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Abstract

The first passage time process of a Lévy subordinator with heavy-tailed
Lévy measure has long-range dependent paths. The random fluctuations that
appear in a natural scheme of summation and time scaling of such stochastic
processes are shown to converge weakly. The limit process, which is neither
Gaussian nor stable and which does not have the self-similarity property, is
possibly of independent interest as a random process that arises under the
influence of coexisting Gaussian and stable domains of attraction.
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1 Introduction and statement of results

A Lévy subordinator {Xt, t ≥ 0} is a real-valued random process with independent
and stationary increments and increasing pure-jump trajectories. The inverse pro-
cess {Tx, x ≥ 0} defined by the first passage times Tx = inf{t ≥ 0 : Xt > x} has
nondecreasing, trajectories, where the lengths of the flat pieces of {Tx} correspond
to the jump sizes of {Xt}. The dependence structure in the paths of the inverse
process is entirely different from that of the Lévy subordinator, since big jumps
in the Lévy process may cause strong dependencies that last over a considerable
period of evolution of the path of its inverse. In this paper we take a scaling ap-
proach to study the nature of the random fluctuations that build up as a result
of such long-memory effects. By superposing a large number of paths of the in-
verse Lévy process and simultaneously scale the time parameter of the process, we
obtain scaling limit results for the centered and normalized superposition process.

In somewhat more detail, our starting point is a Lévy subordinator with Lévy
measure ν(dx) of regularly varying tail with index 1+β, 0 < β < 1. In particular,
µ :=

∫
xν(dx) < ∞. The initial distribution of the subordinator process is chosen

such that the resulting inverse process has stationary increments and expected
value E(Tx) = x/µ. Letting {T i

x}i≥1 be a collection of independent copies of {Tx},
our main result is the derivation of a limit process for the summation scheme

1
a

m∑
i=1

(T i
ax −

1
µ

ax), x ≥ 0,

as both m and a = am tend to infinity in such a way that m is of the same order
of magnitude as aβ, modulo slowly varying functions. The reason for this choice
of scaling is to attempt to trace the superposition process on a time scale that
captures the size of the fluctuations around its mean. In the asymptotic limit
appears a non-Gaussian, non-stable process with long-range dependence, which
has also been obtained earlier in a different but related context in Gaigalas and
Kaj [7].

To give a heuristic context for the topics of interest in this work, let us recall
the following limit result for Lévy processes. Writing α = 1 + β, the centered and
scaled process (Xt − µt)/t1/α converges in distribution as t → ∞ to a random
variable Zα, having a stable distribution with stable index α. If we write Γx for
the overshoot at x, so that XTx = x + Γx, then

Tx − x/µ

x1/α
= −XTx − µTx

T
1/α
x

(Tx

x

)1/α 1
µ

+
Γx

µx1/α
.

In this relation, Tx/x → 1/µ as x → ∞ by the law of large numbers. It can be
shown moreover that the second term on the right hand side is a remainder term
with Γx/x1/α → 0 as x →∞. Therefore (Tx−x/µ)/x1/α converges in distribution
to −Zα/µ1+1/α as x → ∞. Proceeding heuristically, with m ∼ aβ we may now
rewrite the superposition process either as

1
a

m∑
i=1

(T i
ax −

1
µ

ax) ∼ 1
a1−β/2

∫ ax

0

1
m1/2

m∑
i=1

(dT i
u −

1
µ

du)
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or
1
a

m∑
i=1

(T i
ax −

1
µ

ax) ∼ 1
m1/(1+β)

m∑
i=1

T i
ax − ax/µ

a1/(1+β)
.

The first representation emphasizes a sequence of random variables in the domain
of attraction of a Gaussian law (m →∞ with a fixed). The second representation
highlights a sequence in the domain of attraction of a stable law with index 1 + β
(a → ∞ with m fixed), which is the type of convergence just discussed above.
In our case of interest the two domains of attraction coexist and both of them
influence the resulting limit process.

The main result (Theorem 2 below) is studied in parallel to and compared with
a scaling regime of Gaussian predominance, leading to fractional Brownian motion
in the limit (Theorem 1). Similar scaling limit results where fractional Brownian
fluctuations appear have been established earlier for a variety of models, typically
with motivation of modeling random variation in aggregated data traffic streams.
For an introduction and overview of these topics and discussion of the modeling
context, as well as detailed statements and derivations of such results, see Taqqu
[13] and Willinger et al. [14].

After introducing the model in detail and stating our results in Section 1 of
the paper, the proofs are given in Section 2. The main technique we use for the
study of the one-dimensional distributions of the scaled processes and their limit
behavior is that of double transforms in the sense of taking Laplace transforms in
the time variable of the logarithmic moment generating function of the random
variables. The finite-dimensional distributions are then obtained from recursive
sets of integral equations for the finite-dimensional cumulant functions.

1.1 A Lévy subordinator and its inverse

Let {X̃t, t ≥ 0}, X̃0 = 0, denote a Lévy subordinator with right-continuous paths,
having drift zero and Lévy measure ν(a, b) =

∫ b
a ν(dx) with no atom at zero, such

that ∫ ∞
0

(1 ∧ x)ν(dx) < ∞ and µ =
∫ ∞
0

xν(dx) < ∞, (1)

which implies that the first moment is finite, E(X̃t) = µt < ∞. The Laplace
transform is given by − lnE(e−uX̃t) = tΦ(u), u ≥ 0, with Laplace exponent

Φ(u) =
∫ ∞
0

(1− e−ux) ν(dx).

Let Xt = X0 + X̃t denote the corresponding delayed subordinator process with
general initial distribution X0 assumed to be independent of {X̃t}. We will study
the case when X0 > 0 has distribution function

P (X0 ≤ x) =
1
µ

∫ x

0

∫ ∞
y

ν(ds) dy, (2)

for which E(e−uX0) = 1
µuΦ(u) and so

E(e−uXt) =
1

µu
Φ(u) exp{−tΦ(u)} u ≥ 0. (3)
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Next we introduce the first passage process of the subordinator. Useful ref-
erences are Bertoin [2], [3]. Van Harn and Steutel, [9], investigate stationarity
properties of delayed subordinators and derive closely related results to those in
Lemma 1 and Lemma 3 below. The entrance time of the Lévy process {Xt} into
a set B is defined by TB = inf{t ≥ 0 : Xt ∈ B}. For any open set B, TB is a
stopping time. The first passage time Tx = T(x,∞) strictly above a level x is the
entrance time into (x,∞), that is

Tx = inf{t ≥ 0 : Xt > x}, x ≥ 0,

which is a right-continuous function with left limits. Since Xt ↑ ∞ as t ↑ ∞, we
have Tx < ∞ for all x and P (Tx ≤ t) = P (Xt > x), x, t ≥ 0. Also,

E(Tx) =
∫ ∞
0

P (Tx > t) dt = E

∫ ∞
0

1{Xt≤x} dt.

Hence ∫ ∞
0

ue−uxE(Tx) dx =
∫ ∞
0

E(e−uXt) dt =
1

µu

in view of (3), and therefore

E(Tx) =
1
µ

x.

We call {Tx} the inverse Lévy subordinator and the process

T̃x = inf{t ≥ 0 : X̃t > x}, x ≥ 0,

the pure inverse Lévy subordinator. The path-regularity of {Tx} is determined by
the distribution of the small jumps of {Xt}, manifest in the asymptotic behavior of
ν(dx) for x close to 0. The nature of the paths varies considerably with compound
Poisson processes as one extreme case. These are the subordinators for which the
Lévy measure is finite on the positive half line and the passage time process has
piece-wise constant trajectories of lengths drawn from the probability distribution
ν(0, x]/ν(0,∞), x ≥ 0, and with exponentially distributed jumps. On the other
hand, if the number σ = sup{α > 0 : limλ→∞ λ−αΦ(λ) = ∞}, known as the lower
index of the subordinator, is positive (and ≤ 1 because of assumption (1)) then
the inverse process {Tx} is a.s. γ-Hölder continuous on any compact interval, for
each index γ < σ. This property is shown in Bertoin [2], Ch. 3 (X0 = 0).

