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Abstract. Release of an annual global terrestrial net primary production (NPP)
data layer has begun in association with the Moderate Imaging Spectro-
radiometer (MODIS) sensor, a component of the NASA Earth Observing
System. The task of validating this product will be complicated by the mismatch
in scale between ground-based NPP measurements and the coarse resolution
(1 km) of the NPP product. In this paper we describe three relevant approaches
to scaling NPP from the plot level to the approximately 25-km2 footprint of the
sensor, and discuss issues associated with operational comparisons to the
MODIS NPP product. All approaches revealed considerable spatial hetero-
geneity in NPP at scales less than the resolution of the MODIS NPP product.
The effort to characterize uncertainty in the validation data layers indicated the
importance of treating the combination of classification error, sampling error,
and measurement error. Generally, the optimal procedure for scaling NPP to a
MODIS footprint will depend on local vegetation type, the scale of spatial
heterogeneity, and available resources. In all approaches, high resolution remote
sensing can play a critical role in characterizing land cover and relevant
biophysical variables.

1. Introduction

Global net primary production is a significant component of the global carbon

budget (Schimel 1995) and is of interest as an indicator of the human influence on

biogeochemical cycling at the global scale (Vitousek et al. 1997, Running et al.

1999, Rojstaczer et al. 2001). Satellite sensors such as the Advanced Very High

Resolution Radiometer (AVHRR, Prince and Goward 1995) and the Moderate

Resolution Imaging Spectroradiometer (MODIS, Justice et al. 1998) now achieve

approximately daily global coverage at a spatial resolution of about 1 km2 and this

data is being used to estimate global NPP based primarily on light use efficiency

approaches (Potter et al. 1993, Ruimy et al. 1996, Goetz et al. 1999, Running et al.
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2000, Behrenfeld et al. 2001). The resulting estimates of global NPP vary from 40 to

70 Pg yr21 and are poorly constrained by alternative approaches to assessing global

NPP, including estimates based on biome areas (Saugier et al. 2001), process

modelling (Cramer et al. 1999), and inverse modelling (Denning et al. 1996). One
strategy that will contribute to validating the satellite-based global NPP estimates is

a network of sites where ground measurements are scaled to areas on the order of

several satellite pixels (the sensor footprint). This paper describes three alternative

approaches to accomplishing that scaling objective and discusses issues associated

with operational comparisons to products from coarse resolution sensors.

A critical issue in linking ground measurements to satellite-based NPP estimates

that cuts across all approaches is a mismatch in spatial scale between the coarse

resolution satellite pixels and the ground measurements. The 1-km2 resolution of
the MODIS product is a compromise between the desire for daily global coverage

needed for the NPP algorithm and the requirements for data processing and storage

(Townshend and Justice 1988). However, NPP is typically measured in plots on the

order of 1 m2 for low vegetation such as grassland, and up to 2500 m2 in taller

stature forest vegetation. Thus, the satellite-based estimates are being generated at a

scale that is several orders of magnitude larger than the measurement plots.

A number of viable approaches to scaling NPP over domains of multiple km2

has been investigated. The purely ‘additive’ scaling approach is relatively simple,
relying chiefly on a land cover map and a sample of NPP measurements within each

land cover type (Schimel and Potter 1995). The NPP estimate for a given km2 is

then the weighted average NPP of the component cover types. A systematic

sampling of each land cover polygon, allowing for redundancy across a cover type,

is a more intensive form of the additive approach. Geostatistical approaches offer a

refinement of the additive approach (e.g. Dungan 1998) but plot-level NPP

measurements are labour intensive and are rarely made in sufficient number to

permit those approaches. More commonly, process-based models that are initialized
with high-resolution remote sensing of land cover and biophysical parameters,

driven by local meteorological data and validated by dispersed NPP measurements,

provide a means of locally scaling NPP (Martin and Aber 1997, Reich et al. 1999a).

Ultimately, a globally distributed sample of NPP validation sites is needed

(CEOS 2003). The effort to validate the MODIS NPP product is currently

organized under the auspices of the MODIS Land Validation Group (MODLand

2003), however, only a limited number (v10) of sites have been funded to produce

new NPP validation data (Reich et al. 1999a, Justice et al. 2000). In an effort to
encourage the participation of additional field sites in the validation of global NPP

estimates, the Global Terrestrial Observing System (GTOS 2003) is supporting a

demonstration project that is assembling contemporary field-based NPP estimates

and facilitating the transfer of mid- to coarse-resolution satellite data to

participating sites to aid in their local scaling efforts.

