
Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 1–9

Belgium, Brussels, October 31 - Novermber 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/W18-64001

Scaling Neural Machine Translation

Myle Ott△ Sergey Edunov△ David Grangier▽∗ Michael Auli△

△Facebook AI Research, Menlo Park & New York.
▽Google Brain, Mountain View.

Abstract

Sequence to sequence learning models still re-

quire several days to reach state of the art per-

formance on large benchmark datasets using

a single machine. This paper shows that re-

duced precision and large batch training can

speedup training by nearly 5x on a single 8-

GPU machine with careful tuning and im-

plementation.1 On WMT’14 English-German

translation, we match the accuracy of Vaswani

et al. (2017) in under 5 hours when training on

8 GPUs and we obtain a new state of the art

of 29.3 BLEU after training for 85 minutes on

128 GPUs. We further improve these results

to 29.8 BLEU by training on the much larger

Paracrawl dataset. On the WMT’14 English-

French task, we obtain a state-of-the-art BLEU

of 43.2 in 8.5 hours on 128 GPUs.

1 Introduction

Neural Machine Translation (NMT) has seen im-

pressive progress in the recent years with the intro-

duction of ever more efficient architectures (Bah-

danau et al., 2015; Gehring et al., 2017; Vaswani

et al., 2017). Similar sequence-to-sequence mod-

els are also applied to other natural language

processing tasks, such as abstractive summariza-

tion (See et al., 2017; Paulus et al., 2018) and

dialog (Sordoni et al., 2015; Serban et al., 2017;

Dusek and Jurcı́cek, 2016).

Currently, training state-of-the-art models on

large datasets is computationally intensive and can

require several days on a machine with 8 high-

end graphics processing units (GPUs). Scaling

training to multiple machines enables faster exper-

imental turn-around but also introduces new chal-

lenges: How do we maintain efficiency in a dis-

tributed setup when some batches process faster

*Work done while at Facebook AI Research.
1Our implementation is available at:

https://www.github.com/pytorch/fairseq

than others (i.e., in the presence of stragglers)?

How do larger batch sizes affect optimization and

generalization performance? While stragglers pri-

marily affect multi-machine training, questions

about the effectiveness of large batch training are

relevant even for users of commodity hardware

on a single machine, especially as such hardware

continues to improve, enabling bigger models and

batch sizes.

In this paper, we first explore approaches to im-

prove training efficiency on a single machine. By

training with reduced floating point precision we

decrease training time by 65% with no effect on

accuracy. Next, we assess the effect of dramati-

cally increasing the batch size from 25k to over

400k tokens, a necessary condition for large scale

parallelization with synchronous training. We im-

plement this on a single machine by accumulating

gradients from several batches before each update.

We find that by training with large batches and by

increasing the learning rate we can further reduce

training time by 40% on a single machine. Fi-

nally, we parallelize training across 16 machines

and find that we can reduce training time by an

additional 90% compared to a single machine.

Our improvements enable training a Trans-

former model on the WMT’16 En-De dataset to

the same accuracy as Vaswani et al. (2017) in just

32 minutes on 128 GPUs and in under 5 hours on

8 GPUs. This same model trained to full conver-

gence achieves a new state of the art of 29.3 BLEU

in 85 minutes. These scalability improvements

additionally enable us to train models on much

larger datasets. We show that we can reach 29.8

BLEU on the same test set in less than 10 hours

when trained on a combined corpus of WMT and

Paracrawl data containing ∼150M sentence pairs

(i.e., over 30x more training data). Similarly, on

the WMT’14 En-Fr task we obtain a state of the

art BLEU of 43.2 in 8.5 hours on 128 GPUs.

1

https://doi.org/10.18653/v1/W18-64001


10k 30k 50k
opt. steps

2.0
2.11

2.5
va

lid
 lo

ss
 (N

LL
)

bsz=25k
bsz=100k
bsz=200k
bsz=400k

10 20 30
epochs

2.0
2.11

2.5

va
lid

 lo
ss

 (N
LL

)

bsz=25k
bsz=100k
bsz=200k
bsz=400k

Figure 1: Validation loss for Transformer model trained with varying batch sizes (bsz) as a function of

optimization steps (left) and epochs (right). Training with large batches is less data-efficient, but can be

parallelized. Batch sizes given in number of target tokens excluding padding. WMT En-De, newstest13.