The scaling problem studied in this work involves weak convergence in the sense
of convergence of finite-dimensional distributions plus a tightness property. Only
the asymptotic behavior of ν(x,∞) as x → ∞ is relevant for the distributional
convergence. For tightness we make the additional assumption that the Lévy
measure lower index σ is positive, and establish tightness in the space C = C[0,∞)
of continuous random processes. The path space is such that each C[0, T ], T > 0,
is equipped with the topology of convergence in supremum norm.

We will prove below the following

Lemma 1 The inverse subordinator process {Tx, x ≥ 0} has stationary incre-
ments.
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1.2 Scaling limit theorem

Our basic assumption is that the Lévy measure ν is regularly varying at infinity
with index 1 + β, 0 < β < 1, i.e.∫ ∞

x
ν(dy) ∼ 1

x1+β
L(x), x →∞, (4)

where L is a slowly varying function and we write f(x) ∼ g(x) if f and g are
positive functions and f(x)/g(x) → 1 as x → ∞. The summation schemes to
be applied involve speeding up the time parameter using a rescaling sequence
am →∞, either such that

mL(am)

aβ
m

→∞, m →∞, (5)

or such that
mL(am)

aβ
m

→ cβ µ, m →∞, (6)

where c, 0 < c < ∞, is an additional parameter that signifies the relative change of
scales of size and time. In addition, we assume that the lower index of ν is strictly
positive,

σ = sup{α > 0 : lim
λ→∞

λ−αΦ(λ) = ∞} > 0. (7)

Theorem 1 Under assumption (4), let am be a sequence such that am → ∞ as
m →∞ and (5) holds, and define bm by

b2
m = ma2−β

m L(am)/µ. (8)

Then, in the sense of weak convergence of random processes in C,

{ 1
bm

m∑
i=1

(T i
amx −

1
µ

amx), x ≥ 0
}
⇒ {µ−1σβBH(x), x ≥ 0}, (9)

where
σ2

β =
2

β(1− β)(2− β)
, H = 1− β/2,

and BH is standard fractional Brownian motion with Hurst index H, i.e.

log E exp
{ n∑

i=1

θiBH(xi)
}

=
1
4

n∑
i=1

n∑
j=1

θiθj(x
2−β
i + x2−β

j − (xi − xj)2−β),

where 0 = x0 ≤ x1 ≤ . . . ≤ xn, n ≥ 1.

Theorem 2 Under the assumption (4), if am is a sequence such that am → ∞
and (6) holds for some constant c > 0 as m →∞, then

{ 1
am

m∑
i=1

(T i
amx −

1
µ

amx), x ≥ 0
}
⇒ {−µ−1c Yβ(x/c), x ≥ 0}, (10)
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in the sense of weak convergence in C. Here {Yβ(x), x ≥ 0} is a zero mean stochas-
tic process with continuous paths and finite-dimensional distributions characterized
by the cumulant generating function

log E exp
{ n∑

i=1

θi(Yβ(xi)− Yβ(xi−1))
}

=
1
β

n∑
i=1

θ2
i

∫ ∆xi

0

∫ v

0
eθiuu−β dudv

+
1
β

n−1∑
i=1

n∑
j=i+1

θiθj exp
{ j−1∑

k=i+1

θk∆xk

}
×
∫ ∆xi

0

∫ ∆xj

0
eθjueθiv(xj−1 − xi + u + v)−β dudv, (11)

where 0 = x0 ≤ x1 ≤ . . . ≤ xn, and ∆xi = xi − xi−1, i = 1, . . . , n.

Remarks a) Assumption (7) is used for proving tightness. Convergence of the
finite-dimensional distributions holds in general.

b) The process {Yβ(x)} has been derived in Gaigalas and Kaj [7] as a limit
process in the setting of a superposition of independent renewal processes with
stationary increments and heavy-tailed inter-renewal distribution, and in Kaj and
Taqqu [10] for an infinite source Poisson process with heavy-tailed activity periods.
In both cases the motivation is partly from modeling the total traffic load generated
by many independent sources at an arrival point in a data traffic network. In
these references condition (5) is called fast connection rate and (6) intermediate
connection rate. They are compared to an alternative third scaling regime of slow
connection rate, for which the limit process turns out to be a stable Lévy process
with stable index α = 1 + β, see also Mikosch et al. [11] or Willinger et al. [14].

c) Proofs of the following properties among others can be found in Gaigalas and
Kaj [7]. The process {Yβ} has stationary increments and continuous trajectories.
The process is not self-similar. The higher moments are of the order E(Y k

β (x)) ∼
const xk−β, k ≥ 2, for large x. Specifically, the second-order properties (mean,
variance, covariance) are the same (modulo constants) as those for the Gaussian
fractional Brownian motion, whereas higher moments are different. For example,
{Yβ} is positively skewed. The paths are γ-Hölder continuous for all γ < 1− β/2
(not γ < 1 as claimed in [7]). In addition, representations for {Yβ} as integrals
with respect to compensated Poisson measures are derived i Gaigalas [6] and in
Kaj and Taqqu [10].

d) The results of Theorem 1 and Theorem 2 can be stated in greater generality
by considering a Lévy subordinator process with drift. Starting again from the
Lévy subordinator {X̃t} with expected value µt, let η > −µ be a drift parameter
and define a new initial value X

(η)
0 by letting P (X(η)

0 > x) = ηP (X0 > x)/(µ +
η). Then define X

(η)
t = X

(η)
0 + X̃t + ηt and form the inverse process T

(η)
x =

inf{t ≥ 0 : X
(η)
t > x}. It is straightforward to check as above that {T (η)

x } has
stationary increments and expected value x/(µ+η). Furthermore, the limit results
in Theorems 1 and 2 (the case η = 0) remain true in this more general situation
if µ is everywhere replaced by µ + η. bf e) A referee of this work made the
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following interesting observations: The renewal processes studied in [7] can be
viewed as discrete local time processes of discrete regenerative sets (ranges of
compound Poisson subordinators). In this light, the present situation is the natural
analoque for continuous local time processes of perfect regenerative sets (ranges of
subordinators that are not compound Poisson). One can expect the scaling limits
to transfer since they are large-time asymptotics which should not depend on the
local structure. Some relevant references for the connections of regenerative sets
and subordinators are Fristedt citefristedt, and Gnedin and Pitman [8].

2 Demonstration of the results

We focus on the proof of Theorem 2. The proof of Theorem 1 can be carried out
in parallel. Each step in the latter case turns out to be simpler and therefore we
give only a summary of the arguments. As a preliminary for the proof of Theorem
2 we observe the following properties of the functions introduced in (11), which
are straightforward to verify.

Lemma 2 Relation (11) defines a consistent family of finite-dimensional distri-
butions, such that for any c > 0

log E exp
{ n∑

i=1

θi(cYβ(xi/c)− cYβ(xi−1/c))
}

= cβ log E exp
{ n∑

i=1

θi(Yβ(xi)− Yβ(xi−1))
}
.

