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Abstract. In this paper we explore the idea of customizing and reusing loop schedules to improve the scalability of non-regular

numerical codes in shared-memory architectures with non-uniform memory access latency. The main objective is to implicitly

setup affinity links between threads and data, by devising loop schedules that achieve balanced work distribution within irregular

data spaces and reusing them as much as possible along the execution of the program for better memory access locality. This

transformation provides a great deal of flexibility in optimizing locality, without compromising the simplicity of the shared-

memory programming paradigm. In particular, the programmer does not need to explicitly distribute data between processors.

The paper presents practical examples from real applications and experiments showing the efficiency of the approach.
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1. Introduction

Programming models based on the abstraction of

a shared address space became popular because they

could potentially eliminate a number of tasks that make

parallel programming difficult, such as the placement

of data in memory, the assignment of computation to

processors, and the management of communication.

Parallelism can be expressed simply by pin-pointing

loops and fragments of sequential code that can be

safely executed in different threads, using compiler di-

rectives [16]. Unfortunately, these otherwise desirable

features of shared-memory programming models are

also the ones that make the use of these models prob-

lematic in scalable parallel architectures.
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Scalable shared-memory multiprocessors use a

LEGO architecture, in which off-the-shelf or propri-
etary computational nodes with processors and memory
are interconnected via a fast switching network [10].
This setting is identical to that of distributed-memory
architectures, with the exception that the nodes run a
directory-based cache coherence protocol at their com-
munication interfaces. The protocol allows processors
to use their caches for coherent migration and replica-
tion of data, regardless of the location of data in mem-
ory. The programmer views the memory of the sys-
tem as a flat, globally accessible address space and can
exploit the caches to enable fast access to shared data.
However, the cost of memory accesses upon cache
misses varies, depending on whether the accesses are
to locally or remotely located data. If the placement
of data across nodes does not match the memory ac-

cess pattern of the program, performance may suffer
from the latency of remote memory accesses, which is
several times higher than the latency of local memory
accesses.
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The parallel processing community has been ad-

dressing this problem by incorporating data and thread

placement facilities in shared-memory programming

models [3,4,17]. Albeit effective, this solution sacri-

fices the transparency of the shared-memory program-

ming abstraction, by exposing architectural state to the

programs. Shared-memory programming paradigms

are fundamentally based on location transparency for

both data and computation. Data distribution com-

plicates the programming process and the underlying

compilation and execution framework.

As an alternative to data distribution, we have pro-

posed a dynamic optimization framework, for max-

imizing memory access locality in programs written

with an architecture-agnostic shared-memory program-

ming model, such as OpenMP [14]. The idea is to

dynamically record the memory access pattern of the

program while the program is running, and, if the com-

plete memory access pattern is periodic, optimize data

placement for the specific access pattern. Dynamic op-

timization of data placement is performed by migrating

each page to the memory of the node that accesses the

page more frequently during the execution of the pro-

gram. This technique works extremely well, yielding

performance as good as that of the best manual data

distribution algorithms for a large number of parallel

codes that have strictly periodic structure, i.e. they re-

peat the same parallel computation for a number of

iterations [13].

The advantage of dynamic optimization is that it re-

quires no modifications or extensions to the program-

ming model. It is a purely runtime scheme that needs

minimal compiler support for instrumenting the pro-

gram to collect memory access traces and invoke a dy-

namic data distribution engine. It can also be used as a

convenient tool for dynamic compilation and optimiza-

tion of parallel programs, when the cost of runtime data

distribution is prohibitive. Our dynamic optimization

framework has been successful as a transparent opti-

mizer of memory access locality in several OpenMP

codes [12,13].

1.1. Problem statement

Although we have been able to use dynamic opti-

mization of data placement in several OpenMP pro-

grams without modifications to the programming in-

terface, this approach is limited by the fact that not

all parallel codes are amenable to dynamic data place-

ment optimizations. Our optimization framework re-

lies on a periodic memory access pattern to optimize

data placement for the program as a whole. Unfortu-

nately, several parallel codes in use today do not have

this property.

Some parallel codes have a dynamic memory ac-

cess pattern, which changes with the evolution of the

computation. The plight of our dynamic optimization

scheme in these codes is the inability to speculate on

the future memory accesses of the program based on

a snapshot of the access pattern retrieved early during

the execution. An optimization scheme based on the

access rates to each page in memory is effective only if

the memory access pattern has sufficient temporal lo-

cality (i.e. recent memory accesses are likely to provide

a prediction for future memory accesses) and if the data

distribution engine is able to identify phase changes

in the memory access pattern. Although techniques

for sampling and decaying memory access history to

gauge dynamic memory access patterns have appeared

in the literature [14,18,20], it is questionable if these

techniques form a general solution.

A second problem is that dynamic optimization of

data distribution is only one aspect of the performance

tuning process for scalable shared-memory architec-

tures. The balanced distribution of computation among

processors is a second critical aspect, in which dynamic

data distribution by itself can not be of much help. Dy-

namic optimization of data placement is always per-

formed for a given work distribution scheme and is

inherently orthogonal to load balancing. The penalty

of load imbalance may well limit the scalability of the

program, even if memory access locality within the

program is optimized. Unfortunately, shared-memory

programmingstandards like OpenMP lack the means to

express flexible work distributions for load balancing

purposes.