One result of expanded participation in global NPP validation is that an

increasing number of data collection methods and spatial scaling approaches will be

drawn upon, raising the need for comparison of the various approaches used.
Although this would ideally be achieved by applying all scaling methods to each of

a diverse series of research sites, the resources for such a comprehensive effort

are not presently available. Nevertheless, comparing a representative series of

approaches, even at a small number of non-overlapping sites, can still be

informative as long as the sites chosen have been adequately characterized with field

measurements, and the data limitations at each location are clearly presented.
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2. Methods

An area on the order of 5 km by 5 km is needed to effectively make a

comparison between the MODIS 1-km resolution NPP product and scaled NPP

estimates on the ground. For smaller areas, the issue of geolocation becomes more

problematic, and for larger areas the issue of sampling intensity becomes an

increasing limitation. Here we report the results of three case studies in which NPP

was scaled to a 25 km2 domain.

2.1. Case study 1, the additive approach

In this case study, NPP was mapped with the additive approach in an area of

intensively managed agricultural land in the Midwest United States. The methods

are described here briefly and can be found in detail in Turner et al. (2002). To

produce the required land cover map, a Landsat ETMz image dating from 29 July

1999 was acquired from the MODIS Land Team website (MODLand 2003). The

positional accuracy of the image was assessed by direct comparison with USGS

digital orthophoto quadrangles (DOQs) of the study area. Land cover mapping was

performed using an unsupervised clustering of the six ETMz reflectance bands.

Clusters were assigned to five classes: water, urban & built, barren & sparsely

vegetated, corn, and soybean. This assignment was performed with reference to the

DOQs, air photographs, interpreter knowledge, and spectral characteristics

examined in bivariate frequency distributions. Validation of the classification was

based on the 80 points sampled for NPP (see below) plus 20 additional points

distributed randomly over the 25 km2 area. Locations for all land cover validation

points were registered to within several metres using an Ashtech GG-24 Surveyor

Global Positioning System unit.

Two cover classes—corn and soybean—dominated the area, and to determine

the mean NPP for these crop types, 80 measurements of aboveground NPP were

made. A complete description of the sampling scheme and the field measurement

protocols is given in Campbell et al. (1999). A plot was considered to be

25 m625 m. Plot-level aboveground NPP estimates were based on determination of

plant density over the 625 m2, and measurements of biomass per plant at the time of

harvest from each quadrat of the plot. For the total NPP estimates, ANPP was

converted to total NPP using an aboveground to total production ratio of 0.9

(Gower et al. 1999).

To obtain complete land surface coverage of NPP, corn and soybean cells were

assigned their respective mean NPP from the measurements and non-crop cells were

assigned an NPP of zero.

2.2. Case study 2, the forest inventory approach

Forest inventories in many regions of the world provide spatially distributed

data potentially useful for estimating NPP. Notably, the forest inventory system in

Russia collects consistent and detailed stand-level information on millions of ha

annually (Krankina et al. 1998). In this case study, the Russian inventory data were

used to develop an NPP data layer for an area of boreal forest in the north-western

part of the country.

Under Russian protocols, homogeneous forest polygons (y0.5–50 ha) within a

forest management unit are initially mapped based on management history and air

photos. A standard set of data gathered in the field for each polygon includes tree

species composition, mean height, diameter and age, canopy structure, wood
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volume, and characteristics of different types of land without tree cover (e.g.

clearcuts, bogs, meadows). Over 200 different variables measured or visually

estimated in the field are used to describe the polygons, depending on the land-

cover category and the management requirements for a given forest management

unit (Kukuev et al. 1997).

For this case study, a sample was extracted from a set of forest inventory data

that was compiled by the Northwestern Forest Inventory Enterprise (St.

Petersburg, Russia) for purposes of a joint research project with the Oregon

State University (Krankina et al. 1998). The data were spatially referenced to a

Landsat TM image and a 5 km65 km study area was selected. The selection was

made among the 25-km2 cells with available ground data based on two

considerations: (i) the greatest number of stand polygons for which the area and

vegetation cover type could be verified with Landsat imagery; (ii) a maximum area

coverage with closed-canopy forests within the cell. In the selected cell, 2205 ha out

of the 2500 ha of land area were covered by ground data. Based on the Thematic

Mapper classification, the area that was not covered included 114 ha of developed

land and 181 ha of forest. The nonforest areas were aggregated into two land-cover

types: unvegetated (buildings, pond, stream) and grasslands (clearings, tertiary

roads, young plantations, transmission lines, ditches, clearcuts).

Fields that indicate the dominant species, the volume of live stem and bark, the

site productivity class, and the average age of trees for the dominant species were

retrieved from the forest inventory records. For each record the stem volume per

hectare was converted to biomass using allometric conversion factors, then an

estimate of understory biomass was added. This method and the associated

allometric equations were developed by Alexeyev and Birdsey (1998) based on a

compilation of biomass measurements in research plots from north-west Russia.