2 Related Work

Previous research considered training and infer-

ence with reduced numerical precision for neu-

ral networks (Simard and Graf, 1993; Courbariaux

et al., 2015; Sa et al., 2018). Our work relies on

half-precision floating point computation, follow-

ing the guidelines of Micikevicius et al. (2018) to

adjust the scale of the loss to avoid underflow or

overflow errors in gradient computations.

Distributed training of neural networks follows

two main strategies: (i) model parallel evalu-

ates different model layers on different work-

ers (Coates et al., 2013) and (ii) data paral-

lel keeps a copy of the model on each worker

but distributes different batches to different ma-

chines (Dean et al., 2012). We rely on the second

scheme and follow synchronous SGD, which has

recently been deemed more efficient than asyn-

chronous SGD (Chen et al., 2016). Synchronous

SGD distributes the computation of gradients over

multiple machines and then performs a synchro-

nized update of the model weights. Large neu-

ral machine translation systems have been recently

trained with this algorithm with success (Dean,

2017; Chen et al., 2018).

Recent work by Puri et al. (2018) considers

large-scale distributed training of language mod-

els (LM) achieving 109x scaling with 128 GPUs.

Compared to NMT training, however, LM train-

ing does not face the same challenges of variable

batch sizes. Moreover, we find that large batch

training requires warming up the learning rate,

whereas their work begins training with a large

learning rate. There has also been recent work

on using lower precision for inference only (Quinn

and Ballesteros, 2018).

Another line of work explores strategies

for improving communication efficiency in dis-

tributed synchronous training setting by abandon-

ing “stragglers,” in particular by introducing re-

dundancy in how the data is distributed across

workers (Tandon et al., 2017; Ye and Abbe, 2018).

The idea rests on coding schemes that introduce

this redundancy and enable for some workers to

simply not return an answer. In contrast, we do

not discard any computation done by workers.

3 Experimental Setup

3.1 Datasets and Evaluation

We run experiments on two language pairs, En-

glish to German (En–De) and English to French

(En–Fr). For En–De we replicate the setup

of Vaswani et al. (2017) which relies on the

WMT’16 training data with 4.5M sentence pairs;

we validate on newstest13 and test on newstest14.

We use a vocabulary of 32K symbols based on a

joint source and target byte pair encoding (BPE;

Sennrich et al. 2016). For En–Fr, we train on

WMT’14 and borrow the setup of Gehring et al.

(2017) with 36M training sentence pairs. We use

newstest12+13 for validation and newstest14 for

test. The 40K vocabulary is based on a joint source

and target BPE factorization.

We also experiment with scaling training be-

yond 36M sentence pairs by using data from

the Paracrawl corpus (ParaCrawl, 2018). This

dataset is extremely large with more than 4.5B

pairs for En–De and more than 4.2B pairs for

2



En–Fr. We rely on the BPE vocabulary built

on WMT data for each language pair and ex-

plore filtering this noisy dataset in Section 4.5.

We measure case-sensitive tokenized BLEU with

multi-bleu.pl2 and de-tokenized BLEU with

SacreBLEU3 (Post, 2018). All results use beam

search with a beam width of 4 and length penalty

of 0.6, following Vaswani et al. 2017. Checkpoint

averaging is not used, except where specified oth-

erwise.

3.2 Models and Hyperparameters

We use the Transformer model (Vaswani

et al., 2017) implemented in PyTorch in the

fairseq-py toolkit (Edunov et al., 2017). All

experiments are based on the “big” transformer

model with 6 blocks in the encoder and decoder

networks. Each encoder block contains a self-

attention layer, followed by two fully connected

feed-forward layers with a ReLU non-linearity

between them. Each decoder block contains self-

attention, followed by encoder-decoder attention,

followed by two fully connected feed-forward

layers with a ReLU between them. We include

residual connections (He et al., 2015) after each

attention layer and after the combined feed-

forward layers, and apply layer normalization (Ba

et al., 2016) after each residual connection. We

use word representations of size 1024, feed-

forward layers with inner dimension 4,096, and

multi-headed attention with 16 attention heads.

We apply dropout (Srivastava et al., 2014) with

probability 0.3 for En-De and 0.1 for En-Fr. In

total this model has 210M parameters for the

En-De dataset and 222M parameters for the En-Fr

dataset.