Load balancing, pretty much like data distribution

can be dynamically optimized under the assumption

that the computation in the program has some form of

periodicity, so that the load imbalance can be exposed

and resolved at runtime. Such an approach is outlined

in [15]. The weakness of this solution, in addition to

the inability to handle aperiodic computation patterns,

is that it can not balance the load according to the phys-

ical properties of the problem modelled by the parallel

computation. It can only alleviate the load imbalance

incurred from an arbitrary static work distribution and

up to the point where a measurable index of load bal-

ancing (e.g. floating point operations per processor)

can not be further improved.
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1.2. Contributions of the paper

This paper presents an effective technique and the

associated program transformations for implementing

application-specific work distributions and simulta-

neously optimize memory access locality in shared-

memory programming paradigms, without manual data

distribution. In principle, we target array-based nu-

merical codes, in which the bulk of the computation is

executed in loop nests.

Our scheme relaxes the constraint of entirely trans-

parent optimization, by allowing the programmer to

encode application-specific work distribution schemes.

The novelty of this scheme is that both load balanc-

ing and memory access locality are achieved by proper

scheduling of loop iterations to processors. Effective

loop schedules are identified and reused throughout the

program, across executions of the same loop or across

executions of different loops with overlapping access

regions. The distribution of data is optimized implic-

itly, by exploiting the operating system’s automatic

page placement algorithm.

The proposed scheme provides the programmer with

flexibility that can otherwise be provided only with

data distribution statements and a data-centric model

integrated with the shared-memory programming ab-

straction. Although the programming effort for proper

thread and data distribution is not eliminated (the pro-

grammer must still express the desired correlation be-

tween computation and data), the scheme is more ap-

propriate for shared-memory parallel programming,

because it operates only within the scope of loop

scheduling and implements coordinated rather than

decoupled placement of computation and data, thus

minimizing the associated overhead. Since directive-

based shared-memory programming paradigms like

OpenMP already allow some flexibility in the selection

of loop schedules from predefined alternatives, adding

our transformations as an option to the loop schedule

clauses of parallelization directives seems to be a rea-

sonable extension. Reusable loop schedules can be

nicely expressed with affinity clauses in directives en-

closing parallel loops and can be translated to parallel

code with simple loop transformations.

We implemented and tested our technique in the fa-

miliar OpenMP framework. OpenMP is the de facto

standard for parallel programming with the shared-

memory abstraction and has been deployed widely in

small-scale shared-memory architectures and more re-

cently, in scalable NUMA multiprocessors and clus-

ters. Currently, our technique handles effectively two

types of OpenMP codes: First, codes where although

the memory access pattern is aperiodic, processors can

exploit memory access locality by reusing a significant

amount of the data that they access during the course of

the computation. Second, OpenMP codes that model ir-

regular problem spaces, using irregularly shaped grids.

In these codes, our technique enables the program-

mer to implement application-specific work distribu-

tion schemes, while optimizing transparently data dis-

tribution.

As far as performance is concerned, our scheme im-

proves the performance of OpenMP code by more than

50%, compared to automatic data and work distribu-

tion algorithms implemented in the operating system

and the runtime system respectively. Our technique

outperforms slightly hybrid parallelization schemes us-

ing OpenMP and manual data distribution (by 5–10%),

because it performs locality-conscious distribution of

data and computation simultaneously. Data distribu-

tion is performed lazily and in parallel, whenever the

processors experience page faults on unmapped pages

during the execution of useful computation. In the case

of manual data distribution, a higher cost is paid before

the actual parallel computation, by either having one

processor call the operating system to place data on

the appropriate nodes, or inserting a dummy parallel

loop that forces each processor to map locally the data

assigned to it.

The drawback of our scheme is that it is prone to

false-sharing, whenever the blocks of data assigned to

each processor are not page-size aligned. To circum-

vent this problem, it is necessary to use techniques such

as array reshaping and index rewriting, thus placing

more burden on the compiler. Fortunately, previous

work on data parallel languages formalized the related

techniques to a significant extent, therefore it is rea-

sonable to have such an expectation from an advanced

OpenMP compiler. We plan to address the relevant is-

sues in future work. At the time being, we use manual

transformations of arrays to cope with false sharing.

1.3. The rest of this paper

The rest of this paper is organized as follows: Sec-

tion 2 illustrates two motivating examples for reusing

custom loop schedules, a simple LU decomposition

and an irregular data transposition kernel. Section 3

describes the most essential details of our transforma-

tions. Section 4 provides results from experiments with

non-regular parallel codes, which compare our scheme

against a shared-memory parallelization scheme which
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is oblivious to data distribution, a scheme which com-

bines shared-memory parallelism and manual data dis-

tribution and implementations of the same codes with

MPI. Section 5 reviews related work and Section 6

summarizes the paper.

2. Motivating examples

This section provides two examples to highlight the

issues that motivate the use of customizing and reusing

loop schedules for optimizing memory access locality

in shared-memory codes. Section 2.1 examines LU

decomposition, a code in which although the memory

access pattern of the program is aperiodic, there is a

significant amount of data reuse that can be exploited

by distributing data and scheduling appropriately the

parallel loop. Section 2.2 presents a data transposition

kernel from a weather forecasting system, which re-

quires an irregular two-dimensional block distribution

to balance the computational load among processors.

