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SCALING LIMIT FOR TRAP MODELS ON Z
d

BY GÉRARD BEN AROUS AND JIŘÍ ČERNÝ

Courant Institute for Mathematical Sciences and École Polytechnique
Fédérale de Lausanne

We give the “quenched” scaling limit of Bouchaud’s trap model in d ≥ 2.
This scaling limit is the fractional-kinetics process, that is the time change of
a d-dimensional Brownian motion by the inverse of an independent α-stable
subordinator.

1. Introduction. This work establishes scaling limits for certain important
models of trapped random walks on Z

d . More precisely we show that Bouchaud’s
trap model on Z

d , d ≥ 2, properly normalized, converges (at the process level) to
the fractional-kinetics process, which is a self-similar non-Markovian continuous
process, obtained as the time change of a d-dimensional Brownian motion by the
inverse of an independent Lévy α-stable subordinator. This is in sharp contrast to
the scaling limit for the same model in dimension one (see [8]) where the limiting
process is a singular diffusion in random environment. For a general survey about
trap models and their motivation in statistical physics we refer to the lecture notes
[2], where we announced the result proved in this paper.

Bouchaud’s trap model on Z
d is the nearest neighbor continuous time Markov

process X(t) given by the jump rates

c(x, y) = 1

2dτx

if x and y are neighbors in Z
d ,(1)

and zero otherwise, where {τx :x ∈ Z
d} are i.i.d. heavy-tailed random variables.

More precisely we assume that for some α ∈ (0,1)

P[τx ≥ u] = u−α(
1 + L(u)

)
with L(u) → 0 as u → ∞.(2)

We will always assume that X(0) = 0. The Markov process X(t) waits at a site
x an exponentially distributed time with mean τx , and then it jumps to one of the
neighbors of x with uniform probability. Therefore X is a random time change of
a standard discrete time simple random walk on Z

d . More precisely:

DEFINITION 1.1. Let S(0) = 0 and let S(k), k ∈ N, be the time of the kth
jump of X. For s ∈ R we define S(s) = S(�s�). We call S(s) the clock process.
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Define the embedded discrete time Markov chain Y(k) by Y(k) = X(t) for S(k) ≤
t < S(k + 1). Then obviously, Y is a simple random walk on Z

d .

In order to state our principal result we need to introduce the limiting fractional-
kinetics (FK) process.

DEFINITION 1.2. Let Bd(t) be a standard d-dimensional Brownian mo-
tion started at 0, and let Vα be an independent α-stable subordinator satisfying
E[e−λVα(t)] = e−tλα

. Define the generalized right-continuous inverse of Vα(t) by
V −1

α (s) := inf{t :Vα(t) > s}. We define the fractional-kinetics process Zd,α by

Zd,α(s) = Bd(V −1
α (s)).(3)

This process is well known in the physics literature. See, for instance, the broad
survey by Zaslavsky [20] or the recent book [21] about the relevance of this process
for chaotic deterministic systems; see also [9, 10, 13, 14, 17] for more on this class
of processes and references.

We fix a time T > 0 and d ≥ 2 and denote by Dd([0, T ]) the space of càdlàg
functions from [0, T ] to R

d . Let XN(t) be the sequence of elements of Dd([0, T ]),

XN(t) =
√

dX(tN)

f (N)
,(4)

where

f (N) =
{

C2(α)Nα/2(logN)(1−α)/2, if d = 2,
Cd(α)Nα/2, if d ≥ 3,

(5)

Cd(α) =
{ [π1−ααα−1�(1 − α)�(1 + α)]−1/2, if d = 2,

[Gd(0)α�(1 − α)�(1 + α)]−1/2, if d ≥ 3,
(6)

and Gd(0) denotes the Green’s function of the d-dimensional discrete simple ran-
dom walk at the origin, Gd(0) = ∑∞

k=0 P[Y(k) = 0], for d ≥ 3.
Our main result is the following “quenched” scaling limit statement:

THEOREM 1.3. For a.e. τ , the distribution of XN converges weakly to the
distribution of Zd,α on Dd([0, T ]) equipped with the uniform topology.

This result is a consequence of the following, more detailed statement, that
is, the joint convergence of the clock process and of the position of the embed-
ded random walk. We use D([0, T ],M1) (resp. D([0, T ],U)) to denote the space
D([0, T ]) equipped with the M1 (resp. uniform) topology. Define

YN(t) =
√

d

f (N)
Y (�tf (N)2�) and SN(t) = 1

N
S(�tf (N)2�).(7)
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THEOREM 1.4. For a.e. τ , the joint distribution of (SN,YN) converges weakly
to the distribution of (Vα,Bd) on D([0, T ],M1) × Dd([0, T ],U).

Let us insist on the following important facts:
1. One word of caution is necessary about the nature of this joint convergence.

It takes place in the uniform topology for the spatial component but only in the
Skorokhod M1 topology for the clock process (see [18] for the classical reference
about the various topologies on Dd([0, T ]) and [19] for a thorough, more recent,
survey). It is important to remark that our statement is not true in the stronger J1
topology (usually called the Skorokhod topology). Indeed, the main advantage of
the M1 topology over the J1 topology, for our purposes, is that existence of “in-
termediate jumps” forbid convergence in the latter but not in the former. These
intermediate jumps are important in our context: they are caused by the fact that
the deep traps giving the main contributions to the clock process are visited at sev-
eral nearby instants. All these visits are summed up into one jump of the limiting
α-stable subordinator Vα .

2. Our scaling limit result is “quenched,” that is valid almost surely in the ran-
dom environment τ , and the limiting process is independent of τ .

3. Our result might be seen as a “triviality” result. Indeed, the fractional kinetics
process can be obtained as a scaling limit of a much simpler discrete process,
that is, a continuous time random walk (CTRW) à la Montroll–Weiss [15]. More
precisely consider a simple random walk Y on Z

d and a sequence of positive i.i.d.
random variables {si : i ∈ N} satisfying the same condition (2) as the τx’s. Define
the CTRW U(t) by

U(t) = Y(k) if t ∈
[

k−1∑
i=1

si,

k∑
i=1

si

)
.(8)

It is proved in [16] on the level of fixed-time distributions and in [12] on the level
of processes that there is a constant C such that

CN−α/2U(tN)
N→∞−→ Zd,α(t).(9)

The result of Theorem 1.3 shows that the limit of the d-dimensional trap model
and its clock process on Z

d is trivial, in the sense that it is identical with the scal-
ing limit of the much simpler (completely annealed) dynamics of the CTRW. The
necessary scaling is the same as for CTRW if d ≥ 3, and it requires a logarithmic
correction if d = 2.

4. As mentioned above, the situation is completely different in d = 1, where the
scaling limit is a singular diffusion in random environment introduced in by Fontes,
Isopi and Newman [8] as follows. Let (xi, vi) be an inhomogeneous Poisson point
process on R × (0,∞) with intensity measure dx αv−1−α dv, and consider the
random discrete measure ρ = ∑

i viδxi
which can be obtained as a scaling limit of

the random environment τ . Conditionally on ρ, the FIN diffusion Zα(s) is defined
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as a diffusion process [with Zα(0) = 0] that can be expressed as a time change
of the standard one-dimensional Brownian motion B1 with the speed measure ρ:
denoting by �(t, y) the local time of the standard Brownian motion B1, let

φρ(t) =
∫

R

�(t, y)ρ(dy),(10)

then Zα(s) = B(φ−1
ρ (s)).

Observe that both processes, the fractional kinetics and the FIN diffusion, are
defined as a time change of the Brownian motion Bd(t). The clock processes
however differ considerably. For d = 1, the clock equals φρ(t) = ∫

�(t, y)ρ(dy).
Therefore, the processes B1 and φρ are dependent. In the fractional-kinetics case
the Brownian motion Bd and the clock process, that is, the stable subordinator Vα ,
are independent. The asymptotic independence of the clock process S and the lo-
cation Y is a very remarkable feature distinguishing d ≥ 2 and d = 1.

Note also that, in contrast with the d = 1 case, nothing like a scaling limit of
the random environment appears in the definition of Zd,α for d ≥ 2, and that the
convergence holds τ -a.s. The absence of the scaling limit of the environment in
the definition of Zd,α translates into the non-Markovianity of Zd,α . It is, however,
considerably easier to control the behavior of the FK process than of the FIN diffu-
sion even if the former is not Markovian. Let us mention few elementary properties
of the process Zd,α .

PROPOSITION 1.5. (i) Zd,α is a.s. γ -Hölder continuous for any γ < α/2.