Models are optimized with Adam (Kingma and

Ba, 2015) using β1 = 0.9, β2 = 0.98, and

ǫ = 1e−8. We use the same learning rate schedule

as Vaswani et al. (2017), i.e., the learning rate in-

creases linearly for 4,000 steps to 5e−4 (or 1e−3

in experiments that specify 2x lr), after which

it is decayed proportionally to the inverse square

root of the number of steps. We use label smooth-

ing with 0.1 weight for the uniform prior distri-

bution over the vocabulary (Szegedy et al., 2015;

2https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/

generic/multi-bleu.perl
3SacreBLEU hash: BLEU+case.mixed+lang.en-{de,fr}+

numrefs.1+smooth.exp+test.wmt14/full+tok.13a+

version.1.2.9

Pereyra et al., 2017).

All experiments are run on DGX-1 nodes

with 8 NVIDIA c© V100 GPUs interconnected

by Infiniband. We use the NCCL2 library and

torch.distributed for inter-GPU commu-

nication.

4 Experiments and Results

In this section we present results for improving

training efficiency via reduced precision floating

point (Section 4.1), training with larger batches

(Section 4.2), and training with multiple nodes in

a distributed setting (Section 4.3).

4.1 Half-Precision Training

NVIDIA Volta GPUs introduce Tensor Cores that

enable efficient half precision floating point (FP)

computations that are several times faster than

full precision operations. However, half precision

drastically reduces the range of floating point val-

ues that can be represented which can lead to nu-

merical underflows and overflows (Micikevicius

et al., 2018). This can be mitigated by scaling val-

ues to fit into the FP16 range.

In particular, we perform all forward-backward

computations as well as the all-reduce (gradient

synchronization) between workers in FP16. In

contrast, the model weights are also available in

full precision, and we compute the loss and op-

timization (e.g., momentum, weight updates) in

FP32 as well. We scale the loss right after the for-

ward pass to fit into the FP16 range and perform

the backward pass as usual. After the all-reduce

of the FP16 version of the gradients with respect

to the weights we convert the gradients into FP32

and restore the original scale of the values before

updating the weights.

In the beginning stages of training, the loss

needs to be scaled down to avoid numerical over-

flow, while at the end of training, when the loss

is small, we need to scale it up in order to avoid

numerical underflow. Dynamic loss scaling takes

care of both. It automatically scales down the loss

when overflow is detected and since it is not pos-

sible to detect underflow, it scales the loss up if no

overflows have been detected over the past 2,000

updates.

To evaluate training with lower precision, we

first compare a baseline transformer model trained

on 8 GPUs with 32-bit floating point (Our reim-

plementation) to the same model trained with 16-

3



model # gpu bsz cumul BLEU updates tkn/sec time speedup

Vaswani et al. (2017) 8×P100 25k 1 26.4 300k ∼25k ∼5,000 –

Our reimplementation 8×V100 25k 1 26.4 192k 54k 1,429 reference

+ 16-bit 8 25k 1 26.7 193k 143k 495 2.9x

+ cumul 8 402k 16 26.7 13.7k 195k 447 3.2x

+ 2x lr 8 402k 16 26.5 9.6k 196k 311 4.6x

+ 5k tkn/gpu 8 365k 10 26.5 10.3k 202k 294 4.9x

16 nodes (from +2xlr) 128 402k 1 26.5 9.5k 1.53M 37 38.6x

+ overlap comm+bwd 128 402k 1 26.5 9.7k 1.82M 32 44.7x

Table 1: Training time (min) for reduced precision (16-bit), cumulating gradients over multiple back-

wards (cumul), increasing learning rate (2x lr) and computing each forward/backward with more

data due to memory savings (5k tkn/gpu). Average time (excl. validation and saving models) over 3

random seeds to reach validation perplexity of 4.32 (2.11 NLL). Cumul=16 means a weight update after

accumulating gradients for 16 backward computations, simulating training on 16 nodes. WMT En-De,

newstest13.

Gradient sync.
Forward/backward
Idle

Sync after 1 backward

time

gpu1

gpu4 

Sync after 2 backwards

time

gpu1

gpu4 

Figure 2: Accumulating gradients over multiple

forward/backward steps speeds up training by: (i)

reducing communication between workers, and

(ii) saving idle time by reducing variance in work-

load between GPUs.

bit floating point (16-bit). Note, that we keep

the batch size and other parameters equal. Table 1

reports training speed of various setups to reach

validation perplexity 4.32 and shows that 16-bit

results in a 2.9x speedup.