The main part of the proofs of Theorem 1 and Theorem 2 consists in estab-
lishing convergence of the scaled n-point cumulant functions

log E exp
{ n∑

i=1

θi
1
bm

m∑
k=1

(T (k)
amxi

− 1
µ

amxi)
}

= mE
[
exp

{ n∑
i=1

θi

bm
(Tamxi −

1
µ

amxi)
}
− 1

]
+O(1/m) (12)

toward the corresponding functionals of the limit processes. As a preparation we
study the joint distribution (Tx,Γx), where {Γx} is the overshoot process, and
other properties of the one-dimensional marginal distributions of Tx.

2.1 Marginal distributions and the overshoot process

The overshoot process {Γx, x ≥ 0} associated with the first passage time {Tx} is
defined for x ≥ 0 by

Γx = XTx − x,

and represents at time x the remaining time until the next point of increase of the
inverse subordinator. The following Lemma is a special case of a result valid for
general Lévy processes adaptated to the case of a general initial distribution X0.
For a proof see Theorem 49.2 in Sato [12].
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Lemma 3 For u > 0, θ < Φ(u), and v > 0 with v 6= u,∫ ∞
0

ue−uxE(eθTx−vΓx) dx =
u

u− v

(
Φ(v)
µv

− Φ(v)− θ

Φ(u)− θ

Φ(u)
µu

)
.

Proof of Lemma 1 In Lemma 3, take u > 0 and v > 0, u 6= v, and let θ = 0.
We obtain∫ ∞

0
ue−uxE(e−vΓx) dx =

u

u− v

(
Φ(v)
µv

− Φ(v)
Φ(u)

Φ(u)
µu

)
=

Φ(v)
µv

.

Hence, for any x ≥ 0, Γx
d= X0. Consequently, for each x the increment process

Tx+y − Tx, y ≥ 0, begins with a flat period for a duration of time having the
distribution X0, which is just the same behavior as the original process Tx, x ≥ 0.
To formalize the argument, note

P (Tx+y−Tx > t) = P (Γx < y, Tx+y−Tx > t) = P (Γx < y,XTx+t−XTx < y−Γx).

Since Γx = XTx−x is independent of XTx+t−XTx and XTx+t−XTx

d= X̃t it follows
that

P (Tx+y − Tx > t) = P (X0 < y,XTx+t−XTx < y−X0) = P (Xt < y) = P (Ty > t).

2

Lemma 4 For u > 0 and θ < Φ(u),∫ ∞
0

ue−uxE(eθTx) dx = 1 +
θ

Φ(u)− θ

Φ(u)
µu

. (13)

Also, for u > 0 and θ > −µu,∫ ∞
0

ue−ux E(eθ(Tx−x/µ) − 1) dx =
θ2

(µu + θ)2

[
µu

Φ(u + θ/µ)− θ
− 1

]
(14)

and ∫ ∞
0

ue−ux E(eθ(T̃x−x/µ) − 1) dx =
θ

µu + θ

[
µu

Φ(u + θ/µ)− θ
− 1

]
. (15)

Proof. Relation (13) follows by letting v → 0 in Lemma 3 and using that
Φ(v)/v → µ in this limit.

The remaining calculations, involving the random variables Tx−x/µ and T̃x−
x/µ, follow from (13) and the analogous expression∫ ∞

0
ue−ux E(eθT̃x) dx =

Φ(u)
Φ(u)− θ

,

where we note φ(u + θ/µ) < µu + θ for all θ such that u + θ/µ > 0. 2
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Lemma 5 The function

E(eθ(Tx−x/µ) − 1), x ≥ 0,

is nonnegative for any real parameter θ and differentiable and nondecreasing with
respect to the variable x. The derivative with respect to x is given by

d

dx
E(eθ(Tx−x/µ) − 1) = θe−θx/µE(eθT̃x − eθTx)/µ ≥ 0.

Proof. The nonnegativity is obvious from Jensen’s inequality. It follows from (14),
(15) and the uniqueness property of Laplace transforms that E(eθ(Tx−x/µ) − 1) is
obtained as the convolution of E(eθ(T̃x−x/µ)−1) with the exponential eθx/µ. Hence

E(eθ(Tx−x/µ) − 1) =
θ

µ

∫ x

0
e−θ(x−y)/µE(eθ(T̃y−y/µ) − 1) dy.

The left hand side is differentiable in x with derivative

d

dx
E(eθ(Tx−x/µ) − 1) = − θ

µ
E(eθ(Tx−x/µ) − 1) +

θ

µ
E(eθ(T̃x−x/µ) − 1)

=
θ

µ
e−θx/µE(eθT̃x − eθTx).

Now we observe that the processes Tx and T̃x can be constructed on the same
probability space simply by a shift of size X0 so that T is a copy of T̃ with the
first point of increase in X0 rather than in 0. In particular P (T̃x ≥ Tx) = 1. Hence
θE(eθT̃x − eθTx) ≥ 0 for any θ.

2

Lemma 6 For x > 0,

i) E(T̃x) ≤ e2(e− 1)−1

ν(x,∞)
,

ii) 0 ≤ E(T̃x)− x/µ ≤ e

Φ(1/x)
,

iii)
d

dx
Var(Tx) =

2
µ

E(T̃x − x/µ) ≥ 0,

iv) Var(Tx) ≤ 2e

µ

∫ x

0
Φ(1/y)−1 dy.

Proof. Inequality i) follows from

E(T̃x) =
∫ ∞
0

P (X̃t ≤ x) dt ≤
∫ ∞
0

eE(e−X̃t/x) dt = e

∫ ∞
0

e−tΦ(1/x) dt = e/Φ(1/x)

and

Φ(1/x) =
1
x

∫ ∞
0

e−u/xν(u,∞) du ≥ 1
x

∫ x

0
e−u/xν(u,∞) du ≥ ν(x,∞)(1− e−1).
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For ii), it was noticed in the proof of Lemma 5 that the processes Tx and T̃x could
be constructed such that T̃x ≥ Tx almost surely. Hence E(T̃x) ≥ E(Tx) = x/µ.
Moreover,

E(T̃x)− x/µ ≤
∫ ∞

x/µ
P (X̃t ≤ x) dt ≤ e

∫ ∞
x/µ

e−tΦ(1/x) dt ≤ e/Φ(1/x).

To prove iii) and iv), differentiate twice with respect to θ in (14) to obtain∫ ∞
0

ue−uxVar(Tx) dx =
2

(µu)2
( µu

Φ(u)
− 1

)
. (16)

Similarly, using (15),∫ ∞
0

ue−uxE(T̃x − x/µ) dx =
1

µu

( µu

Φ(u)
− 1

)
,

hence by partial integration∫ ∞
0

ue−ux
∫ x

0
E(T̃y − y/µ) dy dx =

1
µu2

( µu

Φ(u)
− 1

)
.

By identification of the Laplace transforms,

Var(Tx) =
2
µ

∫ x

0
E(T̃y − y/µ) dy.

The two inequalities in (ii) now imply iii) and iv).
2

2.2 The marginal distribution under scaling

The first scaling properties that we will need are a weak law of large numbers and
an elementary renewal type theorem for T̃x.

Lemma 7 As a →∞, we have

i)
1
a
T̃ax →

x

µ
in distribution

ii)
1
a
E(T̃ax) → x

µ
.

Proof. By the law of large numbers for Lévy processes,

P (X̃at/a ≤ x) → 1{µt≤x}, a →∞.

Moreover,

P (X̃at/a ≤ x) ≤ eγxE(e−γX̃at/a) = eγxe−atΦ(γ/a), γ > 0.
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Fix θ. Take θ0 > θ ∨ 0 and γ0 such that γ0µ > θ0. Since aΦ(γ/a) → µγ we can
find a0 for which

P (X̃at/a ≤ x) ≤ eγ0xe−θ0t, a ≥ a0.

