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Abstract. Bottom-up scaling of net ecosystem production

(NEP) and net biome production (NBP) was used to generate

a carbon budget for a large heterogeneous region (the state of

Oregon, 2.5×105 km2) in the western United States. Landsat

resolution (30 m) remote sensing provided the basis for map-

ping land cover and disturbance history, thus allowing us to

account for all major fire and logging events over the last 30

years. For NEP, a 23-year record (1980–2002) of distributed

meteorology (1 km resolution) at the daily time step was used

to drive a process-based carbon cycle model (Biome-BGC).

For NBP, fire emissions were computed from remote sensing

based estimates of area burned and our mapped biomass esti-

mates. Our estimates for the contribution of logging and crop

harvest removals to NBP were from the model simulations

and were checked against public records of forest and crop

harvesting. The predominately forested ecoregions within

our study region had the highest NEP sinks, with ecore-

gion averages up to 197 gC m−2 yr−1. Agricultural ecore-

gions were also NEP sinks, reflecting the imbalance of NPP

and decomposition of crop residues. For the period 1996–

2000, mean NEP for the study area was 17.0 TgC yr−1, with

strong interannual variation (SD of 10.6). The sum of for-

est harvest removals, crop removals, and direct fire emis-

sions amounted to 63% of NEP, leaving a mean NBP of

6.1 TgC yr−1. Carbon sequestration was predominantly on

public forestland, where the harvest rate has fallen dramat-

ically in the recent years. Comparison of simulation re-

sults with estimates of carbon stocks, and changes in carbon

stocks, based on forest inventory data showed generally good

agreement. The carbon sequestered as NBP, plus accumula-

tion of forest products in slow turnover pools, offset 51% of

the annual emissions of fossil fuel CO2 for the state. State-

level NBP dropped below zero in 2002 because of the com-

bination of a dry climate year and a large (200 000 ha) fire.

Correspondence to: D. P. Turner

(david.turner@oregonstate.edu)

These results highlight the strong influence of land manage-

ment and interannual variation in climate on the terrestrial

carbon flux in the temperate zone.

1 Introduction

Efforts to locate and explain the large terrestrial carbon sinks

inferred from inversion studies (Baker et al., 2006; Bousquet

et al., 2000) are faced with accounting for spatially exten-

sive factors like climate variation and CO2 increase (Schimel

et al., 2000), fine scale phenomena associated with anthro-

pogenic and natural disturbances (Korner, 2003; Pacala et al.,

2001), and temporal variation at the seasonal and interannual

scales. Carbon budget approaches based on forest inventory

information, e.g. Kauppi et al. (1992), are poorly resolved

spatially and temporally, do not reveal the mechanisms ac-

counting for changes in carbon stocks, and miss carbon flux

associated with non-forest vegetation. Alternatively, a pro-

cess modeling approach – with inputs of high spatial resolu-

tion remote sensing data and distributed meteorological data

– can provide estimates of net ecosystem production (NEP,

sensu Lovett et al., 2006) for potential comparison with NEP

fluxes from inverse modeling studies, and provide estimates

of net biome production (NBP, sensu Schulze et al., 2000)

for comparison with carbon accounting being done in sup-

port of the Framework Convention on Climate Change (UN-

FCCC, 1992). In this analysis, we apply a process modeling

approach to generate a carbon budget over the state of Ore-

gon (2.5×105 km2) in western North America between 1980

and 2002. The period included a significant reduction in for-

est harvesting on public lands, several extreme climate years,

and an exceptional fire year.

The forests of the Pacific Northwest region of the United

States (U.S.) are of particular interest with regard to terres-

trial carbon flux because of their high biomass and produc-

tivity (Smithwick et al., 2003; Waring and Franklin, 1979),
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Fig. 1. Land cover map for Oregon with detail for a selected area.

the mixture of land ownerships with differing management

objectives (Garman et al., 1999), the sensitivity of the for-

est carbon balance to interannual climate variation (Morgen-

stern et al., 2004; Paw U et al., 2004), and potential for in-

creased incidence of stand replacing fires in association with

projected climate change (Bachelet et al., 2001; Westerling

et al., 2006). Earlier studies of carbon stocks and fluxes on

forestlands in the region suggest that it is transitioning from a

carbon source to a carbon sink (Cohen et al., 1996; Law et al.,

2004; Wallin et al., 2007). Carbon flux in nonforest ecosys-

tems of the region is less well studied. However, the high

productivities and large carbon transfers at the time of har-

vest in agricultural areas, and the large areas of semi-natural

vegetation cover, could potentially have strong influences on

the regional carbon budget.

2 Methods

2.1 Overview

The primary NEP/NBP scaling tool in this analysis was the

Biome-BGC model (Thornton et al., 2002) and details of its

application for the purposes of scaling carbon pools and flux

are given in previous publications (Law et al., 2004; Law et

al., 2006; Turner et al., 2004; Turner et al., 2003). Generally,

we used model simulations to produce spatially-explicit esti-

mates of carbon stocks as well as estimates of annual net pri-

mary production (NPP), heterotrophic respiration (Rh), and

net ecosystem production for each year from 1980 to 2002

over the state of Oregon. Annual NBP (NEP – harvest re-

movals – pyrogenic emissions) was estimated from the simu-

lated logging removals, crop harvest removals, and fire emis-

sions. In our previous studies, we assumed all forest stands

originated as a clear-cut of a secondary forests, but in this ap-

plication we introduced the capacity to simulate one or two

clear-cut or fire disturbances (based on remote sensing) as

the simulation for a given grid cell is brought up to 2002

after model spin-up. We have also begun modeling all vege-

tation cover types, thus permitting wall-to-wall estimation of

the carbon pools and fluxes.