4.2 Training with Larger Batches

Large batches are a prerequisite for distributed

synchronous training, since it averages the gradi-

ents over all workers and thus the effective batch

size is the sum of the sizes of all batches seen by

the workers.

Figure 1 shows that bigger batches result in

slower initial convergence when measured in

terms of epochs (i.e. passes over the training set).

However, when looking at the number of weight

updates (i.e. optimization steps) large batches con-

verge faster (Hoffer et al., 2017). These results

support parallelization since the number of steps

define the number of synchronization points for

synchronous training.

Training with large batches is also possible on a

single machine regardless of the number of GPUs

or amount of available memory; one simply iter-

ates over multiple batches and accumulates the re-

sulting gradients before committing a weight up-

date. This has the added benefit of reducing com-

munication and reducing the variance in workload

between different workers (see Figure 2), leading

to a 36% increase in tokens/sec (Table 1, cumul).

We discuss the issue of workload variance in more

depth in Section 5.

Increased Learning Rate: Similar to Goyal

et al. (2017) and Smith et al. (2018) we find that

training with large batches enables us to increase

the learning rate, which further shortens training

time even on a single node (2x lr).

Memory Efficiency: Reduced precision also

decreases memory consumption, allowing for

larger sub-batches per GPU. We switch from a

maximum of 3.5k tokens per GPU to a maximum

of 5k tokens per GPU and obtain an additional 5%

speedup (cf. Table 1; 2x lr vs. 5k tkn/gpu).

Table 1 reports our speed improvements due to

reduced precision, larger batches, learning rate in-

crease and increased per-worker batch size. Over-

all, we reduce training time from 1, 429 min to 294

min to reach the same perplexity on the same hard-

ware (8x NVIDIA V100), i.e. a 4.9x speedup.

4



Gradient sync.
Forward

Sync after backward

time

gpu1

gpu4 

Overlap sync with backward

time

gpu1

gpu4 

Backward
Idle

Figure 3: Illustration of how the backward pass in

back-propagation can be overlapped with gradient

synchronization to improve training speed.

4.3 Parallel Training

While large batch training improves training time

even on a single node, another benefit of train-

ing with large batches is that it is easily paral-

lelized across multiple nodes (machines). We run

our previous 1-node experiment over 16 nodes of

8 GPUs each (NVIDIA V100), interconnected by

Infiniband. Table 1 shows that with a simple, syn-

chronous parallelization strategy over 16 nodes we

can further reduce training time from 311 minutes

to just 37 minutes (cf. Table 1; 2x lr vs. 16

nodes).

However, the time spent communicating gradi-

ents across workers increases dramatically when

training with multiple nodes. In particular, our

models contain over 200M parameters, therefore

multi-node training requires transferring 400MB

gradient buffers between machines. Fortunately,

the sequential nature of back-propagation allows

us to further improve multi-node training perfor-

mance by beginning this communication in the

background, while gradients are still being com-

puted for the mini-batch (see Figure 3). Back-

propagation proceeds sequentially from the top of

the network down to the inputs. When the gradi-

ent computation for a layer finishes, we add the

result to a synchronization buffer. As soon as the

size of the buffer reaches a predefined threshold4

we synchronize the buffered gradients in a back-

ground thread that runs concurrently with back-

propagation down the rest of the network. Ta-

ble 1 shows that by overlapping gradient commu-

nication with computation in the backwards pass,

we can further reduce training time by 15%, from

37 minutes to just 32 minutes (cf. Table 1; 16

4We use a threshold of 150MB in this work.

32 311 495
wall time (min)

2.0
2.11

2.5

va
lid

 lo
ss

 (N
LL

)

1 node (25k bsz)
1 node (402k bsz)
16 nodes (402k bsz)

Figure 4: Validation loss (negative log likelihood

on newstest13) versus training time on 1 vs 16

nodes.

En–De En–Fr

a. Gehring et al. (2017) 25.2 40.5

b. Vaswani et al. (2017) 28.4 41.0

c. Ahmed et al. (2017) 28.9 41.4

d. Shaw et al. (2018) 29.2 41.5

Our result 29.3 43.2

16-node training time 85 min 512 min

Table 2: BLEU on newstest2014 for WMT

English-German (En–De) and English-French

(En–Fr). All results are based on WMT’14 train-

ing data, except for En–De (b), (c), (d) and our

result which are trained on WMT’16.

nodes vs. overlap comm+bwd).