In the following discussion,we assume that the target

architecture is a hardware cache-coherent, distributed

shared-memory (DSM) multiprocessor,such as the SGI

Origin2000 [9], the Sun Wildfire [7], and the Compaq

GS320 AlphaServer [6]. The performance optimiza-

tions that we are seeking for in these architectures are

of two kinds. First, we wish to distribute the data of

each program among the nodes of the system, so that

the processors on each node access local memory as

frequently as possible and remote memory as infre-

quently as possible, whenever they miss in their caches.

Second, we wish to distribute the work between pro-

cessors, so that the work distribution balances the load

according to the structure of the data space modelled

by the application.

We take into account the fact that the operating sys-

tem uses automatic page placement algorithms that dis-

tribute pages with the data of the program across the

nodes of the system. The most popular of these algo-

rithms is first-touch [11], which places each page on

the same node with the processor that accesses the page

first during the course of execution. First-touch is used

in commercial operating systems such as IRIX and So-

laris. Although first-touch is oblivious of the memory

access pattern of the program, it is a policy able to attain

satisfactory memory access locality in many practical

cases.

2.1. LU

Consider the simple LU decomposition code shown

in Fig. 1(a). The code divides the element in column

k of a with the pivot element and then updates the

submatrix a[k+1:n,k+1:n]. We assume that the

code is parallelized with a flat shared-memory model,

by inserting a compiler directive that encloses the inner

j loop and commands its parallel execution. Them loop

can also be parallelized, but we omit this option here to

simplify the discussion. We use OpenMP directives in

the code. The example is taken from [3].

Conceptually, according to the memory access pat-

tern of the parallelized loop, memory access local-

ity will be better if the columns of a are distributed

among processors. The problem is how to distribute the

columns, so that processors can actually reuse data and

avoid remote memory accesses. The default algorithm

for distributing the iterations of a parallel loop among

processors in OpenMP is the static algorithm, which

assigns n/p consecutive iterations to each processor,

where n is the number of iterations in the parallel loop

and p the number of processors. In the case of LU,

this algorithm implements implicitly a block distribu-

tion of the columns of a among processors, under two

assumptions: First, that the operating system uses the

first-touch page placement algorithm, so that each pro-

cessor maps locally the columns of a that it updates

first during the first iteration of the outer k loop; and

second, that each column ofa is page-aligned. The first

requirement is usually met. Most popular commercial

DSM multiprocessors use first-touch page placement

in the operating system [6,7,9]. The requirement for

page alignment can be met with additional compiler

support or with programmer intervention, to pad and/or

reshape a along the second dimension.

Figure 2(a) shows the layout of the elements of a

16 × 16 array, if the inner parallel loop of LU is par-

allelized and scheduled statically on four processors.

The figure demonstrates the problem with the block

distribution of the columns of a. With this layout, in

every iteration of the k loop except the first one, at least

one processor has to update one or more columns of a

that reside in remote memories. This happens because

for k � 2, the work of the processors in the parallelized

inner loop is redistributed so that each processor up-

dates (n− k)/p consecutive columns of the submatrix

a[k+1:n,k+1:n]. Figure 2(b) shows the partition

of the array which is accessed during the 8th iteration

of the outer loop (surrounded with boldface lines). As-

suming that processors are numbered from 0 to 3 and
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program LU

integer n

parameter (n=problem size)

double precision a(n,n)

do k=1,n

do m=k+1,n

a(m,k)=a(m,k)/a(k,k)

end do

!$omp parallel do private(i,j)

do j=k+1, n

do i=k+1,n

a(i,j)=a(i,j)-a(i,k)*a(k,j)

enddo

enddo

enddo

(a)

program LU

integer n

parameter (n=problem size)

double precision a(n,n)

!$distribute (*, cyclic) :: a

do k=1,n

do m=k+1,n

a(m,k)=a(m,k)/a(k,k)

end do

!$omp parallel do private(i,j)

!$affinity(j)=(a(i,j))

do j=k+1, n

do i=k+1,n

a(i,j)=a(i,j)-a(i,k)*a(k,j)

enddo

enddo

enddo

(b)

Fig. 1. The LU code implemented with OpenMP (left) and extended with data distribution and an affinity clause (right) to optimize memory

access locality in the parallel loop.

(a) (b)

(c) (d)

Fig. 2. Block and cyclic data distribution and implications on memory access locality in LU.

from left to right, processors 0 and 1 will update four

columns which are local to processor 2, processor 2 will

update two columns which are local to processor 3 and

processor 3 will be the only processor that will update



148 D.S. Nikolopoulos et al. / Scaling non-regular shared-memory codes by reusing custom loop schedules

!hpf$ processors procs(nproc),procsab(nproca,nprocb)

!hpf$ distribute(gen block(mapgla),indirect(mapfld0)) onto procsab::zgl

real zgl(npromag,ngt0)

!hpf$ independent,new(jfld),onhome(zgl(indl(j),:)), reuse(lreuse)

do j=1,ngptotg

do jfld=1,ngt0

zgl(indl(j),jfld)=zga(j,jfld)

enddo

enddo

Fig. 3. A snippet of the LG kernel implemented in HPF.

(a) (b)

Fig. 4. Unstructured two-dimensional block distribution in LG (left) and load imbalance caused by a regular block distribution (right).

local columns. 48 out of the 64 elements of the subma-

trix updated during the 8th iteration of the outer loop
will be updated with remote memory accesses. It could

be possible to handle this case by migrating the pages

with the columns to the processors that access them in
any given iteration on demand. This solution however

may be inhibited by the cost of page migration. The

amount of computation per column should be sufficient
to balance the cost of migrating the pages that store the

column, which may be as high as one ms. per page on

state-of-the-art systems like the Origin. Therefore, this
solution is viable only in codes with very large problem

sizes.

