.

In case g = Id, the infimum as above is naturally 0 and is attained only by the rigid motions.
In [5], the authors proved an optimal estimate of the deviation in W 1,2 of a deformation u from
rigid motions in terms of I(u). In section 4 we give a generalization of such quantitative rigidity
estimate to our setting. Since there is no realization of I(u) = 0 if the Riemann curvature is non-
zero, we choose to estimate the deviation of the deformation from a linear map at the expense of
an extra term, proportional to the gradient of g.

Theorem 2.3. For every u ∈ W 1,2(U , Rn) there exists Q ∈ R
n×n such that:✂

U
|∇u(x) − Q|2 dx ≤ C

(✂
U

dist2(∇u,F(x)) dx + ‖∇g‖2
L∞(diam U)2|U|

)

,

where the constant C depends on ‖g‖L∞, ‖g−1‖L∞, and on the domain U . The dependence on
U is uniform for a family of domains which are bilipschitz equivalent with controlled Lipschitz
constants.

We shall consider a class of more general 3d non-Euclidean elasticity functionals:

IW (u) =

✂
U

W (x,∇u(x)) dx,

where the inhomogeneous stored energy density W : U × R
n×n −→ R+ satisfies the following

assumptions of frame invariance, normalization, growth and regularity:

(i) W (x, RF ) = W (x, F ) for all R ∈ SO(n),
(ii) W (x, A(x)) = 0,
(iii) W (x, F ) ≥ c dist2(F,F(x)), with some uniform constant c > 0,
(iv) W has regularity C2 in some neighborhood of the set {(x, F ); x ∈ U , F ∈ F(x)}.

The properties (i) – (iii) are assumed to hold for all x ∈ U and all F ∈ R
n×n. In case the Riemann

curvature tensor of g does not vanish, by Theorem 2.2 the infimum of IW is positive, in which
case IW is called a three dimensional incompatible elasticity functional.

We consider thin 3d plates of the form:

Ωh = Ω × (−h/2, h/2) ⊂ R
3, 0 < h << 1,

with a given mid-plate Ω an open bounded subset of R
2. In accordance with [14], we assume that

the metric g on Ωh has the form:

(2.3) g(x′, x3) =





[

gαβ(x′)
]

0
0

0 0 1



 ∀x′ ∈ Ω, x3 ∈ (−h/2, h/2),



NON-EUCLIDEAN PLATES 5

where [gαβ ] is a smooth metric on Ω, defined up to the boundary. In particular, g does not depend
on the thin variable x3. Accordingly, we shall assume that the energy density W does not depend
on x3:

(v) W (x, F ) = W (x′, F ), for all x ∈ U and all F ∈ R
n×n.

Define now the rescaled energy functionals:

Ih(u) =
1

h

✂
Ωh

W (x,∇u(x)) dx ∀u ∈ W 1,2(Ωh, R3),

where the energy well F(x) = F(x′) = SO(3)A(x) is given through the unique positive definite
square root A =

√
g of the form:

A(x′, x3) =





[

Aαβ(x′)
]

0
0

0 0 1



 ∀x′ ∈ Ω, x3 ∈ (−h/2, h/2).

By an easy direct calculation, one notices that the Riemann curvature tensor Rijkl ≡ 0, of g in

Ωh if and only if the Gaussian curvature of the 2d metric κ[gαβ ] ≡ 0. Hence, by Theorem 2.2,

inf Ih > 0 for all h if this condition is violated. A natural question is now to investigate the
behavior of the sequence inf Ih as h → 0. We first obtain (in section 5) the following lower bound
and compactness result:

Theorem 2.4. Assume that a given sequence of deformations uh ∈ W 1,2(Ωh, R3) satisfies:

(2.4) Ih(uh) ≤ Ch2,

where C > 0 is a uniform constant. Then, for some sequence of constants ch ∈ R
3, the following

holds for the renormalized deformations yh(x′, x3) = uh(x′, hx3) − ch ∈ W 1,2(Ω1, R3):

(i) yh converge, up to a subsequence, in W 1,2(Ω1, R3) to y(x′, x3) = y(x′) and y ∈ W 2,2(Ω, R3).

(ii) The matrix field Q(x′) with columns Q(x′) =
[

∂1y(x′), ∂2y(x′), ~n(x′)
]

∈ F(x′), for a.e.

x′ ∈ Ω. Here:

(2.5) ~n =
∂1y × ∂2y

|∂1y × ∂2y|

is the (well defined) normal to the image surface y(Ω). Consequently, y realizes the mid-
plate metric: (∇y)T∇y = [gαβ ].

(iii) Define the following quadratic forms:

Q3(x
′)(F ) = ∇2W (x′, ·)|A(x′)(F, F ), Q2(x

′)(Ftan) = min{Q3(x
′)(F̃ ); F̃tan = Ftan}.

Then we have the lower bound:

lim inf
h→0

1

h2
Ih(uh) ≥ 1

24

✂
Ω
Q2(x

′)
(

A−1
αβ(∇y)T∇~n

)

dx′.