We illustrate the speedup achieved by large

batches and parallel training in Figure 4.

4.4 Results with WMT Training Data

We report results on newstest14 for English-to-

German (En-De) and English-to-French (En-Fr).

For En-De, we train on the filtered version of

WMT’16 from Vaswani et al. (2017). For En-

Fr, we follow the setup of Gehring et al. (2017).

In both cases, we train a “big” transformer on

16 nodes and average model parameters from the

last 10 checkpoints (Vaswani et al., 2017). Ta-

ble 2 reports 29.3 BLEU for En-De in 1h 25min

and 43.2 BLEU for En-Fr in 8h 32min. We

therefore establish a new state-of-the-art for both

datasets, excluding settings with additional train-

ing data (Kutylowski, 2018). In contrast to Ta-

ble 1, Table 2 reports times to convergence, not

times to a specific validation likelihood.

5



Train set En–De En–Fr

WMT only 29.3 43.2

detok. SacreBLEU 28.6 41.4

16-node training time 85 min 512 min

WMT + Paracrawl 29.8 42.1

detok. SacreBLEU 29.3 40.9

16-node training time 539 min 794 min

Table 3: Test BLEU (newstest14) when training

with WMT+Paracrawl data.

4.5 Results with WMT & Paracrawl Training

Fast parallel training lets us additionally explore

training over larger datasets. In this section we

consider Paracrawl (ParaCrawl, 2018), a recent

dataset of more than 4B parallel sentences for each

language pair (En-De and En-Fr).

Previous work on Paracrawl considered training

only on filtered subsets of less than 30M pairs (Xu

and Koehn, 2017). We also filter Paracrawl by re-

moving sentence-pairs with a source/target length

ratio exceeding 1.5 and sentences with more than

250 words. We also remove pairs for which the

source and target are copies (Ott et al., 2018). On

En–De, this brings the set from 4.6B to 700M.

We then train a En–De model on a clean dataset

(WMT’14 news commentary) to score the remain-

ing 700M sentence pairs, and retain the 140M

pairs with best average token log-likelihood. To

train an En–Fr model, we filter the data to 129M

pairs using the same procedure.

Next, we explored different ways to weight the

WMT and Paracrawl data. Figure 5 shows the val-

idation loss for En-De models trained with differ-

ent sampling ratios of WMT and filtered Paracrawl

data during training. The model with 1:1 ratio per-

forms best on the validation set, outperforming the

model trained on only WMT data. For En-Fr, we

found a sampling ratio of 3:1 (WMT:Paracrawl)

performed best.

Test set results are given in Table 3. We find that

Paracrawl improves BLEU on En–De to 29.8 but

it is not beneficial for En–Fr, achieving just 42.1

vs. 43.2 BLEU for our baseline.

5 Analysis of Stragglers

In a distributed training setup with synchronized

SGD, workers may take different amounts of time

to compute gradients. Slower workers, or strag-

glers, cause other workers to wait. There are sev-

10k 30k 50k 70k
opt. steps

2.0
2.11

2.5

3.0

va
lid

 lo
ss

 (N
LL

)

1:0 (WMT only)
0:1 (Para only)
1:31
1:4
1:1

Figure 5: Validation loss when training on

Paracrawl+WMT with varying sampling ratios.

1:4 means sampling 4 Paracrawl sentences for ev-

ery WMT sentence. WMT En-De, newstest13.

0.05 0.10 0.15 0.20 0.25

Time, seconds

0.0%

10.0%

20.0%

30.0%

P
e
rc

e
n
ta

g
e

o
f
s
u
b
-b

a
tc

h
e
s

Full dataset

23 ≤ src len ≈
tgt len ≤ 27

Figure 6: Histogram of time to complete one for-

ward and backward pass for each sub-batch in the

WMT En-De training dataset. Sub-batches con-

sist of a variable number of sentences of similar

length, such that each sub-batch contains at most

3.5k tokens.

eral reasons for stragglers but here we focus on

the different amounts of time it takes to process

the data on each GPU.