(ii) Zd,α is self-similar, Zd,α(t)
law= λ−α/2Zd,α(λt).

(iii) Zd,α is not Markovian.
(iv) The fixed-time distribution of Zd,α(t) is given by its Fourier transform

E
(
eiξ ·Zd,α(t)) = Eα(−|ξ |2tα/2),(11)

where Eα(z) = ∑∞
m=0 zm/�(1 + mα) is the Mittag–Leffler function.

PROOF. Since the Brownian motion is γ -Hölder continuous for γ < 1/2 and
V −1

α is γ -Hölder continuous for γ < α (see Lemma III.17 of [4]), fact (i) follows.
(ii) can be proved using scaling properties of Bd and Vα . To show (iii) it is enough
to observe that the times between jumps of Zd,α have no exponential distribution.
Example B on page 453 of [6] implies that the Laplace transform of V −1

α (t) is
equal to Eα(−λtα). The result of (iv) then follows by an easy computation. �

The name of the FK process comes from the fact that Zd,α has a smooth density
p(t, x) which satisfies the fractional-kinetics equation (see [20])

∂α

∂tα
p(t, x) = 1

2
p(t, x) + δ(0)

t−α

�(1 − α)
.(12)
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The FK process Zd,α has an obvious aging property due to its very slow clock,
namely

P[Zd,α(tw + s) = Zd,α(tw) ∀s ≤ t] = sinαπ

π

∫ tw/(tw+t)

0
uα−1(1 − u)−α du.

(13)
This is simply a restatement of the arcsine law for the stable subordinator Vα since

P[Zd,α(tw + s) = Zd,α(tw) ∀s ≤ t] = P
[{V (t) : t ∈ R} ∩ [tw, tw + t] = ∅

]
.(14)

This and Theorem 1.3 explain in part the analogous aging result for Bouchaud’s
trap model

lim
tw→∞P[X(tw + θtw) = X(tw)|τ ] = sinαπ

π

∫ 1/(1+θ)

0
uα−1(1 − u)−α du.(15)

In fact proving (15) requires a slightly more detailed understanding of the discrete
clock process (see [1, 3, 5]).

At the end of the Introduction, we would like to draw reader’s attention to the
paper [7], where the scaling limit of the trap model on a large complete graph is
identified. The situation there is slightly different since there is no natural scal-
ing limit of the simple random walk on a large complete graph in the absence of
trapping.

The rest of the paper is organized as follows. In Section 2 we recall the coarse-
graining construction introduced for d = 2 in [3] and we state (for all d ≥ 2) some
results related to this construction. Using these results we prove Theorems 1.3
and 1.4 in Section 3. In Section 4 we give the proofs of the claims from Section 2
for d ≥ 3.

2. Coarse graining. We define in this section the coarse-graining procedure
that was used in [3, 5] to prove aging (15). We also recall some properties of this
procedure which we need to prove our scaling limit results.

We use Dx(r) [resp. Bx(r)] to denote the ball (box) with radius (side) r cen-
tered at x. These sets are understood as subsets of Z

d . We will often use the claim
that Dx(r) contains d−1ωdrd sites, where ωd is the surface of a d-dimensional
unit sphere, although it is not precisely true. Any error we introduce by this con-
sideration is negligible for r large. If x is the origin, we omit it from the notation.

It follows from the definition of X that the clock process S can be written as

S(k) =
k−1∑
i=0

eiτYi
,(16)

where the ei ’s are mean-one i.i.d. exponential random variables. We always sup-
pose that the ei ’s are coupled with X and Y in this way.
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Let n ∈ N large. We will consider the processes Y and X before the first exit
from the large ball D(n) = D(mr(n)), where (the scales for d = 2 are chosen to
agree with [3])

r(n) =
{

π−1/22n/2n(1−α)/2, if d = 2,
2n/2, if d ≥ 3,

(17)

and m is a large constant independent of n which will be chosen later (see Corol-
lary 2.2 and Lemma 2.4 below). Let ζn be the exit time of Y from D(n),

ζn = inf{k ∈ N :Y(k) /∈ D(n)}.(18)

In D(n), a principal contribution to the clock process comes from traps with depth
of order g(n) where

g(n) =
{

n−12n/α, if d = 2,
2n/α, if d ≥ 3.

(19)

We define, as in [3],

T M
ε (n) = {x ∈ D(n) : εg(n) ≤ τx < Mg(n)}.(20)

If M or ε are omitted, it is understood M = ∞, respectively ε = 0. We always
suppose that ε < 1 < M . We further introduce two d-dependent constants κ , γ .
For d = 2 we choose

γ < 1 − α and κ = 5

1 − α
,(21)

for d ≥ 3

γ = 1 − 1

3d
and κ = 1

d
.(22)

We then define the coarse-graining scale ρ(n) as

ρ(n) =
{

π−1/22n/2nγ/2, if d = 2,
2γ n/2, if d ≥ 3.

(23)

We will often abbreviate

h(n) = r(n)/ρ(n).(24)

The last scale we need is the “proximity” scale

ν(n) =
{

π−1/22n/2n−κ/2, if d = 2,
2κn/2, if d ≥ 3.

(25)

Observe that ν(n) � ρ(n). We use E(n), B(n) to denote the sets

E(n) = {x ∈ D(n) : dist(x, T M
ε (n)) > ν(n)},(26)

B(n) =



∅, if d = 2,{
x ∈ T M

ε (n) :
(∃y = x :y ∈ T M

ε (n),dist(x, y) ≤ ν(n)
)}

,

if d ≥ 3.

(27)
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For all objects defined above we will often skip the dependence on n in the nota-
tion.

We now introduce the coarse-graining procedure. Let jn
i be a sequence of stop-

ping times for Y given by jn
0 = 0 and

jn
i = min{k > jn

i−1 : dist(Y (k), Y (jn
i−1)) > ρ(n)}, i ∈ N.(28)

For every i ∈ N0 we define the score of the part of the trajectory between jn
i and

jn
i+1 as follows. Let

λn
i,1 = min{k ≥ jn

i :Y(k) ∈ T M
ε }(29)

and yn
i = Y(λn

i,1). Let further

λn
i,2 = min{k ≥ λn

i,1 : dist(Y (k), yn
i ) > ν(n)},

(30)
λn

i,3 = min[{k ≥ λn
i,1 :Y(k) ∈ T M

ε \ yn
i } ∪ {k ≥ λn

i,2 :Y(k) ∈ T M
ε }].

If the part of the trajectory between jn
i and jn

i+1 satisfies

dist(Y (jn
i ), ∂D(n)) > ρ(n), Y (jn

i ), Y (jn
i+1) ∈ E(n)(31)

and

λn
i,1 < λn

i,2 < jn
i+1 ≤ λn

i,3,
(32)

dist
(
yn
i , ∂DY(jn

i )(ρ(n))
)
> ν(n), yn

i /∈ B(n),

then we define the score of this part as

sn
i =

λn
i,2∑

k=λn
i,1

ekτk1{Y(k) = yn
i }.(33)

If (31) is satisfied and λn
i,1 ≥ jn

i+1, we set sn
i = 0. In both these cases sn

i records the
time spent by X in T M

ε during the ith part of the trajectory. In all other cases we set
sn
i = ∞. This value marks the part of trajectory where something “bad” happens.

We use J (n) to denote the index of the first bad part,

J (n) = min{i : sn
i = ∞}.(34)

We finally introduce two families of random variables, sn(x) ∈ [0,∞) and
rn(x) ∈ Z

d , indexed by x ∈ D(n). By definition, the law of sn(x) is the same as
the law of sn

i conditioned on Y(jn
i ) = x (and on τ ). Similarly, the law of rn(x) is

the same as the law of Y(jn
i+1) − Y(jn

i ) conditioned on the same event.
We will need these properties of the random variables sn(x).

LEMMA 2.1. Let

E0(n) = {x ∈ E(n) : dist(x, ∂D(n)) > ρ(n)}.(35)

Then, for every ε, M and for P-a.e. random environment τ :
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(i)

max
x∈E0(n)

P[sn(x) = ∞|τ ] = o(h(n)−2).(36)

(ii)

lim
n→∞ max

x∈E0(n)

∣∣h(n)2{
1 − E

[
e−λsn(x)/2n/α |sn(x) < ∞,τ

]} − Fd(λ)
∣∣ = 0.(37)

Here

Fd(λ) = Kd

{
pM

ε −
∫ M

ε

α

1 + K ′
dλz

· 1

zα+1 dz

}
,(38)

pM
ε = ε−α − M−α and

Kd =
{

(log 2)−1,

1,
K ′

d =
{

π−1 log 2, if d = 2,
Gd(0), if d ≥ 3,

(39)

(iii)

lim
n→∞ max

x∈E0(x)

∣∣h(n)2
P[sn(x) = 0|τ ] − KdpM

ε

∣∣ = 0.(40)

For d = 2 (i) follows from Section 5, (ii) from Lemma 6.4 and (iii) from
Lemma 5.7 of [3]. We give in Section 4 a proof for d ≥ 3 taken from [5].

