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Convective mixing in porous media is triggered by a Rayleigh-Bénard-type hydrodynamic instability as

a result of an unstable density stratification of fluids. While convective mixing has been studied

extensively, the fundamental behavior of the dissolution flux and its dependence on the system parameters

are not yet well understood. Here, we show that the dissolution flux and the rate of fluid mixing are

determined by the mean scalar dissipation rate. We use this theoretical result to provide computational

evidence that the classical model of convective mixing in porous media exhibits, in the regime of high

Rayleigh number, a dissolution flux that is constant and independent of the Rayleigh number. Our findings

support the universal character of convective mixing and point to the need for alternative explanations for

nonlinear scalings of the dissolution flux with the Rayleigh number, recently observed experimentally.

DOI: 10.1103/PhysRevLett.109.264503 PACS numbers: 47.56.+r, 47.20.Bp, 92.40.K�

Convective mixing in porous media results from the

density increase in an ambient fluid as solute or another

fluid dissolves into it, leading to a Rayleigh-Bénard-type

instability [1]. This phenomenon has received renewed

attention because of its role in geologic carbon dioxide

(CO2) sequestration in saline aquifers [2]. When super-

critical CO2—which is less dense than brine—dissolves in

brine, the aqueous mixture increases its density, leading to

a configuration in which the dissolution of CO2 is

enhanced by the downward migration of dense fingers of

CO2-rich ground water [3,4], thereby accelerating solubil-

ity trapping of the injected CO2 and increasing the security

of storage [5]. Convective mixing may also play a role in

the dissolution of halites or other soluble low-permeability

rocks overlying ground water aquifers [6], leading to high

dissolution rates that can exert a powerful control on pore-

water salinity in deep geologic formations [7]. Recent

studies of convective mixing during CO2 storage have

addressed the stability analysis for the onset of convection

[8–11], nonlinear simulation of the convective instability

[9,12–15], and experimental systems reproducing the con-

ditions for convective mixing in a stationary horizontal

layer [15–18].

The key dimensionless group in the problem is the

Rayleigh number Ra, which is a measure of the strength

of density-driven convection relative to diffusion [1].

Experiments and high-resolution simulations suggest

that, for high Ra, there exists a period of constant dissolu-

tion flux, after the onset of the instability and before the

layer of brine starts to be saturated with dissolved CO2

[12–14]. This constant-flux regime is crucial because it

determines the importance of solubility trapping in geo-

logic CO2 sequestration [19].

The fundamental question of how this constant flux

depends on Ra has been the subject of recent studies.

Based on an argument of universality of the flow before

it is affected by the boundaries [9,11,13,18], the character-

istic length of the problem is such that convection balances

diffusion over that length scale, so one expects the constant

dissolution flux during the convection-controlled regime to

be independent of Ra; this is our null hypothesis. In con-

trast, recent experimental studies using a fluid system that

naturally undergoes convection [15,17] suggest a nonlinear

scaling of dissolution flux with Ra. Thus, it is unclear

how to reconcile these results and whether the origin of

the observed nonlinear scaling can be explained from the

classical mathematical model of porous-media convective

mixing.

Here we investigate, by means of high-resolution nu-

merical simulation, the scaling behavior of convective

mixing for two model systems that have recently been

investigated experimentally: (1) the canonical Rayleigh-

Bénard-Darcy model problem with dissolution from the

top boundary and linear dependence of density on the

dissolved concentration [16,18]; and (2) an analogue

model for CO2 sequestration in which a mixture of two

miscible fluids exhibits a nonmonotonic density-

concentration curve such that mixtures with intermediate

concentrations are denser than either pure fluid [15,17].

One of the inherent difficulties for the analysis of the

analogue-fluid model (either from experiments or simula-

tions) is finding a proper definition of the dissolution flux.

While this is trivial for the canonical Rayleigh-Bénard-

Darcy problem—where the dissolution flux can be

obtained from the cumulative dissolved mass—it is a chal-

lenge for the analogue-fluid problem because there is no

net accumulation of solute in the initial fluid: instead, two

initially-segregated fluids mix through a one-sided insta-

bility. Here we resolve this challenge by deriving the

relationship among diffusive flux, rate of mean square
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concentration, and mean scalar dissipation rate. This rela-

tionship points to the scalar dissipation rate � as the fun-

damental quantity that controls the evolution of convective

mixing in either model system: any dependence on Ra

must be reflected on �.
We provide evidence that the classical mathematical

model for single-phase variable-density flow in porous

media under the Boussinesq approximation supports the

null hypothesis that there is a universal regime in which the

flux is constant and independent of Ra for both the canoni-

cal and analogue-fluid systems. Therefore, deviations from

this universal scaling must be due to factors not included in

the mathematical model. We test whether they can be

attributed to viscosity variations or to the shape of the

density-concentration curve. We find that the scaling of

the dissolution flux is relatively insensitive to variations in

fluid viscosity, but depends strongly on the position of the

maximum in the density-concentration curve. These find-

ings could help reconcile some of the experimental

observations.