In particular, each GPU typically processes one

sub-batch containing sentences of similar lengths,

such that each sub-batch has at most N tokens

(e.g., N = 3.5k tokens), with padding added as

required. We refer to sub-batches as the data that

is processed on each GPU worker whose combina-

tion is the entire batch. The sub-batches processed

by a worker may therefore differ from other work-

ers in the following three characteristics: the num-

ber of sentences, the maximum source sentence

length, or the maximum target sentence length. To

illustrate how these characteristics impact training

6



speed, Figure 6 shows the amount of time required

to process the 44K sub-batches in the En-De train-

ing data. There is large variability in the amount

time to process sub-batches with different charac-

teristics: the mean time to process a sub-batch is

0.11 seconds, the slowest sub-batch takes 0.228

seconds and the fastest 0.049 seconds. Notably,

there is much less variability if we only consider

batches of a similar shape (e.g., batches where

23 ≤ src len ≈ tgt len ≤ 27).

Unsurprisingly, constructing sub-batches based

on a maximum token budget as just described ex-

acerbates the impact of stragglers. In Section 4.2

we observed that we could reduce the variance

between workers by accumulating the gradients

over multiple sub-batches on each worker be-

fore updating the weights (see illustration in Fig-

ure 2). A more direct, but naı̈ve solution is to as-

sign all workers sub-batches with a similar shape.

However, this increases the variance of the gradi-

ents across batches and adversely affects the final

model. Indeed, when we trained a model in this

way, then it failed to converge to the target valida-

tion perplexity of 4.32 (cf. Table 1).

As an alternative, we construct sub-batches

so that each one takes approximately the same

amount of processing time across all workers. We

first set a target for the amount of time a sub-batch

should take to process (e.g., the 90th percentile

in Figure 6) which we keep fixed across training.

Next, we build a table to estimate the processing

time for a sub-batch based on the number of sen-

tences and maximum source and target sentence

lengths. Finally, we construct each worker’s sub-

batches by tuning the number of sentences until

the estimated processing time reaches our target.

This approach improves single-node throughput

from 143k tokens-per-second to 150k tokens-per-

second, reducing the training time to reach 4.32

perplexity from 495 to 479 minutes (cf. Table 1,

16-bit). Unfortunately, this is less effective than

training with large batches, by accumulating gra-

dients from multiple sub-batches on each worker

(cf. Table 1, cumul, 447 minutes). Moreover,

large batches additionally enable increasing the

learning rate, which further improves training time

(cf. Table 1, 2x lr, 311 minutes).

6 Conclusions

We explored how to train state-of-the-art NMT

models on large scale parallel hardware. We in-

vestigated lower precision computation, very large

batch sizes (up to 400k tokens), and larger learn-

ing rates. Our careful implementation speeds up

the training of a big transformer model (Vaswani

et al., 2017) by nearly 5x on one machine with 8

GPUs.

We improve the state-of-the-art for WMT’14

En-Fr to 43.2 vs. 41.5 for Shaw et al. (2018),

training in less than 9 hours on 128 GPUs. On

WMT’14 En-De test set, we report 29.3 BLEU

vs. 29.2 for Shaw et al. (2018) on the same setup,

training our model in 85 minutes on 128 GPUs.

BLEU is further improved to 29.8 by scaling the

training set with Paracrawl data.

Overall, our work shows that future hardware

will enable training times for large NMT sys-

tems that are comparable to phrase-based sys-

tems (Koehn et al., 2007). We note that multi-node

parallelization still incurs a significant overhead:

16-node training is only ∼10x faster than 1-node

training. Future work may consider better batch-

ing and communication strategies.

References

Karim Ahmed, Nitish Shirish Keskar, and Richard
Socher. 2017. Weighted transformer network for
machine translation. arxiv, 1711.02132.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. of ICLR.

Jianmin Chen, Rajat Monga, Samy Bengio, and
Rafal Józefowicz. 2016. Revisiting distributed syn-
chronous sgd. Arxiv, 1604.00981.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Niki Parmar, Mike Schuster, Zhifeng Chen,
Yonghui Wu, and Macduff Hughes. 2018. The best
of both worlds: Combining recent advances in neu-
ral machine translation. arxiv, 1804.09849.

Adam Coates, Brody Huval, Tao Wang, David J. Wu,
Bryan Catanzaro, and Andrew Y. Ng. 2013. Deep
learning with cots hpc systems. In Proc. of ICML.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. 2015. Training deep neural networks with
low precision multiplications.