Thus, by dominated convergence as a →∞,

E(eθT̃ax/a) = 1 +
∫ ∞
0

θeθtP (X̃at/a ≤ x) dt → 1 +
∫ x/µ

0
θeθt dt = eθx/µ.

The same proof yields

E(T̃ax)/a =
∫ ∞
0

P (X̃at/a ≤ x) dt → x/µ,

which is ii). 2

We are now prepared to prove a limit property of the centered variable Tx−x/µ
under scaling, which is crucial for the distributional convergence in Theorem 2.

Lemma 8 If the sequence a = am is such that (6) holds for some c > 0, then as
m →∞,

m E(eθ(T̃ax−ax/µ)/a − eθ(Tax−ax/µ)/a) → cβ

µβ

∫ x

0
θe−θt/µt−β dt (17)

and

m
d

dx
E(eθ(Tax−ax/µ)/a − 1) → cβ

µ2β

∫ x

0
θ2e−θt/µt−β dt. (18)

Proof. It is enough to prove (17) since (18) then follows directly from Lemma 5.
Recall from (2) the relation P (X0 ≤ x) = 1

µ

∫ x
0 ν(u,∞) dy where we use the

notation ν(y,∞) =
∫∞
y ν(dv). For fixed x condition on X0 to get

P (Tx < t < T̃x) = P (X0 > x)P (t < T̃x) +
1
µ

∫ x

0
P (T̃x−y < t < T̃x)ν(y,∞) dy.

Multiply this identity by θeθt and integrate over t ≥ 0 to obtain

E(eθT̃x − eθTx) = P (X0 > x)E(eθT̃x − 1) +
1
µ

∫ x

0
E(eθT̃x − eθT̃x−y) ν(y,∞) dy.

Hence

m E(eθT̃ax/a − eθTax/a) = mP (X0 > ax)E(eθT̃ax/a − 1)

+
1
µ

∫ x

0
E(eθT̃ax/a − eθT̃a(x−y)/a) amν(ay,∞) dy. (19)

By (4),
1
µ

amν(ay,∞) → cβy−1−β .

By (4) and (6), and using the direct half of Karamata’s theorem,

mP (X0 > ax) → β−1cβx−β,

11



cf. Bingham et al. (1987) Thm. 1.5.11 ii) (using in their notation f(x) = ν(x,∞),
ρ = −(1 + β), σ = 0). If we assume for the moment that the order can be
interchanged in which we integrate over y and take the limit m,a → ∞, then
applying the above asymptotic results as well as Lemma 7 i),

m E(eθT̃ax/a − eθTax/a)

→ β−1cβy−β(eθx/µ − 1) +
∫ x

0
(eθx/µ − eθ(x−y)/µ)cβy−1−β dy

= eθx/µ cβ

µβ

∫ x

0
θe−θt/µt−β dt,

which is the desired relation (17). In the remaining part of the proof we verify
the validity of this limit operation by deriving an upper bound for the integrand
E(eθT̃ax/a − eθT̃a(x−y)/a) amν(ay,∞) in (19), which is dy-integrable over (0, x].

Using
|E(eθT̃x − eθT̃x−y)| ≤ |θ|E[(eθT̃x ∨ 1) |T̃x − T̃x−y|]

and Hölder’s inequality we have, for each integer k ≥ 2,

|E(eθT̃x − eθT̃x−y)| ≤ |θ|E[(eθT̃x ∨ 1)k/(k−1)](k−1)/kE[|T̃x − T̃x−y|k]1/k. (20)

Now,

E[|T̃x − T̃x−y|k] = E

∫ ∞
0

. . .

∫ ∞
0

1{T̃x−y<t1,...,tk<T̃x}
dt1 . . . dtk

= k!
∫

. . .

∫
t1<...<tk

P (T̃x−y < t1, . . . , tk < T̃x) dt1 . . . dtk

= k!
∫

. . .

∫
t1<...<tk

P (x− y < X̃t1 < . . . < X̃tk < x) dt1 . . . dtk.

For the event x− y < X̃t1 < . . . < X̃tk < x to occur it is necessary, in addition to
Xt1 ≤ x, that all increments X̃tj − X̃tj−1 , 2 ≤ j ≤ k are less than y in size. Hence
the right hand side is at most

k!
∫

. . .

∫
t1<...<tk

P (X̃t1 < x, X̃tj − X̃tj−1 < y, 2 ≤ j ≤ k) dt1 . . . dtk,

which equals

k!
∫ ∞
0

dt1P (X̃t1 < x)
∫ ∞

t1
dt2P (X̃t2−t1 < y) . . .

∫ ∞
tk−1

dtkP (X̃tk−tk−1
< y)

= k!E(T̃x)E(T̃y)k−1,

since the increments of X(t) are independent and stationary. Combined with (20)
this yields,

|E(eθT̃x − eθT̃x−y)| ≤ 2|θ|E[(eθT̃x ∨ 1)k/(k−1)](k−1)/k(k!)1/kE(T̃x)1/kE(T̃y)1−1/k.
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By Lemma 7, for a ≥ a0 and sufficiently large a0, we may assume

E[(eθT̃ax/a ∨ 1)k/(k−1)](k−1)/kE(T̃ax/a)1/k ≤ 2(eθx/µ ∨ 1)(x/µ)1/k

thus,

|E(eθT̃ax/a − eθT̃a(x−y)/a)| ≤ 4|θ|(k!)1/k (eθx/µ ∨ 1) (x/µ)1/k E(T̃ay/a)1−1/k.

Writing Cθ,k(x) = 4|θ|(k!)1/k (eθx/µ ∨ 1) (x/µ)1/k, we have obtained

|E(eθT̃ax/a − eθT̃a(x−y)/a)| amν(ay,∞) (21)
≤ Cθ,k(x) E(T̃ay/a)1−1/k amν(ay,∞), 0 < y ≤ x, a ≥ a0.

We split the further task of estimating the right hand side in the above expression
in the two cases ay > a0 and ay ≤ a0.

For ay > a0 and suitably modified a0 we are allowed to use once again Lemma
7 i) to conclude E(T̃ay)/a ≤ 2y/µ. Furthermore, since the function ν(x,∞) is
regularly varying at infinity with index −(1+β), we have for any ε > 0 the Potter
type bound

amν(ay,∞) ≤ 2y−1−β max(yε, y−ε)

(Bingham et al. (1987), Ch. 1.5). Thus,

E(T̃ay/a)1−1/k amν(ay,∞) ≤ 4y−1/k−β max(yε, y−ε).

Choose
ε < 1− β, k > (1− β − ε)−1 (22)

to obtain a dominating function for (21) which is integrable in y over [0, x].
For the remaining case ay ≤ a0, Lemma 6 i) implies

E(T̃ay/a)1−1/k amν(ay,∞) ≤ (e2/(e− 1))1−1/k m a1/kν(ay,∞)1/k.

Using a property of slowly varying functions (Bingham et al. (1987), Prop 1.3.6),
for any ε > 0, L(a)aε → ∞ as a → ∞. Hence we may assume a−ε ≤ L(a). Also
note

ν(ay,∞) ≤ 1
ay

∫ ∞
ay

u ν(du) ≤ µ

ay
.

Thus, using (6),

m a1/kν(ay,∞)1/k ≤ mL(a)
aβ

aε+β+1/k (µ/ay)1/k ≤ 2cβµ1+1/kaε+βy−1/k.