We further prove that the lower bound in (iii) above is optimal, in the following sense. Let
y ∈ W 2,2(Ω, R3) be a Sobolev regular isometric immersion of the given mid-plate metric, that is
(∇y)T∇y = [gαβ ]. The normal vector ~n ∈ W 1,2(Ω, R3) is then given by (2.5) and it is well defined

because |∂1y × ∂2y| = (det g)1/2 > 0.
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Theorem 2.5. For every isometric immersion y ∈ W 2,2(Ω, R3) of g, there exists a sequence
of “recovery” deformations uh ∈ W 1,2(Ωh, R3) such that the assertion (i) of Theorem 2.4 hold,
together with:

(2.6) lim
h→0

1

h2
Ih(uh) =

1

24

✂
Ω
Q2(x

′)
(

A−1
αβ(∇y)T∇~n

)

dx′.

A corollary of Theorems 2.4 and 2.5, proved in section 8, provides a necessary and sufficient
condition for the existence of W 2,2 isometric immersions of (Ω, [gαβ ]):

Theorem 2.6. Let [gαβ ] be a smooth metric on the midplate Ω ⊂ R
2. Then:

(i) [gαβ ] has an isometric immersion y ∈ W 2,2(Ω, R3) if and only if 1
h2 inf Ih ≤ C, for a

uniform constant C.
(ii) [gαβ ] has an isometric immersion y ∈ W 2,2(Ω, R2) (or, equivalently, the Gaussian curva-

ture κ[gαβ ] ≡ 0) if and only if limh→0
1
h2 inf Ih = 0.

(iii) If the Gaussian curvature κ[gαβ ] 6≡ 0 in Ω then 1
h2 inf Ih ≥ c > 0.

The existence (or lack of thereof) of local or global isometric immersions of a given 2d Riemann-
ian manifold into R

3 is a longstanding problem in differential geometry, its main feature being
finding the optimal regularity. By a classical result of Kuiper [15], a C1 isometric embedding into
R

3 can be obtained by means of convex integration (see also [7]). This regularity is far from W 2,2,
where information about the second derivatives is also available. On the other hand, a smooth
isometry exists for some special cases, e.g. for smooth metrics with uniformly positive or negative
Gaussian curvatures on bounded domains in R

2 (see [9], Theorems 9.0.1 and 10.0.2). Counterex-
amples to such theories are largely unexplored. By [12], there exists an analytic metric [gαβ ] with
nonnegative Gaussian curvature on 2d sphere, with no C3 isometric embedding. However such
metric always admits a C1,1 embedding (see [8] and [10]). For a related example see also [22].

Finally, notice that Theorems 2.4 and 2.5 can be summarized using the language of Γ-convergence
[3]. Recall that a sequence of functionals Fh : X −→ R defined on a metric space X, is said to
Γ-converge, as h → 0, to F : X −→ R provided that the following two conditions hold:

(i) For any converging sequence {xh} in X:

F
(

lim
h→0

xh

)

≤ lim inf
h→0

Fh(xh).

(ii) For every x ∈ X, there exists a sequence {xh} converging to x and such that:

F(x) = lim
h→0

Fh(xh).

Corollary 2.7. The sequence of functionals Fh : W 1,2(Ω1, R3) −→ R, given by:

Fh(y(x)) =
1

h2
Ih(y(x′, hx3))

Γ-converges, as h → 0, to:

F(y) =







1

24

✂
Ω
Q2(x

′)
(

A−1
αβ(∇y)T∇~n

)

dx′ if y is a W 2,2 isometric immersion on [gαβ ]

+∞ otherwise.

Consequently, the (global) approximate minimizers of Fh converge to a global minimizer of F .
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3. The non-Euclidean elasticity functional - a proof of Theorem 2.2

In the sequel, we will need some differential geometry notation. We shall write |g| = det g and
g−1 = [gij ]. The Christoffel symbols are then given, using the Einstein summation, as:

Γm
ij =

1

2
gkm(∂igkj + ∂jgik − ∂kgij).

By ∇ we denote the covariant gradient of a scalar/vector field or a differential form, while by ∇g

we denote the contravariant gradient. The covariant divergence of a vector field u can be written
as:

divgu = (∇iu)i =
1
√

|g|
∂i(
√

|g|ui)

and the scalar product of two vector fields (that is of two (1, 0) contravariant tensors) has the
form: 〈u, v〉g = uigijv

j . We shall often use the Laplace-Beltrami operator ∆g of scalar fields f :

∆gf = divg(∇gf) =
1
√

|g|
∂i(
√

|g|gij∂jf).

By R = [Rijkl] we mean the ((0, 4) covariant) Riemann curvature tensor, and by Ricg the ((0, 2)
covariant) Ricci curvature tensor.

Towards the proof of Theorem 2.2, we first derive an auxiliary result, which is somewhat
standard in differential geometry (see e.g. [23, 2]).

Lemma 3.1. Let u ∈ W 1,1(U , Rn) satisfy ∇u(x) ∈ F(x) for a.a. x ∈ U . Then u is smooth and
R ≡ 0.

Proof. Write u = (u1, . . . , un) and notice that in view of the assumption, each ui ∈ W 1,∞. More-
over:

det∇u =
√

|g|, cof ∇u =
√

|g|(∇u)g−1.