Jeff Dean. 2017. Machine learning for systems and
systems for machine learning. In Proc. of NIPS
Workshop on ML Systems.

7



Jeffrey Dean, Gregory S. Corrado, Rajat Monga, Kai
Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao,
Marc’Aurelio Ranzato, Andrew W. Senior, Paul A.
Tucker, Ke Yang, and Andrew Y. Ng. 2012. Large
scale distributed deep networks. In Proc. of NIPS.

Ondrej Dusek and Filip Jurcı́cek. 2016. Sequence-to-
sequence generation for spoken dialogue via deep
syntax trees and strings. In Proc. of ACL.

Sergey Edunov, Myle Ott, and Sam Gross. 2017.
Fairseq. https://github.com/pytorch/

fairseq.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
Sequence to Sequence Learning. In Proc. of ICML.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. 2017. Ac-
curate, Large Minibatch SGD: Training ImageNet in
1 Hour. In Proc. of CVPR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep Residual Learning for Image
Recognition. In Proc. of CVPR.

Elad Hoffer, Itay Hubara, and Daniel Soudry. 2017.
Train longer, generalize better: closing the gener-
alization gap in large batch training of neural net-
works. In Proc. of NIPS, pages 1729–1739.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Proc. of
ICLR.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
ACL Demo Session.

Jaroslaw Kutylowski. 2018. Deepl press information.
https://www.deepl.com/press.html.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory F. Diamos, Erich Elsen, David Gar-
cia, Boris Ginsburg, Michael Houston, Oleksii
Kuchaiev, Ganesh Venkatesh, and Hao Wu. 2018.
Mixed Precision Training. In Proc. of ICLR.

Myle Ott, Michael Auli, David Grangier, and MarcAu-
relio Ranzato. 2018. Analyzing uncertainty in neu-
ral machine translation. In International Conference
on Machine Learning (ICML).

ParaCrawl. 2018. ParaCrawl. http:

//paracrawl.eu/download.html.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In Proc. of ICLR.

Gabriel Pereyra, George Tucker, Jan Chorowski,
Lukasz Kaiser, and Geoffrey E. Hinton. 2017. Reg-
ularizing neural networks by penalizing confident
output distributions. In Proc. of ICLR Workshop.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv, 1804.08771.

Raul Puri, Robert Kirby, Nikolai Yakovenko, and
Bryan Catanzaro. 2018. Large scale language mod-
eling: Converging on 40gb of text in four hours.
arXiv preprint arXiv:1808.01371.

Jerry Quinn and Miguel Ballesteros. 2018. Pieces of
eight: 8-bit neural machine translation. In Proc. of
NAACL.

Christopher De Sa, Megan Leszczynski, Jian Zhang,
Alana Marzoev, Christopher R. Aberger, Kunle
Olukotun, and Christopher Ré. 2018. High-accuracy
low-precision training. Arxiv, 1803.03383.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proc. of ACL.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proc. of ACL.

Iulian Serban, Alessandro Sordoni, Ryan Joseph Lowe,
Laurent Charlin, Joelle Pineau, Aaron C. Courville,
and Yoshua Bengio. 2017. A hierarchical latent
variable encoder-decoder model for generating di-
alogues. In Proc. of AAAI.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proc. of NAACL.

Patrice Y. Simard and Hans Peter Graf. 1993. Back-
propagation without multiplication. In Proc. of
NIPS.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V.
Le. 2018. Don’t decay the learning rate, increase the
batch size. In Proc. of ICLR.

Alessandro Sordoni, Michel Galley2, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. In Proc. of
ACL.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. 2015. Re-
thinking the Inception Architecture for Computer
Vision. arXiv preprint arXiv:1512.00567.

8



Rashish Tandon, Qi Lei, Alexandros G. Dimakis, and
Nikos Karampatziakis. 2017. Gradient Coding:
Avoiding Stragglers in Distributed Learning. In
Proc. of ICML.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Proc. of NIPS.

Hainan Xu and Philipp Koehn. 2017. Zipporah: a fast
and scalable data cleaning system for noisy web-
crawled parallel corpora. In Proc. of EMNLP.

Min Ye and Emmanuel Abbe. 2018. Communication-
Computation Efficient Gradient Coding. In Proc. of
ICML.

9