It is worth noting that (i) of the previous lemma implies that (ii) holds also when
conditioning on sn(x) < ∞ is removed. As a corollary of (i) we also get

COROLLARY 2.2. For every δ, T > 0 there exists m independent of ε and M ,
such that τ -a.s. for n large

P[J (n)/h(n)2 ≥ T |τ ] ≥ 1 − δ.(41)

PROOF. By (2)

P[0 /∈ E0(n)] ≤ ∑
x∈D(ν(n))

P[x ∈ T M
ε ] ≤ Cν(n)dg(n)−α.(42)

This is O(n−κ+α) for d = 2 and O(2−n/2) for d ≥ 3. In both cases the Borel–
Cantelli lemma implies that τ -a.s. 0 ∈ E0(n) for n large. Therefore, by Lemma 2.1,
P[sn

0 = ∞|τ ] = o(h−2). Moreover, by the second condition in (31), if sn
0 < ∞,

then the first part of the trajectory ends in E . Actually, it ends in E0 since the set
E \ E0 is at distance r − ρ � ρ from the origin. Therefore, the second part of
the trajectory starts in E0 and thus sn

1 = ∞ with probability o(h−2). This remains
true for all parts of the trajectory before the walk approaches the boundary of D.
However, since r/ρ = h, the expected number of parts needed to approach ∂D

scales as m2h2. Therefore, it is possible to choose m large enough such that T h2
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parts stay in D(mr − ρ) with probability larger than 1 − δ/2. The probability that
at least one of these parts is bad is T h2o(h−2) = o(1). This completes the proof.

�

The behavior of the random variables rn(x) is easy to control.

LEMMA 2.3. For every ξ ∈ R
d and for all x ∈ E(n)

lim
n→∞h(n)2{

1 − E
(
e−ξ ·rn(x)/r(n))} = −|ξ |2

2d
.(43)

PROOF. By definition |rn(x)| = ρ(1 + o(1)) = r/h � r . Using the Taylor
expansion and the symmetry of the distribution of rn(x) we get

E
[
e−ξ ·rn(x)/r(n)] = 1 + E

[
1

2
h(n)−2

(
ξ · rn(x)

ρ(n)

)2]
+ O(h(n)−4).(44)

It follows, for example, from Lemma 1.7.4 of [11] that the distribution of rn(x)/ρ

converges to the uniform distribution on the sphere of radius one. The result then
follows by an easy integration. �

The reason why the scores sn
i were introduced in [3] is that the sum of scores is

a good approximation for the clock process.

LEMMA 2.4. For any δ > 0 and T > 0 one can choose ε, M and m such that
τ -a.s. for all n large enough,

P

[
1

2n/α
max

{∣∣∣∣∣S(jn
k ) −

k−1∑
j=0

sn
j

∣∣∣∣∣ :k ∈ {1, . . . , h2T }
}

≥ δ
∣∣∣τ

]
< δ.(45)

The proof of this lemma for d ≥ 2 can be found on pages 30–31 of [3]. For
d ≥ 3 it is proved in Section 4.

3. Proofs of Theorems 1.3 and 1.4. We prove Theorem 1.4 first. The next
lemma gives the convergence of fixed-time marginals.

LEMMA 3.1. The finite-dimensional distributions of the pair (SN,YN) con-
verge to those of (Vα,Bd).

In order to prove Lemma 3.1 we will need an important lemma describing the
asymptotic behavior of the joint Laplace transform of rn(x) and sn(x).
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LEMMA 3.2. For P-a.e. random environment τ and for all λ > 0, ξ ∈ R
d

lim
n→∞h(n)2

{
1 − E

[
exp

(
−λsn(x)

2n/α
− ξ · rn(x)

r(n)

)∣∣∣sn(x) < ∞,τ

]}
(46)

= Fd(λ) − |ξ |2
2d

uniformly in x ∈ E0(n).

PROOF. Note first that by Lemma 2.1(i) P[sn(x) = ∞|τ ] = o(h(n)−2). There-
fore, we can remove the conditioning on sn(x) < ∞. To shorten the expressions we
do not explicitly write conditioning on τ in this proof. By a trivial decomposition
according to the value of sn(x) we get

E

[
exp

(
−λsn(x)

2n/α
− ξ · rn(x)

r(n)

)]

= E

[
exp

(
−ξ · rn(x)

r(n)

)
1{sn(x) = 0}

]
(47)

+ E

[
exp

(
−λsn(x)

2n/α

)
1{sn(x) = 0}

]
· R(n),

where, since |rn(x)| = ρ(1 + o(1)),

e−ρ(n)|ξ |/r(n) ≤ R(n) ≤ eρ(n)|ξ |/r(n)(48)

and therefore R(n) = 1 +o(1). The first expectation on the right-hand side of (47)
can be rewritten using Lemma 2.3,

E

[
exp

(
−ξ · rn(x)

r(n)

)
1{sn(x) = 0}

]

= E

[
exp

(
−ξ · rn(x)

r(n)

)]
− E

[
exp

(
−ξ · rn(x)

r(n)

)
1{sn(x) = 0}

]
(49)

= 1 + |ξ |
2dh(n)2 + o(h(n)−2) − R(n)P[sn(x) = 0],

where R(n) satisfies again (48). We rewrite the second expectation of (47) using
Lemma 2.1(ii),

E

[
exp

(
−λsn(x)

2n/α

)
1{sn(x) = 0}

]

= E

[
exp

(
−λsn(x)

2n/α

)]
− E

[
exp

(
−λsn(x)

2n/α

)
1{sn(x) = 0}

]
(50)

= 1 − h(n)−2Fd(λ) + o(h(n)−2) − P[sn(x) = 0]
= −h(n)−2Fd(λ) + o(h(n)−2) + P[sn(x) = 0].
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Putting everything together we get

E

[
exp

(
−λsn(x)

2n/α
− ξ · rn(x)

ρ(n)h(n)

)]
(51)

= 1 + |ξ |
2dh(n)2 − Fd(λ)

h(n)2 + o(h(n)−2) + {1 − R(n)}P[sn(x) = 0].

Since 1 − R(n) = o(1) and by Lemma 2.1(iii) P[sn(x) = 0] = O(h(n)−2), the
proof is complete. �

PROOF OF LEMMA 3.1. To check the convergence of the finite-dimensional
distributions of (SN,YN) we choose n = n(N) ∈ N and t = t (N) ∈ [1,21/α) such
that

N = 2n(N)/αt (N).(52)

It is easy to see from the definitions of n, t and r(n) that

f (N) = c1r(n(N))t (N)α/2,(53)

where

c1 = c1(d,α) =
{

π1/2(α−1 log 2)(1−α)/2, if d = 2,
1, if d ≥ 3.

(54)

We further set c2 = c2(d,α) = (Cd(α)c1(d,α))−1.
Later we will take the limit n → ∞ for a fixed value of t ∈ [1,21/α) instead of

taking the limit N → ∞. We will show that this limit exists and does not depend
on t . Moreover, as can be seen from the proof, the convergence is uniform in t .
Therefore also the limit as N → ∞ exists. We will not comment on the issue of
uniformity during the proof. Hence, instead of the convergence of (SN,YN) we
show that (in the sense of the finite-dimensional distributions) for all t ∈ [1,21/α)(

1

t2n/α
S(c−2

2 r(n)2tα·), c2
√

d

r(n)tα/2 Y(c−2
2 r(n)2tα·)

)
n→∞−→ (Vα(·),Bd(·)).(55)

Let rn
k = Y(jn

k+1) − Y(jn
k ). We will approximate the processes on the left-hand

side of the last display by sum of scores sn
j and of displacement rn

j . It follows
from the properties of the simple random walk that the exit time jn

1 from the ball
D(ρ(n)) satisfies E[jn

1 ] = ρ(n)2(1 + o(1)) and E[(jn
1 /ρ(n)2)2] < C for some C

independent of n. Therefore, by the law of large numbers for triangular arrays,
a.s. for any δ′ > 0, u ≤ T and n large enough

jn

�(1−δ′)c−2
2 h(n)2tαu� ≤ c−2

2 r(n)2tαu ≤ jn

�(1+δ′)c−2
2 h(n)2tαu�.(56)

Since S(·) is increasing, S(c−2
2 r(n)2tαu) can be approximated from above and

below by S(jn

�(1±δ′)c−2
2 h(n)2tαu�). Lemma 2.4 then yields that for ε small and M , m,
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n large

P

[∣∣∣∣∣ 1

t2n/a
S
(
jn

�(1±δ′)c−2
2 h(n)2tαu�

) −
�(1±δ′)c−2

2 h(n)2tαu�−1∑
i=0

sn
i

∣∣∣∣∣ ≥ δ
∣∣∣τ

]
≤ δ.(57)

Similarly, it follows from the properties of the simple random walk that for any
δ > 0 it is possible to choose δ′ such that

P

[∣∣∣∣∣ c2
√

d

r(n)tα/2 Y(c−2
2 r(n)2tαu) − c2

√
d

r(n)tα/2

�(1±δ′)c−2
2 h(n)2tαu�−1∑
i=0

rn
i

∣∣∣∣∣ ≥ δ

]
≤ δ.(58)

Let 0 = u0 < u1 < · · · < uq ≤ T , λi > 0 and ξi ∈ R
d , where i ∈ {1, . . . , q}.