The way to overcome this problem is to distribute
data and/or computation, so that in every iteration of

the outer loop, each processor updates only columns

that reside in local memories. Since the computation
works in one direction towards smaller submatrices of

a, the way to achieve this is to have processors work
on columns scattered across the array in the first itera-

tion and update a subset of the same columns in sub-

sequent iterations. One way to implement the desired
data distribution and simultaneously balance the load,

is to distribute the columns of a in a cyclic fashion

as shown in Fig. 2(c) and schedule the inner parallel

loop so that processor i updates only columns j for

which j mod (n/p) = i. As Fig. 2(d) shows, with this
data distribution in iteration 8, processor 0 will update

columns 8 and 12 which are local, processor 1 will

update columns 9 and 13 which are also local and so
on.

Figure 1(b) shows how this is achieved with direc-

tives for manual data distribution and affinity schedul-
ing. The functionality of the !$distribute direc-

tive is identical to that of the corresponding HPF direc-

tive [5]. The second dimension (i.e. the columns) of a
are distributed in a cyclic manner across the processors

that execute the program. The !$affinity direc-

tive is in analogy to the !$onhome clause of HPF and
has been proposed in previous work as an extension

to shared-memory programming paradigms that helps

the programmer express mappings of computation that
enforce memory access locality [3,4].

What we try to circumvent with the work presented
in this paper is the requirement to explicitly distribute

data in codes like LU, whenever the desired collocation

of computation and data can be achieved by letting the
operating system place data in memory and in paral-

lel, move the right pieces of computation close to the

data they access. We show that in many cases, this can
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be done easily by carefully scheduling loop iterations

to processors. We wish to avoid the implications of

data distribution on the complexity of the programming

model and the implementation of the compiler. We

also wish to eliminate the overhead of manual data dis-

tribution and try to overlap automatic data distribution

with computation, while achieving the same effect as

the best data distribution algorithm for the program at

hand.

We decide to tolerate an extension of the program-

ming model that expresses affinity of computation to

data for two reasons. First, such an extension can be

expressed as part of the clauses that define the schedul-

ing algorithm for parallel loops. Such flexible work

distributions are already considered in shared-memory

programming models and OpenMP in particular [16].

Second, there are several codes in which the affinity

relation between computation and data depends on an

application-specific distribution of computation, which

can not be analyzed by the compiler or inferred at run-

time. The next subsection presents one example.

2.2. The IFS LG kernel

Figure 3 shows the HPF implementation of a snip-

pet from the LG kernel, a data transposition routine

which is part of the Integrated Forecasts System of

the European Center for Medium-Range Weather Fore-

casts [19]. The LG kernel transposes a grid which mod-

els the earth’s atmosphere, from the physical space to

the Fourier space. Both the original and the transposed

grids are irregular and use more points to model the

parts of the atmosphere which are close the equatorial

and less points to model the parts of the atmosphere

which are close to the poles. The snippet shown in

Fig. 3 updates the elements of one of the most fre-

quently accessed array in the code (zgl).

LG is an irregular parallel code, as far as the memory

access pattern is concerned. The peculiar feature of

this code is that the physical problem that it models has

some form of structural irregularity, which makes cer-

tain regions of the modelled data space more densely

populated with data points than others. Such a grid

requires an application-specific load balancing algo-

rithm. More specifically, the decomposition of the grid

among processors has to be done with an unstructured

block distribution, like the one shown in Fig. 4(a).

For proper load balancing, the code requires a two-

dimensional block distribution, where the size of the

blocks along the vertical dimension is variable. Blocks

assigned to processors that work on the north/south

edges of the grid (i.e. close to the poles) are larger

than blocks assigned to processors that work on other

parts of the grid. As shown in Fig. 3, the HPF solution

to model such a grid is to define a generalized block

distribution for the first dimension of the array, in which

the size of each block is defined in a vector (mapgla)

of size equal to the number of processors among which

the array is distributed along the vertical dimension.

The second dimension of the array is distributed with

an indirect distribution, which actually collapses into

a balanced block distribution of the second dimension,

with an irregular ordering of accesses to columns of the

array. Therefore, we do not treat it as a special case.

Likewise to LU, the problem with the LG kernel is

that if the code is parallelized with a flat shared-memory

model using compiler directives, static scheduling of

parallel loops and automatic first-touch page placement

by the operating system, the columns of the array will

be distributed blockwise, which will force processors

to access remotely located data most of the time. The

same will happen if the loop is interchanged so that

the array is distributed rowwise (see Fig. 4(b)), and in

addition, load balancing will be compromised, since

the size of the blocks of rows assigned to each processor

will be equal. This is undesirable, because the amount

of work assigned to the topmost(bottommost) rows is

less than the amount of work assigned to the other rows.

HPF handles this case by defining the irregular gen-

eralized block distribution and executing the loop that

updates the elements of zgl as a triple-nested loop

which iterates over the processor number. The bounds

of the innermost two loops are the bounds of the blocks

assigned to each processor according to the specified

distribution ofzgl. We wish to achieve the same effect

in the shared-memory programming model using only

extensions for flexible scheduling of loop iterations to

processors and the automatic page placement algorithm

of the operating system.