2.2 Land cover

We first established a forest/nonforest coverage based on ar-

eas analyzed in our previous change detection studies (Law

et al., 2004; Lennartz, 2005) Within the forest class, forest

type was originally designated as evergreen conifer, decid-

uous broadleaf, or mixed. However, we reclassified mixed

as conifer here because a mixed class was not supported in

the Biome-BGC process model. We next overlaid a Juniper

Woodland coverage from the Oregon GAP Analysis (Kagan

et al., 1999). Lastly, we filled in all nonforest areas with the

National Land Cover Data (NLCD) coverage (Vogelmann et

al., 2001). These coverages were all based on Landsat im-

agery at the 30 m resolution. The Transitional Vegetation

Class in the NLCD coverage, which is primarily regrowing

clear-cuts, was reclassified as conifer forest. Other NLCD

classes were aggregated to a simple 7 class scheme (Fig. 1).

The final coverage was resampled to the 25 m resolution for

ease of overlay with the 1 km resolution climate data. Ecore-

gions boundaries are from the scheme of Omernik (1987).
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Table 1. Landsat-based change detection analysis. Values are percentage of the total forest area in each disturbance class.

Location Disturbance Percentage

Eastern Oregon Forest – no change 83.6

Cut 02-04 1.0

Cut 94-01 5.0

Cut 89-93 2.4

Cut 85-88 2.1

Cut 75-84 1.4

Cut 73-76 0.8

Fire 02-04 0.4

Fire 94-01 1.9

Fire 89-93 1.2

Fire 85-88 0.1

More than 1 disturbance in last 30 years 0.2

Total 100.0

Western Oregon Forest – no change 78.3

Cut 03-04 2.0

Cut 01-02 1.0

Cut 96-00 2.0

Cut 92-95 1.9

Cut 89-91 2.8

Cut 85-88 3.7

Cut 78-84 3.9

Cut 72-77 2.1

Fire 03-04 0.8

Fire 01-02 0.9

Fire 96-00 0.1

Fire 92-95 0.1

Fire 89-91 0.0

Fire 85-88 0.3

Fire 78-84 0.0

More than 1 disturbance in last 30 years 0.1

Total 100.0

2.3 Forest stand age and disturbance history

For each 25 m grid cell classified as forest, a disturbance his-

tory was formulated. These disturbance histories consisted

of one or two disturbance events that were specified by year

and type (fire or clear-cut harvest). Disturbances during the

Landsat era (1972–2002) were mapped (Table 1, Fig. 2) us-

ing change detection based on wall-to-wall Landsat imagery

every 2 to 5 years (Cohen et al., 2002; Healey et al., 2005;

Lennartz, 2005). In our simulations, the disturbances were

scheduled at the midpoint of each interval. Accuracy assess-

ment of the stand replacement maps was conducted in Cohen

et al. (2002) and reported as 88%. Assumptions about what

was present at the time of the first disturbance were ecore-

gion specific, e.g. in the Coast Range ecoregion the stand

was assumed to be 75 years old to reflect the rotation age and

the fact that much of the Coast Range had been harvested

previous to the Landsat era (Garman et al., 1999).

For all conifer forestland in western Oregon that had no

stand replacing disturbances during the Landsat era, stands

were aged by classification into broad age classes (young,

mature, old) using recent Landsat imagery (as in Cohen

et al., 1995). The approach depends on spectral variation

among stands of different ages associated with changes in

stand structure. In eastern Oregon, it was not possible to age

undisturbed stands using Landsat data because the stands are

relatively open and often uneven aged. Thus for the ecore-

gions in the eastern part of the state, all conifer pixels >30

years of age were assigned the ecoregion specific, basal-area-

weighted, median age (Waddell and Hiserote, 2005) from

USDA Forest Service Forest Inventory and Analysis data

(FIA, 2006). Our previous chronosequence studies (Camp-

bell et al., 2004) in eastern Oregon have indicated that NEP

remains positive over the course of mid and late succession

in these relatively open stands, thus minimizing the error in

NEP introduced by these assumed ages. As a sensitivity

check, simulated NEP at a representative site and at the me-

dian age for each of these ecoregions was compared with the

associated age-weighted mean NEP from Biome-BGC sim-

ulations based on the age distribution of all FIA permanent

www.biogeosciences.net/4/597/2007/ Biogeosciences, 4, 597–612, 2007
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Fig. 2. Change detection map for Oregon with detail for selected areas.

plots in the ecoregion. Results did not indicate a strong bias

(Table 2).

The deciduous broadleaf and mixed (reclassified as

conifer) classes were assigned an age of 40, reflecting lim-

ited information from inventory data and knowledge from the

change detection analysis that these stands were >30 years

old. Juniper woodlands were assigned an age of 70 based

on the observation that many of these stands have originated

since the late 1800s when heavy grazing and fire suppression

began to promote juniper expansion in eastern Oregon (Ged-

ney et al., 1999). As with the open conifer stands in eastern

Oregon, these woodland stands apparently continue to accu-

mulate stem carbon over long periods (Azuma et al., 2005)

which helps minimize the error in estimating NEP.

2.4 Climate and soil inputs

The meteorological inputs to Biome-BGC are daily min-

imum and maximum temperature, precipitation, humidity,

and solar radiation. We used a 23-year (1980–2002) time se-

ries at 1 km resolution developed with the DAYMET model

(DAYMET, 2006; Hasenauer et al., 2003; Thornton et al.,

2000; Thornton and Running, 1999; Thornton et al., 1997).

These data were based on interpolations of meteorological

station observations using a digital elevation model and gen-

eral meteorological principles. The 23-year record was re-

cycled as needed during the model spin-ups. Soil texture

and depth were specified (at the 1 km spatial resolution) from

the U.S. Geological Survey coverages (CONUS, 2007) that

were originally generated by linking soil survey maps of

taxonomic types to soil pedon databases (Miller and White,

1998).

2.5 Biome-BGC parameterization and application

The parameterization of ecophysiological and allometric

constants in Biome-BGC (Table A1) was cover type and

ecoregion specific. The values used were based on the liter-

ature (e.g. Pietsch et al., 2005; White et al., 2000), our field

measurements (Law et al., 2004; Law et al., 2006), and our

previous work with the model in this region (Turner et al.,

2003, Law et al., 2004). Our field measurements (extensive

plots) included over 100 plots in the study region that were

distributed so as to sample the range of age classes within

the conifer cover class in each ecoregion. The foliar ni-

trogen concentration and specific leaf area (SLA) measure-

ments from these plots were used to specify foliar C to N

ratio and SLA in the conifer class (Table 3). Earlier sensitiv-

ity analyses with Biome-BGC (White et al., 2000; Tatarinov

and Cienciala, 2006), have revealed that the model is partic-

ularly sensitive to these parameters. Recent studies support

the utilization of ecoregion-level reference data for model pa-

rameterization when it is available (Loveland and Merchant,

2004; Ogle et al., 2006).