To prove the convergence of the finite-dimensional distributions we will prove the
τ -a.s. convergence of the Laplace transform

E

[
exp

(
−

q∑
i=1

λi

t2n/α
{S(c−2

2 r(n)2tαui) − S(c−2
2 r(n)2tαui−1)}

(59)

+ c2
√

d

r(n)tα/2 ξi · {Y(c−2
2 r(n)2tαui) − Y(c−2

2 r(n)2tαui−1)}
)∣∣∣τ

]
.

The discussion of the last paragraph implies that it suffices to show the conver-
gence of

E

[
exp

(
−

q∑
i=1

∑
k∈Bv(n,i)

λi

t2n/α
sn
k + c2

√
d

r(n)tα/2 ξi · rn
k

)∣∣∣τ
]

(60)

for v = ±δ′, where

Bv(n, i) = {�(1 + v)c−2
2 h(n)2tαui−1�, . . . , �(1 + v)c−2

2 h(n)2tαui� − 1},(61)

and to show that as δ′ → 0 both limits coincide.
Let Qn be the set of all finite sequences

Qn = {x� ∈ Z
d :� ∈ 0, . . . , �c−2

2 h(n)2tαuq� − 1}.(62)

Expression (60) can be written as

E

[
exp

(
−

q∑
i=1

∑
k∈Bv(n,i)

λi

t2n/α
sn
k + c2

√
d

r(n)tα/2 ξi · rn
k

)∣∣∣τ
]

= ∑
{x�}∈Qn

P[Y(jn
� ) = x� ∀�](63)

× E

[
exp

(
−

q∑
i=1

∑
k∈Bv(n,i)

λis
n
k

t2n/α
+ c2

√
d

r(n)tα/2 ξi · rn
k

)∣∣∣τ ,

Y (jn
� ) = x� ∀�

]
.
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The last summation can be further divided into two parts. We first consider
sequences such that {x�} ⊂ E0. It follows from Lemma 2.1 and Corollary 2.2
that the sum of probabilities of such sequences can be made arbitrarily small
by choosing ε, M and m. We can therefore ignore them. The contribution of
the remaining sequences {x�} can be evaluated using Lemma 3.2. Indeed, let
ω = �c−2

2 h(n)2tαuq�−1. Observe that given τ and Y(jn
ω) = xω, the distribution of

(sn
ω, rn

ω) is independent of the history of the walk and is the same as the distribution
of (sn(xω), rn(xω)). Therefore,

E

[
exp

(
−

q∑
i=1

∑
k∈Bv(n,i)

λis
n
k

t2n/α
+ c2

√
d

r(n)tα/2 ξi · rn
k

)∣∣∣τ , Y (jn
� ) = x� ∀� ≤ ω

]

= E

[
exp

(
−

q∑
i=1

∑
k∈Bv(n,i)

k≤ω−1

λis
n
k

t2n/α
+ c2

√
d

r(n)tα/2 ξi · rn
k

)∣∣∣τ ,

Y (jn
� ) = x� ∀� ≤ ω − 1

]
(64)

× E

[
exp

(
− λq

t2n/α
sn(xω) − c2

√
d

r(n)tα/2 ξq · rn(xω)

)∣∣∣τ]
.

The last expectation is bounded uniformly in xω by

1 − (1 ± δ)h(n)−2
(
Fd

(
λq

t

)
− |ξq |2

2d

dc2
2

tα

)
.(65)

Therefore, we can sum over xω and repeat the same manipulation for xω−1. Iterat-
ing, we find that the sum over {x�} ⊂ E0 is bounded from above by

P[Y(jn
� ) ∈ E0 ∀� ≤ ω]

×
q∏

i=1

{
1 + 1 + δ

h(n)2

|ξi |2
2d

dc2
2

tα
− 1 − δ

h(n)2 Fd

(
λi

t

)}|Bv(n,i)|

(66)

=
q∏

i=1

exp
{(

(1 + δ)
|ξi |2

2
− (1 − δ)

tα

c2
2

Fd

(
λi

t

))
(ui − ui−1)(1 + v)

}

× (
1 + o(1)

)
.

A lower bound can be constructed analogously. Obviously, as δ, δ′ → 0 and v =
±δ′ the upper and lower bound coincide.

Finally, taking ε = 0 and M = ∞ in the definition (38) of Fd(λ) we find by an
easy integration that

Fd(λ)
M→∞−→
ε→0

Kd(K ′
dλ)α�(1 + α)�(1 − α).(67)
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Therefore, using definitions (54) and (6),

tα

c2
2

Fd

(
λ

t

)
M→∞−→
ε→0

λα.(68)

This completes the proof of Lemma 3.1. �

To complete the proof of Theorem 1.4 we need to show the tightness.

LEMMA 3.3. The sequence of the distributions of (SN,YN) is tight in
D([0, T ],M1) × Dd([0, T ],U).

PROOF. To check the tightness for SN in D([0, T ],M1) we use Theo-
rem 12.12.3 of [19]. Since the SN are increasing, it is easy to see that condition
(i) of this theorem is equivalent to the tightness of SN(T ) which can be easily
checked from Lemma 3.1. In order to check condition (ii) of the theorem remark
that for increasing functions the oscillation function ws used in [19] is equal to
zero. So checking (ii) boils down to controlling the boundary oscilations v̄(x,0, δ)

and v̄(x, T , δ). For the first quantity (using again the monotonicity of SN ) this
amounts to check that for any ε, η > 0 there is δ such that P[SN(δ) ≥ η] < ε which
follows again from Lemma 3.1. The reasoning for v̄(x, T , δ) is analogous.

For Yn the proof of the tightness is analogous to the same proof for Donsker’s
invariance principle. The tightness of both components implies the tightness of the
pair (SN,YN) in the product topology on D([0, T ],M1) × Dd([0, T ],U). �

Obviously, Lemmas 3.1 and 3.3 imply Theorem 1.4. We can now easily derive
Theorem 1.3.

PROOF OF THEOREM 1.3. It is easy to check from definitions (4) and (7) that
XN(·) = YN(S−1

N (·)). Let Du,↑ denote the subset of D([0, T ]) consisting of un-
bounded increasing functions. By Corollary 13.6.4 of [19] the inverse map from
Du,↑(M1) to Du,↑(U) is continuous at strictly increasing functions. Since the Lévy
process Vα [the limit of SN in (Du,↑,M1)] is a.s. strictly increasing, the distrib-
ution of S−1

N converges to the distribution of V −1
α weakly on Du,↑(U) and the

limit is a.s. continuous. The composition (f, g) �→ f ◦ g as the mapping from
Dd([0, T ],U)×Du,↑(U) to Dd([0, T ],U) is continuous at Cd ×C (here C is the
space of continuous function) as is easy to check. The weak convergence of XN

on Dd([0, T ],U) then follows. �

4. Proofs of the coarse-graining estimates for d ≥ 3. We give here the
proofs of Lemmas 2.1 and 2.4 for d ≥ 3. These proofs are adapted from [5] and
use similar techniques as in [3] for d = 2. In general, the proofs become slightly
simpler because the random walk is transient if d ≥ 3, and all important quantities
(like Green’s function, hitting probabilities, etc.) depend only polynomially on the
radius of the ball, logarithmic corrections are not required.
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4.1. Proof of Lemma 2.1 for d ≥ 3. Lemma 2.1 controls the distribution of the
random scores sn(x) for x ∈ E0. Typically, sn(x) is equal to the time that X started
at x spends in T M

ε before exiting Dx(ρ). In some exceptional cases sn(x) = ∞.
We first show that the probability that this happens is o(h(n)−2), that is we prove
(i) of Lemma 2.1.