Under the assumptions of incompressible fluids and the

Boussinesq approximation, the governing equations for

variable-density single-phase flow in a porous medium

take the following dimensionless form [9]:

r � u ¼ 0; u ¼ �
1

�ðcÞ
½rp� �ðcÞẑ�;

@tcþr �

�

uc�
1

Ra
rc

�

¼ 0;

(1)

in x 2 ½0;W� and z 2 ½0; 1�, where W is a dimensionless

width. The first equation is the mass conservation equation

for an incompressible fluid, where u is the dimensionless

Darcy velocity. The second equation is Darcy’s law, where

p is the dimensionless pressure with respect to a hydro-

static datum, ẑ is the unit vector in the direction of gravity,

� is a dimensionless density difference with respect to the

initial fluid, and � is a suitably rescaled dimensionless

dynamic viscosity. The third equation is the advection-

diffusion transport equation (ADE) for cðx; z; tÞ, the con-

centration rescaled between 0 and 1. The Rayleigh number

Ra is the key dimensionless parameter of the problem:

Ra ¼
k��mgH

�m�Dm

; (2)

where k is the aquifer permeability, � is the porosity, ��m

is the density difference driving convection, �m is the

characteristic dynamic viscosity, Dm is the diffusion coef-

ficient, andH is the height of the domain. In principle, both

density and viscosity can be nonlinear functions of

concentration.

In the canonical model, the density has a linear variation

with concentration, so � ¼ c. Moreover, the viscosity of

the mixture is assumed to be constant, so � ¼ 1. The
initial condition is c ¼ 0 everywhere in the domain. The

boundary conditions are as follows: periodic boundary

conditions in pressure and concentration at the lateral

boundaries (x ¼ 0, x ¼ W); no-flow, no-diffusion at the

bottom boundary (z ¼ 1); and no-flow and prescribed

concentration (c ¼ c0 ¼ 1) at the top boundary (z ¼ 0).
Thus, along the top boundary, there is a dissolution flux

from diffusion.

In the analogue-fluid model, the density is a nonlinear,

nonmonotonic function of concentration. The function

�ðcÞ for the dimensionless density difference takes a value

of 0 at c ¼ 0, increases to a maximum value � ¼ 1 at

concentration c ¼ cm of the densest mixture, and

decreases to a negative value at c ¼ 1. Here, we use the

density-concentration curve �ðcÞ for mixtures of

propylene-glycol (PG) and water [17,20], which we ap-

proximate by a polynomial that takes a maximum value at

cm ¼ 0:26. We also allow variations in the dynamic vis-

cosity of the mixture, following an exponential law�ðcÞ ¼
exp½Rðcm � cÞ�, where R ¼ lnð�0=�1Þ is the viscosity

ratio between the heavy and light fluids. The initial con-

figuration is one in which the two pure fluids are segregated

by density, with the lighter fluid on top (c ¼ 1 for 0 � z �
0:1) and the denser fluid below (c ¼ 0 for 0:1< z � 1). As
the two fluids mix, initially by diffusion, a layer of dense

fluid forms at the interface, triggering the convective-

mixing instability. The boundary conditions are no-flow,

no-diffusion at the top and bottom boundaries, and periodic

boundary conditions at the side boundaries.

Mixing can be quantified as the decay of concentration

variance,�2 ¼ hc2i � hci2, where hciðtÞ ¼
R

� cðx; z; tÞd�
and hc2iðtÞ ¼

R

�½cðx; z; tÞ�
2d�. Thus, the evolution equa-

tions for the first and second moments of concentration

completely characterize global mixing.

We consider first the canonical Rayleigh-Bénard-Darcy

model of convective mixing driven by boundary diffusion.

We derive the evolution equations for the mean concentra-

tion hci and the mean square concentration hc2i on the

rectangular spatial domain (we have assumed, for exposi-

tional simplicity, a unit-square domain). The equation for

the mean concentration is obtained by integrating the

ADE:

@thci ¼ F; (3)

where F ¼
R

�top
Ra�1rc � nd� is the integrated diffusive

flux across the top boundary (z ¼ 0). The equation for the

mean square concentration is obtained by multiplying the

ADE by c and integrating over the domain. Incorporating

the incompressibility constraint, the boundary conditions,

and after some algebraic manipulations, one obtains

@thc
2i ¼ 2ðc0F� h�iÞ; (4)

where c0 ¼ 1 is the prescribed concentration at the top

boundary, and � ¼ rc � Ra�1rc is the scalar dissipation

rate [21]. The central role of the scalar dissipation rate has

been exploited recently to explain anomalous fluid mixing

in porous media driven by permeability heterogeneity [22]
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or viscous-fingering instabilities [23]. The scalar dissipa-

tion rate may also inform about the time evolution of the

mixing length of the flow, which has been shown to exhibit

a universal signature in turbulent flows [24] and heteroge-

neous porous media [25].