Recall that for a matrix F ∈ R
n×n, cof F denotes the matrix of cofactors of F , that is (cof F )ij =

(−1)i+j det F̂ij , where F̂ij ∈ R
(n−1)×(n−1) is obtained from F by deleting its ith row and jth

column. Since div(cof ∇u) = 0 (the divergence of the cofactor matrix is always taken row-wise),
the Laplace-Beltrami operator of each component um is zero:

∆gu
m = 0,

and therefore we conclude that um ∈ C∞. The second statement follows immediately since u :
U → R

n is a smooth isometric embedding of (U , g) into the Euclidean space R
n.

Remark 3.2. For the convenience of the reader we now give a simple argument proving that the
existence of a smooth u as in Lemma 3.1 implies that the Ricci curvature tensor Ricg ≡ 0. Recall
that when n = 3 (which is the dimension relevant to our main results), Ricg ≡ 0 if and only if
R ≡ 0 [21].

We shall first deduce that the second g-covariant derivative of each scalar field um vanishes.
Since the vectors {∂su}n

s=1 form a basis of R
n (∇u being invertible), it is enough to consider the

following linear combination of components of ∇2um (for fixed covariant indices i, j):
n
∑

m=1

∇i(∇um)j · ∂su
m = (∂2

iju − Γk
ij∂ku)∂su

= ∂2
iju∂su − 1

2
gkl(∂jgil + ∂igjl − ∂lgij)∂ku∂su

= ∂2
iju∂su − 1

2
gkl(∂jgis + ∂igjs − ∂sgij) = 0.
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Hence ∇2um = 0 and since |∇2um|2g = |∇2
gu

m|2g, we also see that the second contravariant gradient
of each component um vanishes:

(3.1) ∇2
gu

m = 0.

On the other hand, (∇u)T (∇u)g−1 = Id, so (∇u)g−1(∇u)T = Id which means precisely that
∂iu

mgij∂ju
m = 1. Therefore:

(3.2) |∇gu
m|2g = |∇um|2g = 1.

Applying now (3.1) and (3.2) in the following Bochner’s formula (see e.g. [21]):

1

2
∆g|∇gf |2 = 〈∇g∆gf,∇gf〉g + |∇2

gf |2 + Ricg(∇gf,∇gf),

where we take the scalar field f = um, we obtain:

Ricg(∇gu
m,∇gu

m) = 0.

Since {∇gu
m}n

m=1 form a basis of R
n and Ricg is a symmetric bilinear form, we conclude that

Ricg ≡ 0.

We now prove two further auxiliary results.

Lemma 3.3. There is a constant M > 0, depending only on ‖g‖L∞ and such that for every
u ∈ W 1,2(U , Rn) there exists a truncation ū ∈ W 1,2(U , Rn) with the properties:

‖∇ū‖L∞ ≤ M, ‖∇u −∇ū‖2
L2(U) ≤ 4I(u) and I(ū) ≤ 10I(u).

Proof. Use the approximation result of Proposition A.1. in [5] to obtain the truncation ū = uλ,
for λ > 0 having the property that if a matrix F ∈ R

n×n satisfies |F | ≥ λ then:

|F | ≤ 2dist2(F,F(x)) ∀x ∈ U .

Then ‖∇uλ‖L∞ ≤ Cλ := M and further:

‖∇u −∇uλ‖2
L2 ≤

✂
{|∇u|>λ}

|∇u|2 ≤ 4

✂
{|∇u|>λ}

dist2(∇u,F(x)) dx ≤ 4I(u).

The last inequality of the lemma follows from the above by triangle inequality.

Lemma 3.4. Let u ∈ W 1,∞(U , Rn) and define vector field w whose each component wm satisfies:

∆gw
m = 0 in U , wm = um on ∂U .

Then ‖∇(u − w)‖2
L2(U) ≤ CI(u), where the constant C depends only on the coercivity constant of

g and (in a nondecreasing manner) on ‖∇u‖L∞.

Proof. The unique solvability of the elliptic problem in the statement follows by the usual Lax-
Milgram and compactness arguments. Further, the correction z = u − w ∈ W 1,2

0 (U , Rn) satisfies:
✂
U

gij
√

|g|∂iz
m∂jφ =

✂
U

gij
√

|g|∂iu
m∂jφ −

✂
U
∇φ(cof ∇u)m−th row
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for all φ ∈ W 1,2
0 (U). Indeed, the last term above equals to 0, since the row-wise divergence of the

cofactor matrix of ∇u is 0, in view of u being Lipschitz continuous. Use now φ = zm to obtain:

✂
U

√

|g||∇zm|2g =

✂
U

√

|g||∇gz
m|2g

=

✂
U

∂jz
m
(

gij
√

|g|∂iu
m − (cof ∇u)mj

)

≤ ‖∇zm‖L2(U)

(✂
U

∣

∣

∣

√

|g|(∇u)g−1 − cof ∇u
∣

∣

∣

2
)1/2

≤ CM‖∇zm‖L2(U)I(u)1/2,

(3.3)

which proves the lemma.
In order to deduce the last bound in (3.3), consider the function f(F ) =

√

|g|Fg−1 − cof F ,
which is locally Lipschitz continuous, uniformly in x ∈ U . Clearly, when F ∈ F(x) then F = RA

for some R ∈ SO(n), and so: cof F = cof (RA) = (detA)RA−1 =
√

|g|(RA)g−1, implying:
f(F ) = 0. Hence:

|f(∇u(x))|2 ≤ C2
Mdist2(∇u(x),F(x)),

where CM stands for the Lipschitz constant of f on a sufficiently large ball, whose radius is
determined by the bound M = ‖∇u‖L∞ .