As follows from the definition of sn(x) the exceptional cases that we need to
control are:

(a) the exit point from Dx(ρ(n)) is not in E(n),
(b) Y hits a trap in T M

ε (n) that is at distance smaller than ν(n) from
∂Dx(ρ(n)),

(c) Y hits two different traps in T M
ε (n) before the exit of Dx(ρ(n)),

(d) Y hits a trap from B(n) [see (27) for definition],
(e) Y hits a trap y in T M

ε (n), exits Dy(ν(n)) and then returns to y before
exiting Dx(ρ(n)).

We now bound the probability of all these events. For the event (a) we have

LEMMA 4.1. Let P1(n, x) be the probability that the simple random walk
started at x exits Dx(ρ(n)) at some site that is not in E . Then τ -a.s. for every
x ∈ E0, P1(n, x) ≤ Cg(n)−αν(n)d = o(h(n)−2).

PROOF. Let Ax = Ax(n) denote the annulus

Ax(n) = Dx

(
ρ(n) + ν(n)

) \ Dx

(
ρ(n) − ν(n)

)
.(69)

We first show that there exists K such that τ -a.s. for n large enough

|Ax ∩ T M
ε | ≤ Kρd−1νg−α for all x ∈ D.(70)

The number of the sites in Ax is bounded by |Ax | ≤ c′ρd−1ν. Hence, for x fixed

P[|Ax ∩ T M
ε | ≥ Kρd−1νg−α]

≤ exp(−λKρd−1νg−α){1 + cg−αε−α(eλ − 1)}c′ρd−1ν(71)

≤ exp{ρd−1g−αν[−λK + c(eλ − 1)]}.
Summing over x ∈ D we bound the probability that (70) is violated by

cr(n)2 exp{ρd−1g−αν[−λK + c(eλ − 1)]}.(72)

Since ρd−1g−αν = 2(d−1)γ /2+nκ/2−1 and (d −1)γ /2+κ/2−1 > 0 for our choice
of constants, the fact (70) follows by choosing K large and using the Borel–
Cantelli lemma.

If (70) is true, then there are at most cKρd−1νg−ανd−1 points on the boundary
of Dx(ρ) that are not in E . The probability that Y exits Dx(ρ) in any such point is
O(ρ1−d) (see [11], Lemma 1.7.4). Hence,

P1(n, x) ≤ cKρd−1g−ανdρ1−d = Cg−ανd = o(h(n)−2).(73)
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This completes the proof. �

Next, we bound the probability that (b) happens.

LEMMA 4.2. Let P2(n, x) be the probability that the simple random walk
started at x hits a trap in T M

ε (n)∩Ax(n) before exiting Dx(ρ(n)). Then τ -a.s. for
all n large, P2(n, x) ≤ Cρ(n)ν(n)g(n)−α = o(h(n)−2) for all x ∈ D.

PROOF. According to (70) there are τ -a.s. at most Kρd−1νg−α traps in
Ax ∩ T M

ε . The probability that the walk hits one such trap y is by (148) bounded
from above by c|x − y|2−d . There exists constant C such that for all y ∈ Ax , |x −
y|2−d ≤ Cρ2−d . The required probability is thus smaller than Cρd−1νg−αρ2−d ≤
Cρνg−α . �

Let Px denote the distribution of the simple random walk Y started from x. To
proof (c) we need several technical lemmas first.

LEMMA 4.3. Let

Vx(n) = ∑
y∈T M

ε

Px[Y hits y before exiting Dx(ρ(n))|τ ].(74)

Then for any δ > 0 and τ -a.s. there is n0 such that for all n ≥ n0 and for all
x ∈ E0(n)

(1 − δ)KdpM
ε h(n)−2 ≤ Vx(n) ≤ (1 + δ)KdpM

ε h(n)−2.(75)

PROOF. Let µ = 1 − 2/(3d) and ι(n) = 2µn/2, therefore κ < µ < γ and
ν(n) � ι(n) � ρ(n). Recall that Bx(r) denotes the cube centered at x with side r .
Let Dn = Dx(ρ−2ι)\Bx(ι). We divide the sum in (74) into three parts. We use �1
to denote the sum over y ∈ T M

ε ∩ Dn, �2 to denote the sum over y ∈ T M
ε ∩ Bx(ι),

and �3 to denote the sum over y ∈ T M
ε ∩ (Dx(ρ) \ Dx(ρ − 2ι)). The reason why

we introduce the third sum is the error term in (149) which is too large for the traps
that are too close to the border of D(ρ).

The main contribution comes from �1, so we treat it first. We cover Dn by
cubes with side ι. It is not difficult to show that τ -a.s. for n large

|Bx(ι) ∩ T M
ε | ∈ (

(1 − δ)pM
ε ιdg−α, (1 + δ)pM

ε ιdg−α)
(76)

for all x ∈ D such that dist(x, ∂D) ≥ ι
√

2. Indeed, let

Fx = {|Bx(ι) ∩ T M
ε | ≥ (1 + δ)pM

ε ιdg−α}.(77)

Then for any small η and n large enough P[x ∈ T M
ε ] ≤ (1 + η)pM

ε g−α . Hence, for
λ > 0

P[Fx] ≤ exp
(−λ(1 + δ)pM

ε ιdg−α){1 + (eλ − 1)(1 + η)pM
ε g−α}ιd

(78)
≤ exp{pM

ε ιdg−α[−λ(1 + δ) + (eλ − 1)(1 + η)]}.
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For any δ one can choose λ and η small enough such that the exponent in the last
expression is negative. Hence,

P[Fx] ≤ exp(−cιdg−α)(79)

for n large enough. Summing over all x and using the definitions of ι and g we get

P

[⋃
x

Fx

]
≤ Crd exp

(−c2n(dµ−2)/2)
.(80)

Since dµ − 2 > 0, the upper bound for (76) is finished. The proof of the lower
bound is completely analogous.

We can now actually estimate �1. Without loss of generality we set x = 0. Let

Hn = {
z ∈ ι(n)Zd \ {0} :Bz(ι) ∩ Dn = ∅

}
.(81)

Using the bound (149) we get

�1 ≤ ∑
y∈T M

ε ∩Dn

ad{|y|2−d − ρ2−d + O(|y|1−d)}(1 + O(ρ − |y|)2−d)
(82)

≤ ∑
z∈Hn

∑
y∈T M

ε

y∈Bz(ι)

ad{|y|2−d − ρ2−d + O(|y|1−d)}(1 + O(ρ − |y|)2−d)
,

where ad = d
2 �(d

2 − 1)π−d/2. Obviously, for any y ∈ Bz(ι), ||y|2−d − |z|2−d | ≤
cι|z|1−d . This together with (76) yields the bound

�1 ≤ ∑
z∈Hn

(1 + δ)pM
ε ιdg−αad{|z|2−d − ρ2−d + O(ι|z|1−d)} + R,(83)

where

R = ∑
z∈Hn

∑
y∈T M

ε

y∈Bz(ι)

ad{|y|2−d − ρ2−d + O(|y|1−d)}O(ρ − |y|)2−d .(84)

Every site y from the last summation satisfies |y| ≤ ρ − ι. Therefore, O(ρ −
|y|)2−d = O(ι2−d). The error term R is thus much smaller than the sum in (83)
which we now estimate. Replacing the summation by integration (making again
an error of order ι|z|1−d ) we get

�1 ≤ (1 + δ)pM
ε g−α

∫
D

ad{|z|2−d − ρ2−d + O(ι|z|1−d)}dz + R

≤ (1 + δ)pM
ε g−αρ2adωd

(
1

2
− 1

d

)(
1 + o(1)

)
(85)

≤ (1 + 2δ)KdpM
ε h(n)−2,

where ωd denotes as before the surface of the d-dimensional unit sphere. The
lower bound for �1 can be obtained in the same way. It is actually much simpler,
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because the lower bound (147) on the hitting probability is less complicated than
the upper bound (149). Hence,

�1 ≥ (1 − 2δ)KdpM
ε h(n)−2.(86)

It remains to show that �2 and �3 are o(h(n)−2). To estimate �2 we need a
finer description of the homogeneity of the environment than (76). Let imax be
the smallest integer satisfying 2iν(n) ≥ ι(n), that is, imax ∼ (µ − κ)n/2. Then τ -
a.s. for n large, all i ∈ {0, . . . , imax}, and all x ∈ D

|Bx(2
iν) ∩ T M

ε | ≤ n(1 ∨ 2idνdg−α).(87)

Indeed, fix i ∈ {−1, . . . , imax} first. Then for any x ∈ D we have

P[|Bx(2
nγ+i ) ∩ T M

ε | ≥ n(1 ∨ 2idνdg−α)]
≤ exp

(−λn(1 ∨ 2idνdg−α)
){1 + c(eλ − 1)ε−αg−α}2id νd

(88)

≤ C exp(−cλn).