As noted in Law et al. (2004), we have adapted Biome-

BGC so that input parameters can be dynamic over the course

of forest succession. Previously we used this feature to shift

production belowground in late succession to reflect the age

trends in bolewood production that are observed in FIA data

(Law et al., 2006). Here, we have also made the mortal-

ity fraction a dynamic parameter (see Pietsch and Hasenauer,

2006) such that mortality may decrease over the course of

succession. The range of mortality was made consistent with

studies in the region (Acker et al., 2002; DeBell and Franklin,

1987; Lutz and Halpern, 2006). This feature was needed

for simulating the forests of eastern Oregon which show sus-

tained increases in biomass even in late succession (Camp-

Biogeosciences, 4, 597–612, 2007 www.biogeosciences.net/4/597/2007/
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Table 2. Results of the sensitivity test for the effect of assuming all stands >30 yr are the median age from the forest inventory data. Weighted

refers to the case in which the model was run once for each stand age and an age-weighted mean was determined based on the frequency

distribution of the ages. Median refers to the case in which the model was run only at the median age.

Ecoregion NEP (gC m−2 yr−1) Woodmass (kgC m−2)

Weighted Median Difference Weighted Median Difference

Mean (%) Mean (%)

East Cascades 60 71 18 12.0 12.8 7

Blue Mountains 97 91 6 11.3 11.7 3

Table 3. Ecoregion-specific values (conifer cover type) for foliar carbon to nitrogen ratio and specific leaf area. SD refers to standard

deviation.

Location Specific leaf area (m2 kgC−1) C to N ratio

Mean SD Mean SD

Coast Range 13.3 3.1 38 5

West Cascades 10.1 2.3 52 6

Eastern Cascades 8.2 5.5 52 4

Klamath Mountains 8.7 5.7 51 6

Blue Mountains 10.6 3.7 48 5

bell et al., 2004; Van Tuyl et al., 2005). Another modifi-

cation to Biome-BGC was to constrain the maximum daily

interception, as discussed in Lagergren et al. (2006).

For a standard model run, a model spin-up was performed

and the model was run forward through the simulated dis-

turbances to the year 2002, with looping of the 23 years of

climate data as needed. For non-forest, non-woodland cover

types, a model spin-up was performed and it was run to near

carbon steady state by 1980 so that its year-to-year variation

in NEP primarily reflected the influence of climate variation.

In the case of croplands and grasslands (hayfields), where

carbon is removed in the form of harvesting, we included

the removals in the Biome-BGC simulations as we ran up

to the present, thus the NEP tended to balance the removals

(i.e. these areas are carbon sinks in terms of NEP).

Because of the computational demands of the model spin-

ups, it was impractical do an individual model run for each

25 m resolution grid cell in the study area. The 1 km reso-

lution of the climate data is adequate to capture the effects

of the major climatic gradients, but our earlier studies in this

region have shown that the scale of the spatial heterogene-

ity associated with land management is significantly less that

1 km (Turner et al., 2000). Thus, the model was run once in

each 1 km cell for each of the 5 most common combinations

of cover type and disturbance history. For mapping the car-

bon fluxes, a weighted mean value was calculated for each

1 km cell. This procedure explicitly accounted for 97% of

the study area.

2.6 Harvest removals and fire emissions for NBP estima-

tion

Estimation of NBP requires information on carbon transfers

off the land base in addition to NEP (Schulze et al., 2000).

To quantify wood harvest removals we assumed that 65% of

wood carbon was removed at the time of harvest (Turner et

al., 1995). For a check on our simulated harvest removals,

these values were summed to the state level and compared

with harvest data from the Oregon Department of Forestry

(ODF, 2006). The ODF volume data were converted to car-

bon mass using the carbon densities in Turner et al. (1995).

For the year-specific NBP calculations, we partitioned the

total simulated removals among the years in a given change

detection interval by reference to the partitioning in the ODF

volume data.

Crop removals must also be quantified for NBP and here

we assumed 80% of aboveground biomass was removed an-

nually on all cropland and grassland grid cells. This crop ra-

tio approximates the crop ratios in U.S. Department of Agri-

culture National Agricultural Statistics Service (NASS) re-

ports for Oregon (USDA, 2001).

Direct emissions from forest fire can be a large term in

NBP estimates and here were based on the change detection

analyses for area burned, on carbon stocks in the burned ar-

eas from the Biome-BGC modeling, and on transfer coeffi-

cients that quantified the proportion of each carbon stock that

burned. We assumed 100% of foliar, fine root, and litter car-

bon was emitted, and 7% of aboveground wood. These val-

ues are similar to those found in high burn severity areas of a

www.biogeosciences.net/4/597/2007/ Biogeosciences, 4, 597–612, 2007
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Table 4. Carbon fluxes for Oregon. Values are state-level five-year

means and standard deviations for the period 1996–2000. Units are

TgC yr−1.

Flux Mean SD

Net ecosystem production 17.0 10.6

Timber harvest 5.9 0.3

Crop harvest 4.8 0.4

Fire emissions 0.2 0.2

NBP 6.1 10.2

large wildfire in our study area (Campbell et al., 2007). The

remainder of the wood was transferred to the coarse woody

debris pool. Again, for the year-specific NBP calculations we

partitioned the direct fire flux among the years of the change

detection interval by reference to the ratio of area burned in

a given year to area burned over the interval from state-level

burned area statistics (NWCC, 2004).