Total aboveground biomass was estimated for each forest stand, and age was used

to compute the mean annual increment (MAI) in terms of biomass increment per

year averaged over the life of the stand. The current annual increment may be

underestimated in young stands and overestimated in older stands using this

approach because of changes in growth rates over the course of succession. After

conversion of biomass to carbon (a factor of 2), generalized empirical relationships

developed by Gower et al. (2001) were used to estimate annual production of

branches and foliage to yield aboveground NPP (ANPP). For evergreen species:

ANPP gC m{2
� �

~42z2:34|MAI: ð1Þ
And for deciduous species:

ANPP gC m{2
� �

~80z2:62|MAI: ð2Þ
Subsequently another generalized equation (Gower et al. 2001) was used to account

for belowground production. For all species:

NPP~114z1:21|ANPP: ð3Þ

These calculations were performed for 506 polygons, and final NPP values were

converted back to biomass. The average values of NPP and their standard

deviations were determined for different categories of forest stands (table 1).

Forest land not covered by ground data was assumed to have the average NPP

associated with the remaining forest area. NPP was assumed to be 0 for
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unvegetated lands, and the average productivity of grasslands in the region

(1250 g m22 yr21, Basilevich 1993) was assigned to the grassland area.

2.3. Case study 3, the spatially explicit modelling approach

This case study involved the use of remotely-sensed canopy nitrogen in

combination with a process-based productivity model. The value of detecting

canopy nitrogen stems from well-known relationships between foliar N concentra-

tions and maximum net photosynthesis or Amax (Reich et al. 1995, 1999b). Because

photosynthesis is the basis of carbon acquisition in plants, spatial coverages of

canopy N should provide useful information about spatial patterns of ecosystem

productivity. In theory, this could be realized either through direct empirical

relationships between canopy N and measured NPP, or through the use of canopy

N in process models. The former approach is appealing for its simplicity, but the

challenge of making the necessary measurements over large numbers of plots and

the potentially confounding effects of other environmental factors (e.g. moisture

limitations) pose considerable hurdles to its widespread application. Process models

offer another approach to estimating NPP from remotely-derived canopy N

coverages because models typically have the capacity to use additional site and

climatic information to scale Amax to realized photosynthetic rates.

To explore this potential, the approach undertaken here relied on incorporation

of remotely-sensed estimates of canopy nitrogen concentration into a forest process

model known as PnET-II. PnET-II (Aber et al. 1995, Ollinger et al. 1998),

developed in the north-eastern US and validated in a number of temperate forest

systems, is a monthly time-step model of water and carbon balances (gross and net)

in which the productive potential of forest canopies is dependent on the relationship

between photosynthetic capacity and canopy nitrogen and on the scaling of leaf

structure and function through the canopy. In this case study, spatial estimates of

NPP were produced for a 5 km65 km area of the Bartlett Experimental Forest

(BEF), New Hampshire, USA by integrating the model with a coverage of canopy-

level foliar nitrogen concentrations derived from airborne imaging spectrometer data.

To produce the canopy-level nitrogen coverage, hyperspectral remote sensing

Table 1. NPP estimates in forests of different species and age class (case study 2).

Species Age
Number of

observations
NPP, g m22 yr21

(mean¡STD)

Pine v41 1 962
41–80 15 786¡142
w80 52 722¡100

All ages 68 740¡116
Spruce v41 22 710¡256

41–80 115 938¡224
w80 174 850¡136

All ages 311 874¡192
Birch v41 8 1150¡276

41–80 50 1290¡228
w80 2 1056

All ages 60 1264¡238
Aspen v41 2 824

41–80 65 1292¡194
All ages 67 1280¡208

All species All ages 506 956¡268
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data from NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS,

Green et al. 1998) were obtained for the BEF and surrounding White Mountain

National Forest. AVIRIS data for BEF were acquired on 12 August 1997 under

nearly cloud-free conditions with a nominal spatial resolution of 20 m. AVIRIS at-
sensor radiance data were transformed to apparent surface reflectance using the

ATmosphere REMoval program (ATREM) of Gao et al. (1993). AVIRIS images

were then georeferenced through image registration to a geo-coded SPOT

panchromatic coverage of the study area.

Along with the AVIRIS image acquisition and as part of a related study, 48

0.1 ha plots at BEF were sampled for foliar N concentrations and aboveground

productivity (Smith et al. 2002). Plot elevations ranged from approximately 200 to

800 metres. Major tree species include sugar maple (Acer saccarum L.), American
beech (Fagus grandifolia Ehrn.), paper birch (Betula papyrifera Marsh.), yellow

birch (Betula alleghaniensis Britt.), red maple (Acer rubrum L.), eastern hemlock

(Tsuga canadensis L. Carr.), red spruce (Picea rubens Sarg.) and balsam fir (Abies

balsamea (L.) Mill.). Most plots contained mixtures of two or more species.