3. Reusing customized loop schedules

The idea behind customizing and reusing loop sched-

ules is to implement application-specific algorithms for

work and data distribution in shared-memory codes,

by scheduling appropriately the iterations of parallel

loops. What makes this idea work, is the ability to co-

ordinate the distribution of work with the distribution

of data, which is performed automatically by the oper-

ating system. If the mapping of loop iterations to pro-

cessors can match the data placement algorithm imple-
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program LU

integer n

parameter (n=problem size)

double precision a(n,n)

integer num procs

num procs = omp get max threads()

do k=1,n

do m=k+1,n

a(m,k)=a(m,k)/a(k,k)

enddo

!$omp parallel do private(i,j,myp,jlow)

!$omp& shared(a,k)

do myp = 0, num procs-1

jlow = ((k / num procs) * num procs) + 1 + myp

if (myp .lt. mod(k, num procs))

jlow = jlow + num procs

do j=jlow, n, num procs

do i=k+1, n

a(i,j) = a(i,j) - a(i,k)*a(k,j)

enddo

enddo

enddo

enddo

Fig. 5. Data and computation distribution in LU using loop schedule reuse.

mented by the OS, it is possible to implement arbitrary

data distribution schemes, without having to extend the

programming model with data distribution statements.

We exploit the fact that most operating systems of

DSM multiprocessors use the first-touch page place-

ment algorithm. First-touch provides an elegant way of

mapping data to processors. If each processor touches

the data that we wish to map to it first, the desired data

distribution is performed implicitly and transparently

to the programmer. In fact, in most cases, data dis-

tribution with first-touch can be performed on-the-fly,

during the execution of the parallel computation. This

is beneficial because it avoids the overhead of manu-

ally calling the operating system to place data before

executing useful work.

Given the first-touch page placement algorithm, the

only thing that needs to be done for implementing ar-

bitrary data distributions is to restructure the parallel

computation so that each processor accesses first the

data that the desired distribution maps to it. In prin-

ciple, this is possible by rewriting the loop so that it

iterates over the processor number and the innermost

iterations touch the data assigned to each processor.

This is essentially the same approach used in earlier

implementations of HPF [8].

The important limitation of this scheme is that the

data assigned to each processor should be page-aligned.

If not, it is likely that processors will map locally pages

with significant amounts of data that “belong” to other

processors. As a consequence, false sharing will oc-

cur, the number of remote memory accesses will be in-

creased and the program might suffer from high waiting

times in the memory system. In many practical cases,

this problem can be relatively easily circumvented by

padding certain array dimensions, or by adding one di-

mension (the processor number dimension) to the array,

a transformation known as array reshaping [1,4]. Al-

though these techniques have been formalized for au-

tomation in a restructuring compiler, they are not gener-

ally available. In this work, we apply these techniques

to avoid false sharing via manual array transformations.

We demonstrate how this strategy works for the ex-

amples presented in Section 2. Consider LU. Figure 5

shows how the code can be restructured to implement

the cyclic distribution of the columns of a and ensure

that each processor updates only local columns in all

iterations of the outer loop. Iterations of a are assigned

to processors in a cyclic manner by executing the loop

with a step equal to the number of processors. During

the k-th iteration of the outer loop, each processor exe-

cutes a subset of the iterations that the same processor

executed during the k-1-th iteration of the outer loop.

For example, assume that the program is executed with

4 processors. When k=1, processor 0 executes itera-

tions 2, 6, 10, 14, . . . , processor 1 executes iterations

3, 7, 11, 15, . . . and so on. In the second iteration,

processor 0 executes iterations 6, 10, 14, . . . , processor

1 executes iterations 7, 11, 15, . . . etc.
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nprocs=omp get num threads()

myblock start(1) = 1

myblock end(1) = mapgla(1)

!$omp parallel do private(p,pp)

do p=2,nprocs

do pp=1,p-1

myblock start(p)=1+myblock start+mapgla(pp)

enddo

myblock end(p)=myblock start(p)+ mapgla(p) - 1

enddo

!$omp parallel do private(iam)

do iam = 1, omp get num threads()

do j = myblock start(iam), myblock end(iam)

do jfld=1+mod(iam-1,nprocb)*(ngt0/nprocb), &

& (mod(iam-1,nprocb)+1)*(ngt0/nprocb)

zgl(j,jfld)=zga(j,jfld)

enddo

enddo

enddo

Fig. 6. Implementing a two-dimensional irregular block distribution using a customized loop schedule in the IFS LG kernel.

The initial cyclic assignment of iterations to proces-

sors is equivalent to a cyclic distribution of the columns

of a. By reusing the initial schedule of the innermost

parallel loop, we ensure that each processor updates a

subset of the data that it updates during the first iteration

of the outermost k loop. The appealing property of this

scheme is that data is actually distributed while the pro-

cessors execute useful computation, i.e. the first com-

putational iteration of LU. There is no need to predis-

tribute the data using manual data distribution and the

overhead of data distribution is removed from initial-

ization and overlapped with computation, so that it has

a lesser impact on the execution time of the program.

This scheme can be extended to work with sequences

of parallel loops that might have different bounds but

update the same data. If the first loop of this sequence is

restructured for localizing memory accesses, the sched-

ule obtained for this loop can be applied to subsequent

loops, so that the data access pattern of these loops

matches the data distribution that the first loop imple-

ments.