Equation (4) exposes the fundamental relationship

among mixing rate, dissolution flux, and mean scalar dis-

sipation rate, and makes it evident that any Rayleigh-

number power-law dependence of the dissolution flux F
must be reflected also in themean scalar dissipation rate h�i.

The link to the scalar dissipation rate is particularly

useful to characterize the time evolution in the analogue-

fluid model. In this case, there is no proper dissolution flux

but, rather, a convection-dominated mixing of the two

initial miscible fluids. Since all boundaries are no-flux

boundaries, the mean concentration hci is constant, and

the equation for the mean square concentration reduces to

@thc
2i ¼ �2h�i: (5)

Analyzing h�i provides a fundamentally new way to char-

acterize the macroscopic evolution of convective mixing,

and a rigorous way to quantify any dependence on Ra.

We perform high-resolution computer simulations of the

governing equations (1), for both the canonical model and

the analogue-fluid model. We employ the so-called stream

function—vorticity formulation, in which the equation for

the stream function and the ADE transport equation are

solved sequentially at each time step [26]. We solve the

stream function equation using a spectral method [9,27],

and the concentration equation using a sixth-order compact

finite difference discretization and a third-order Runge-

Kutta time-stepping scheme [26]. We trigger the density-

driven instability by introducing a small perturbation on

the concentration at the boundary (for the canonical sys-

tem) or the horizontal initial interface (for the analogue-

fluid system), as it is commonly done [9,14,15].

The results of a typical simulation are shown in Fig. 1.

The morphology of the convective instability is well known

[9,15,17,18]: after an onset period inwhich a diffusion layer

builds up between the two fluids, the layer develops a one-

sided instability in which downward-moving protrusions

grow exponentially, eventually developing into bloblike

fingers with thin necks at the roots of the fingers; these

fingers then interact, merging into each other, and coarsen-

ing in such a way that well-developed fingers then attract

newly formed fingers [Fig. 1(a)]. A snapshot of the simu-

lated scalar dissipation rate � illustrates that the regions

where the fluids are actively mixing coincidewith the edges

of the density-driven fingers [Fig. 1(b)]. This behavior is

supported qualitatively by laboratory experiments with a

PG-water system in an Hele-Shaw cell [Fig. 1(c)].

In Fig. 2 we plot the time evolution of the mean scalar

dissipation rate for both the canonical Rayleigh-Bénard-

Darcy model and the analogue-fluid model, and for differ-

ent values of Ra. For each case, there is a regime of

constant rate of scalar dissipation. That period extends,

roughly, from dimensionless time t ¼ 1 to t ¼ 6, which
is about twice the time that it takes for the fingers to reach

the bottom of the domain, indeed highlighting the convec-

tive nature of the dissolution process. It is interesting that

the scalar dissipation rate for the boundary-driven dissolu-

tion case is approximately twice as large as that for the

analogue-fluid model, in analogy with the diffusive flux for

one-dimensional diffusion from a one-sided boundary

problem vs two-sided diffusion from an initial sharp

discontinuity.

We compute the time-averaged mean scalar dissipation

rate h�i during the time period of constant dissolution flux

(t 2 ½1; 6� for the canonical model and t 2 ½2; 8� for

the analogue-fluid model). For simulations with high Ra

(> 5000), the scalar dissipation rate appears to be inde-

pendent of Ra (Fig. 2, inset). Given the fluctuations of the

mean scalar dissipation rate over time, one cannot reject

the null hypothesis that the dissolution flux is independent

of the Rayleigh number. Indeed, we fit a power law to h�i
obtained from the high-resolution simulations as a function

of Ra. This yields a best fit (with 95% confidence bounds)

h�i � ð0:0120� 0:0013ÞRaþ0:031�0:012 for the canonical

model, and h�i � ð0:0072� 0:0012ÞRa�0:017�0:017 for the

analogue-fluid model. These results provide conclusive

evidence that the classical Darcy-Boussinesq model of

convective mixing predicts a regime in which the dissolu-

tion flux and subsequent mixing is constant and, in the

range of high Ra, independent of the Rayleigh number.