Proof of Theorem 2.2. We argue by contradiction, assuming that for some sequence of
deformations un ∈ W 1,2(U , Rn), there holds limn→∞ I(un) = 0. By Lemma 3.3, replacing un by
ūn, we may also and without loss of generality have un ∈ W 1,∞(U , Rn) and ‖∇un‖L∞ ≤ M .

Clearly, the uniform boundedness of ∇un implies, via the Poincaré inequality, after a modifica-
tion by a constant and after passing to a subsequence if necessary:

(3.4) limun = u weakly in W 1,2(U).

Consider the splitting un = wn + zn as in Lemma 3.4. By the Poincaré inequality, Lemma 3.4
implies that the sequence zn ∈ W 1,2

0 (U) converges to 0:

lim zn = 0 strongly in W 1,2(U).

In view of the convergence in (3.4), the sequence wn must be uniformly bounded in W 1,2(U),
and hence by the local elliptic estimates for the Laplace-Beltrami operator, each ∆g-harmonic
component wm

n is locally uniformly bounded in a higher Sobolev norm:

∀U ′ ⊂⊂ U ∃CU ′ ‖wm
n ‖W 2,2(U ′) ≤ CU ′‖wm

n ‖W 1,2(U) ≤ C.

Consequently, wn converge to u strongly in W 1,2
loc (U) and recalling that I(un) converge to 0, we

finally obtain:

I(u) = 0.

Therefore ∇u ∈ F(x) for a.a. x ∈ U , which achieves the desired contradiction with the assumption
R 6≡ 0, by Lemma 3.1.
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4. A geometric rigidity estimate for Riemannian metrics - a proof of Theorem 2.3

Recall that according to the basic rigidity estimate [5], for every v ∈ W 1,2(V, Rn) defined on an
open, bounded set V ⊂ R

n, there exists R ∈ SO(n) such that

(4.1)

✂
V
|∇v − R|2 ≤ CV

✂
V

dist2(∇v, SO(n)).

The constant CV depends only on the domain V and it is uniform for a family of domains which
are bilipschitz equivalent with controlled Lipschitz constants.

A proof of Theorem 2.3. For some x0 ∈ U denote A0 = A(x0) and apply (4.1) to the vector
field v(y) = u(A−1

0 y) ∈ W 1,2(A0U , Rn). After change of variables we obtain:

∃R ∈ SO(n)

✂
U
|(∇u)A−1

0 − R|2 ≤ CA0U

✂
U

dist2((∇u)A−1
0 , SO(n)).

Since the set A0U is a bilipschitz image of U , the constant CA0U has a uniform bound C depending
on ‖A0‖, ‖A−1

0 ‖ and U . Further:✂
U
|∇u − RA0|2 ≤ C‖A0‖4

✂
U

dist2(∇u, SO(n)A0)

≤ C‖A0‖4

(✂
U

dist2(∇u,F(x)) +

✂
U
|A(x) − A0|2

)

≤ C‖g‖2
L∞

(✂
U

dist2(∇u,F(x)) dx + C‖∇g‖2
L∞(diam U)2|U|

)

,

which proves the claim.

We now derive a crucial approximation result, as in Theorem 10 [6] (see also Lemma 8.1 [18]).

Lemma 4.1. There exist matrix fields Qh ∈ W 1,2(Ω, R3×3) such that:

(4.2)
1

h

✂
Ωh

|∇uh(x) − Qh(x′)|2 dx ≤ C(h2 + Ih(uh)),

(4.3)

✂
Ω
|∇Qh|2 ≤ C(1 + h−2Ih(uh)),

with constant C independent of h.

Proof. Let Dx′,h = B(x′, h)∩Ω be 2d curvilinear discs in Ω of radius h and centered at a given x′.
Let Bx′,h = Dx′,h × (−h/2, h/2) be the corresponding 3d cylinders. On each Bx′,h use Theorem
2.3 to obtain: ✂

Bx′,h

|∇uh − Qx′,h|2 ≤ C

(✂
Bx′,h

dist2(∇uh,F(z)) dz + h2|Bx′,h|
)

≤ C

✂
Bx′,h

h2 + dist2(∇uh,F(z)) dz,

(4.4)

with a universal constant C in the right hand side above, depending only on the metric g and the
Lipschitz constant of ∂Ω.

Consider now the family of mollifiers ηx′ : Ω −→ R, parametrized by x′ ∈ Ω and given by:

ηx′(z′) =
θ(|z′ − x′|/h)

h
✁
Ω θ(|y′ − x′|/h) dy′

,



NON-EUCLIDEAN PLATES 11

where θ ∈ C∞
c ([0, 1)) is a nonnegative cut-off function, equal to a nonzero constant in a neighbor-

hood of 0. Then ηx′(z′) = 0 for all z′ 6∈ Dx,h and:✂
Ω

ηx′ = h−1, ‖ηx′‖L∞ ≤ Ch−3, ‖∇x′ηx′‖L∞ ≤ Ch−4.