2.7 Uncertainty assessment

Estimates of carbon stocks are important in the simulation of

harvest removals and fire emissions, as well as giving a gen-

eral indication of model behavior. For an independent esti-

mate of the regional carbon stocks on forest land, USDA For-

est Service inventory data (8929 plots in Oregon) can be sum-

marized at the county level. Allometry and carbon density

factors are used to convert volumes to total tree carbon and

reference is made to expansion factors associated with the

plot-level data to account for the sampling scheme (Hicke et

al., 2007). The uncertainty associated with inventory-based

bolewood volume estimates over large areas such as counties

in the U.S. is considered to be less than five percent (Alerich

et al., 2004). Uncertainty about the allometry used to scale

volume to biomass is also relatively low (Van Tuyl et al.,

2005). For comparable values from our Biome-BGC simu-

lations, we averaged simulated tree biomass (woodmass) in

1995 (the end of the last inventory cycle) over all forested ar-

eas within each county. For other cover types, limited com-

parisons were made between the simulated carbon stocks and

observations in the literature.

Evaluation of carbon flux on forestland, at least in terms of

tree NBP, can also be made based on forest inventory data.

Aggregated inventory data in the U.S. are periodically re-

ported in terms of cubic feet of bolewood volume per unit

area (Smith et al., 2004) and NBP (for trees) can be esti-

mated as the change in total stocks divided by the associated

interval. For our comparisons we used a conversion factor

of 6.4 kgC per cubic foot and a ratio of tree carbon to bole-

wood carbon of 1.7 (Turner et al., 1995). For NEP, we have

previously reported comparisons of our Biome-BGC simula-

tions to field measurements at an eddy covariance flux tower

and at chronosequence plots in the region (Law et al., 2004;

Law et al., 2006). For cropland/grassland NPP and harvest

removals, we made comparisons to USDA NASS statistics

(USDA 2001) aggregated to the ecoregion scale.

It was not feasible to perform a formal uncertainty analy-

sis for inputs and parameters of our state wide NEP simula-

tions (e.g. using a Monte Carlo approach at each point and

summing uncertainty across the domain) because of compu-

tational constraints, because we don’t know the moments and

distribution types for the multitude of parameters in Biome-

BGC, and because the error sources are not spatially inde-

pendent. However, it is worth noting that the NEP estimates

for forestland are to some degree stabilized against model

parameter values affecting rates of growth (carbon sinks) be-

cause high growth rates create relatively large carbon stocks

which become large carbon sources when disturbed. Simi-

larly, artificially high rates of decomposition would push up

carbon sources in the short term after disturbance but, since

the model maintains mass balance, the total amount of het-

erotrophic respiration would tend to be similar over a whole

successional cycle even with lower base turnover rates for

Rh. A significant check on seasonal and annual NEP at the

regional scale will become available as the density of CO2

measurements supporting inverse modeling efforts increases

(Karstens et al., 2006). Here, we made a first order com-

parison with optimized terrestrial carbon flux estimates over

Oregon from the Carbon Tracker inversion scheme (NOAA,

2007).

3 Results and discussion

3.1 Five-Year mean flux estimates

For assessing the recent carbon budget we report means

and standard deviations (over years) for the 5-year period

1996–2000 (Table 4). This period was after harvest lev-

els stabilized following the significant decrease in the early

1990s (Fig. 4) and before the relatively warm/dry climate

years of 2001 and 2002 (2002 was the driest of the 23 year

record). Over that interval, the Oregon land base was a strong

NEP sink, with total NEP averaging 17.0±10.6 TgC yr−1

(67±42 gC m−2 yr−1).

Our statewide NEP estimates contrast with those from ap-

proaches that do not explicitly treat the disturbance regime.

Prognostic models, which have a spin-up and are run for-

ward to the present on historical climate, report a smaller

NEP sink in the region, e.g. averaging about 30 gC m−2 yr−1

in the 1990s in the study of Woodward et al. (2001). The

carbon sink in that simulation was driven by a small dise-

quilibrium in the carbon pools associated with the increasing

CO2 concentration. Diagnostic models, driven by contem-

porary observations of climate and surface greenness from

remote sensing, show Oregon as a carbon source over the

Biogeosciences, 4, 597–612, 2007 www.biogeosciences.net/4/597/2007/
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Fig. 3. The spatial distribution of net ecosystem production over

Oregon. Values are 5-year means for the period 1996–2000.

period 1982–1997 (Potter et al., 2006), probably because of

a warming trend (Mote, 2003).

The Coast Range and West Cascades ecoregions both had

high mean NEP (Fig. 3, Table 5), but for different reasons.

Forest productivity in the Coast Range is high because of the

mild, mesic climate, and because intensive forest manage-

ment for timber production has resulted in a relatively young

age distribution at this time (Van Tuyl et al., 2005), thus high

NEPs (Campbell et al., 2004). Because of less favorable cli-

mate, NPP at a given age is somewhat lower in the West

Cascades ecoregion than in the Coast Range (Gholz, 1982).

However, harvesting on public lands in Oregon (69% of the

forested land in the West Cascades ecoregion) was extensive

in the decades leading up to the 1990s but has subsequently

been restricted due to issues associated with the Northwest

Forest Plan (Moeur et al., 2005). Much of the area harvested

earlier is now a carbon sink and there is relatively little area

on public lands that is a carbon source because of recent har-

vesting. The forests in eastern Oregon (EC and BM ecore-

gions) were a weak carbon sink from NEP, the net effect of

relatively low NPP and NEP in a large area of undisturbed

stands in a relatively xeric climate, and strong emissions in

the areas subject to fire or harvest. In recent years, the pro-

portion of forestland disturbed per year (harvest or fire) in

eastern OR has been greater than for western OR (Table 1),

which helps explain the weaker carbon sink there.

The highest NEPs in ecoregions that are not heavily

forested were in the agricultural zones of the Willamette

Fig. 4. State-wide (a) timber harvest removals and (b) direct fire

emissions by ownership 1980–2002.

Valley and Columbia Plateau ecoregions (Fig. 4, Table 5).

There, large areas are planted with highly productive grass or

winter wheat, thus generating a high NPP. The heterotrophic

respiration in cropland areas is generally much less than NPP

(Table 6) because much of the biomass is removed and only

residues are plowed back into the soil to decompose (Anthoni

et al., 2004; Moureaux et al., 2006).