Now apply a ≤ a0/y to obtain from (21),

|E(eθT̃ax/a − eθT̃a(x−y)/a)| amν(ay,∞) ≤ Cθ,k(x)10cβµ1+1/kaε+β
0

1
yε+β+1/k

,

which is integrable, chosing again ε and k according to (22). 2
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Lemma 9 For am such that (6) holds for some c > 0,

mE(eθ(Tamx−amx/µ)/am − 1) → cβ

βµ2

∫ x

0

∫ y

0
θ2e−θs/µs−β dsdy, m →∞.

Proof. By Lemma 5, mE(eθ(Tax−ax/µ)/a − 1) is nonnegative and increasing in
x. The limit function on the right hand side is also nonnegative and increasing.
Hence the lemma follows from weak convergence of measures if we can prove∫ ∞

0
e−ux d

dx
mE(eθ(Tax−ax/µ)/a − 1) dx →

∫ ∞
0

e−ux

(
cβ

µ2β

∫ x

0
θ2eθss−β ds

)
dx.

(23)
To find the Laplace transform on the right hand side note that

θ2Γ(1− β)
β(u− θ)1−β

=
θ2

β

∫ ∞
0

e−uxeθxx−β dx, θ < u.

Multiplication of the transform by 1/u corresponds to integration of eθxx−β. Hence∫ ∞
0

e−ux
(

1
β

∫ x

0
θ2eθss−β ds

)
dx =

Γ(1− β)θ2

βu(u− θ)1−β
, θ < u,

and hence (23) is equivalent to∫ ∞
0

ue−uxmE(eθ(Tax−ax/µ)/a − 1) dx → Γ(1− β)cβθ2

βu(u + θ/µ)1−βµ2
, θ > −µu. (24)

To help analyze the Laplace transform in (24) we introduce the additional notation

I(u) = µu− Φ(u) =
∫ ∞
0

(e−ux − 1 + ux) ν(dx) ≥ 0.

Writing I(u) = u2
∫∞
0 e−uxU(x) dx with U(x) =

∫∞
x ν(y,∞) dy, it follows from

Karamata’s Tauberian Theorem (Thm. 1.7.6 in Bingham et al. (1987)) that

aI(u/a) ∼ Γ(1− β)L(a/u)u1+β

βaβ
, a →∞ (25)

Relation (14) of Lemma 4 now shows∫ ∞
0

ue−uxmE(eθ(Tax−ax/µ)/a − 1) dx

=
mθ2

(µu + θ)2
aI((u + θ/µ)/a)

µu− aI((u + θ/µ)/a)

∼ mL(a)
aβ

(u + θ/µ)−(1−β) Γ(1− β)θ2

βµ3u

(
1 +O

(L(a)
aβ

))
∼ Γ(1− β)cβθ2

βu(u + θ/µ)1−βµ2
, θ > −µu,

which proves (24) and hence the lemma. 2

We are now able to conclude convergence of the marginal distributions.
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Lemma 10 Under the assumptions of Theorem 2, for any x ≥ 0

1
am

m∑
i=1

(T i
amx −

1
µ

amx) d→ − 1
µ

c Yβ(x/c)

Proof. Writing
Λ(m)(θ;x) = mE(eθ(Tax−ax/µ)/a − 1),

Lemma 9 shows that

log E exp
{
θ

1
bm

m∑
k=1

(T (k)
amx −

1
µ

amx)
}

dx

= log
(
1 +

1
m

Λ(m)(θ;x)
)m

→ cβ

βµ2

∫ x

0

∫ y

0
θ2e−θs/µs−β dsdy.

This proves the lemma since the limit process Yβ has the property

log E(eθYβ(x)) =
1
β

∫ x

0

∫ y

0
θ2eθss−β dsdy

and so, as noticed in Lemma 2,

log E(e−θcYβ(x/c)/µ) =
cβ

βµ2

∫ x

0

∫ y

0
θ2e−θs/µs−β dsdy.

2

2.3 Multivariate distribution

The proofs of convergence of the finite-dimensional distributions are based on the
following recursive equations for moment generating functions.

Lemma 11 Fix n ≥ 2 and a sequence of time points 0 ≤ x1 ≤ . . . ≤ xn. The mo-
ment generating function of the finite-dimensional distributions of the stationary
inverse Lévy subordinator process {Tx} satisfies the recurrence relation

E exp
{ n∑

i=1

θiTxi

}
= E exp

{ n∑
i=2

θiTxi

}
+

θ1∑n
i=1 θi

∫ x1

0
E
[
exp

{ n∑
i=2

θiT̃xi−x

}]
dxE

[
exp

{
Tx

n∑
i=1

θi

}]
, (26)

where T̃x is the corresponding pure inverse Lévy process. Moreover,

E exp
{ n∑

i=1

θiT̃xi

}
= E exp

{ n∑
i=2

θiT̃xi

}
+

θ1∑n
i=1 θi

∫ x1

0
E
[
exp

{ n∑
i=2

θiT̃xi−x

}]
dxE

[
exp

{
T̃x

n∑
i=1

θi

}]
, (27)
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Proof. We have

E exp
{ n∑

i=1

θiTxi

}
− E exp

{ n∑
i=2

θiTxi

}
= E

[
exp

{ n∑
i=2

θiTxi

}(
eθ1Tx1 − 1

)]
.

Since
eθ1Tx1 − 1 =

∫ ∞
0

1{u≤Tx1}θ1e
θ1u du =

∫ ∞
0

1{Xu≤x1}θ1e
θ1u du,

it follows that

E
[
exp

{ n∑
i=2

θiTxi

}(
eθ1Tx1 − 1

)]
= E

[ ∫ ∞
0

1{Xu≤x1} exp
{ n∑

i=2

θiTxi

}
θ1e

θ1u du
]

= E
[ ∫ ∞

0
1{Xu≤x1} exp

{ n∑
i=2

θi(Txi − TXu)
}

θ1 exp
{
(

n∑
i=1

θi)TXu

}
du
]
.

Here, TXu = u. For any u > 0 and i ≥ 2, on the set {Xu ≤ x1} we have

{Txi − TXu ≤ t} = {Txi ≤ u + t} = {Xu+t > xi}.

Since {Xt} has independent increments the rightmost event has the same proba-
bility as

{Xu + X̃t > xi} = {T̃xi−Xu ≤ t},

where Xu ≤ x1 is assumed independent of X̃t. Thus, on {Xu ≤ x1} the increment
Txi − TXu has the same distribution as T̃xi−Xu . It follows that

E exp
{ n∑

i=1

θiTxi

}
− E exp

{ n∑
i=2

θiTxi

}
= θ1E

[ ∫ ∞
0

1{Xu≤x1}E
[
exp

{ n∑
i=2

θiT̃xi−Xu

}
|Xu

]
exp

{
(

n∑
i=1

θi)u
}

du
]

= θ1E
[ ∫ x1

0
E
[
exp

{ n∑
i=2

θiT̃xi−x

}]
exp

{
(

n∑
i=1

θi)Tx

}
dTx

]
,

where the integration after variable substitution x = Xu is with respect to the
increasing function of bounded variation {Tx, x ≥ 0}. (Intuitively, the time-change
Xu picks out the rightmost point of each flat piece of Tx.) Moreover, if we change
to the measure

dx

(
exp

{
Tx

n∑
i=1

θi

})
=
( n∑

i=1

θi

)
exp

{
Tx

n∑
i=1

θi

}
dTx

we obtain

E exp
{ n∑

i=1

θiTxi

}
− E exp

{ n∑
i=2

θiTxi

}
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=
θ1∑n
i=1 θi

E
[ ∫ x1

0
E
[
exp

{ n∑
i=2

θiT̃xi−x

}]
dx

(
exp

{
Tx

n∑
i=1

θi

})]
=

θ1∑n
i=1 θi

∫ x1

0
E
[
exp

{ n∑
i=2

θiT̃xi−x

}]
dxE

[
exp

{
Tx

n∑
i=1

θi

}]
,

which is (26). Start with T̃ rather than T to get (27). 2

For n ≥ 1 and 1 ≤ k ≤ n, put θ̄k,n = (θk, . . . , θn) and x̄k,n = (xk, . . . , xn),
where 0 = x0 ≤ x1 ≤ . . . ≤ xn and let

Φn−k+1(θ̄1,n; x̄1,n) = E exp
{ n∑

i=k

θi(Txi − xi/µ)
}

(28)

denote the multivariate moment generating functions for the centered process {Tx−
x/µ}x≥0. Similarly, let Φ̃n−k+1(θ̄k,n; x̄k,n), 1 ≤ k ≤ n, denote the corresponding
functions for the pure process {T̃x − x/µ}x≥0. The subtraction x̄k,n − u = (xk −
u, . . . , xn − u) is interpreted component-wise in the next statement and in the
sequel.