Summing over x ∈ D and i ∈ {−1, . . . , imax} we get an upper bound for the proba-
bility of the complement of (87) which is of order nr(n)de−λn. Therefore, choos-
ing λ large enough, (87) is true P-a.s. for n large enough.

Let E = {−1,0,1}d \ {0,0,0}. Let Oi be the union of 3d − 1 cubes of size 2iν

centered at 2iνE,

Oi = ⋃
x∈E

Bx2i ν(2
iν).(89)

To bound �2 we cover the cube B(ι) (we suppose again that x = 0) by
⋃imax

i=0 Oi .
Observe that our covering does not contain B(ν). However, B(ν) ⊂ D(ν) and
0 ∈ E0, so that B(ν) ∩ T M

ε = ∅.
By (148) and (87) we get

�2 ≤ C

imax∑
i=0

n(1 ∨ 2idνdg−α)(2iν)(2−d)

(90)

≤ C

(µ−κ)n/2∑
i=0

n{(2iν)2−d ∨ 22iν2g−α}.

The first term in the braces is decreasing in i and the second one is increasing. The
sum is thus bounded by Cn2(ν2−d ∨ ι2g−α). However, both terms, n2ν2−d and
n2ι2g−α , are much smaller than h(n)−2 for our choice of constants. This means
that �2 � �1.

The sum �3, that is the sum over y ∈ T M
ε ∩ (D(ρ) \D(ρ − 2ι)) can be bounded

in the same way as the probability of hitting a trap in the annulus Ax ∩ T M
ε was

bounded in Lemma 4.2. Following the same reasoning [with ν(n) replaced by ι(n)]
we get �3 ≤ ριg−α � h(n)−2. This completes the proof of Lemma 4.3. �
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The second technical lemma that we need to bound the event (c) also provides
the required bound for the event (d).

LEMMA 4.4. Let

Wx(n) = ∑
y∈B(n)

Px[Y hits y before exiting Dx(ρ(n))|τ ].(91)

Then τ -a.s., for and for all x ∈ E(n) and n large enough Wx(n) = o(h(n)−2).

PROOF. The proof is very similar to the previous one. We divide the sum
into three parts in the same way as before. We keep the notation �1, �3, �3 for
these parts. Since B ⊂ T M

ε , it follows from the previous proof that �2 and �3 are
o(h(n)−2). Hence, it remains to bound �1 from above. This can be achieved by
the same calculation as before if we show that

|Bx(ι) ∩ B| = o
(|Bx(ι) ∩ T M

ε |) = o(ιdg−α)(92)

for all x ∈ D [cf. this with (76)]. We will show that τ -a.s. for n large and for all
x ∈ D

|Bx(ι) ∩ B(n)| ≤ n2νdg−2αrd =: φ(n).(93)

This bound is not optimal but sufficient for our purposes. Indeed, using the defi-
nitions of g, ν and r we find that φ(n) = O(n22(d−3)n/2) which is much smaller
than ιdg−α = O(2(d−8/3)n/2).

Let Ln denote the grid ι(n)Zd . Then, |Ln ∩ D| ≤ c(r/ι)d . We use A to denote
the event that there exists a cube of side ι containing more than φ(n) bad sites. If
A is true, then there is also a cube of side 2ι centred on Ln that contains more than
φ(n) bad sites. Therefore,

P[A] ≤ ∑
x∈Ln∩D

P[|Bx(2ι) ∩ B| ≥ φ(n)] ≤ C(r/ι)dP[|B(2ι) ∩ B| ≥ φ(n)].(94)

Using the definition of B and the union bound we get that P[x ∈ B] ≤
cε−2ανdg−2α . Therefore, by the Markov inequality,

P[|B(2ι) ∩ B| ≥ φ(n)] ≤ φ(n)−1
E

[ ∑
x∈B(2ι)

1{x ∈ B}
]

(95)
≤ Cε−2αn−2(r/ι)−d .

Putting this into (94) we obtain P[A] ≤ Cn−2. Therefore, (93) follows by the
Borel–Cantelli lemma and the proof is complete. �

We now use the last two lemmas to bound the probability of the event (c).
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LEMMA 4.5. Let P3(n, x) denote the probability that the simple random walk
started at x hits two traps from T M

ε (n) before exiting Dx(ρ(n)). Then τ -a.s. for
every x ∈ E0, P3(n, x) = o(h(n)−2).

PROOF. For A ⊂ Z
d we use Y(x, ρ,A) to denote the number of different traps

from A visited by the simple random walk Y before the exit from Dx(ρ). Then,

P3(n, x) = Px[Y(x, ρ,T M
ε ) ≥ 2|τ ]

≤ Px[Y(x, ρ,T M
ε ) ≥ 2|Y(x, ρ,T M

ε \ B) ≥ 1,τ ]
(96)

× Px[Y(x, ρ,T M
ε \ B) ≥ 1|τ ]

+ Px[Y(x, ρ,T M
ε ) ≥ 2|Y(x, ρ,B) ≥ 1,τ ]Px[Y(x, ρ,B) ≥ 1|τ ].

By Lemma 4.3,

Px[Y(x, ρ,T M
ε \ B) ≥ 1|τ ] ≤ Vx(n) = O(h(n)−2)(97)

and, by Lemma 4.4,

Px[Y(x, ρ,B) ≥ 1|τ ] ≤ Wx(n) = o(h(n)−2).(98)

If we show that

Px[Y(x, ρ,T M
ε ) ≥ 2|Y(x, ρ,T M

ε \ B) ≥ 1,τ ] = O(h(n)−2) = o(1),(99)

then the lemma follows from (96)–(99). To prove (99) we denote by y the first
visited trap from T M

ε . Then from the strong Markov property and from D(x,ρ) ⊂
D(y,2ρ) if follows that

Px[Y(x, ρ,T M
ε ) ≥ 2|Y(x, ρ,T M

ε \ B) ≥ 1,τ ]
≤ Py[Y(y,2ρ,T M

ε \ {y}) ≥ 1|τ ](100)

≤ ∑
z∈T M

ε

Py[Y hits z before exiting Dy(2ρ(n))|τ ].

The right-hand side of the last formula can be bounded by Ch(n)−2 using the
same argument as in Lemma 4.3. This argument works because y ∈ T M

ε \ B and
therefore (T M

ε ∩Dy(ν))\ {y} = ∅. The fact that the ball considered in (100) is two
times larger than in Lemma 4.3 does not change the asymptotic behavior, it only
changes the prefactor. �

It remains to exclude the event (e).

LEMMA 4.6. Let P5(n, x) denote the probability that the simple random walk
started at x hits a trap y ∈ T M

ε (n) exits Dy(ν(n)) and returns to y before exiting
Dx(ρ(n)). Then τ -a.s. for every x ∈ E0(n), P5(n, x) = o(h(n)−2).
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PROOF. Due to Lemma 4.2 we can suppose that dist(y, ∂Dx(ρ)) ≥ ν. Let
preturn(x, y) denote the probability that the simple random started at y that
have exited Dy(ν) returns to y before exiting Dx(ρ). Obviously P5(n, x) ≤
max{preturn(x, y) :y ∈ Dx(ρ) ∩ T M

ε }. Let GA(x, y) denote the Green’s function
of Y killed on the first exit from the set A ⊂ Z

d . By the decomposition on the first
exit from Dy(ν),

GDx(ρ)(y, y) = GDy(ν)(y, y) + preturn(x, y)GDx(ρ)(y, y).(101)

Hence, by (145), uniformly for y ∈ Dx(ρ) ∩ T M
ε and dist(y, ∂Dx(ρ)) ≥ ν,

preturn(x, y) = 1 − GDy(ν)(y, y)

GDx(ρ)(y, y)
(102)

≤ 1 − GD(ν)(0,0)

GD(2ρ)(0,0)
= O(ν2−d) = o(h(n)−2).