In cases where the data access pattern needs to be

changed (e.g. across loops that update or access differ-

ent data), it is possible to discard any previously es-

tablished distribution of data by unmapping the pages

that contain elements of distributed arrays, using calls

similar to the UNIX mprotect(). The side-effect of

mprotect() is that pages with distributed data be-

come invalid and will cause page faults whenever a pro-

cessor access them after raising their protection bits.

The first execution of the loop that changes the memory

access pattern will force the pages to be remapped to

processors on a first-touch basis and according to the

new memory access pattern. This is an implicit mech-

anism for data redistribution, which extends the appli-

cability of customized loop schedules to codes with

dynamically changing memory access patterns.

Figure 6 shows a customized loop schedule that im-

plements the irregular block distribution required by

the IFS LG kernel. The idea is again to have processors

touch data assigned to them first, so that the associated

pages are placed in local memory modules. The gen-

eralized block distribution is handled by defining the

bounds of the block assigned to each processor (first

parallel loop in the code). mapgla, which stores the

number of rows of zgl assigned to each processor, is

used to define the lower and upper bound of the loop.

Two-dimensional blocking is then applied to the paral-

lel loop. Note that nproca and nprocb are the num-

ber of processors used for distribution along the hori-

zontal and vertical direction respectively. Each block

assigned to a processor along the vertical direction is

ngt0/nprocb columns wide. Processor p accesses

the block of columns j, where p mod nprocb = j.

The technique is no different than previously proposed

techniques to access data distributed with multidimen-

sional distributions [4] and is straightforward to extend

for handling combinations of block and cyclic distribu-

tions, with potentially variable sizes for the blocks and

the chunks of rows/columns assigned to each processor.

Figure 7 illustrates an example of how proper as-

signment of loop iterations to processors implements

implicitly an indirect data distribution, using the first-

touch page placement algorithm. The example shows
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do j=1,ngptotg

rindl(indl(j))=j

enddo

!$omp parallel private(iam)

iam=omp get thread num()

do j=1,mapgla(iam)

myiter(iam,j)=rindl(j)

enddo

!$omp end parallel

!$omp parallel private(iam)

iam=omp get thread num()

do j=1,mapgla(iam)

zgl(myiter(iam,j),jfld)=zga(j,jfld)

enddo

!$omp end parallel

Fig. 7. Implementation of an indirect irregular distribution.

another excerpt from the LG kernel. We assume that

the number of rows assigned to each processor is such

that the elements on the part of the column assigned

to a processor are page-aligned. The indirect distribu-

tion is defined by an indirection map, which is obtained

by accessing the values of vector indl. In order to

implement the indirect block distribution by assigning

iterations to processors, we identify the iterations that

access the elements of the block assigned to each pro-

cessor, as shown in the first code fragment in Fig. 7.

The array element rindl(j) stores the iteration of

the loop that accesses the elements of row indl(j) of

zgl. These elements must be mapped to the processor

that owns indl(j). This is implemented by construct-

ing a map of iterations to processors, which is defined

as a two-dimensional array myiter(i,j), i=1,

. . .p, j=1, . . .max(mapgla(i)). The elements of

this array are set with the second code fragment shown

in Fig. 7. Intuitively, if an elementi1 is assigned to pro-

cessor p, we first find the iteration j1 that accesses i1,

by finding the value j1 that satisfies indl(j1) = i1.

We then set rindl(i1) = j1 and assign iteration j1
to processor p by setting myiter(p, k) = j1 for some

k. Finally, the original loop is transformed so that

each processor executes its assigned set of iterations,

as shown in the third code fragment in Fig. 7.

In a practical implementation, the aforementioned

loop scheduling transformations can be easily au-

tomated in an extension of the SCHEDULE clause

of the OpenMP programming standard. In anal-

ogy to data-parallel directives implemented in vari-

ants of HPF, the SCHEDULE clause may include a

GEN BLOCK(map(1:P)) parameter or an INDIRECT

(map(1:N)) parameter. In the first case, element i of

map contains the size of a contiguous chunk of itera-

tions assigned to processor i. In the second case, ele-

ment i of MAP contains the mapping of an element of a

shared array to a processor, along the dimension of the

array indexed by the running index of the parallelized

loop. The OpenMP compiler should interpret this as a

mapping of the iteration that updates this element to the

same processor. Similarly, in the case of LU, a clause

of the type cyclic,affinity(j)=data(a(i,j))

would instruct the compiler to schedule the iterations

of the loop cyclically and reuse this schedule across

invocations of the loop.

4. Results

4.1. Experimental setting

We present experimental results that demonstrate

the potential of reusing customized loop schedules for

achieving good memory access locality. We experi-

mented on a 128-processor SGI Origin2000 located at

NCSA. This system has MIPS R10000 processors run-

ning at 250 MHz, with 32 Kilobytes of split L1 cache,

4 Megabytes of unified L2 cache per processor, and

64 Gigabytes of uniformly distributed DRAM mem-

ory. The operating system used is IRIX version 6.5.11.

The page size for data pages on the Origin2000 is 16

Kilobytes. All experiments were submitted to bench-

marking queues and they were executed on dedicated

processors.