Lemma 12 The moment generating functions defined in (28) satisfy the integral
equation

Φn(θ̄1,n; x̄1,n) = Φn−1(θ̄2,n; x̄2,n)e−θ1x1/µ

+
θ1∑n
i=1 θi

∫ x1

0
e−θ1(x1−x)/µ Φ̃n−1(θ̄2,n; x̄2,n − x) Φ1

( n∑
i=1

θi; dx
)

+
θ1

µ

∫ x1

0
e−θ1(x1−x)/µ Φ̃n−1(θ̄2,n; x̄2,n − x) Φ1

( n∑
i=1

θi; x
)

dx.

Proof. By Lemma 11,

Φn(θ̄1,n; x̄1,n) = Φn−1(θ̄2,n; x̄2,n)e−θ1x1/µ +
θ1∑n
i=1 θi

×
∫ x1

0
e−θ1(x1−x)/µΦ̃n−1(θ̄2,n; x̄2,n − x) exp

{
− x

µ

n∑
i=1

θi

}
dxE

[
exp

{
Tx

n∑
i=1

θi

}]
,

which, by observing

exp
{
− x

µ

n∑
i=1

θi

}
dxE

[
exp

{
Tx

n∑
i=1

θi

}]
= dxE

[
exp

{
(Tx − x/µ)

n∑
i=1

θi

}]
+

1
µ

n∑
i=1

θi E
[
exp

{
(Tx − x/µ)

n∑
i=1

θi

}]
dx

= Φ1

( n∑
i=1

θi; dx
)

+
1
µ

n∑
i=1

θi Φ1

( n∑
i=1

θi; x
)

dx,

may be rewritten in the form stated in the lemma. 2
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According to (12) we must find the limits of the scaled function

m(Φn(θ̄1,n/a; ax̄1,n)− 1) = mE
[
exp

{ n∑
i=1

θi(Taxi − axi/µ)/a
}
− 1

]
as m, a and b tend to infinity, when a and b satisfy either (5) together with (8) or
condition (6). The first case is FBM scaling leading to fractional Brownian motion
in the limit, as in Theorem 1, and the second case is the intermediate scaling
studied in Theorem 2.

For n ≥ 1, m ≥ 1 and a, b > 0 we introduce

Λ(m)
n (θ̄1,n; x̄1,n) = m(Φn(θ̄1,n/b; ax̄1,n)− 1),

as well as

Λ̃(m)
n (θ̄1,n; x̄1,n) =

am

b
(Φ̃n(θ̄1,n/b; ax̄1,n)− 1)

and

Ξ(m)
n (θ̄1,n; x̄1,n) = Λ̃(m)

n (θ̄1,n; x̄1,n)− Λ(m)
n (θ̄1,n; x̄1,n). (29)

Our strategy for finding the corresponding limit functions is to derive for fixed m
sequences of integral equations, which are recursive in n. As already pointed out
we give the detailed proof only for Theorem 2.

2.4 Multivariate distribution under the intermediate scaling

We study the asymptotic limits of Λ(m)
n and Λ̃(m)

n as m → ∞ under assumption
(6). For simplicity the constant in (6) is set to c = 1. The general case c 6= 1 then
follows from Lemma 2. We begin with a system of equations for the functions Ξ(m)

n

defined in (29), which will be used to determine corresponding limit functions as
m →∞.

Lemma 13 We have

Ξ(m)
n (θ̄1,n; x̄1,n) = Ξ(m)

1

( n∑
i=1

θi; x1

)
+ e−θ1x1/µ Ξ(m)

n−1(θ̄2,n; x̄2,n)

+
( θ1∑n

i=1 θi
− 1

) ∫ x1

0
e−θ1(x1−x)/µ Ξ(m)

1

( n∑
i=1

θi; dx
)

+
1
m

R(m),

where

R(m) =
θ1∑n
i=1 θi

∫ x1

0
e−θ1(x1−x)/µ Λ̃(m)

n−1(θ̄2,n; x̄2,n − x) Ξ(m)
1

( n∑
i=1

θi; dx
)

+
θ1

µ

∫ x1

0
e−θ1(x1−x)/µ Λ̃(m)

n−1(θ̄2,n; x̄2,n − x) Ξ(m)
1

( n∑
i=1

θi; x
)

dx
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Proof. After inserting the scaling parameters m and a into the equation ob-
tained in Lemma 12 and sorting the terms appropriately, it is seen that the scaled
functions Λ(m)

n and Λ̃(m)
n satisfy

Λ(m)
n (θ̄1,n; x̄1,n) = Λ(m)

n−1(θ̄2,n; x̄2,n)e−θ1x1/µ + I
(m)
1 + I

(m)
2 + I

(m)
3 +

1
m

R
(m)
1 ,

where

I
(m)
1 =

θ1∑n
i=1 θi

∫ x1

0
e−θ1(x1−x)/µΛ(m)

1

( n∑
i=1

θi; dx
)

I
(m)
2 =

θ1

µ

∫ x1

0
e−θ1(x1−x)/µ Λ̃(m)

n−1(θ̄2,n; x̄2,n − x) dx

I
(m)
3 =

θ1

µ

∫ x1

0
e−θ1(x1−x)/µΛ(m)

1

( n∑
i=1

θi; x
)

dx

R
(m)
1 =

θ1∑n
i=1 θi

∫ x1

0
e−θ1(x1−x)/µ Λ̃(m)

n−1(θ̄2,n; x̄2,n − x) Λ(m)
1

( n∑
i=1

θi; dx
)

+
θ1

µ

∫ x1

0
e−θ1(x1−x)/µ Λ̃(m)

n−1(θ̄2,n; x̄2,n − x) Λ(m)
1

( n∑
i=1

θi; x
)

dx

By partial integration,

I
(m)
3 = Λ(m)

1

( n∑
i=1

θi; x1

)
−
∫ x1

0
e−θ1(x1−x)/µΛ(m)

1

( n∑
i=1

θi; dx
)
.

Hence

Λ(m)
n (θ̄1,n; x̄1,n) = Λ(m)

n−1(θ̄2,n; x̄2,n)e−θ1x1/µ + Λ(m)
1

( n∑
i=1

θi; x1

)
+I

(m)
2 + I

(m)
4 +

1
m

R
(m)
1 , (30)

where now

I
(m)
4 =

( θ1∑n
i=1 θi

− 1
) ∫ x1

0
e−θ1(x1−x)/µΛ(m)

1

( n∑
i=1

θi; dx
)

Similarly,

Λ̃(m)
n (θ̄1,n; x̄1,n) = Λ̃(m)

n−1(θ̄2,n; x̄2,n)e−θ1x1/µ + Λ̃(m)
1

( n∑
i=1

θi; x1

)
+I

(m)
2 + Ĩ

(m)
4 +

1
m

R
(m)
2 , (31)

with

Ĩ
(m)
4 =

( θ1∑n
i=1 θi

− 1
) ∫ x1

0
e−θ1(x1−x)/µΛ̃(m)

1

( n∑
i=1

θi; dx
)
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and with R
(m)
2 being the modification of R

(m)
1 obtained by replacing Λ(m)

1 by Λ̃(m)
1 .