This completes the proof of (e) and therefore also of Lemma 2.1(i) for d ≥ 3. �

We now show Lemma 2.1(ii). Since sn(x) records the time that X spends in
T M

ε , we should first control the distribution of the depth of the first hit trap in T M
ε .

To this end we define

σ(n) = n−1 +
(

max
x≥ε

|L(g(n)x)|
)1/2

,(103)

with L defined in (2). Since L(x) → 0 as x → ∞, the function σ satisfies

σ(n) ≥ 1/n, lim
n→∞σ(n) = 0(104)

and

max
x≥ε

|L(g(n)x)| � σ(n) as n → ∞.(105)

Further, let zn(i) be a sequence satisfying ε = zn(0) < zn(1) < · · · < zn(Rn) = M ,
and zn(i + 1) − zn(i) ∈ (σ (n),2σ(n)) for all i ∈ {0, . . . ,Rn − 1}. Let pn

i denote
the factor

pn
i = 1

zn(i)α
− 1

zn(i + 1)α
.(106)

LEMMA 4.7. Let Px(n, i) denote the probability that the simple random walk
started at x hits the set T

zn(i+1)
zn(i) (n) before exiting Dx(ρ(n)). Then for any δ

and a.e. τ there is n0 such that for all n ≥ n0, for all x ∈ E0(n) and for all
i ∈ {0, . . . ,Rn}

Px(n, i) ∈ (
Kd(1 − δ)h(n)−2pn

i ,Kd(1 + δ)h(n)−2pn
i

)
.(107)

PROOF. We will need the following technical claims.
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LEMMA 4.8. For any δ > 0, τ -a.s. for all n large:

(i) P[0 ∈ T
zn(i+1)
zn(i) ] ∈ ((1 − δ)g−αpn

i , (1 + δ)g−αpn
i ),

(ii) for all x ∈ D and i ∈ {0, . . . ,R − 1}∣∣Bx(ι) ∩ T
zn(i+1)
zn(i)

∣∣ ∈ (
(1 − δ)ιdg−αpn

i , (1 + δ)ιdg−αpn
i

)
.(108)

PROOF. By (2) we have

pn
i = g−α

[(
1

zn(i)α
− 1

zn(i + 1)α

)
+ L(gzn(i))

zn(i)α
− L(gzn(i + 1))

zn(i + 1)α

]
.(109)

To prove (i) we should thus show that

L(gzn(i))

zn(i)α
− L(gzn(i + 1))

zn(i + 1)α
= o

(
1

zn(i)α
− 1

zn(i + 1)α

)
.(110)

However, this is true since zn(i)
−α − zn(i + 1)−α � σ(n) and, as follows

from (105), L(gzn(i)) = o(σ (n)).
The claim (ii) can be proved exactly as (76) was proved; the estimate on P[x ∈

T M
ε ] should be replaced by the first claim of the lemma. The easy proof is left to

the reader. �

We can now finish the proof of Lemma 4.7. We use Vx,i(n) to denote

Vx,i(n) = ∑
y∈T

zn(i+1)
zn(i)

Px[Y hits y before exiting Dx(ρ)|τ ].(111)

Lemma 4.8(ii) and the procedure used to show Lemma 4.3 give

(1 − δ)Kdpn
i h(n)−2 ≤ Vx,i(n) ≤ (1 + δ)Kdpn

i h(n)−2.(112)

For Px(n, i) we have then

Px(n, i) ≤ Vx,i(n) ≤ (1 + δ)Kdpn
i h(n)−2.(113)

The corresponding lower bound can be obtained using Lemma 4.5 and Bonfer-
roni’s inequality. Indeed, using the notation introduced before (96),

Px(n, i) ≥ Vx,i(n) − ∑
y,z∈T

zn(i+1)
zn(i)

Px[Y hits y and z before exiting Dx(ρ)|τ ]

= Vx,i(n) − P
[
Y

(
x,ρ,T

zn(i+1)
zn(i)

) ≥ 2
]

(114)

≥ Vx,i(n) − P[Y(x, ρ,T M
ε ) ≥ 2] ≥ (1 − 2δ)Kdpn

i h(n)−2.

This completes the proof. �
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We can now show Lemma 2.1(ii), that is, to show that τ -a.s.

lim
n→∞ max

x∈E0(n)

∣∣h(n)2{
1 − E

[
e−λsn(x)/2n/α |sn(x) < ∞,τ

]} − Fd(λ)
∣∣ = 0.(115)

When the simple random walk Y hits a deep trap y before exiting Dx(ρ(n)) and
sn(x) < ∞, then sn(x) is simply the time spent in y before the exit from Dy(ν(n)).
The process Y hits y a geometrical number of times. The mean of this geometrical
variable is GD(ν(n))(0,0). Each visit takes an exponential time with mean τy . Us-
ing the expression (145) from the Appendix we get the following formula for the
conditional Laplace transform of sn(x):

E

[
exp

(
−λsn(x)

2n/α

)∣∣∣τy, s
n(x) < ∞

]
= 1

1 + λτy2−n/αGd(0)(1 + o(1))
.(116)

The probability that sn(x) = ∞ is o(h(n)−2). Therefore,

E

[
exp

(
−λsn(x)

2n/α

)∣∣∣sn(x) < ∞,τ

]
(117)

= E

[
exp

(
−λsn(x)

2n/α

)∣∣∣τ](
1 + o(h(n)−2)

)
.

The last expectation can be estimated using Lemma 4.7 and (116),

E

[
exp

(
−λsn(x)

2n/α

)∣∣∣τ]

≥ (
1 − (1 + δ)KdpM

ε h(n)−2)
(118)

+ Kdh(n)−2
Rn∑
i=1

pn
i (1 − δ)

1 + λzn(i)Gd(0)(1 + o(1))
.

For n large the last expression is bounded from below by

1 − Kdh(n)−2
(
pM

ε −
∫ M

ε

α

1 + λGd(0)z
· 1

zα+1 dz

)
− δCh(n)−2pM

ε

(119)
= 1 − h(n)−2(

Fd(λ) + O(δ)
)
.

This and (117) give an upper bound for 1 − E[e−λsn(x)/2n/α |sn(x) < ∞,τ ]. A cor-
responding lower bound can be constructed analogously. This completes the proof
of Lemma 2.1(ii).

To prove Lemma 2.1(iii) define first Px(n) as the probability that the simple ran-
dom walk started at x hits the set T M

ε before exiting Dx(ρ(n)). Using Lemma 4.3
and the same reasoning as in (114) it can be proved that

Px(n) ∈ (
Kd(1 − δ)h(n)−2pM

ε ,Kd(1 + δ)h(n)−2pM
ε

)
.(120)

Since P[sn(x) = 0|τ ] is bounded from below by Px(n) and from above by Px(n)+
P[sn(x) = ∞|τ ], Lemma 2.1(iii) follows from Lemma 2.1(i) and (120).
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4.2. Proof of Lemma 2.4 for d ≥ 3. We want to show that for any δ > 0 and
T > 0 it is possible to choose ε, M and m such that for τ -a.s. and n large enough

P

[
1

2n/α
max

{∣∣∣∣∣S(jn
k ) −

k−1∑
j=0

sn
j

∣∣∣∣∣ :k ∈ {1, . . . , h(n)2T }
}

≥ δ

]
< δ.(121)

The sum of scores records (if sn
i stay finite) only the time spent in T M

ε . Let Gn be
the event {sn

j < ∞ : j ≤ T h(n)2}. As follows from Corollary 2.2, the probability
of Gc

n can be made smaller than δ/2 by choosing m large. Conditionally on Gn, the
difference in (121) is positive and it increases with k. It is therefore bounded by

S
(
jn
T h(n)2

) −
T h(n)2−1∑

j=0

sn
j ,(122)

which is simply the time spent in T ε and TM during the first jn
T h(n)2 parts.

We first show that the time spent in T ε is small.