Define the approximation Qh ∈ W 1,2(Ω, R3×3):

Qh(x′) =

✂
Ωh

ηx′(z′)∇uh(z) dz.

By (4.4) , we obtain the following pointwise estimates, for every x′ ∈ Ω:

|Qh(x′) − Qx′,h|2 ≤
(✂

Ωh

ηx′(z′)
(

∇uh(z) − Qx′,h

)

dz

)2

≤
✂

Ωh

|ηx′(z′)|2 dz ·
✂

Bx′,h

|∇uh − Qx′,h|2 ≤ Ch−3

✂
Bx′,h

h2 + dist2(∇uh,F(z)) dz,

|∇Qh(x′)|2 =

(✂
Ωh

(∇x′ηx′(z′))∇uh(z) dz

)2

=

(✂
Ωh

(∇x′ηx′(z′))
(

∇uh(z) − Qx′,h

)

dz

)2

≤
✂

Ωh

|∇x′ηx′(z′)|2 dz ·
✂

Ωh

|∇uh − Qx′,h|2

≤ Ch−5

✂
Bx′,h

h2 + dist2(∇uh,F(z)) dz.

Applying the same estimate on doubled balls Bx′,2h we arrive at:

✂
Bx′,h

|∇uh(x) − Qh(x′)|2 dx ≤ C

(✂
Bx′,h

|∇uh(z) − Qx′,h|2 dz +

✂
Bx′,h

|Qx′,h − Qh(z′)|2 dz

)2

≤ C

✂
Bx′,2h

h2 + dist2(∇uh,F(z)) dz,

✂
Dx′,h

|∇Qh|2 ≤ Ch−3

✂
Bx′,2h

h2 + dist2(∇uh,F(z)) dz.

Consider a finite covering Ω =
⋃

Dx′,h whose intersection number is independent of h (as it
depends only on the Lipschitz constant of ∂Ω). Summing the above bounds and applying the
uniform lower bound W (x, F ) ≥ c dist2(F,F(x)) directly yields (4.2) and (4.3).

5. Compactness and the lower bound on rescaled energies - a proof of Theorem

2.4

1. From (4.2), (4.3) in Lemma 4.1 and the assumption on the energy scaling, it follows directly
that the sequence Qh, obtained in Lemma 4.1, is bounded in W 1,2(Ω, R3×3). Hence, Qh converges
weakly in this space, to some matrix field Q and:✂

Ω1

|∇uh(x′, hx3) − Q(x′)|2 dx ≤
✂

Ω
|Qh − Q|2 + h−1

✂
Ωh

|∇uh(x) − Qh(x′)| dx,

converges to 0 by (4.2). Therefore we obtain the following convergence of the matrix field with
given columns:

lim
h→0

[

∂1y
h(x), ∂2y

h(x), h−1∂3y
h(x)

]

= Q(x) in L2(Ω1, R3×3).
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We immediately conclude that ‖∂3y
h‖L2(Ω1) converges to 0.

Now, setting ch =
✤
Ω1 uh(x′, hx3) dx, by means of the Poincaré inequality there follows the

assertion (i) of the Theorem. The higher regularity of y can be deduced from ∇y ∈ W 1,2, in view
of the established W 1,2 regularity of the limiting approximant Q.

To prove (ii), notice that by (4.2), (4.4) and the lower bound on W :

(5.1)

✂
Ω

dist2(Qh,F(x′)) ≤ Ch2.

Hence Q(x′) ∈ F(x) a.e. in Ω and consequently ∂αy · ∂βy = gαβ . To see that the last column of
the matrix field Q coincides with the unit normal to the image surface: Qe3 = ~n, write Q = RA
for some R ∈ SO(3) and notice that:

∂1y × ∂2y = (RAe1) × (RAe2) = R((Ae1) × (Ae2)) = cRAe3 = cQe3,

where c = |∂1y × ∂2y| = |(Ae1) × (Ae2)| = detA > 0, by the form of the matrix A. On the other
hand |Qe3| = |Re3| = 1, so indeed there must be Qe3 = ~n = (∂1y × ∂2y)/|∂1y × ∂2y|.

2. We now modify the sequence Qh to retain its convergence properties and additionally get
Q̃h(x′) ∈ F(x) for a.a. x ∈ Ω. Define Q̃h ∈ L2(Ω, R3) with:

Q̃h(x′) =

{

πF(x)(Q
h(x′)) if Qh(x′) ∈ small ngbhood of F(x)

A(x) otherwise

where πF(x) denotes the projection onto the compact set F(x) of its (sufficiently small) neighbor-
hood. One can easily see that:✂

Ω
|Q̃h − Qh|2 ≤ C

✂
Ω

dist2(Qh(x′),F(x′)) dx′ ≤ Ch2

by (5.1). In particular, Q̃h converge to Q in L2(Ω).

Write Q̃h = RhA for a matrix field Rh ∈ SO(3) and consider the rescaled strain:

Gh(x′, x3) =
1

h

(

(Rh)T (x′)∇uh(x′, hx3) − A(x′)
)

∈ L2(Ω1, R3×3).