The large area of Juniper woodlands in eastern OR (Fig. 1)

had a low positive mean NEP (41±56 gC m−2 yr−1) reflect-

ing slow accumulation of bolewood carbon. Earlier studies

have highlighted the potential carbon sink from widespread

expansion of woodland in the western US over the last cen-

tury (Houghton et al., 1999). The total woodland NEP for

Oregon averaged 0.6 TgC yr−1 over the reference interval.

The NEP for the large area of shrubland in SE Ore-

gon was slightly negative (–10 ± 46 gC m−2 yr−1) but with

www.biogeosciences.net/4/597/2007/ Biogeosciences, 4, 597–612, 2007
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Table 5. Estimates for net primary production (NPP), heterotrophic respiration (Rh), net ecosystem production (NEP) by ecoregion. Values

are the five-year means and standard deviations for the period 1996–2000.

Ecoregion NPP (gC m2 yr−1) Rh (gC m2 yr−1) NEP (gC m2 yr−1)

Mean SD Mean SD Mean SD

Blue Mountains 368 58 347 24 21 37

Cascade Crest 626 25 535 21 91 26

Columbia Plateau 323 72 283 31 41 54

Coast Range 814 141 617 40 197 121

East Cascades 452 43 376 26 76 35

Klamath Mountains 681 132 566 31 114 109

N. Basin and Range 187 59 177 21 11 40

Snake River Plain 230 53 193 12 37 45

West Cascades 840 94 705 33 135 102

Willamette Valley 552 74 406 24 146 61

Table 6. Carbon fluxes by cover type. Values are the five year means and standard deviations for the period 1996–2000. NPP = net primary

production, Rh = heterotrophic respiration, NEP = net ecosystem production.

Cover Type Area (%) NPP (gC m2 yr−1) Rh (gC m2 yr−1) NEP (gC m2 yr−1)

Mean SD Mean SD Mean SD

Conifer forest 44 665 91 560 35 105 79

Deciduous forest 2 764 77 583 42 182 47

Woodland 7 235 70 194 18 41 56

Shrubland 32 220 70 229 29 −10 46

Grassland 11 425 51 314 15 111 46

Cropland 4 443 51 278 18 166 46

interannual variation that included years of positive NEP. The

large area of shrubland brought the total for this source to –

0.7 TgC yr−1 between 1996 and 2000. This carbon source

was the product of a drying trend over the reference period

and is consistent with recent eddy flux measurements in a

mature sagebrush community in the western U.S. (Obrist et

al., 2003).

NBP for the study region was 6.1±10.2 TgC yr−1 over

the 1996–2000 period. Of the ecoregions where NBP was

positive, the highest ratio of NBP to NEP was in the Cas-

cade Crest ecoregion (Table 7). This is a high elevation

ecoregion where there is little logging or fire. Lower NBP

to NEP ratios were found in areas subject to more inten-

sive management. Our simulated timber harvest removals

were 5.9±0.3 TgC yr−1 and were predominantly from the

highly productive privately owned forest lands in western

Oregon. Harvest removals associated with agricultural lands

and grasslands were of a lower magnitude 4.8±0.3 TgC yr−1,

but made a significant contribution to the total harvest flux.

The contribution of cropland/grassland to NBP was small (–

0.3 TgC yr−1) because harvest removals approximately bal-

anced NEP for these lands. Direct carbon emissions from

wildfire averaged 0.2 TgC yr−1, which is small relative to

forest NEP and harvest removals. Overall, the predominant

source of positive NBP was forestland and the high interan-

nual variation in NBP during the reference years was primar-

ily a function of interannual variation in NEP.

The regional total for NBP in Oregon masked a strong dif-

ference between the fluxes on public and private forestland.

In our analysis, the majority of the forestland NBP for the

state was associated with public lands. On private lands, the

ratio of growth to removals is close to one (Campbell et al.,

2004; Alig et al., 2006), thus tending towards a low NBP.

The sharp curtailment of logging on public lands beginning

in the early 1990s meant that NBP went from negative to pos-

itive on these lands because large quantities of wood were no

longer removed from old-growth stands and bolewood pro-

duction in young stands was left to accumulate. Although

volume inventories on public lands in the Pacific Northwest

are predicted to continue increasing (Mills and Zhou, 2003;

Alig et al., 2006), the carbon sink on these lands is vulnerable

to changes in management policy with regard to harvest lev-

els and to fire (Smith and Heath, 2004). Volume inventories

on private forest land in the Pacific Northwest are projected

to be stable (Alig et al., 2006), consistent with continued in-

tensive management.
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Table 7. Estimates for total net ecosystem production (NEP) and net biome production (NBP) by ecoregion. Values are the five year means

and standard deviations for the period 1996–2000.

Ecoregion Area (km2) Total NEP (TgC yr−1) Total NBP (TgC yr−1)

Mean SD Mean SD

Blue Mountains 62 424 1.3 2.3 –0.9 2.2

Cascade Crest 8175 0.8 0.2 0.6 0.2

Columbia Plateau 17 834 0.7 1.0 –0.5 1.0

Coast Range 24 145 4.8 2.9 2.5 2.8

East Cascades 27 958 2.1 1.0 1.3 0.9

Klamath Mountains 15 671 1.8 1.7 1.1 1.7

Northern Basin and Range 60 116 0.7 2.4 0.2 2.3

Snake River Plain 2 634 0.1 0.1 0.0 0.1

West Cascades 20 874 2.8 2.1 1.5 2.1

Willamette Valley 13 855 2.0 0.8 0.4 0.8

Total 17.0 6.1

Although fire suppression has been largely successful in

the western U.S., there has recently been an increase in the

incidence of wildfire – possibly associated with warming cli-

mate (Westerling et al., 2006). Fires are associated not only

with direct carbon emissions at the time of burning but also

with large post-fire emissions from decomposition of the un-

burned residual wood. We estimated direct fire emissions

in 2002, the year of the 200 000 ha Biscuit Fire, at about

3.0 TgC yr−1. The post-fire pulse of Rh in the year after

the Biscuit fire would amount to about 1.5 TgC yr−1. These

fluxes are significant relative to the statewide carbon sink

from NEP.