By subtracting (30) from (31) and using R(m) = R
(m)
2 −R

(m)
1 , we obtain the desired

equation for Ξ(m)
n , hence concluding the proof of the lemma. 2

Lemma 14 For each n ≥ 1, the limit functions

Ξn(θ̄1,n; x̄1,n) = lim
m→∞

Ξ(m)
n (θ̄1,n; x̄1,n)

exist and are given by

Ξn(θ̄1,n; x̄1,n) =
n∑

j=1

exp
{ j−1∑

i=1

(θi + . . . + θn)(xi − xi−1)/µ
}

× 1
µ

∫ xj

xj−1

(θj + . . . + θn)e−(θj+...+θn)(u−xj−1)/µβ−1u−β du.

For n ≥ 2 they solve the recursive system

Ξn(θ̄1,n; x̄1,n)− Ξ1

( n∑
i=1

θi; x1

)
= e−θ1x1/µ

(
Ξn−1(θ̄2,n; x̄2,n)− Ξ1

( n∑
i=2

θi ; x1

))
. (32)

Proof. By Lemma 5 and 17,

Ξ(m)
1 (θ; x) =

µ

θ

d

dx
mE(eθ(Tax−ax/µ)/a − 1) → 1

βµ

∫ x

0
θe−θu/µu−β du = Ξ1(θ; x).

(33)
This observation and a similar argument as in (23) shows∫ x1

0
e−θ1(x1−x)/µ Ξ(m)

1

( n∑
i=1

θi; dx
)
→
∫ x1

0
e−θ1(x1−x)/µ Ξ1

( n∑
i=1

θi; dx
)
.

It then follows from Lemma 13, by induction on n, that all limit functions Ξn exist
and satisfy

Ξn(θ̄1,n; x̄1,n)− Ξ1

( n∑
i=1

θi; x1

)
= e−θ1x1/µ Ξn−1(θ̄2,n; x̄2,n)

+
( θ1∑n

i=1 θi
− 1

) ∫ x1

0
e−θ1(x1−x)/µ Ξ1

( n∑
i=1

θi; dx
)

= e−θ1x1/µ
(
Ξn−1(θ̄2,n; x̄2,n)− 1

µ

( n∑
i=2

θi

) ∫ x1

0
exp

{
− x

( n∑
i=2

θi

)
/µ
}
β−1x−β dx

)
,

which is the relation (32). It is now straightforward to verify the explicit form of
the solution given in the lemma. 2

The remaining proofs of the convergence of multivariate distributions in The-
orem 2 are organized in four consecutive lemmas, leading up to the identification
of the cumulant generating function (11) in Theorem 2.
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Lemma 15 The limit functions Λn = limm→∞ Λ(m)
n , n ≥ 1, exist and we have

Λ1(θ;x) =
θ2

βµ2

∫ x

0

∫ u

0
e−θv/µv−β dvdu (34)

and for n ≥ 2, recursively

Λn(θ̄1,n; x̄1,n) = Λn−1(θ̄2,n; x̄2,n − x1) + Λ1

( n∑
i=1

θi; x1

)
+
( θ1∑n

i=1 θi
− 1

) ∫ x1

0
e−θ1(x1−x)/µΛ1

( n∑
i=1

θi; dx
)

−
∫ x1

0
e−θ1(x1−x)/µ dΛn−1(θ̄2,n; x̄2,n − x)

+
θ1

µ

∫ x1

0
e−θ1(x1−x)/µ Ξn−1(θ̄2,n; x̄2,n − x) dx.

Proof. This follows for n = 1 from Lemma 10 and for n ≥ 2 from (30) and a
further partial integration of the term I

(m)
2 , which gives

Λ(m)
n (θ̄1,n; x̄1,n) = Λ(m)

n−1(θ̄2,n; x̄2,n − x1) + Λ(m)
1

( n∑
i=1

θi; x1

)
+
( θ1∑n

i=1 θi
− 1

) ∫ x1

0
e−θ1(x1−x)/µΛ(m)

1

( n∑
i=1

θi; dx
)

−
∫ x1

0
e−θ1(x1−x)/µ dΛ(m)

n−1(θ̄2,n; x̄2,n − x)

+
θ1

µ

∫ x1

0
e−θ1(x1−x)/µ Ξ(m)

n−1(θ̄2,n; x̄2,n − x) dx +
1
m

R(m).

2

Lemma 16 For any 0 ≤ s ≤ x1 and n ≥ 1,

− d

ds
Λn(θ̄1,n; x̄1,n − s) =

1
µ

( n∑
i=1

θi

)
Ξn(θ̄1,n; x̄1,n − s).

Proof. The representations (33) and (34) show that the lemma is true for n = 1.
For n ≥ 2, by Lemma 15,

d

ds
Λn(θ̄1,n; x̄1,n − s) =

θ1∑n
i=1 θi

d

ds
Λ1

( n∑
i=1

θi; x1 − s
)

+
( θ1∑n

i=1 θi
− 1

)θ1

µ

∫ x1−s

0
e−θ1(x1−s−x)/µΛ1

( n∑
i=1

θi; dx
)

−e−θ1(x1−s)/µ d

ds
Λn−1(θ̄2,n; x̄2,n − s) +

θ1

µ
e−θ1(x1−s)/µ Ξn−1(θ̄2,n; x̄2,n − s)
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and hence

− d

ds
Λn(θ̄1,n; x̄1,n − s) =

θ1

µ
Ξ1

( n∑
i=1

θi; x1 − s
)

+e−θ1(x1−s)/µ
( 1
µ

n∑
i=1

θi

)( θ1∑n
i=1 θi

− 1
)θ1

µ

∫ x1−s

0
eθ1x/µ Ξ1

( n∑
i=1

θi; x
)

dx

+e−θ1(x1−s)/µ
(

θ1

µ
Ξn−1(θ̄2,n; x̄2,n − s)− d

ds
Λn−1(θ̄2,n; x̄2,n − s)

)
.

Here,

−θ1

µ

∫ x1−s

0
eθ1x/µ Ξ1

( n∑
i=1

θi; x
)

dx

= eθ1(x1−s)Ξ1

( n∑
i=1

θi ; x1 − s
)
−

n∑
i=1

θi

∫ x1−s

0
exp

{
− v

n∑
i=2

θ1

}
v−β dv,

and therefore

− d

ds
Λn(θ̄1,n; x̄1,n − s) =

1
µ

n∑
i=1

θiΞ1

( n∑
i=1

θi; x1 − s
)

+e−θ1(x1−s)/µ

(
θ1

µ
Ξn−1(θ̄2,n; x̄2,n − s)− d

ds
Λn−1(θ̄2,n; x̄2,n − s)

− 1
µ

n∑
i=1

θi Ξ1

( n∑
i=2

θi ; x1 − s
))

.