We obtain:✂
Ω1

|Gh|2 ≤ Ch−3

✂
Ωh

|∇uh − Q̃h|2 ≤ Ch−2Ih(uh) + Ch−2

✂
Ω
|Q̃h − Qh|2 ≤ C.

Hence there exists a limit:

(5.2) lim
h→0

Gh = G weakly in L2(Ω1, R3×3).

3. Fix now a small s > 0 and consider the difference quotients:

fs,h(x) =
1

h

1

s
(yh(x + se3) − yh(x)) ∈ W 1,2(Ω1, R3).

Since h−1∂3y
h converges in L2(Ω1, R3) to ~n(x′), then also:

lim
h→0

fs,h(x) = lim
h→0

1

h

✥ s

0
∂3y

h(x + te3) dt = ~n(x′).

There also follows convergence of normal derivatives, strongly in L1(Ω1):

lim
h→0

∂3f
s,h(x) = lim

h→0
(∂3y

h(x + se3) − ∂3y
h(x)) = 0,
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and of tangential derivatives, weakly in L2(Ω1):

lim
h→0

∂αfs,h(x) = lim
h→0

1

s
Rh(x′)

(

Gh(x + se3) − Gh(x)
)

eα =
1

s
(QA−1)(x′)

(

G(x + se3) − G(x)
)

eα,

where we have used that the L∞ sequence Rh = Q̃hA−1 converges in L2(Ω) to QA−1 ∈ SO(3).
Consequently, the sequence fs,h converges, as h → 0 weakly in L2(Ω1) to ~n(x′). Equating the

derivatives, we obtain:

∂α~n(x′) =
1

s
(QA−1)(x′)

(

G(x + se3) − G(x)
)

eα.

Therefore:

(5.3) G(x′, x3)eα = G(x′, 0)eα + x3

(

(AQ−1)(x′)∂α~n(x′)
)

, α = 1, 2.

4. We now calculate the lower bound of the rescaled energies. To this end, define the sequence
of characteristic functions:

χh = χ{x∈Ω1; |Gh(x)|≤h−1/2},

which by (5.2) converge in L1(Ω1) to 1. Using frame invariance and noting that in the Taylor
expansion of the function F 7→ W (x, F ) at A(x) the first two terms are 0, we obtain:

1

h2
Ih(uh) ≥ 1

h2

✂
Ω1

χh(x)W (x,∇uh(x′, hx3)) dx

=
1

h2

✂
Ω1

χh(x)W (x, Rh(x′)T∇uh(x′, hx3)) dx

=
1

h2

✂
Ω1

χh(x)W (x, A(x) + hGh(x)) dx

≥
✂

Ω1

χh(x)

[

1

2
∇2W (x, ·)|A(x)(G

h(x), Gh(x)) − o(1)|Gh(x)|2
]

dx.

Hence:

lim inf
h→0

1

h2
Ih(uh) ≥ 1

2
lim inf

h→0

✂
Ω1

χh(x)Q3(x
′)
(

Gh(x)
)

dx

=
1

2
lim inf

h→0

✂
Ω1

Q3(x
′)
(

χh(x)Gh(x)
)

dx

≥ 1

2

✂
Ω1

Q3(x
′)
(

G(x)
)

dx ≥ 1

2

✂
Ω1

Q2(x
′)
(

G(x)tan

)

dx.

Above, we used the fact that χhGh converges weakly in L2(Ω1, R3×3) to G (compare with the
convergence in (5.2)) and the nonnegative definiteness of the quadratic forms Q3(x

′), following
from A(x′) being the minimizer of the mapping W , as above.

By (5.3):

Q2(x
′)
(

G(x′, x3)tan

)

= Q2(x
′)
(

G(x′, 0)tan

)

+ 2x3L2(x
′)
(

G(x′, 0)tan, [AQ−1∇~n]tan(x′)
)

+ x2
3Q2(x

′)
(

[AQ−1∇~n]tan(x′)
)

.

The second term above, expressed in terms of the bilinear operator L2(x
′) representing the qua-

dratic form Q2(x
′), integrates to 0 on the domain Ω1 symmetric in x3. After dropping the first

nonnegative term, we arrive at:

lim inf
h→0

1

h2
Ih(uh) ≥ 1

24

✂
Ω
Q2(x

′)
(

[AQ−1∇~n]tan(x′)
)

dx′.
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This yields the formula in (iii), as AQ−1 ∈ SO(3) so AQ−1 = (QA−1)T = A−1QT . The proof of
Theorem 2.4 is now complete.

6. Two lemmas on the quadratic forms Q3 and Q2

We now gather some facts regarding the quadratic forms Q3 and Q2. First, it is easy to
notice that the tangent space to F(x) at A(x) coincides with the products of the skew-symmetric
matrices with A(x), denoted by skew ·A(x). Here ’skew’ stands for the space of all skew matrices
of appropriate dimension; in the present case 3 × 3. The orthogonal complement of this space
equals to:

(

TA(x)F(x)
)⊥

= sym · A(x)−1,

where ’sym’ denotes the space of all symmetric matrices (again, of appropriate dimension). The
quadratic, nonnegative definite form Q3(x

′) is strictly positive definite on the space above, and it
depends only on the projection of its argument on this space:

(6.1) Q3(x
′)(F ) = Q3(x

′)
(

P{sym·A(x′)−1}F
)

.