3.2 Interannual variation

Besides masking spatial variation, the regional 5-year mean

fluxes also mask significant temporal variation. To isolate

the influence of climate on interannual variation in NEP from

the influence of disturbance events, we compared the tempo-

ral pattern in mean NEP for all areas that were not disturbed

with mean NEP for the whole area. The influence of climate

dominated the year-to-year changes in NEP (Fig. 5). Inter-

annual variation in NEP over 23 years for all undisturbed

grid cells was high (mean of 80±58 gC m−2 yr−1) ranging

from 172 gC m−2 yr−1 in 1993 to –6 gC m−2 yr−1 in 2002

(Fig. 5). Variation in both NPP and Rh contributed to the

climatically driven NEP variation, but there was greater dy-

namic range in NPP (435±76 gC m−2 yr−1) compared with

Rh (355±22 gC m−2 yr−1). Thus NPP was usually the dom-

inant factor determining the sign of year-to-year changes in

NEP, similar to what has been found in simulations with

the CASA model over the conterminous U.S. (Potter et al.,

2006). Observations at a widely dispersed set of eddy covari-

ance towers in Europe found interannual variation in NEP

more strongly related to variation in gross primary produc-

tion than to variation in ecosystem respiration (Reichstein et

Fig. 5. Interannual variation in state-wide mean net primary pro-

duction (NPP), heterotrophic respiration (Rh), and net ecosystem

production (NEP) over the interval of 1980 to 2002 for all undis-

turbed grid cells in Oregon. Mean NEP for all land area is also

shown.

al., 2007), also supporting a dominant influence of carbon

assimilation on interannual variation in NEP.

Interannual variation in simulated NPP was more strongly

correlated with interannual variation in annual precipita-

tion (R=0.60) than with interannual variation in temperature

(R=–0.3). NPP and NEP in the PNW region may be particu-

larly sensitive to spring and summer precipitation. Soil mois-

ture is typically (though not always) fully recharged each

winter, then is drawn down by increasing evapotranspiration
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Fig. 6. Comparison of forest inventory (Hicke et al., 2007) and

Biome-BGC for mean biomass on forested areas at the county level.

and declining precipitation during spring and early summer.

Observations at eddy covariance flux towers in the region

find there is a transition from carbon sink to carbon source

(24 h sum) that occurs in mid summer (Chen et al., 2004;

Law et al., 2000). In years of low NEP, that transition point is

pushed earlier in the summer in association with soil drought

or high VPD, a pattern also observed in our simulations. Be-

cause uncertainty about the magnitude of simulated interan-

nual variation in NEP is relatively high (e.g. Reichstein et

al., 2007), it is important that observations at eddy covari-

ance towers – which permit examination of the associated

mechanisms – be conducted over multiple years.

High NEP years in our simulations were associated with

relatively cool, wet summers such as 1993. In those years,

simulated NPP increased markedly because of fewer con-

straints in mid to late summer on photosynthesis from dry

soil and days with high VPD. Field studies on effects of inter-

annual climate variation on forest NPP in our region indicate

increased growth in years with cool, wet summers (Peterson

and Heath, 1991) and decreased growth associated with dry

summers (Kuenierczyk and Ettl, 2002).

Projections of climate change in the Pacific Northwest re-

main highly uncertain, but recent scenarios from regional cli-

mate models suggest warmer temperatures and summer dry-

ing over much of the state (Bell and Sloan, 2006; Diffen-

baugh et al., 2003; Leung et al., 2004). Based on the sensi-

tivity of our simulated NEPs to years with those character-

istics, our results suggest a positive carbon cycle feedback

(lower NEP) to projected climatic change over this heteroge-

neous study area. Extreme drought in Europe during 2003

was associated with reduction in measured NEP for a variety

of ecosystems (Ciais et al., 2005; Reichstein et al., 2006),

also supporting the suggestion that relatively warm, dry sum-

mers could lead to NEP decreases over large areas in some

regions. In the Pacific Northwest, the positive feedback me-

diated by NEP would likely be exacerbated by increased fire

emissions (Westerling et al., 2006).

3.3 Uncertainty assessment

In the comparisons of mean forest biomass at the county

level, there was generally good agreement across all coun-

ties (Fig. 6) suggesting no overall strong bias in our

biomass estimates. The overall weighted mean biomass was

12.5 kgC m−2 from the inventory data and 11.7 kgC m−2 for

the BGC simulations. The area of greatest uncertainty with

regard to our forestland carbon stocks is in the eastern part of

the state where carbon stock estimates from Biome-BGC are

sensitive to the assumed age for all stands >30 years of age.

Alterative means of mapping stand age and stand structure

based on remote sensing are under development (Ohmann

and Gregory, 2002; Hurtt et al., 2004; Lefsky et al., 2005)

and offer prospects for improving estimates of biomass in

these areas.

Carbon stocks for nonforest cover types are less well con-

strained. For juniper woodland, our mean tree biomass

(1.5 kgC m−2) was close to that approximated from a recent

inventory (Azuma et al., 2005). Mean shrubland biomass

(0.6 kgC m−2) was also in the range of observations from

the one available study in our region (Sapsis and Kaufmann,

1991). Cropland and grassland biomass carbon is discussed

below in relation to NPP estimates.

For the estimate of carbon flux from forest inventory data,

Smith et al. (2004) report the total wood volume for timber-

land in 1987 and in 1997 in Oregon and the difference be-

tween them in terms of carbon divided by the interval is a

7.2 TgC yr−1 gain in tree carbon. That estimate did not in-

clude changes in carbon stocks on reserved lands (10% of to-

tal timberland). A state-level analysis (Campbell et al., 2004)

reports the difference between gross growth and the sum of

mortality plus harvest removals at 2.2 TgC yr−1 for 1999 on

unreserved timberland. If reserved timberland were assumed

to sequester 150 gC m−2 yr−1, that would bring their total to

2.8 TgC yr−1. Our estimate for forestland NBP in the late

1990s is ∼6 TgC yr−1. As far as the distribution of the car-

bon sink among ecoregions and ownerships, our results agree

with inventory based reports that suggest large gains of tree

carbon on public lands in Oregon (Alig et al., 2006; Smith

and Heath, 2004), and losses on private forestland in eastern

Oregon (Azuma et al., 2004).