Foliar sampling allowed atmospherically-corrected AVIRIS spectral data to be

calibrated directly to field-measured canopy N concentrations for creation of a

canopy N coverage. Plot-level whole canopy nitrogen concentrations (g N per 100 g

foliar biomass) were calculated as the mean of leaf-level values for individual
species in each stand, weighted by fraction of canopy foliar mass per species (Smith

and Martin 2001). Field-based estimates of aboveground wood production were

derived from sequential stem diameter surveys (1992, 1998) converted to biomass

via allometric equations. Complete descriptions of the sampling scheme and of the

field and lab measurement protocols are summarized in Smith et al. (2002) and

Ollinger et al. (2002a).

AVIRIS reflectance spectra for 262 pixel areas covering each plot coupled with

field measured foliar chemistry from these same plots were used to develop

predictive equations for the estimation of canopy nitrogen. Relationships among
plot-level spectral response and canopy-level nitrogen concentration were examined

using a full spectrum analytical method—Partial Least Squares (PLS) regression

(Kramer 1998). The PLS calibration approach, developed using first difference

derivative absorbance spectra, produced robust canopy-level nitrogen calibrations

both within (BEF; R2~0.84) and among (R2~0.82) AVIRIS scenes (Smith et al.

2002). Coverages are used as direct scalars of ecosystem process (e.g. Ollinger et al.

2002a) and, as in this exercise, as driving variable input data for spatially explicit

ecosystem process models.
PnET-II requires a number of input parameters summarizing vegetation and site

characteristics, along with monthly climatic data. Foliar N is perhaps the most

important of the vegetation variables because it relates directly to canopy

photosynthetic capacity. Other vegetation parameters include leaf mass per area

(LMA), leaf retention time and growing-degree day variables describing the

phenology of leaf production and senescence. A complete description of PnET’s

vegetation parameters is given by Aber et al. (1995). Required climatic and

environmental inputs include temperature, precipitation, solar radiation, and soil
water holding capacity (WHC).

For pixel-by-pixel application at BEF, PnET-II was run in conjunction with the

AVIRIS-derived foliar N coverage and a 20 m resolution DEM. For each pixel,

geographic coordinates and elevation were used to calculate maximum and

minimum temperature, vapour pressure, precipitation and solar radiation (30 yr
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mean, Ollinger et al. 1998). Data for soil water holding capacity (WHC) were not

available for BEF, so a value of 120 mm was assumed based on data from the

nearby Hubbard Brook Experimental Forest (Federer and Lash 1978) and regional

estimates for glacial till soils with 1 m rooting depth.

NPP was modelled and mapped at a 20 m resolution. For each grid cell, the

relative proportions of deciduous and evergreen forests were determined from

the imagery, and the foliar N concentration of each cover type was estimated from

the observed linear relationships between AVIRIS-estimated whole-canopy N and

measured values for the deciduous and evergreen components of the field plots.

Vegetation-specific input parameters such as LMA and leaf retention time were

determined for each forest type using data from field measurements.

3. Results

3.1. Case study 1

The land cover map indicated that close to 90% of the study area was classified

as corn or soybean, with nearly equal proportions of the two crop types.

Classification accuracy was 94%. The mean measured NPP for the soybean plots

was 1180 (¡218) g m22 yr21 and that for corn was 2159 (¡558) g m22 yr21. The

field sizes were much smaller than the 1-km grid that will be associated with the

1-km MODIS NPP product (figure 1). Thus the average NPP for any 1-km grid cell

was intermediate between the mean NPPs of the two crop types. For the 25 1-km

cells, the standard deviation (260 g m22 yr21) was small relative to the mean

(1482 g m22 yr21).

3.2. Case study 2

The average value of NPP varied widely among the forest stands as a function

of species and age class (table 1, figure 2). NPP was generally higher in forests

dominated by hardwoods than in those dominated by conifers, and forests between

Figure 1. NPP data layer for the agricultural site generated using the ‘additive’ approach.
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ages 40 and 80 had higher NPP than forests outside this age group. Any 1-km cell

had multiple polygons, with often large variation in NPP among them (figure 2). As

with case 1, the standard deviation among the 25 cells (124 g m22 yr21) was small

relative to the mean (953 g m22 yr21).