However, recent experimental studies using analogue

fluids, like methanol-ethylene glycol and water (MEG-

water) [15] and propylene glycol and water (PG-water)

(a) (b) (c) 0 1 cm

FIG. 1. (a) Snapshot of the concentration c at dimensionless

time t ¼ 1 from a simulation of the analogue-fluid system with

Ra ¼ 10000 and constant viscosity (R ¼ 0). A computational

grid of 512� 1536 cells was used, and only a small window of

the simulation domain is shown. (b) Corresponding snapshot of

the scalar dissipation rate �, for the same simulation as that in

(a). Here, dark color corresponds to high values of �, and

indicates regions of active mixing. (c) Snapshot of a surrogate

of the scalar dissipation rate � ¼ rc �Dmrc (obtained from

light intensity) from a laboratory experiment with a PG-water

system in a Hele-Shaw cell, illustrating that mixing is primarily

confined to narrow layers along the edges of the horizontal

interface and the density-driven fingers.
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[17], report a scaling of the form F� Ra�1=5. Here, we

explore the possibility that this nonlinear scaling be due to

the viscosity contrast between the fluids or to the shape of

the density-concentration curve.

To investigate the effect of viscosity contrast between

the pure fluids, we perform simulations of the analogue-

fluid model with a range of values of the log-viscosity ratio

R, from �2 to 2. A positive value of R means that the

lighter fluid is less viscous, which is the case for the PG-

water system (water is less dense and less viscous). The

time-averaged scalar dissipation rate exhibits a weak de-

pendence on the viscosity contrast, such that there is a

natural ordering in which the mixing rate is larger for lower

values of R. For a fixed value of R, there is no clear

dependence of h�i on Ra (Fig. 3).

To investigate the effect of the shape of the density-

concentration curve, we perform simulations using a sim-

ple parameterization of the density curve. It is assumed to

be a continuous piecewise linear function with the same

end points as that of the PG-water system, �ð0Þ ¼ 0 and

�ð1Þ ¼ �3:6, connected with the point at which the den-

sity is maximum, �ðcmÞ ¼ 1. We then study the influence

of cm, which we vary between 0.1 and 0.8, and find that the
mixing rate exhibits a strong monotonic dependence on the

position of the maximum density: larger values of cm lead

to larger mixing rates (Fig. 4).

In summary, we have shown that in the problem of

dissolution-driven convection in porous media, any depen-

dence of the dissolution flux on the Rayleigh number must

translate into a dependence of the scalar dissipation rate on

Ra as well. This observation is essential to interpret the

simulations of an analogue fluid-mixture model in which

several recent experiments are based. Our high-resolution

simulations of convective mixing show that the classical

Darcy-Boussinesq equations of variable-density flow in

porous media lead to mean scalar dissipation rates that

are independent of Ra. Therefore, nonlinear scalings of

FIG. 2 (color online). Time evolution of the mean scalar dis-

sipation rate h�i from simulations of both the canonical

Rayleigh-Bénard-Darcy model (dashed lines) and the analogue-

fluid model (solid lines). We report results for different Rayleigh

numbers varying from Ra ¼ 5000 to 30000, and constant vis-

cosity (R ¼ 0). All cases exhibit a period of constant rate of

scalar dissipation. For each model, all the curves seem to

collapse, suggesting weak or no dependence on Ra. Inset: Time-

averaged scalar dissipation rate for the canonical model (circles)

and the analogue-fluid model (squares). For each Ra, the small

dots denote the entire time series of h�i (t 2 ½1; 6� for the

canonical model and t 2 ½2; 8� for the analogue-fluid model, at

time intervals of �t ¼ 0:1). The shaded areas indicate the spread

of one standard deviation with respect to the average. We

indicate, with a line, the best power-law fit over all simulations

for each case. The best fit is virtually independent of Ra.

FIG. 3 (color online). Impact of viscosity variations on the

time-averaged mean scalar dissipation rate h�i. All simulations

are for the analogue-fluid system with different values of log-

viscosity ratio (R ¼ �2 to 2). For each value of R, we plot h�i as
a function of Ra.

FIG. 4. Impact of the shape of the density-concentration curve

on the time-averaged mean scalar dissipation rate h�i. We fix the

value of the Rayleigh number (Ra ¼ 20000) and use constant

viscosity (R ¼ 0), and run simulations for different piecewise-

linear density curves, parametrized by the concentration cm at

which the curve takes its maximum value (see inset).
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dissolution flux with Ra must be explained by effects that

are not present in the traditional Darcy-Boussinesq model

equations of convective mixing. Here, we have analyzed

the effects of viscosity variations and the shape of the

density curve. While the predicted mixing rates depend

only weakly on the viscosity contrast between the pure

fluids, they depend strongly on the shape of the density-

concentration curve and, in particular, on the position of

the maximum of the curve. These effects, along with others

not investigated here such as volume change on mixing

[28], could help reconcile the Rayleigh-number depen-

dence observed experimentally [15,17].
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