Lemma 6.1. We have:

P{sym·A−1}





[

Fαβ

]

f13

f23

f31 f32 f33



 =





[

P{sym·A−1

αβ}
Fαβ

]

b1

b2
[

b1 b2

]

A−1
αβ b3





with b3 = −f33 and:
[

b1 b2

]

(

Id + A−2
αβ

)

= −
[

f13 f23

]

−
[

f31 f32

]

A−1
αβ .

Proof. Since the projection P is a linear operator, we will separately prove the above formula
in two cases: when Fαβ = 0 and when fij = 0. Notice first that P{sym·A−1}F = BA−1, for a
symmetric matrix B, uniquely determined through the formula:

∀S ∈ sym 0 = (F − BA−1) : (SA−1).

Since the right hand side above equals to (FA−1 − BA−2) : S, we obtain:

(6.2) FA−1 − BA−2 ∈ skew.

Also, we notice the form of the matrix:

(6.3) B =





[

Bαβ

]

b1

b2

b1 b2 b3



 , BA−1 =





[

BαβA−1
αβ

]

b1

b2
[

b1 b2

]

A−1
αβ b3





In the first case when fij = 0, let Bαβ =
[

P{sym·A−1}Fαβ

]

Aαβ . Then FαβA−1
αβ −BαβA−2

αβ ∈ skew,

and the same matrix provides the only non-zero, principal 2 × 2 minor of the 3 × 3 matrix
FA−1 − BA−2, where B is taken so that all bi = 0 and Btan = Bαβ . By uniqueness of the
symmetric matrix B satisfying (6.2), this proves the claim.

In the second case when Fαβ = 0, define B as in (6.3) with Bαβ = 0. The result follows, since:

FA−1 − BA−2 =





[

0
]

f13

f23
[

f31 f32

]

A−1
αβ f33



+





[

0
]

b1

b2
[

b1 b2

]

A−2
αβ b3



 ,

and (6.2) is equivalent to the conditions on bi given in the statement of the lemma. We remark
that since A−2

αβ = [gαβ ]−1 is strictly positive definite, then the same is true for the matrix Id+A−2
αβ ,

which implies its invertibility.
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Now, the quadratic and nonnegative definite form Q2(x
′) is likewise strictly positive definite on

the space sym · A−1
αβ and:

(6.4) Q2(x
′)(Ftan) = Q2(x

′)
(

P{sym·A(x′)−1}Ftan

)

.

Lemma 6.2. There exists linear maps b, c : R
2×2 −→ R

3 related by:

c (Ftan) = −





[

Id + A−2
αβ

]

0
0

0 0 1



 · b (Ftan)

and such that:

(6.5) Q2(x
′)(Ftan) = Q3(x

′)





[

P{sym·A−1

αβ}
Ftan

]

b1

b2
[

b1 b2

]

A−1
αβ b3



 = Q3(x
′)





[

Ftan

]

c1

c2

0 0 c3



 .

Proof. By (6.1), Lemma 6.1 and the definition of Q2 it follows that:

Q2(x
′)(Ftan) = min

b∈R3

Q3(x
′)





[

P{sym·A−1

αβ}
Ftan

]

b1

b2
[

b1 b2

]

A−1
αβ b3



 .

Hence we obtain the first equality in the representation (6.5). The second one follows again from

(6.1) and Lemma 6.1, provided that c3 = −b3 and
[

c1 c2

]

= −
[

b1 b2

]

(

Id + A−2
αβ

)

, which

is exactly the condition defining the vector c in the statement of the lemma.

7. The recovery sequence - a proof of Theorem 2.5

Following the reasoning in step 1 of the proof of Theorem 2.4, we first notice that the matrix
field Q whose columns are given by:

Q(x′) =
[

∂1y(x′), ∂2y(x′), ~n(x′)
]

∈ F(x′).

Hence in particular: QA−1 ∈ SO(3). With the help of the above definition and Lemma 6.2, we
put:

(7.1) d(x′) = Q(x′)A−1(x′) · c
(

A−1
αβ(∇y)T∇~n(x′)

)

∈ L2(Ω, R3).

Let dh ∈ W 1,∞(Ω, R3) be such that:

(7.2) lim
h→0

dh = d in L2(Ω) and lim
h→0

h‖dh‖W 1,∞ = 0.

Note that a sequence dh with properties (7.2) can always be derived by reparametrizing (slowing
down) a sequence of smooth approximations of the given vector field d ∈ L2(Ω).

Recalling (2.5), we now approximate y and ~n respectively by sequences yh ∈ W 2,∞(Ω, R3) and
~nh ∈ W 1,∞(Ω, R3) such that:

lim
h→0

‖yh − y‖W 2,2(Ω) = 0, lim
h→0

‖~nh − ~n‖W 1,2(Ω) = 0,

h
(

‖yh‖W 2,∞(Ω) + ‖~nh‖W 1,∞(Ω)

)

≤ ε0,

lim
h→0

1

h2

∣

∣

∣

{

x′ ∈ Ω; yh(x′) 6= y(x′)
}

∪
{

x′ ∈ Ω; ~nh(x′) 6= ~n(x′)
} ∣

∣

∣
= 0,

(7.3)



16 MARTA LEWICKA AND REZA PAKZAD

for a sufficiently small, fixed number ε0 > 0, to be chosen later. The existence of such approxima-
tion follows by partition of unity and a truncation argument, as a special case of the Lusin-type
result for Sobolev functions in [20] (see also Proposition 2 in [6]).