3.3. Case study 3

Simulated NPP across BEF at a 20 m pixel resolution ranged from less than 600

to greater than 1200 g m22 yr21 with a mean of 951 (¡110) g m22 yr21 (figure 3). At

a 1-km pixel resolution, the mean and standard deviation of the resulting 25 cells

was of a narrower range, 914 (¡67) g m22 yr21. In general, areas of lower

productivity represent higher elevation or shallow soil sites dominated by needle-

leaved evergreens, red spruce and hemlock. Mid-range values represent areas of

mixed deciduous and evergreen forest (hemlock, red maple, American beech) on

either coarse-textured or poorly drained soils. The highest values represent

deciduous forest dominated by sugar maple, white ash, yellow birch growing on

deep, fine textured soils or early-successional deciduous species stands dominated

by pin cherry and paper birch.

Model performance was evaluated by comparing predictions for wood

production with the field-measured estimates obtained by Smith et al. (2002).

Wood production estimates were averaged over 262 cell windows oriented around

the plot centres. Wood production is presented because (i) many more independent

validation data were available for wood growth than for other components of

productivity, (ii) allometric estimators of aboveground biomass developed for the

forest types of this region are quite robust (Arthur et al. 2001), and (iii) because

wood growth is typically the largest single component of NPP in temperate forests.

Allocation to wood production also has the lowest priority in PnET-II and is least

constrained by the model’s structure (Aber et al. 1995). This makes wood

Figure 2. NPP data layer for a boreal forest area generated using the forest inventory
approach.
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production a rigorous test of the model’s carbon allocation routines and provides a

reasonable, although incomplete, test of predicted NPP. Other components of NPP

(most notably roots) could not be validated because they were not included in the

field measurements.
Overall, model predictions corresponded well with measured values (figure 4).

Figure 3. NPP data layer for a mixed conifer-deciduous forest generated using the process
model scaling approach.

Figure 4. Comparison of model-simulated and measured wood production in a mixed conifer/
deciduous forest.
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The r2 of predicted versus observed values was 0.55 with a standard error of

49.7 g m22 yr21 or 13.6% of measured mean woody biomass production. Model

predictions overestimated measured values by approximately 13%. This bias could

arise from errors in the model or differences between the specific plant tissues
included in the modelled versus measured values. In PnET, wood production

includes woody roots as well as aboveground stem plus branch production.

Measured wood production was derived from allometric equations that include

standing woody tissues (stem, branch, bark, etc), but not woody roots or woody

litter. Whittaker et al. (1974) estimated that woody root biomass at the Hubbard

Brook Experimental Forest was approximately 10% of total wood biomass, hence

this difference in calculation between allometrically-derived and modelled estimates

alone could account for a large fraction of the discrepancy.

4. Discussion

4.1. The scale of spatial heterogeneity in NPP

In each of the case studies, there was considerable heterogeneity in NPP within

most 1-km grid cells. At the agricultural site, the original ownership units were

640-acre (1.6 km61.6 km) sections and these are typically managed as quarter

sections (800 m6800 m) or less. Within a management unit there was also

significant heterogeneity in NPP that appeared to be associated with microtopo-
graphic gradients (i.e. on the order of 1 m elevation difference between hilltop and

swale). A surprisingly large amount of heterogeneity in soil resources and NPP is

commonly found even in fields that have been plowed and cropped for decades

(Robertson et al. 1997).

At the boreal forest site, sub 1-km grid scale heterogeneity is associated

primarily with differences in site drainage, which are driven by microtopography

and soil texture. This heterogeneity was shaped by the repeated glaciations during

the Quaternary period (Lyufanov 1983). Better-drained sites in boreal forests are
generally more productive than adjacent more poorly drained sites (O’Connell et al.

in press). The area in this study has also been logged repeatedly, which created an

additional source of heterogeneity.

At BEF, fine scale heterogeneity is introduced by a variety of factors, including

topography, soil parent material, vegetation type and site history, although these do

not always vary independently. The topography of BEF is complex, with elevations

ranging from 200 to over 900 m across valleys and several mountain summits. Most

soils were derived from coarse-textured glacial tills, but there are also areas of fine

till or outwash, as well as shallow bedrock at upper elevations (see Leak 1982 for
description of soils at BEF). Vegetation type and condition are affected by both

topography and soils (via their influence on climate and moisture availability), but

another important factor is historical disturbance. Most of Bartlett has been

harvested at least once since the early 1800s, with about half of the 5 km65 km

area remaining in active forest management (Leak and Smith 1996). Portions of the

area were also affected by a post-logging slash fire in the late 1800s, although the

complete extent and severity of fire occurrence is not known with certainty. In

aggregate, these disturbances are known to have significant long-term consequences
on species composition, soil N availability and canopy N concentrations (Ollinger

et al. 2002a), all of which should translate to variation in present-day NPP.