LEMMA 4.9. For any δ > 0 there exists ε such that for a.e. τ and n large
enough,

P

[{jn

T h(n)2∑
i=0

eiτY (i)1{Y(i) ∈ T ε} ≥ 2n/αδ

}
∩ Gn

∣∣∣τ
]

≤ δ.(123)

PROOF. On Gn the first T h(n)2 parts of the trajectory stays in D(n). The prob-
ability in (123) is thus bounded from above by

P

[
ζn∑

i=0

eiτY (i)1{Y(i) ∈ T ε} ≥ 2n/αδ
∣∣∣τ

]
,(124)

where ζn is the exit time of Y from D(n) [see (18)]. We show that there exists a
constant K1 independent of ε such that for a.e. τ and n large enough

E

[
ζn∑

i=0

eiτY (i)1{Y(i) ∈ T ε}
∣∣∣τ

]
≤ K1ε

1−α2n/α.(125)

The claim of the lemma then follows by the Markov inequality.
To prove (125) we bound the expected time spent in traps with τx ≤ 1 first,

E

[
ζn∑

i=0

eiτY (i)1
{
τY (i) ≤ 1

}∣∣∣τ
]

= ∑
x∈D

τxGD(0, x)1{τx ≤ 1}
(126)

≤ ∑
x∈D

GD(0, x) = E(ζn) = O(2n) � 2n/α.
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We divide the remaining part of T ε into disjoint sets T ε2−i+1

ε2−i , where i ∈
{1, . . . , imax} and imax is an integer satisfying

1/2 ≤ 2−imaxεg(n) < 1.(127)

From condition (2) it can be showed easily that the probability that a fixed site x

is in T ε2−i+1

ε2−i is bounded by

pn,i := P[x ∈ T ε2−i+1

ε2−i ] ≤ P[τx ≥ 2−iεg(n)] ≤ cε−αg−α2iα.(128)

For any fixed i ∈ {1, . . . , imax} and K ′ large we can write

P

[
E

[
ζn−1∑
j=0

ej τY (j)1{Y(j) ∈ T ε2−i+1

ε2−i }
∣∣∣τ

]
≥ K ′ε1−α2i(α−1)2n/α

]

= P

[∑
x∈D

GD(0, x)τx1{x ∈ T ε2−i+1

ε2−i } ≥ K ′ε1−α2i(α−1)2n/α

]
(129)

≤ P

[∑
x∈D

GD(0, x)1{x ∈ T ε2−i+1

ε2−i } ≥ K ′ε−α2iα−1

]
.

Using the Markov inequality (with λn > 0) this can be bounded by

≤ exp(−λnK
′ε−α2iα−1)

∏
x∈D

[
(1 − pn,i) + pn,ie

λnGD(0,x)]
(130)

≤ exp(−λnK
′ε−α2iα−1)

∏
x∈D

[
1 + c2iαg−αε−α(

eλnGD(0,x) − 1
)]

.

Since x ≥ log(1 + x), we have

log
∏
x∈D

[
1 + c2iαg−αε−α(

eλnGD(0,x) − 1
)]

(131)
≤ ∑

x∈D

c2iαg−αε−α(
eλnGD(0,x) − 1

)
.

Let λn = n/2GD(0,0). We divide the last sum into two parts. First, we sum over
the sites that are close to the origin, |x| ≤ n2/(d−2). Since GD(0, x) ≤ GD(0,0), we
have ∑

x∈D(n2/(d−2))

c2iαg−αε−α(
eλnGD(0,x) − 1

)

≤ Cn2d/(d−2)2iα−nε−αeλnGD(0,0)(132)

≤ Cn2d/(d−2)2iα2−nε−αen/2.

The last expression tends to 0 as n → ∞.
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By (146), GD(0, x) ≤ cn−2 for x ∈ D(n)\D(n2/(d−2)). Therefore, the argument
of the exponential in (131) is smaller than c′n−1. Using the fact that ex − 1 ≤ 2x

for x sufficiently close to 0 we get eλnGD(0,x) − 1 ≤ cnGD(0, x) and thus∑
x∈D\D(n2/(d−2))

c2iαg−αε−α(
eλnGD(0,x) − 1

)
(133)

≤ ∑
x∈D\D(n2/(d−2))

Cn2iαε−αg−αGD(0, x) ≤ C2iαε−αn.

Here we used
∑

x∈D GD(0, x) = O(r(n)2) = O(gα). From (132) and (133) it fol-
lows that the expression in (130) can be bounded from above by

exp(−K ′cnε−α2iα) exp(Cnε−α2iα).(134)

Therefore, it is possible to choose K ′ large enough such that this bound decreases
exponentially with n for all i ∈ {0, . . . , imax}.

Summing over all possible values of i gives

P

[
imax⋃
i=0

(
E

[
ζn−1∑
i=0

eiτY (i)1
(
Y(i) ∈ T ε2−i+1

ε2−i

)∣∣∣τ
]

≥ K ′ε1−α2i(α−1)2n/α

)]

(135)
≤ ne−cn.

The Borel–Cantelli lemma then yields

E

[
ζn−1∑
i=0

eiτY (i)1
(
Y(i) ∈ T ε2−i+1

ε2−i

)∣∣∣τ
]

≤ K ′ε1−α2i(α−1)2n/α(136)

τ -a.s. for all i and for n large enough. Combining (126) and (136) we get eas-
ily (125). This completes the proof of Lemma 4.9. �

We show now that the set T M can be safely ignored.

LEMMA 4.10. For every δ there exist m and M such that for a.e. τ and n

large enough

P
[{

Y hits TM before jn
T h(n)2

} ∩ Gn|τ ] ≤ δ.(137)

PROOF. As in the proof of Lemma 4.9 we can replace jn
T h(n)2 by ζn. We use

again the Borel–Cantelli lemma,

P
[
P[Y hits TM(n) before ζn|τ ] ≥ δ

]
(138)

≤ e−λnδ
E

[
exp{λnP[Y hits TM(n) before ζn|τ ]}].
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However,

log E
[
exp{λnP[Y hits TM(n) before ζn|τ ]}]

(139)

≤ log E

[
exp

{
λn

∑
x∈D

P[Y hits x before ζn]1(x ∈ TM)

}]
.

Since P[x ∈ TM ] ≤ cM−αg−α , we get

≤ ∑
x∈D

log
{
1 + cM−αg−α(exp{λnP[Y hits x before ζn]} − 1)

}
(140)

≤ ∑
x∈D

cM−αγ −α{exp(λnP[Y hits x before ζn]) − 1}.

We choose λn = n/2 and divide the sum into two parts. For |x| ≤ n2/(d−2) we use
P[Y hits x before ζn] ≤ 1. Hence,∑

x∈D(n2/(d−2))

cM−αγ −α{exp(λnP[Y hits x before ζn]) − 1}
(141)

≤ cn2d/(d−2)2−nen/2,

which becomes negligible as n → ∞.
By (148), for |x| ≥ n2/(d−2) the argument of the exponential in (139) is smaller

than cn−1 and thus

exp(λnP[Y hits x before ζn]) − 1 ≤ cn|x|2−d(142)

for some large c. We have thus∑
x∈D\D(n2/(d−2))

cM−αg−α{exp(λnP[Y hits x before ζn]) − 1}
(143)

≤ cM−αg−αn
∑

x∈D\D(n2/(d−2))

|y|2−d ≤ cM−αn.

Inserting (141) and (143) into (138) we get

P
[
P[Y hits TM(n) before ζn|τ ] ≥ δ

] ≤ c exp(−nδ + c′M−αn).(144)

The proof is complete by taking M large enough. �

APPENDIX: PROPERTIES OF THE SIMPLE RANDOM WALK

We summarize here some useful facts about the Green’s function and hitting
probabilities of the simple random walk in the large ball D(r) ⊂ Z

d , d ≥ 3. The
following lemma is taken from [11], Proposition 1.5.9.
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LEMMA A.1. The Green’s function GD(r)(·, ·) of the simple random walk
killed on exit from the ball D(r) satisfies

GD(r)(0,0) = Gd(0) − O(r2−d)(145)

and

GD(r)(0, x) = ad(|x|2−d − r2−d) + O(|x|1−d),(146)

where ad = d
2 �(d

2 − 1)π−d/2.

The hitting probabilities are controlled by the following lemma.

LEMMA A.2. Let pr(0, x) denote the probability that the simple random walk
started at 0 hits x before exiting D(r). The function pr(0, x) satisfies

pr(0, x) ≥ ad

Gd(0)
(|x|2−d − r2−d) + O(|x|1−d),(147)

pr(0, x) ≤ ad(|x|2−d − r2−d) + O(|x|1−d).(148)

More precisely pn(0, x) can be bounded from above by

pr(0, x) ≤ ad

Gd(0)

(|x|2−d − r2−d + O(|x|1−d)
)(

1 + O
(
(n − |x|)2−d))

.(149)

PROOF. The first two claims follow from equation (146),

GD(r)(0, x) = pr(0, x)GD(r)(x, x),(150)

and from 1 ≤ GD(r)(x, x) ≤ Gd(0). The third fact is a consequence of (150) and

GD(r)(x, x)−1 ≤ GDx(r−|x|)(x, x)−1 = GD(r−|x|)(0,0)−1

(151)
= Gd(0)−1 + O

(
(r − |x|)2−d)

,

which is a consequence of (145). �
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