We experimented with four codes. LU and the LG

kernel were already presented as examples in the previ-

ous sections. We also performed experiments with SL

and TS, two irregular data transposition kernels taken

from the IFS weather forecast code. The data ker-

nels perform transpositions of data between the three

main computational phases of IFS, namely the physical

grid-point space computation, the Fourier space com-

putation, and the spectral space computation. These

transpositions are performed to ensure that the com-

putational parts of IFS are executed in parallel with-

out interprocessor communication. Data transpositions

in the IFS code can be implemented with appropri-

ate data redistribution. Unfortunately, the grids of the

main computational phases of IFS cannot be repre-

sented with regular (e.g. BLOCK or CYCLIC) data

distributions. The physical space grid and the Fourier

space grid are quasi-regular, because the number of

grid points (used to model the atmosphere) is progres-

sively reduced when moving from the equatorial to the
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OpenMP 

OpenMP + loop schedule reuse 

OpenMP + manual data distribution
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OpenMP + manual data distribution

MPI 

Fig. 8. Execution times of LU and LG (top charts), SL and TS (bottom charts).

poles. The spectral space grid, which is produced from
a Legendre transform of the Fourier space grid, has a
triangular shape.

The LG kernel handles the transpositions of data be-
tween the physical grid point space and the Fourier
space. The SL kernel computes a trajectory from a grid
point backwards in time and interpolates some quanti-
ties at the departure and the mid point of the trajectory,
using the semi-Lagrangian method. The main compu-
tational challenge in a parallel implementation of SL
is that computing the trajectory requires that each pro-
cessor collects a set of global grid point indices from
neighboring processors. These grid points are repre-
sented by a compact read-only data structure, called a
halo. The halo is updated at runtime according to the
winds which are likely to be encountered in the trajec-
tory. The TS kernel uses Fourier and Legendre trans-
forms to transpose data from the Fourier space to the
spectral space and backwards.

The original implementation of the codes uses MPI.
The codes are parallelized by decomposing the grids
between processors for balanced load, according to the
shape and the population of different parts of the grids.
Communication follows nearest-neighbor patterns and
is manually optimized.

For LU, we compare the three OpenMP implemen-
tations (loop-parallel version, version with manual data
distribution and version with loop schedule reuse). For
the three irregular codes, we compare the performance
of four versions of each code. The first version is the
original MPI implementation. The second version is an
OpenMP implementation derived from the HPF imple-
mentation of the codes [2], by parallelizing the loops
denoted as independent in the HPF implementa-
tion, and applying reordering of loop nests, so that in-
ner loops work along columns of the arrays for better
spatial and temporal cache locality. The third version
uses OpenMP and the customized loop schedules, via
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Fig. 9. Histograms of memory accesses in LU.

Fig. 10. Histograms of memory accesses in LG.

manual transformations that we applied to the codes.

We note that these transformations are straightforward

to implement in an OpenMP compiler, assuming that

a user gives a description of the thread-to-data affinity

relationship in the loop’s SCHEDULE clause.

The fourth version is a hybrid data-parallel/OpenMP

version which uses manual data distribution. While

developing this version, we had the option of using the

native SGI compiler, which implements multidimen-

sional block and cyclic data distributions, in conjunc-

tion with affinity mapping of threads to data. These op-

tions are enabled with compiler directives similar to the

ones used in HPF. Unfortunately, we had to disqualify

this option for two reasons. First, the SGI implementa-

tion has been performing poorly in several experiments

we did with the affinity scheduling clause of the SGI

compiler. Second, it is impossible to implement the ap-

propriate data distributions for the irregular kernels us-

ing the SGI directives. We reverted to a brute-force so-

lution and placed manually the pages with the elements

of the distributed arrays across processors. We applied

array reshaping and padding, together with rewriting

of array access indices, as needed for the accurate im-

plementation of the irregular two-dimensional distribu-

tions. We purposely didn’t apply reshaping or padding

in the versions that use loop schedule reuse, to evaluate

the impact of false sharing in the performance of the

codes.

4.2. Results

Figure 8 illustrates the execution times of LU decom-

position performed on a dense 4096× 4096 matrix and

the three irregular kernels operating on a 63 × 63 grid

respectively. Execution times are plotted from 1 to 128

processors for LU and from to 1 to 100 processors for

the three irregular kernels. The latter require a square

number of processors for the grid decomposition. Note

that execution time is plotted in logarithmic scale and

the lower/upper bounds are adjusted according to the
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Fig. 11. Histograms of memory accesses in SL.

Fig. 12. Padding of zsl1 in SL to cope with false sharing.

execution times of the benchmarks. Note also that for

the irregular codes, we report the execution time per

iteration, averaged over 100 iterations.

There is a highly consistent performance trend in all

four benchmarks. The loop schedule reuse transfor-

mation improves the performance of the unmodified

OpenMP implementation at least as much and in most

cases slightly more than manual data distribution. This

verifies the common belief that some form of guided

data distribution is necessary for shared-memory pro-

grams running on NUMA architectures, but also shows

that data distribution can be implemented implicitly

and in parallel with the execution of useful computa-

tion. The advantage of our implicit data distribution

mechanism compared to manual data distribution is at-

tributed to the reduced overhead of our scheme, which

distributes data during rather than before the parallel

computation.

The OpenMP versions that use customized loop

schedules perform within 5% off MPI in the irregular

kernels. The same versions outperform the versions

that use manual data distribution by up to 13% and

the plain OpenMP versions by a margin that ranges

between 23% and 55%. The notable exception is SL,

where the performance of loop schedule reuse suffers

from false sharing.

The message from the presented results is that it is

possible to obtain the full benefit of memory access lo-

cality without introducing data distribution extensions

to OpenMP. The comparison with MPI is of particu-

lar interest, first because it is among the first to con-

tradict the existing experimental evidence that position

OpenMP behind MPI in terms of performance and scal-

ability, and second because the programming effort re-

quired to reach this level of performance with OpenMP

is one order of magnitude less than the programming

effort required to reach the same level of performance

with MPI [15].