The presence of sub-kilometre scale heterogeneity suggests that the validation

data layers should generally be developed at relatively fine spatial resolution and

then aggregated by area weighted averaging to obtain NPP estimates for
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comparison to the 1-km MODIS cells. In principle, it shouldn’t matter if there is

sub-kilometre grid scale heterogeneity, as long as the MODIS algorithm is

successful in producing the correct average value. However, in practice, fine-scale

heterogeneity may be important because it can affect the accuracy of the derived

validation layers (e.g. Reich et al. 1999a, Jenkins et al. 1999), as well as the methods

chosen to create them. Considering the issues associated with precisely co-locating

MODIS grid cells and validation grid cells (see below), it may be desirable to

choose validation sites where the standard deviation among the 25 1-km cells is

relatively low. Analysis of local variance in spectral vegetation indices at different

spatial resolutions has been suggested as a possible tool for screening the land

surface with regard to spatial heterogeneity (Turner et al. 2000, Rahman et al.

2003).

Another aspect of characterizing the scale of the heterogeneity is a constraint on

the scale of NPP measurements. Because the measured productivity of a forest

stand represents the contribution of multiple trees of varying size and species

designation, there is a minimum plot size (and minimum number of plots) below

which the measurements may not be representative of stand variability (Schreuder

et al. 1993, Clark et al. 2001). That minimum plot size (e.g. y0.1 ha for forest

systems; see Williams 2001, Schifley and Schlesinger 1994, Gonzales et al. 1993) is

approximately the same as the pixel size for ETMz and AVIRIS, which makes

these sensors particularly appropriate for NPP scaling analyses. However, the

agreement in plot size and pixel size also means that close attention must be paid to

co-registration of the imagery and the plot data. Averaging reflectances or model

outputs over multiple pixel windows oriented around the plot centre is usually used

to help minimize problems with co-registration.

4.2. Characterizing uncertainty

To be useful for the purpose of validating the MODIS NPP product,

uncertainties in a scaled NPP data layer for a specific MODIS footprint would have

to be small relative to the reported differences between the MODIS NPP and the

validation NPP. Factors potentially contributing to error in the validation data

layers will include classification error, measurements error, sampling error, and

model error.

4.2.1. Classification error

The scaling algorithms for the three case studies all rely upon classification of

the land surface with remote sensing imagery. The additive approach is particularly

sensitive to classification error because cover class becomes the sole determinant of

NPP. The general availability of digital reflectance data at relatively high spatial

and spectral resolutions has resulted in considerable progress in the specificity with

which the land cover can be classified. Accurate classifications have been made

based on vegetation cover type (Steyaert et al. 1997), successional stage (Cohen et al.

1995, Moran et al. 1994), and species composition (Martin et al. 1998).

Classification error can be assessed by field checks of points not used in the

mapping analysis, as was done in the additive case study here. Classification error

will decrease as the number of classes decreases, but highly aggregated classes may

subsume heterogeneity relevant to scaling NPP so may not be appropriate.

Scaling net primary production to a MODIS footprint 1971



4.2.2. Measurement error

Two of the case studies (1 and 2) rely on biomass or NPP measurements in their

scaling algorithm, and the other (case 3) used field-based productivity measure-

ments in the evaluation phase. Measurement error is the uncertainty associated with

the measurement technique. While the theoretical definition of NPP is quite simple

(gross primary production – autotrophic respiration), many components of NPP

are difficult or impossible to quantify because of their inaccessibility (e.g. fine

roots) or because they are transformed or leave the system between measurement

intervals (e.g. via herbivory, root exudates, volatile organic carbon emissions).

The components of NPP that typically are estimated (e.g. leaf and aboveground

wood growth) are still subject to measurement error, especially among perennial

vegetation of large stature such as forests (Clark et al. 2001). Clark et al. noted that

most of the problems associated with NPP measurement methods result in

underestimation, rather than overestimation, and collectively, can cause substantial

systematic bias (w200% in one cited case study). In a strict sense, NPP cannot be

directly measured, but must be approximated by a combination of direct and

indirect methods. In practice, an NPP measurement usually amounts to quantifying

the accumulation of the largest biomass pools (typically aboveground) over a

period of one or more years. A recent survey of extant NPP measurements for

tropical and boreal forests found just a few dozen well documented and virtually

complete measurements of NPP for these forest ecosystems (Clark et al. 2001,

Gower et al. 2001).