Another important term in the forestland carbon bud-

get that can be checked independently is the tree har-

vest removals. Our simulated removals for the 1996–2000

period were 5.9±0.3 TgC yr−1, which compares closely

with the data from the Oregon Department of Forestry
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(6.1±0.3 TgC yr−1). The other process by which carbon is

lost directly from the land base is fire emissions. We have no

direct check on our emissions estimates except for the Biscuit

Fire and there a detailed analysis by Campbell et al. (2007)

gave 3.2 TgC source for the portion of the burned area in

Oregon compared to our simulated value of 2.9 TgC. Our es-

timates are most likely underestimates because our change

detection analysis identifies only stand replacing fires, thus

omitting significant areas that are partially burned or have

understory fires.

The positive NEP on forestland in our analysis showed up

largely in the form of tree biomass. We did not find conspic-

uous trends in regional mean carbon storage in forest soils or

litter. There have been several large scale analyses of forest

soil carbon pools in the Pacific Northwest region (Homann et

al., 1998; Kern et al., 1998) but they have not addressed pos-

sible changes over time. The measurement error of the soil

carbon pool is generally large relative to the kinds of year-

to-year changes that might be expected due to management

or climate variability. The pool of CWD in our analysis var-

ied significantly from year to year depending on the level of

disturbance. USDA Forest Service inventory surveys are be-

ginning to measure CWD mass (Chojnacky and Heath, 2002)

but there is not as yet enough data to indicate trends.

Our cropland NPP values were generally lower than the

mean NPPs derived from the (USDA, 2001) data (17% lower

across all ecoregions). This may in part reflect the effects

of irrigation and fertilization, factors that are not treated in

our simulations. Our summed crop harvest removals av-

eraged 1.7±0.2 TgC yr−1, which is slightly higher than the

comparable NASS estimates for Oregon (1.6±0.3 TgC yr−1)

because it is associated with a larger area (9572 km2

vs. 8823 km2). Our harvest removals from grasslands were

3.0±0.2 TgC yr−1. Mean NBP on cropland/grassland was

–0.2 TgC yr−1, consistent with an approximate balance of

NEP and harvest removals. Cropland soils in Oregon have

been estimated to sequester 0.2 TgC yr−1 (EPA, 2006), close

to the near steady state in our analysis. Most croplands in

the study region have been in production for many decades,

thus have already been through the typical draw down of soil

carbon stocks associated with newly converted fields.

For the purposes of comparing our NEP estimates with

terrestrial carbon flux (excluding fire emissions) from the

Carbon Tracker (CT) inversion scheme (NOAA 2007), we

resampled the CT annual sums for the optimized surface

flux from 1◦×1◦ to 1 km, and determined the state-wide

mean. That mean for 2000 (the first year of CT out-

puts) was 71 gC m−2 yr−1 for CT which compares with

78 gC m−2 yr−1 for mean NEP from our Biome-BGC sim-

ulations. The two surfaces agreed in having higher values in

the more mesic western part of the state, but the highest CT

values were in the vicinity of agricultural areas whereas in

our simulations they were in forested areas. Both approaches

showed decreases in 2001 and 2002 (drier years than 2000),

but the CT decreases were not as strong as in our simula-

tions. There were few CO2 measurement stations for CT in

the vicinity of Oregon, so these inversion fluxes were not

greatly constrained by the measurements; but this first order

comparison of bottom-up and top-down terrestrial fluxes at

the regional scale indicates the great potential of these com-

parisons for identifying areas of greatest uncertainty.

3.4 Offsets to fossil fuel emissions

Our state-level budget indicates that much of the carbon

sequestered by NEP in Oregon is removed from the land

base. In terms of offsetting CO2 emissions, the crop/grass

removals would return to the atmosphere relatively rapidly

so should make no contribution to offsets. In the case of for-

est products, however, there is a significant proportion that

has a long turnover time, and these products can contribute

to national-level carbon sinks in the development of national

greenhouse gas emissions inventories under FCCC account-

ing (EPA, 2006). In the Pacific Northwest, the disequilibrium

between harvest emissions from all previous harvests and to-

tal current harvests has been approximated at 25% (Harmon

et al., 1996) thus forest products can be estimated to con-

tribute a carbon sink of ∼1.4 TgC yr−1.

The 5-year (1996–2000) mean fossil fuel carbon source

was 15.0 TgC yr−1 for the state of Oregon (ODE, 2003), a

value of comparable magnitude to the mean NEP flux. As

noted, however, for carbon accounting purposes (EPA, 2006)

it is really the sum of NBP and the net product sink (total of

7.6 TgC yr−1) which should be compared to fossil fuel emis-

sions. In that case, 51% of the fossil fuel emissions are bal-

anced by carbon sequestration. Oregon has a relatively high

area of forestland and low population density, which helps

explain the large fossil fuel offset. At the national level,

the forest sector has been estimated to balance 10–20% of

U.S. fossil fuel emissions (Turner et al., 1995, Houghton et

al., 1999). For the European Union, the comparable estimate

is 7–12% (Janssens et al., 2003).

3.5 Limitations and future directions

A notable limitation of the approach here is that land cover

is held constant over the duration of the simulation. This

assumption is justified for the most part in Oregon because

rates of land use and land cover change are quite low in re-

cent years (Alig and Butler, 2004). However, as the Land-

sat record is extended in time, and as this type of model-

ing approach is applied in other regions, it would be desir-

able to introduce land cover change as a type of disturbance.

This could be readily included in the Biome-BGC modeling

framework. One case in which land cover change in Oregon

would be of interest is regarding the expansion of juniper

woodland. Woodland expansion has been on-going in Ore-

gon over the last century (Azuma et al., 2005) but the carbon

consequences are not well understood.

www.biogeosciences.net/4/597/2007/ Biogeosciences, 4, 597–612, 2007



608 D. P. Turner et al.: Scaling NEP and NBP in the western U.S.

Appendix

Table A1. Cover-type-specific parameters for Biome-BGC. Values were modified at the ecoregion scale where local information was

available (e.g. Table 3).