To quantify the improvement in memory access lo-

cality from customizing and reusing loop schedules,
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Original :

real zsl1 (ngptotg, nfldslb1)

Transformed:

padded nfldslb1= ((nfldslb1*sizeof(real)) & (˜ (page size-1)))/sizeof(real)

real zsl1 (ngptotg, padded nfldslb1)

Fig. 13. Performance of loop schedule reuse in SL, after applying array reshaping and padding to alleviate false sharing.

OpenMP 

OpenMP + loop schedule reuse 

OpenMP + manual data distribution

MPI 

Fig. 14. Histograms of memory accesses in SL with loop schedule
reuse, before and after applying padding.

we traced the memory accesses in the programs and

calculated the amount of local and remote memory ac-

cesses issued to each node, during the executions of the

programs on 64 processors. Figures 9 through 12 show

these results. The processors on the Origin2000 are

attached to nodes with two processors per node. The

processors in a node share the memory of the node.

The histograms show the accumulated number of mem-

ory accesses per node, divided into local accesses (i.e.

accesses from the processors on the node, gray part

of the bars) and remote accesses (i.e. accesses from

processors outside the node, black part of the bars).

Aside from reducing radically memory latency by

reducing the number of remote memory accesses per

node, the schedule reuse transformation helps in alle-

viating contention at memory modules. Contention is

alleviated by balancing the remote memory accesses

across the nodes of the system. This is crucial for dis-

tributing evenly the traffic of messages in the intercon-

nection network. Memory access balancing is almost

excellent in LU and LG, when iteration schedule reuse

is applied. TS has a somewhat more unbalanced mem-

ory access pattern, but the overall number of remote

memory accesses is reduced significantly.

SL has severe false sharing in pages that are accessed

by neighboring processors. To circumvent this prob-

lem, we applied array padding in the version that uses

loop schedule reuse. We transformed the primary array

(zsl1) as shown in Fig. 13. The array is distributed

with an implicit indirect distribution along the first di-

mension, likewise to the example in Fig. 7. The result

of this optimization is shown in Fig. 14 and validates the

argument about false sharing and the effectiveness of

the solution. Figure 14 shows how the simple padding

transformation reduces and balances remote memory

accesses in SL.

5. Related work

Data distribution was explored in depth in various

projects that investigated data-parallel programming

languages and in particular, High Performance Fortran.

The works of Benkner et al. [2] and Hirandani et al. [8]

are probably the most relevant to our work, since they

also explored the option of reusing schedules for im-

proving the runtime performance of message-passing

code obtained from translating HPF directives. Instead

of reusing loop schedules though, these works propose

to reuse communication schedules, once these sched-

ules are obtained in the first iteration of the computa-

tion. Our work proposes to reuse iteration schedules, so

that computation is moved to data dynamically, while

the computation is in progress and the operating system

places data in memory according to its local algorithm.

Anderson et al. [1] and Hirandani et al. [8] pro-

posed loop transformations for mapping loop iterations

to data, according to multidimensional data distribu-

tions. We use similar transformations to implement

loop schedules that implicitly set up arbitrary distribu-

tions of computation and data. We note that these trans-

formations are beneficial not only to memory access

locality but also to cache access locality, particularly

if the transformed loops are executed multiple times

within the same program.
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The authors were the first to propose runtime trac-

ing of memory accesses as a method for dynamic data

distribution [13,14] and extended this work to handle

codes where dynamic data distribution should coordi-

nate with a dynamic load balancing algorithm [15].

This work extends this framework in applications where

dynamic optimization is difficult, due to the lack of

periodicity in the memory access pattern, or due to the

inability of automatic scheduling algorithms to imple-

ment application-specific load distributions.

6. Conclusions

On scalable multiprocessor architectures, shared-

memory parallelization suffers often from poor perfor-

mance. This happens particularly in codes where com-

putation and data must be aligned in an application-

specific manner, due to structural irregularities of the

modelled physical problem and/or lack of periodicity in

the data access pattern. In this paper we have proposed

the technique of reusing customized loop schedules, as

a simple transformation for improving memory access

locality in such programs, without manual data distri-

bution. We have shown how customized loop sched-

ules can be used in OpenMP to implement irregular

data distributions simultaneously with the distribution

of computation, using the first-touch page placement al-

gorithm. The results of this work corroborate the belief

that OpenMP and shared-memory programming mod-

els in general can scale well on tightly-coupled NUMA

architectures without requiring significant extensions

or mixtures of shared-memory with other forms of

parallelism, such as data-parallel, SPMD, message-

passing and so on. Further research is required to in-

vestigate if a similar argument is valid on distributed

memory architectures, such as clusters and constella-

tions, where the abstraction of shared memory is sup-

ported by computationally costly software extensions

to the operating system and complex memory coher-

ence protocols.
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[13] D. Nikolopoulos, E. Ayguadé, J. Labarta, T. Papatheodorou
and C. Polychronopoulos, The Trade-Off between Implicit

and Explicit Data Distribution in Shared-Memory Program-

ming Paradigms, in: Proc. of the 15th ACM International

Conference on Supercomputing (ICS’2001), Sorrento, Italy,

June 2001.

[14] D. Nikolopoulos, T. Papatheodorou, C. Polychronopoulos, J.
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