The corn and soybean in case study 1 represent perhaps the simplest possible

case of NPP measurement. Both plants are annuals, and total NPP is based on

aboveground biomass at the time of harvest and a ratio for belowground NPP to

aboveground NPP derived from numerous previous studies. In other herbaceous or

grassy cover types, issues such as herbivory, periods of growth separated by

drought-induced dieback (Knapp et al. 2001), and a large, poorly quantified,

allocation below ground become significant (Gower et al. 1999). In the boreal and

temperate forest case studies, only wood volume and stand age were established by

field measurements and then used to estimate production. Because of its economic

significance, foresters have paid close attention to estimation of wood volume, thus

the measurement error there was probably low. However, foliage and fine root

production are approximately half of total production and allocation varies widely

among biomes (Mahli et al. 1999). In the boreal forest study, MAI proved to be a

better predictor of NPP than other often used variables such as leaf area index and

biomass (Gower et al. 2001), however, the potential error with respect to estimation

of total NPP in the forest polygons remained significant considering the r2 value

(0.6).

4.2.3. Sampling error

Sampling error refers to the degree to which the mean and distribution of

measured productivity within a land cover class represents the true mean and

distribution. It is particularly important in the additive approach. As noted earlier,

logistical constraints generally restrict the number of growth measurements that can

be made, so the issue of optimizing sampling design is an important one. There is

often significant autocorrelation around any given point, and the optimal sampling

scheme would avoid placement of samples too close together. Remote sensing can

potentially help in this regard because vegetation indices such as the Normalized
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Difference Vegetation Index (NDVI) are used in estimating vegetation production

(e.g. Prince and Goward 1995) and the distribution of NDVI could be used to

indicate the scale of the autocorrelation and hence contribute to designing the

optimal sampling scheme.

4.2.4. Model error

The distributed process model scaling approach (case 3) introduces a variety of

additional uncertainties that stem from errors in both data inputs and model

algorithms. Process-based NPP models are typically driven by meteorological data

that are either extrapolated from a base meteorological station within the study

area (e.g. Running et al. 1987), or interpolated among an array of regional

meteorological stations (Thornton et al. 1997). In PnET, meteorological data has a

significant impact on the simulated NPP in the northeastern US, with deciduous

stands being more sensitive to precipitation inputs and evergreen stands being more

sensitive to temperature and growing season length (Ollinger et al. 1998). Both

original meteorological data (e.g. McKennney et al. 1996) and algorithms used for

distributing that data (e.g. Dodson and Marks 1997) have limitations, and their

accuracy should be considered when interpreting model predictions. While these

meteorological data sets are beneficial for coarse environmental gradients, they

often ignore finer-scale factors such as cold air drainage, which may also influence

growth.
Other spatially explicit input data layers that influence model-based NPP

estimates include cover type, leaf area index (LAI), foliar nitrogen content, and soil

water holding capacity (WHC). Of these, the PnET model is typically most sensitive

to foliar N because of its effect on net photosynthesis. In the absence of foliar N

data, the model is run using fixed values assigned to each cover type. However, in

case study 3, spatial estimates of canopy N were obtained for BEF from the

AVIRIS remote sensing instrument, providing a level of detail that is usually absent

at most study sites.

Vegetation cover type is an important constraint in model-based approaches

because it determines the specification of physiological properties such as maximum

stomatal conductance and leaf retention time. The sensitivity of the model outputs

to classification error will depend in part on the degree of difference in the

physiological properties of the different cover types. LAI and the fraction of

photosynthetically active radiation absorbed by the canopy (fAPAR) can also be

estimated from remote sensing (e.g. White et al. 1997) but limitations include the

problems of saturation in the relationships of spectral vegetation indices to foliage

amounts at high LAI (Turner et al. 1999), recurrent cloudiness (often addressed

with maximum valued temporal compositing, Holben 1986), and atmospheric

effects on the reflectance data that must be corrected with radiation transfer

modelling (Ouaidrari and Vermote 1999).
Mapping of soil water holding capacity based on State Soil Geographic

databases is possible but has large uncertainties, particularly at fine spatial scales

(Kern 1995, Zheng et al. 1996). In case study 3, WHC was held constant because

spatial data were not available at the appropriate scale and because foliar nitrogen

was a more readily mapped indicator of NPP potential. In the western US, LAI and

NPP are strongly correlated with site water balance (Grier and Running 1977,

Gholz et al. 1982) and soil WHC is more important. Indeed, remotely sensed LAI
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has been used to infer soil depth in coniferous forests of the Pacific Northwest

because LAI is so strongly regulated by site water balance (Turner et al. 2003a).

Beyond the uncertainties in the input data layers is the issue of the effectiveness

of the model itself. Verification (sensu Rykiel 1996) is concerned with ensuring that

the intended logic in the algorithms is implemented by the computer code. A

general approach to verification includes model runs covering the range of

conditions over which the model is intended to operate. Results should be

interpretable based on the model formulation and the spatially varying inputs.