If we now assume as induction hypothesis that the lemma is true for index n− 1,
in the sense

− d

ds
Λn−1(θ̄2,n; x̄2,n − s) =

1
µ

( n∑
i=2

θi

)
Ξn−1(θ̄2,n; x̄2,n − s),

then it follows from (32) that the statement of the lemma is true for index n. 2

Lemma 17 The finite-dimensional distributions of the sequence of random pro-
cesses studied in Theorem 2 (with c = 1) converge to those of a limit process Yβ,
such that the collection of logarithmic moment generating functions

Λn(θ̄1,n; x̄1,n) = log E exp
{ n∑

i=1

θiYβ(xi)
}
, n ≥ 1

is the unique solution to the closed system of linear integral equations

Λn(θ̄1,n; x̄1,n) = Λn−1(θ̄2,n; x̄2,n − x1) + Λ1

( n∑
i=1

θi; x1

)
+
( θ1∑n

i=1 θi
− 1

) ∫ x1

0
e−θ1(x1−x)/µΛ1

( n∑
i=1

θi; dx
)

−
( θ1∑n

i=2 θi
+ 1

) ∫ x1

0
e−θ1(x1−x)/µ dΛn−1(θ̄2,n; x̄2,n − x), n ≥ 2,

22



with Λ1 as in (34).

Proof. This follows by combining Lemma 15 and Lemma 16. 2

Lemma 18 The cumulant function for the increments of Yβ,

Γn(θ̄1,n; x̄1,n) = log E exp
{ n∑

i=1

θi(Yβ(xi)− Yβ(xi−1))
}

has the explicit form given in (11).

Proof. We have

Γn(θ̄1,n; x̄1,n) = Λn((θ1 − θ2, . . . , θn−1 − θn, θn), x̄1,n)

so by Lemma 17

Γn(θ̄1,n; x̄1,n) = Γn−1(θ̄2,n; x̄2,n − x1) + Λ1

( n∑
i=1

θi; x1

)
+

θ2

θ1

∫ x1

0
e−(θ1−θ2)(x1−x)/µΛ1

( n∑
i=1

θi; dx
)

−θ1

θ2

∫ x1

0
e−(θ1−θ2)(x1−x)/µ dΓn−1(θ̄2,n; x̄2,n − x), n ≥ 2.

It may now be checked that the functions in (13) solves the above system of
equations. For details, see Gaigalas, Kaj [7], Section 6.3. 2

2.5 Multivariate distribution under FBM scaling

In this section we discuss briefly the convergence of the finite-dimensional distri-
butions in Theorem 1. Recall that for standard fractional Brownian motion BH ,

log E exp
{ n∑

i=1

θiσβBH(xi)
}

=
1
2
σ2

β

n∑
i=1

n∑
j=1

θiθj Cov(BH(xi), BH(xj))

with
Cov(BH(x), BH(y)) =

1
2
(x2−β + y2−β − (x− y)2−β).

In the scaling regime defined by (5) and (8) we have

a

b
=

√
aβµ

mL(a)
→ 0,

am

b
=

√
aβmµ

L(a)
→∞.

By analyzing in this case the recursive equations for Λ̃(m)
n (θ̄1,n; x̄1,r) it follows that

Λ̃n(θ̄1,n; x̄1,n) = lim
m→∞

Λ̃(m)
n (θ̄1,n; x̄1,r) =

δ2
β

µ

n∑
i=1

θix
1−β
i , δ2

β =
1

β(1− β)
. (35)
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Moreover, the limit functions Λn(θ̄1,n; x̄1,r) = limm→∞ Λ(m)
n (θ̄1,n; x̄1,r) satisfy, in

analogy to the result of Lemma 17,

Λ1(θ; x) = lim
m→∞

Λ(m)
1 (θ; x) =

1
2
σ2

βµ−2θ2x2−β

and for n ≥ 2,

Λn(θ̄1,n; x̄1,n) = Λn−1(θ̄2,n; x̄2,n) +
θ1∑n
i=1 θi

Λ1

( n∑
i=1

θi; x1

)
+

θ1

µ

∫ x1

0
Λ̃n−1(θ̄2,n; x̄2,n − x) dx.

Thus, using (35),

Λn(θ̄1,n; x̄1,n) = Λn−1(θ̄2,n; x̄2,n) +
σ2

β

2µ2

n∑
j=1

θ1θj
1
2

[
x2−β

1 + x2−β
j − (xj − x1)2−β

]
.

Hence

Λn(θ̄1,n; x̄1,n) =
σ2

β

2µ2

n∑
i=1

n∑
j=1

θiθj
1
2
(x2−β

i + x2−β
j − (xi − xj)2−β).

2.6 Proof of tightness in C

To complete the proofs of our results we establish tightness of the sequences

Y (m)(x) =
1
bm

m∑
i=1

(T (i)
amx −

amx

µ
)

studied in Theorems 1 and 2, by applying a standard moment criterion. Since
Y (m)(x) has stationary increments, to prove that that {Y (m)} is tight in C it is
enough to find γ > 1, an integer m0 and a constant K such that for fixed T ,

Var(Y (m)(x)) =
m

b2
m

Var(Tamx) ≤ Kxγ (36)

for 0 < x < T and m ≥ m0 (Billingsley (1968), Thm. 12.3).
By Lemma 6 iii), the variance of Tx is a non-decreasing function in x. Hence

we may apply Karamata’s Tauberian theorem (Bingham et al. [4] Theorem 1.7.1)
to show that Var(Tx) is regularly varying in infinity with index 2 − β. Indeed,
recalling the previously used notation I(u) = µu−Φ(u), the asymptotic property
(25) implies∫ ∞

0
ue−uxVar(Tx) dx =

2
(µu)2

∞∑
n=1

(I(u)
µu

)n
∼ 2Γ(1− β)L(1/u)

βµ2u2−β
, u → 0,

hence

Var(Tx) ∼ 2Γ(1− β)x2−βL(x)
Γ(3− β)βµ3

=
σ2

β

µ3
L(x)x2−β, x →∞. (37)
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The next step is to apply the Potter bounds for regularly varying functions (Bing-
ham et al., Ch 1.5) to obtain for any ε > 0 an a0, such that

Var(Tax)
Var(Ta)

≤ (1 + ε) max(x2−β+ε, x2−β−ε), a ≥ a0, ax ≥ a0.

Hence for m ≥ m0 so large that a ≥ a0, ax ≥ a0,

mVar(Tax)/b2 ≤ (1 + ε)mVar(Ta)/b2 max(x2−β+ε, x2−β−ε)

But in either case of the FBM scaling (5), (8) or the intermediate scaling (6), the
asymptotic relation (37) yields

mVar(Ta)/b2 → σ2
β/µ2, m →∞,

and so, eventually choosing a larger m1 ≥ m0,

mVar(Tax)/b2 ≤ (1 + ε)(σ2
β + ε) max(x2−β+ε, x2−β−ε), m ≥ m1.

With ε < 1− β this yields (36) for ax ≥ a0.
It remains to prove (36) for a ≥ a0 and ax < a0. By Lemma 6 iv),

mVar(Tax)/b2 ≤ 2e

µ

m

b2

∫ ax

0
Φ(1/y)−1 dy

≤ 2e

µ

ma2−β

b2

(1/ax)1−β

Φ(1/ax)
x2−β.

Take ε such that (1 − β − σ) ∨ 0 < ε < 1 − β. As in the proof of Lemma 8,
a−ε ≤ L(a). Thus,

mVar(Tax)/b2 ≤ 2e
ma2−βL(a)

µb2

(1/ax)1−β−ε

Φ(1/ax)
x2−β−ε.

In Theorem 1, ma2−βL(a)/µb2 = 1. In Theorem 2, ma2−βL(a)/µb2 → cβ. Since σ
is the lower index associated with Φ and 1−β−ε < σ, the ratio Φ(u)/u1−β−ε →∞
as u →∞. Thus, for ax ≤ a0, we can find a constant K such that (36) holds with
γ = 2− β − ε > 1. 2
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