Define:

(7.4) uh(x′, x3) = yh(x′) + x3~n
h(x′) +

x2
3

2
dh(x′).

Note that each map: Ω ∋ x′ 7→ dist(∇uh(x′),F(x′)) vanishes on Ωh and is Lipschitz in Ω, with
Lipschitz constant of order O(1/h). Here, we let:

Ωh =
{

x′ ∈ Ω; yh(x′) = y(x′) and ~nh(x′) = ~n(x′)
}

.

For any point x′ ∈ Ω\Ωh, we also have dist2(x′,Ωh) ≤ C|Ω\Ωh|. The proof of the latter statement
is standard, see for example [18], Lemma 6.1 for a similar argument. As a consequence, by (7.3)
we obtain 1/h2dist2(x′, Ωh) → 0 and hence:

(7.5) dist(∇uh(x′),F(x′)) ≤ O(1/h)dist(x′, Ωh) = o(1).

The gradient of the deformation uh is given by:

∇uh(x′, x3) = Qh(x′) + x3A
h
2(x′) +

x2
3

2
Dh(x′),

where:

Qh(x′) = Q(x′) in Ωh, Ah
2(x′) =

[

∂1~n
h(x′), ∂2~n

h(x′), dh(x′)
]

,

lim
h→0

Ah
2 = A2 =

[

∂1~n, ∂2~n, d
]

in L2(Ω),

Dh =
[

∂1d
h, ∂2d

h, 0
]

.

Note that by (7.5) and the local C2 regularity of W , the quantity W (x,∇uh(x)) remains bounded
upon choosing h and ε0 in (7.3) small enough. The convergence in (i) Theorem 2.4 follows
immediately.

We now prove (2.6). Using Taylor’s expansion of W in a neighborhood of Q(x′), we obtain:

1

h2
Ih(uh) =

1

h2

✂
Ω1

h

W

(

x, Q(x′) + hx3A
h
2(x′) + h2 x2

3

2
Dh(x′)

)

dx +
1

h2

✂
Ω1\Ω1

h

W (x,∇uh(x)) dx

=

✂
Ω1

h

(

1

2
∇2W (x′, ·)|Q(x′)(x3A

h
2(x′), x3A

h
2(x′)) + Rh(x)

)

dx +
O(1)

h2
|Ω \ Ωh|.

Here the reminder Rh converges, by (7.2), to 0 pointwise almost everywhere, as h → 0. Therefore,
recalling the boundedness of W (x,∇uh(x)) we deduce by dominated convergence and (7.3) that
the above integral converges, as h → 0, to:

1

2

✂
Ω1

x2
3∇2W (x′, ·)|Q(x′)(A2(x

′), A2(x
′)) dx =

1

2

✂
Ω1

x2
3Q3(x

′)
(

AQ−1A2

)

dx

=
1

24

✂
Ω
Q3(x

′)
(

A−1QT A2

)

dx′ =
1

24

✂
Ω
Q2

(

A−1
αβ(∇y)T∇~n

)

dx′.

where we applied frame invariance, (7.1) and (6.5).
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8. Conditions for existence of W 2,2 isometric immersions of Riemannian metrics -

a proof of Theorem 2.6

The assertions in (i) follow directly from Theorem 2.4 and Theorem 2.5. It remains to prove
(ii), which clearly implies (iii).

Assume that limh→0
1
h2 Ih(uh) = 0 for some sequence of deformations uh ∈ W 1,2(Ωh, R3). Then,

by Theorem 2.4 there exists a metric realization y ∈ W 2,2(Ω, R3) such that:✂
Ω
Q2(x

′)
(

A−1
αβΠ(x′)

)

dx′ = 0,

where Π = (∇y)T∇~n is the second fundamental form of the image surface y(Ω). Recalling (6.4)
we obtain:

0 = Q2(x
′)
(

A−1
αβΠ

)

= Q2(x
′)
(

Psym·A−1

αβ
(A−1

αβΠ)
)

∀x′ ∈ Ω.

Since the quadratic form Q2(x
′) is nondegenerate on sym · A−1

αβ , it follows that:

(8.1) BA−1
αβ = Psym·A−1

αβ
(A−1

αβΠ) = 0,

for the symmetric matrix B ∈ R
2×2 satisfying:

(A−1
αβΠ − BA−1

αβ) : (SA−1
αβ) = 0 ∀S ∈ sym.

The above condition is equivalent to A−1
αβΠA−1

αβ − BA−2
αβ ∈ skew, but B = 0 in view of (8.1), so:

A−1
αβΠA−1

αβ ∈ skew.

Since Π ∈ sym, there must be Π = 0 and therefore indeed effectively y : Ω −→ R
2.

On the other hand, if y ∈ W 2,2(Ω, R2) is a 2d realization of [gαβ ] then clearly Π = (∇y)T∇~n = 0,
so for the recovery sequence corresponding to y and constructed in Theorem 2.5, there holds
limh→0

1
h2 Ih(uh) = I(y) = 0.
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