Parameter Unit ENF DBF WDL SBL GSL CRP

Annual turnover rates

Leaves and fine roots

Live wood

Whole plant mortality

Fire mortality

Year−1

Year−1

Year−1

Year−1

0.167

0.7

0.01

0

1

0.7

0.02

0

0.25

0.7

0.02

0

0.25

0.7

0.05

0

1

NA

NA

0

1

NA

NA

0

Allocation ratios

Fine root C/leaf C

Stem C/leaf C

Live wood C/total wood C

Coarse Root C/Stem C

Growth C/storage C

DIM

DIM

DIM

DIM

DIM

1.3

2.2

0.071

0.25

0.5

1

2.2

0.1

0.23

0.5

2.5

2

0.2

0.24

0.5

1

0.22

1

0.3

0.5

2

NA

NA

NA

0.5

1

NA

NA

NA

0.5

C/N ratios

C/N of leaves

C/N of falling leaf litter

C/N of fine roots

C/N of live wood

C/N of dead wood

DIM

DIM

DIM

DIM

DIM

52

93

75

50

729

35

55

48

50

550

52

93

90

50

729

42

93

42

50

729

24

49

42

NA

NA

24

49

42

NA

NA

Leaf litter proportions

Labile proportion

Cellulose proportion

Lignin proportion

DIM

DIM

DIM

0.32

0.44

0.24

0.39

0.44

0.17

0.32

0.44

0.24

0.32

0.44

0.24

0.39

0.44

0.17

0.39

0.44

0.17

Fine roots proportions

Fine root labile proportion

Fine root cellulose proportion

Fine root lignin proportion

DIM

DIM

DIM

0.3

0.45

0.25

0.3

0.45

0.25

0.3

0.45

0.25

0.3

0.45

0.25

0.3

0.45

0.25

0.3

0.45

0.25

Dead wood proportions

Cellulose proportion

Lignin proportion

DIM

DIM

0.71

0.29

0.76

0.24

0.76

0.24

0.76

0.24

NA

NA

NA

NA

Canopy parameters

Water interception coefficient

Light extinction coefficient

Average specific leaf area

Ratio of sunlit to shaded LAI

Ratio of all sided to projected LAI

Fraction of leaf N in Rubisco

LAI−1 d−1

DIM

m2kgC−1

DIM

DIM

DIM

0.05

0.5

10

2

2.6

0.06

0.041

0.54

32

2

2.0

0.08

0.041

0.5

7.7

1

2.9

0.05

0.041

0.5

12

2

2.6

0.06

0.021

0.6

32

2

2.0

0.20

0.021

0.48

32

2

2.0

0.25

Conductance parameters

Maximum stomatal conductance

Cuticular conductance

Boundary layer conductance

m s−1

m s−1

m s−1

0.0015

0.00002

0.09

0.003

0.00003

0.01

0.002

0.00001

0.08

0.003

0.00003

0.08

0.005

0.00005

0.04

0.005

0.00005

0.04

Boundaries for conduction reduction

Leaf water potential: start of reduction

Leaf water potential: complete reduction

VPD: start of reduction

VPD: complete reduction

MPa

MPa

Pa

Pa

–0.5

–2.3

600

2250

–0.7

–2.5

1100

3600

–0.7

–2.5

1000

5000

–0.6

–2.3

930

4100

–0.6

–2.3

930

4100

–0.6

–2.3

930

4100

ENF = evergreen needleleaf forest, DBF = deciduous broadleaf forest, WDL = woodland, SBL = shrubland, GSL = grassland, CRP = cropland.

NA = Not applicable, DIM = dimensionless.
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A second limitation of our approach is in neglecting man-

agement interventions such as thinning. In recent years thin-

ning has become an increasingly important tool in regional

forest management, particularly as an approach to reducing

fuel loads and the risk of fire (Brown et al., 2004). Thin-

ning is potentially detectable with remote sensing (Healey et

al., 2006), and Biome-BGC could be adapted to simulate the

consequences in terms of carbon pools and flux (Ceinciala

and Tatarinov, 2006). Thus, there are reasonable prospects

for including its effect in future regional carbon budgets.

In additional to direct management activities, there are

several indirect influences on ecosystem level carbon budgets

that could also be considered. We included the effect of in-

creasing CO2 concentration up to the present, as in Thornton

et al. (2002). Although Thornton et al. (2002) concluded that

direct CO2 effects are currently not a big influence on NEP

relative to disturbance effects, a continuing increase could be

expected to maintain a disequilibrium in carbon inputs and

outputs, favoring a carbon sink when disturbance is not a

factor, e.g. as in boreal forests (Lagergren et al., 2006). We

did not model effects of nitrogen deposition, which would

be expected to increase carbon sinks, nor did we treat effects

of tropospheric ozone, which would be expected to decrease

carbon sinks. Neither of these factors appears to be important

as yet in Oregon, but process models such as Biome-BGC

can be used to account for them and this provides a strong

rationale for the distributed modeling approach to formulat-

ing regional carbon budgets.

4 Conclusions

Our results support the general conclusion that land manage-

ment is a dominant control on the terrestrial carbon balance

in temperate regions. In Oregon, the NBP on forestland is

strongly dependent on land ownership since intensive man-

agement on privately owned forestland tends to keep NEP

balanced by harvest removals whereas biomass is accumu-

lating on public lands where harvest levels are low. Juniper

woodlands contribute about 10% to the state-level carbon se-

questration. NBP on non-forest lands is close to zero: on

croplands and grasslands because removals balance NEP, and

on shrublands because NEP swings between positive and

negative depending on the climate year. The spatial and tem-

poral heterogeneity in NEP introduced by environmental gra-

dients, by land use, and by interannual variation in climate

are of similar magnitude, thus they should all be simulated in

efforts to understand regional carbon budgets and to interpret

carbon fluxes inferred from CO2 mixing ratio observations.
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