The term ‘validation’ may not be useful with respect to computer process

models because there is often a multitude of ways to get the ‘right answer’ for the

wrong reason. Comparisons of model simulations with field-based productivity

estimates can reveal if the model is performing adequately for the intended purpose.

A plot of predicted versus observed values can show possible bias, and a root mean

square error or standard error of the estimate will indicate departure from field

observations (e.g. figure 4). As noted earlier, the availability of NPP measurements

for one-to-one comparisons may be limited because of logistical constraints on NPP

measurements.

Simple comparisons of observed and modelled annual NPP can be augmented

in some cases with comparisons of shorter time step model outputs such as daily

gross primary production (Aber et al. 1996, Reich et al. 1999a). At sites with eddy

covariance flux towers, the tower measures net ecosystem exchange (NEE), but

gross primary production is commonly derived as NEE minus ecosystem

respiration (Re) during daylight periods (Goulden et al. 1996a, Turner et al.

2003b). Re is based on the daytime temperature and the relationship of night-time

temperature to NEE. Flux tower estimates of evapotranspiration (ET) also offer

possibilities for evaluating modelled ET.

4.3. Operational comparison of MODIS products and validation data layers

Achieving direct comparisons between validation site NPP data layers and those

based on MODIS imagery will require close agreement in space and time. ETMz

digital data can be registered to the nearest several metres within conventional

coordinates systems such as Universal Trans Mercator (UTM) or Albers Equal

Area. Global Positioning System instruments likewise make it possible to establish

the location of field measurement plots to the nearest several metres. In contrast,

the georegistration of the MODIS products is nominally to the nearest 0.1 km

(Justice et al. 1998). An additional georegistration uncertainty will be introduced if

the MODIS data is reprojected from its native Integerized Sinusoidal Projection

(Masuoka et al. 1998) to a more conventional coordinate system. The 1-km cell size

of the MODIS NPP products will mean potentially large reprojection errors relative

to the certainty about the georegistration of ETMz based validation data layers.

The most rigorous comparisons may therefore require that the ETMz validation

data layers be reprojected to the MODIS coordinate system (W. Cohen, USDA

Forest Service, Corvallis, OR, personal communication). Average values of NPP

across the ETMz cells within a MODIS cell could then be compared directly with

the MODIS value for that cell.

The MODIS NPP product will be responsive to interannual variation in

absorbed photosynthetically active radiation and surface meteorological conditions

(Running et al. 2000), thus an ideal comparison to validation data would be for a

specified year. An indication of the importance of interannual NPP variation is the

1974 D. P. Turner et al.



observation that at the agricultural site in case study 1, mean NPP for corn and

soybean were 20% less in 2000 than 1999. Multiple year observations at eddy

covariance flux towers also indicate large interannual variation in carbon flux

(Goulden et al. 1996b, Barford et al. 2001).

The temporal coupling of validation measurements to MODIS products will be

straightforward in some cases but not others. For northern temperate zone

vegetation, the validation measurements are simply made in the calendar year

associated with the MODIS NPP product. Southern hemisphere MODIS NPP will

still be based on the calendar year and thus be split between two growing seasons.

Woody vegetation will present additional issues because wood production is

measured in a variety of ways but is most often reported as a multi-year mean

(Gower et al. 1999). Hence the degree of coupling between the MODIS products for

a given year and the validation products will be moderated. In that regard, the

process model scaling approach is desirable because it can use current year

meteorological data to drive the model. For example, in an analysis of temporal

patterns at the Hubbard Brook LTER site, PnET model estimates indicated

interannual variation in wood growth due to climate variation that was

approximately 7% of the mean over a 100-year period (Ollinger et al. 2002b).

Conclusions

Operational monitoring of global NPP has begun with the EOS MODIS sensor,

and validation of the annual NPP products will require a network of sites where

NPP can be accurately scaled to the MODIS footprint (y5 km65 km). Because of

the great diversity in ecosystem structure and function, and the desirability of

including as many validation sites as is possible, there will be a variety of NPP

scaling approaches implemented. An additive approach may be appropriate in

situations where classification is not problematical and an adequate sampling is

made of NPP throughout each cover type. Forest inventory can provide the basis

for scaling NPP but the dependence on allometry to estimate total NPP from wood

or biomass production increases uncertainty. Scaling NPP with process-based

models serves to integrate a great deal of information on climate, soils, land cover,

and surface biophysical properties, but brings the added challenge of deriving high

quality input data sets and developing models that accurately simulate observed

patterns of growth. Some of the input data can be provided by high-resolution

satellite or airborne sensors. For all approaches, it will be important to characterize

uncertainty in plot-level NPP measurements used in the scaling procedure.
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